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Abstract: We study an equation governed by a discontinuous fully nonlinear op-
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ary. Working under natural assumptions, we prove the existence of Lp-viscosity and
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conditions and to obtain the existence of solutions we resort to solving approximate
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1. Introduction

We consider the problem

{
F1(D

2u)χ{u>0} + F2(D
2u)χ{u<0} = f(x) in (Ω+(u) ∪ Ω−(u)) ∩ Ω

u = g on ∂Ω,
(1)

where Fi : S(d)→ R, i = 1, 2 are (λ,Λ)-elliptic operators, f ∈ Lp(Ω) for some
p > p0, and g ∈ C(∂Ω). Here, Ω+(u) := {x ∈ Ω | u(x) > 0}, and Ω−(u) :=

{x ∈ Ω | u(x) < 0}, S(d) ≈ R
d(d+1)

2 is the space of d×d symmetric matrices and
d
2 ≤ p0 = p0(

Λ
λ , d) < d is the exponent such that the Aleksandrov-Bakelman-

Pucci type maximum principle holds for (λ,Λ)-elliptic equations with right
hand side in Lp for p > p0, see [11, 10, 3, 12, 9].
The main result of the manuscript is the proof of the existence of Lp-viscosity

solutions to (1), Theorem 1. We also show that under an additional, rather
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2 E. A. PIMENTEL AND A. �WI�CH

natural, condition on the operators F1 and F2, the L
p-viscosity solutions belong

to W 2,p
loc (Ω) and are strong solutions to (1).

The problem in (1) accounts for a discontinuous operator, whose disconti-
nuities depend on the sign of the solutions. Within {u > 0}, the equation is
governed by F1, whereas in {u < 0} it is driven by F2. Due to this feature
of the model, we localize it in the context of free transmission problems; see
[1, 15]. The nomenclature follows from the fact that the interface � across
which discontinuities occur � can be regarded as a free boundary. It is conve-
nient to notice that such ingredient does not appear in the usual formulation
of transmission problems; see [25, 30, 2], to mention just a few.
In that case, the transmission interface is known a priori. An important

question arising in that setting concerns the regularity of solutions and the
dependence of the associated estimates on the geometry of subdomains [24, 23].
Indeed, it has become apparent that the geometry of the interface and the
regularity of the solutions are close-knit properties, as recently indicated in [7].
Interior regularity of Ld-strong solutions to (1), as well as a preliminary

analysis of the free boundary, have been studied in [27]. Nonetheless, the issue
of existence is not discussed in that paper and it remained open so far.
A consequential aspect of (1) concerns the dependence of the operator on

the solutions. We observe the equation does not satisfy the usual structure
conditions (e.g., [6, Condition (SC)]) under which existence of Lp-viscosity
solutions is well known [8, 17, 31]. As a result, the existence of Lp-viscosity
solutions to (1) requires a di�erent strategy, which is based on the approach
employed in [15].
We start by considering regularized auxiliary problems. In contrast to (1),

these problems are uniformly elliptic in the entire domain and do not depend
on the solutions. Under a usual condition on the geometry of Ω, and the uni-
form ellipticity assumption on the operators F1 and F2, we produce a family of
solutions to such regularized auxiliary problem. The family of such problems
depends on a small parameter ε; however, important information (e.g. esti-
mates and moduli of continuity) are found to be uniform for the family. We
construct Lp-viscosity solutions to the regularized problems by the Schauder
Fixed Point Theorem and then send ε→ 0 to produce an Lp-viscosity solution
to (1). If we also suppose F1 and F2 to be close, in a suitable sense, we derive
C1,α interior estimates for such solutions. Our �rst main result reads as follows.

Theorem 1 (Existence of viscosity solutions). Let Assumptions (A1), (A2)
hold, g ∈ C(∂Ω) and f ∈ Lp(Ω), for some p > p0. Then there exists an
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Lp-viscosity solution u ∈ C(Ω) to (1). Suppose further that (A3) also holds

and p > d; let α ∈ (0, 1) satisfy

α < α0 and α ≤ 1− d

p
,

where α0 ∈ (0, 1) corresponds to the C1,α0-regularity available for the solu-

tions to G = 0 for any (λ,Λ)-elliptic operator G. Then there exists β0 =
β0(d, p, λ,Λ, α) > 0 such that if the parameter τ > 0 in (A3) satis�es τ ≤ β0,

then u ∈ C1,α
loc (Ω) and, for every Ω′ b Ω, we have

‖u‖C1,α(Ω′) ≤ C
(
1 + |F1(0)|+ |F2(0)|+ ‖f‖Lp(Ω) + ‖g‖L∞(∂Ω)

)
, (2)

where C = C(α, d, p, λ,Λ, K, τ, diam(Ω), dist(Ω′, ∂Ω)).

Once the existence of Lp-viscosity solutions has been established, a natural
question concerns the existence of strong solutions to (1). Here, our strategy
is to examine conditions on the operators F1 and F2 leading to W 2,p interior
regularity estimates. The almost-convexity of F1 and F2 allows to prove such
estimates. To be precise, we suppose that F1 and F2 are locally close to a
convex, (λ,Λ)-elliptic operator F .
This additional condition is transmitted through the structure of our proofs;

as a consequence, the Lp-viscosity solution found in Theorem 1 is in W 2,p
loc (Ω),

with the usual estimates. The closeness regime imposed on F1 and F2 is encoded
by constants L and σ; see Assumption (A4). The existence of strong solutions
to (1) is the content of our second main result.

Theorem 2 (Existence of strong solutions). Let Assumptions (A1), (A2),
(A4) hold, g ∈ C(∂Ω) and f ∈ Lp(Ω), for some p > p0. There exists

β0 = β0(d, p, λ,Λ) > 0 such that if the parameter σ > 0 in (A4) satis�es

σ ≤ β0, then equation (1) has a strong solution u ∈ W 2,p
loc (Ω) ∩ C(Ω). In

addition, for every open subset Ω′ b Ω

‖u‖W 2,p(Ω′) ≤ C
(
1 + |F1(0)|+ |F2(0)|+ ‖f‖Lp(Ω) + ‖g‖L∞(∂Ω)

)
,

where C = C(d, p, λ,Λ, L, σ, diam(Ω), dist(Ω′, ∂Ω)).

Our strategy bypasses the dependence of the operator on the solutions through
a �xed-point argument. We believe this approach may be useful for a larger
class of free boundary problems of non-variational nature.
The remainder of this paper is organized as follows: in Section 2 we detail

our main assumptions and gather preliminary notions and facts used in the
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paper. Section 3 presents the proof of Theorem 1. Finally, in Section 4 we put
forward the proof of Theorem 2.

2. Preliminaries

In the sequel we detail the main assumptions under which we work and
present preliminary notions used in our arguments. We start by recalling a
de�nition.

De�nition 1 (Uniform exterior cone condition). Let Ω ⊂ Rd be open and

bounded. We say Ω satis�es a uniform exterior cone condition if there exist

r, θ > 0 such that, for every x ∈ ∂Ω, one can �nd a cone C of opening θ and

center at the origin, satisfying

(x+ C) ∩Br(x) ⊂ Rd \ Ω.

Our arguments require the domain Ω to satisfy a uniform exterior cone con-
dition. This is stated in the following assumption.

A 1 (Regularity of Ω). The set Ω ⊂ Rd is a bounded domain satisfying a

uniform exterior cone condition.

In addition to the geometry of the domain, we also impose a uniform ellip-
ticity condition on the operators F1 and F2.

A 2 (Uniform ellipticity). The operators Fi : S(d)→ R are (λ,Λ)-elliptic, for
i = 1, 2. That is, for every M,P ∈ S(d), with P ≥ 0, we have

Fi(M)− Λ Tr(P ) ≤ Fi(M + P ) ≤ Fi(M)− λTr(P ),

for i = 1, 2.

It is useful to write (A2) in terms of the extremal operators P±λ,Λ, de�ned as

P+
λ,Λ(M) := −λTr(M+) + Λ Tr(M−)

and

P−λ,Λ(M) := −Λ Tr(M+) + λTr(M−).

Since the ellipticity constants are �xed throughout the paper, we drop the
subscripts and write P±λ,Λ = P±. The condition in (A2) then becomes

P−(M −N) ≤ Fi(M)− Fi(N) ≤ P+(M −N),

for every M,N ∈ S(d) and i = 1, 2.
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To prove the existence of Lp-viscosity solutions to the Dirichlet problem (1),
we only require Assumptions (A1) and (A2). However, further regularity of
these solutions depends on additional conditions on the operators F1 and F2.
We proceed with an assumption on the proximity of those operators.

A 3 (Closeness of operators). There exist constants K, τ > 0 such that

|F1(M)− F2(M)| ≤ K + τ‖M‖, ∀M ∈ S(d). (3)

The constant τ in (A3), as well as the constant σ in Assumption (A4), will
be required to be su�ciently small later in the paper; see Sections 3 and 4. We
emphasize that existence of Lp-viscosity solutions to (1) does not require the
proximity regime in (A3); we only resort to this condition to prove an estimate
in Hölder spaces. The inequality in (A3) is satis�ed, for example, by linear
operators in the non-divergence form governed by matrices that are close in
some suitable topology. A fully nonlinear example can be found in the context
of Isaacs equations.

Example 1 (Isaacs equations). Let Aα,β, Bα,β ∈ S(d) for all α ∈ A, β ∈ B,
where A,B are some sets. Suppose that there exist constants 0 < λ ≤ Λ such

that

λI ≤ Aα,β, Bα,β ≤ ΛI,

for all (α, β) ∈ (A,B), where I is the identity matrix. Suppose further that

there exists τ > 0 such that

|Aα,β −Bα,β| ≤ τ.

Then the Isaacs operators

inf
α∈A

sup
β∈B

(−Tr (Aα,βM)) and inf
α∈A

sup
β∈B

(−Tr (BβM))

satisfy (A3) with K = 0.

To prove the existence of strong solutions we impose an additional, natural,
condition on the operators F1 and F2. We require them to be locally close to
a convex operator.

A 4 (Near convexity condition). There exist a convex, (λ,Λ)-elliptic operator

F = F (M) and constants L, σ > 0 such that

|Fi(M)− F (M)| ≤ L+ σ‖M‖, i = 1, 2,∀M ∈ S(d). (4)
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To illustrate the requirement in Assumption (A4) we again discuss the ex-
ample of Isaacs operators.

Example 2. Let Aα,β be as in Example 1. Suppose there exist σ > 0 and

matrices Aβ ∈ S(d) such that λI ≤ Aβ ≤ ΛI and

sup
x∈Ω
|Aα,β − Aβ| ≤ σ, ∀α ∈ A, β ∈ B.

Then ∣∣∣∣ inf
α∈A

sup
β∈B

(−Tr (Aα,βM))− sup
β∈B

(−Tr (AβM))

∣∣∣∣ ≤ σ‖M‖.

Thus the Isaacs operators satisfy (A4) with L = 0, when compared to the Bell-

man operator F (M) = supβ∈B (−Tr (AβM)), provided the associated matrices

are close enough.

We continue by introducing auxiliary operators. Consider v ∈ C(Ω) such
that v = g on ∂Ω and �x arbitrary ε > 0. Let hvε ∈ C(Ω) be de�ned by

hvε = gvε ∗ ηε,
where

gvε = max

(
min

(
v + ε

2ε
, 1

)
, 0

)
on Ω,

gvε = 0 on Rd \Ω, and ηε is the standard molli�er function. De�ne the operator
Gv
ε : Ω× S(d)→ R by

Gv
ε(x,M) := hvε(x)F1(M) + (1− hvε(x))F2(M). (5)

The next lemma establishes important properties of the operator Gv
ε and

closes this section.

Lemma 1. Let Assumption (A2) hold and Gv
ε be de�ned by (5). Then Gv

ε is

a (λ,Λ)-elliptic operator and there exists a constant Kv
ε > 0 such that

|Gv
ε(x,M)−Gv

ε(y,M)| ≤ Kv
ε |x− y| (1 + ‖M‖), ∀x, y ∈ Ω,M ∈ S(d).

(6)
If in addition (A3) holds then

|Gv
ε(x,M)−Gv

ε(y,M)| ≤ 2(K + τ‖M‖), ∀x, y ∈ Ω,M ∈ S(d) (7)

and if (A4) holds, then

|Gv
ε(x,M)− F (M)| ≤ L+ σ‖M‖, ∀x ∈ Ω,M ∈ S(d). (8)
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Proof : We start by verifying the �rst assertion in the lemma. Note that

Gv
ε(x,M + P ) = hvε(x)F1(M + P ) + (1− hvε(x))F2(M + P )

≤ hvε(x) (F1(M)− λTr(P )) + (1− hvε(x)) (F2(M)− λTr(P ))

= hvε(x)F1(M) + (1− hvε(x))F2(M)− λTr(P )

= Gv
ε(x,M)− λTr(P ).

The remaining inequality follows from an entirely analogous argument. For the
second claim, we observe that

|Gv
ε(x,M)−Gv

ε(y,M)| ≤ |hvε(x)− hvε(y)|(|F1(M)|+ |F2(M)|)
≤ Kv

ε |x− y| (1 + ‖M‖). (9)

If (A4) holds, since for every x ∈ Ω and M ∈ S(d), F (M) = hvε(x)F (M) +
(1− hvε(x))F (M), we have

|Gv
ε(x,M)− F (M)| ≤ hvε(x)|F1(M)− F (M)|+ (1− hvε(x))|F2(M)− F (M)|

≤ L+ σ‖M‖.
Finally, if (A3) holds, then

|Gv
ε(x,M)−Gv

ε(y,M)| ≤ |Gv
ε(x,M)− F1(M)|+ |F1(M)−Gv

ε(y,M)|
≤ 2(K + τ‖M‖).

3. Existence of Lp-viscosity solutions

In this section we present the proof of Theorem 1. We consider, for ε > 0,
the regularized problems{

Gu
ε(x,D

2u) = f in Ω

u = g on ∂Ω,
(10)

were Gu
ε is de�ned as in (5).

To obtain Lp-viscosity solutions to (10), we consider auxiliary problems{
Gv
ε(x,D

2u) = f in Ω

u = g on ∂Ω,
(11)

for v ∈ C(Ω). We �rst prove the existence of global sub and supersolutions u
and u to (11), independent of v ∈ C(Ω) such that v = g on ∂Ω and ε > 0.
Because f is not necessarily continuous, we do not construct explicit barriers.
Our strategy relies on the ellipticity of Gv

ε, combined with the existence of
strong solutions to the Dirichlet problems governed by the extremal operators.
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We then show the existence of a unique Lp-viscosity solution u ≤ uvε ≤ u.
Moreover, the solutions uvε are bounded in some Cα

loc-space, uniformly in v ∈
C(Ω) such that v = g on ∂Ω and ε > 0.
To complete the proof, we introduce two objects. First, consider the set

B ⊂ C(Ω), given by

B :=
{
v ∈ C(Ω) | u ≤ v ≤ u

}
. (12)

Then we de�ne the operator T on B as follows. Given v ∈ B, we consider the
(unique) Lp-viscosity solution uvε to (11) and set

Tv := uvε. (13)

For every ε > 0, we prove the existence of a �xed point for the map T . This
gives an Lp-viscosity solution to (10). By letting ε → 0, we then obtain an
Lp-viscosity solution to (1). We continue with the existence of sub and super-
solutions to (11).

Lemma 2 (Existence of sub and supersolutions). Suppose Assumptions (A1),
(A2) hold, g ∈ C(∂Ω) and f ∈ Lp(Ω), for some p > p0. Let v ∈ C(Ω) be

such that v = g on ∂Ω and let ε > 0. Let Gv
ε be de�ned as in (5). Then there

exist a strong (and Lp-viscosity) subsolution u ∈ W 2,p
loc (Ω)∩C(Ω) of (11) and

a strong (and Lp-viscosity) supersolution u ∈ W 2,p
loc (Ω) ∩ C(Ω) of (11) such

that u = u = g on ∂Ω. The functions u and u are independent of v and ε.

Proof : Functions u and u are easily constructed; see [8]. We take u ∈ W 2,p
loc (Ω)∩

C(Ω) to be the unique strong solution to{
P−(D2u) = f(x) + |F1(0)|+ |F2(0)| in Ω

u = g on ∂Ω
(14)

(see [6, Corollary 3.10]). It then follows from (A2) that for a.e. x ∈ Ω

Gv
ε(x,D

2u(x)) = Gv
ε(x,D

2u(x))−Gv
ε(x, 0) +Gv

ε(x, 0)

≥ P−(D2u(x)) +Gv
ε(x, 0) ≥ f(x).

Similarly, we check that if u ∈ W 2,p
loc (Ω) ∩ C(Ω) is the unique strong solution

to {
P+(D2u) = f(x)− |F1(0)| − |F2(0)| in Ω

u = g on ∂Ω,
(15)
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then Gv
ε(x,D

2u(x)) ≤ f(x) for a.e. x ∈ Ω. It is then straightforward to verify
that u and u are also Lp-viscosity sub and supersolutions [6, Lemma 2.5] and
to complete the proof.

Proposition 1. Let Assumptions (A1), (A2) hold, f ∈ Lp(Ω), p > p0 and

g ∈ C(∂Ω). Let v ∈ C(Ω) be such that v = g on ∂Ω and let ε > 0. Let Gv
ε be

de�ned as in (5). Then there exists a unique Lp-viscosity solution uvε ∈ C(Ω)
to (11). The solution uvε satis�es

u ≤ uvε ≤ u. (16)

Finally, for every Ω′ b Ω,

‖uvε‖Cα(Ω′) ≤ C
(
‖g‖L∞(Ω) + ‖f‖Lp(Ω) + |F1(0)|+ |F2(0)|

)
. (17)

for some universal α > 0 and C = C(d, λ,Λ, p, diam(Ω), dist(Ω′, ∂Ω)), which
does not depend on ε and v.

Proof : We �rst argue that comparison principle holds for (11). Let u ∈ C(Ω)
be an Lp-viscosity subsolution of (11) and v ∈ C(Ω) be an Lp-viscosity super-
solution of (11). Let fn ∈ C(Ω) be functions such that ‖f − fn‖Lp(Ω) → 0 as

n→∞. Let ψn ∈ W 2,p
loc (Ω) ∩ C(Ω) be the strong solution to{
P−(D2ψn) = f(x)− fn(x) in Ω

ψ = 0 on ∂Ω.

We have

‖ψn‖L∞(Ω) ≤ C‖f − fn‖Lp(Ω) → 0 as n→∞. (18)

Also, it is easy to see that the functions un = u− ψn are Lp-viscosity subsolu-
tions of {

Gv
ε(x,D

2w) = fn(x) in Ω

w = g on ∂Ω.
(19)

Similarly, let ϕn ∈ W 2,p
loc (Ω) ∩ C(Ω) be the strong solution to{
P+(D2ϕn) = f(x)− fn(x) in Ω

ϕ = 0 on ∂Ω.

Then

‖ϕn‖L∞(Ω) ≤ C‖f − fn‖Lp(Ω) → 0 as n→∞, (20)
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and the functions vn = u − ϕn are Lp-viscosity supersolutions of (19). It is
well known � see for instance [16, Theorem III.1-(1)], together with Section
V.1 there � that (19) satis�es comparison principle; so we have un ≤ vn on Ω.
Together with (18) and (20), this fact implies u ≤ v on Ω. Thus there exists a
unique Lp-viscosity solution uvε ∈ C(Ω) to (11). Obviously (16) is satis�ed and
(17) follows from standard interior regularity results for Lp-viscosity solutions.
The existence of an Lp-viscosity solution to (11) is standard; see [8, 17, 31].

It is obtained by �rst producing standard viscosity solutions uvε,n ∈ C(Ω) to
(19) by Perron's method.
Since, by the Aleksandrov-Bakelman-Pucci maximum principle for Lp-viscosity

solutions (e.g. [6, Proposition 3.3] or [31, Lemma 1.4]),

‖uvε,n − uvε,m‖L∞(Ω) ≤ C‖fn − fm‖Lp(Ω) → 0 as n,m→∞,

the sequence (uvε,n)
∞
n=1 converges uniformly on Ω to a function uvε ∈ C(Ω),

satisfying uvε = g on ∂Ω. Using the stability property of Lp-viscosity solutions,
as in [6, Theorem 3.8], we then have that uvε is an Lp-viscosity solution to
(11).

In the sequel we examine the map T : B → C(Ω).

Proposition 2. Let B ⊂ C(Ω) be de�ned as in (12) and T : B → C(Ω) be

de�ned as in (13). Then:

(a) B is a closed and convex subset of C(Ω).
(b) T (B) ⊂ B and T (B) is a precompact subset in C(Ω).
(c) The map T : B → B is continuous.

Proof : We notice that it is obvious from the de�nition of B (see (12)) that B
is a closed and convex.
To establish (b), we �rst observe that Proposition 1 yields u ≤ Tv ≤ u so

T (B) ⊂ B. To show that T (B) is precompact in C(Ω), we proceed as follows.
Take a sequence (Tvn)n∈N ⊂ T (B). Proposition 1 ensures that (Tvn)n∈N is
equicontinuous in C(Ω). Hence, it admits a convergent subsequence in B,
which completes the argument.
To complete the proof, we verify (c). Take (vn)n∈N ⊂ B and suppose vn →

v ∈ B in C(Ω). We need to prove that Tvn → Tv in C(Ω).
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First, we claim that the sequence of operators (Gvn
ε )n∈N converges locally

uniformly to Gv
ε. In fact,

sup
Ω
|hvnε (x)− hvε(x)| ≤ 1

2ε
sup

Ω
|vn(x)− v(x)| → 0 as n→∞.

Hence, hvnε → hvε uniformly in Ω. Therefore, the de�nition of the operators
ensures that Gvn

ε → Gv
ε locally uniformly.

Since T (B) is precompact in C(Ω), there exists w ∈ B such that Tvn → w,
through a subsequence (Tvni)i∈N if necessary. The convergence of the sequence
(Gvn

ε )n∈N, together with the stability of viscosity solutions, ensures that w is
an Lp-viscosity solution to

Gv
ε(x,D

2w) = f in Ω,

with w = g on ∂Ω. The uniqueness of Lp-viscosity solutions to (11) yields
Tv = w.
Finally, we notice the previous argument does not depend on the subsequence

(Tvni)i∈N. In fact, suppose there exists z ∈ B such that, through a di�erent
subsequence (Tvnj)j∈N, we have Tvnj → z, as j →∞. As before, the unique-
ness of solutions to (11) ensures that z = w = Tv and the proof is complete.

We are now in a position to prove Theorem 1.

Proof of Theorem 1: We split the proof into two steps. First we consider the
existence of solutions to (1).

Step 1 - Proposition 2 ensures that we can use the Schauder Fixed Point
Theorem (see for instance [13, Corollary 11.2]) to obtain a �xed point uε of
T . Thus uε is an L

p-viscosity solution to (10). We now choose a convergent
subsequence uεn such that uεn → u in C(Ω) as εn → 0 for some u in C(Ω).
Since G

uεn
εn converges locally uniformly on ((Ω+(u) ∪ Ω−(u))∩Ω)×S(d) to Gu

as εn → 0, where Gu(x,M) = F1(M)χ{u(x)>0} + F2(M)χ{u(x)<0}, it is easy to
see that u is an Lp-viscosity solution to (1).

Step 2 - It remains to prove that, if (A3) holds and τ is su�ciently small,
u ∈ C1,α

loc (Ω), for some α ∈ (0, 1), and the estimate in (2) is available. We
generally repeat the strategy of the proof of [5, Theorem 8.3]. We start with a
few observations. We de�ne

Ĝuε
ε (x,M) := Guε

ε (x,M)−Guε
ε (x, 0) and f̂(x) := f(x)−Guε

ε (x, 0)
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and notice that uε is the L
p-viscosity solution to

Ĝuε
ε (x,D2uε) = f̂(x)

in Ω, with uε = g on ∂Ω. We note that the Aleksandrov-Bakelman-Pucci
maximum principle for Lp-viscosity solutions yields

‖uε‖L∞(Ω) ≤ C(d, p, λ,Λ, diam(Ω))(|F1(0)|+ |F2(0)|+ ‖f‖Lp(Ω) + ‖g‖L∞(∂Ω)).

For every 0 < r < 1, the set Ω′ can be covered by a �nite number of open
balls B r

2
(xi), i = 1, ...,m, for some xi ∈ Ω′ and such that Br(xi) ⊂ Ω. Thus it

is enough to prove the result for Ω′ = B r
2
(xi) for one of such balls. To simplify

notation we will assume that xi = 0 ∈ Ω′.
Now we introduce a scaling. Set

ũε(x) :=
1

N
uε(rx),

where 0 < r � 1 will be determined later and

N := 1 + ‖f̂‖Lp(Ω) + ‖uε‖L∞(Ω) .

We observe that ũvε is the unique L
p-viscosity solution to

G̃uε
ε (x,D2ũε) = f̃(x) in B1,

where

G̃uε
ε (x,M) :=

r2

N
Ĝuε
ε

(
rx,

N

r2
M

)
and f̃(x) :=

r2

N
f̂(rx). (21)

We have ‖ũε‖L∞(B1) ≤ 1 and ‖f̃‖Lp(B1) ≤ 1. Also, by choosing 0 < r � 1, we

can make ‖f̃‖Lp(B1) arbitrarily small.
Finally, we de�ne β : Ω× Ω→ R as

βε(x, x0) := sup
M∈S(d)

|G̃uε
ε (x,M)− G̃uε

ε (y,M)|
1 + ‖M‖

.

By (7) and the de�nition of G̃uε
ε , we have

|G̃uε
ε (x,M)− G̃uε

ε (y,M)|
1 + ‖M‖

≤
2r

2

N

(
2K + τ Nr2‖M‖

)
1 + ‖M‖

≤
2τ
(

2Kr2

Nτ + ‖M‖
)

1 + ‖M‖
≤ 2τ,
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provided we chose K and r such that 2Kr2 ≤ Nτ . Thus

sup
x,x0∈Ω

βε(x, x0) ≤ 2τ.

At this point we can use [5, Theorem 8.3] and [31, Theorem 2.1] to claim that
there exists 0 < β0 = β0(d, p, λ,Λ, α) � 1 such that, if 0 < τ ≤ β0, then
uε ∈ C1,α

loc (Ω) for α as in the statement of Theorem 1 and estimate (2) holds
for uε. Since estimate (2) for uε does not depend on ε, we then conclude that
u ∈ C1,α

loc (Ω) and it satis�es (2).

4. Existence of strong solutions

In this section we work under (A4) and establish the existence of strong
solutions to (1). The main observation allowing us to prove this result is that
in this case, the operator Gv

ε satis�es the closeness property (8). The latter
allows us to frame (11) in the context of the W 2,p-regularity theory [4, 5, 10].

Proposition 3 (Sobolev regularity for uε). Let Assumptions (A1), (A2), (A4)
hold, g ∈ C(∂Ω) and f ∈ Lp(Ω) for some p > p0. Let uε be an Lp-viscosity
solution to (10). Then there exists β0 = β0(n, p, λ,Λ) > 0 such that if σ ≤ β0,

then uε ∈ W 2,p
loc (Ω) and it is a strong solution to (10). Moreover, for every

Ω′ b Ω there exists C > 0 satisfying

‖uε‖W 2,p(Ω′) ≤ C
(
1 + |F1(0)|+ |F2(0)|+ ‖f‖Lp(Ω) + ‖g‖L∞(∂Ω)

)
,

where C = C(d, p, λ,Λ, L, σ, dist(Ω′, ∂Ω), diam(Ω)).

Proof : The beginning of the proof is the same as Step 3 of the proof of Theorem
1 up to (21).
It is now enough to prove that

‖ũε‖W 2,p(B1/2) ≤ C. (22)

We de�ne F̂ (M) = F (M)− F (0) and

F̃ (M) =
r2

N
F̂

(
N

r2
M

)
.

The operator F̃ is convex with the same interior C1,1 estimates as F̂ . That is,
if w ∈ C2(B1) ∩ C(B1) is a solution to

F̃ (D2w) = 0 in B1
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then

‖w‖C1,1(B1/2) ≤ k‖w‖L∞(∂B1)

for some absolute constant k = k(d, λ,Λ), independent of N
r2 .

We now de�ne the function β : Ω→ R by

βε(x) := sup
M∈S(d)

∣∣∣G̃uε
ε (x,M)− F̃ (M)

∣∣∣
1 + ‖M‖

.

Using (8) we easily compute∣∣∣G̃uε
ε (x,M)− F̃ (M)

∣∣∣
1 + ‖M‖

≤
r2

N (2L+ σNr2‖M‖)
1 + ‖M‖

≤
σ(2Lr2

Nσ + ‖M‖)
1 + ‖M‖

≤ σ

if 2Lr2 ≤ Nσ. We can now repeat the arguments of the proof of [5, Proposition
7.2] (see also [4] and [10] for the case p0 < p ≤ n) with some straightforward
modi�cations to obtain that there exists β0 = β0(d, p, λ,Λ) > 0 such that if
‖f̃‖Lp(B1) ≤ β0 and σ ≤ β0, then (22) holds (see also Remark 1). The fact that
uε is a strong solution to (11) is the consequence of [6, Corollary 3.7].

Proof of Theorem 2 : Since the interior W 2,p estimates of Proposition 3 are in-
dependent of ε, they will be satis�ed by the Lp-viscosity solution u to (1)
obtained in Step 1 of the proof of Theorem 1. The function u is then a strong
solution to (1) by [6, Corollary 3.7].

Remark 1. A careful examination of the proof of [5, Theorem 7.1] shows that
interior W 2,p estimates for Lp-viscosity solutions to

F (x,D2u) = f(x) in Ω, (23)

where F is (λ,Λ)-elliptic, F (x, 0) = 0 in Ω and f ∈ Lp(Ω), p > p0, holds
under the following conditions. First, one assumes that for every x0 ∈ Ω there
exists a (λ,Λ)-elliptic function Fx0 such that Fx0(0) = 0 and the equation
Fx0(D

2w) = 0 satis�es interior C1,1 estimates; that is if w0 ∈ C(∂B1) then
equation {

Fx0(D
2w) = 0 in B1

w = w0 on ∂B1
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has a smooth solution w ∈ C2(B1) ∩ C(B1) such that

‖w‖C1,1(B1/2) ≤ k‖w0‖L∞(∂B1)

for some absolute constant k. The second condition is about the oscillation
functions β(·, x0) : Ω→ R,

β(x, x0) := sup
M∈S(d)

|F (x,M)− Fx0(M)|
1 + ‖M‖

. (24)

One takes r0 > 0 and considers the quantity

β := sup

{(
1

rd

∫
Br(x0)

β(x, x0)
pdx

) 1
p

: 0 < r < r0, x0 ∈ Ω, Br(x0) ⊂ Ω

}
.

(25)

One can then prove that there exists β0 = β0(d, p, λ,Λ, k) such that if β ≤ β0,
then an Lp-viscosity solution u to F (x,D2u) = f(x) in Ω belongs to W 2,p

loc (Ω)
and for every open subset Ω′ b Ω,

‖u‖W 2,p(Ω′) ≤ C
(
1 + ‖f‖Lp(Ω) + ‖u‖L∞(Ω)

)
,

where C = C(d, p, λ,Λ, r0, k, diam(Ω), dist(Ω′, ∂Ω)).
In [5, Theorem 7.1] and [4], Fx0(M) is replaced by F (x0,M) in the de�nition

of β(x, x0); also there is ‖M‖ in the denominator in these papers instead of
1+‖M‖ but this only a�ects the �nal form of the estimate. To obtain the result
here one needs to notice that in the proof of the key approximation Lemma
7.9 in [5], equation F0(D

2h) = 0 can be used instead of F (0, D2h) = 0 and
rescaled versions of functions Fx0(M) can be used in the proof there instead of
rescaled versions of F (x0,M). The changes needed to obtain the result in the
case p0 < p are explained in [10].
A condition which is essentially the same as the smallness of (25) (after

rescaling if necessary) has been used before to obtain W 2,p regularity results
in [22, 21, 19, 18], even though it is formulated there in a slightly di�erent
form. Also a similar condition was used in [14] to obtain W 2,p,µ and W 2,BMO

regularity results. A related condition using a recession function of F was also
used in [28]; see also [29]. Finally, a condition similar to the smallness of (25)
was used in the context of the Isaacs equation in [26].
We also remark that to obtain interior C1,α estimates for Lp-viscosity solu-

tions to (23) it is enough to assume the smallness of β de�ned in (25), where
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β(x, x0) is de�ned by (24) and where the functions Fx0 are any (λ,Λ)-elliptic
operators. A condition similar to (7) was used to prove C1,α estimates for
Lp-viscosity solutions in [21, 20].

Acknowledgments This work was partially supported by the Centre for
Mathematics of the University of Coimbra - UIDB/00324/2020, funded by
the Portuguese Government through FCT/MCTES. EP is partly funded by
FAPERJ (E-26/200.002/2018), CNPq-Brazil (433623/2018-7, 307500/2017-9)
and Instituto Serrapilheira (1811-25904). This study was �nanced in part by
the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil
(CAPES) - Finance Code 001.

References
[1] M. D. Amaral and E. V. Teixeira. Free transmission problems. Comm. Math. Phys.,

337(3):1465�1489, 2015.
[2] M. Borsuk. Transmission problems for elliptic second-order equations in non-smooth domains.

Frontiers in Mathematics. Birkhäuser/Springer Basel AG, Basel, 2010.
[3] X. Cabré. On the Alexandro�-Bakel'man-Pucci estimate and the reversed Hölder inequality for

solutions of elliptic and parabolic equations. Comm. Pure Appl. Math., 48(5):539�570, 1995.
[4] L. A. Ca�arelli. Interior a priori estimates for solutions of fully nonlinear equations. Ann. of

Math. (2), 130(1):189�213, 1989.
[5] L. A. Ca�arelli and X. Cabré. Fully nonlinear elliptic equations, volume 43 of American Math-

ematical Society Colloquium Publications. American Mathematical Society, Providence, RI,
1995.

[6] L. A. Ca�arelli, M. G. Crandall, M. Kocan, and A. �wi¦ch. On viscosity solutions of fully
nonlinear equations with measurable ingredients. Comm. Pure Appl. Math., 49(4):365�397,
1996.

[7] L. A. Ca�arelli, M. Soria-Carro, and P. R. Stinga. Regularity for C1,α interface transmission
problems. Archive for Rational Mechanics and Analysis, 2021.

[8] M. G. Crandall, M. Kocan, P.-L. Lions, and A. �wi¦ch. Existence results for boundary prob-
lems for uniformly elliptic and parabolic fully nonlinear equations. Electron. J. Di�erential
Equations, pages No. 24, 22 pp. 1999.

[9] M. G. Crandall and A. �wi¦ch. A note on generalized maximum principles for elliptic and
parabolic PDE. In Evolution equations, volume 234 of Lecture Notes in Pure and Appl. Math.,
pages 121�127. Dekker, New York, 2003.

[10] L. Escauriaza. W 2,n a priori estimates for solutions to fully nonlinear equations. Indiana Univ.
Math. J., 42(2):413�423, 1993.

[11] E. B. Fabes and D. W. Stroock. The Lp-integrability of Green's functions and fundamental
solutions for elliptic and parabolic equations. Duke Math. J., 51(4):997�1016, 1984.

[12] K. Fok. A nonlinear Fabes-Stroock result. Comm. Partial Di�erential Equations, 23(5-6):967�
983, 1998.

[13] D. Gilbarg and N. S. Trudinger. Elliptic partial di�erential equations of second order. Classics
in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.



EXISTENCE OF SOLUTIONS TO A FULLY NONLINEAR FREE TRANSMISSION PROBLEM17

[14] Q. Huang. Regularity theory for Ln-viscosity solutions to fully nonlinear elliptic equations with
asymptotical approximate convexity. Ann. Inst. H. Poincaré Anal. Non Linéaire, 36(7):1869�
1902, 2019.

[15] G. Huaroto, E. A. Pimentel, G. C. Rampasso, and A. �wi¦ch. A fully nonlinear degenerate
free transmission problem. arXiv preprint arXiv:2008.06917, 2020.

[16] H. Ishii and P.-L. Lions. Viscosity solutions of fully nonlinear second-order elliptic partial
di�erential equations. J. Di�erential Equations, 83(1):26�78, 1990.

[17] R. Jensen and A. �wi¦ch. Uniqueness and existence of maximal and minimal solutions of fully
nonlinear elliptic PDE. Commun. Pure Appl. Anal., 4(1):199�207, 2005.

[18] N. V. Krylov. On the existence of W 2
p solutions for fully nonlinear elliptic equations under

relaxed convexity assumptions. Comm. Partial Di�erential Equations, 38(4):687�710, 2013.
[19] N. V. Krylov. On the existence of W 2

p solutions for fully nonlinear elliptic equations under
either relaxed or no convexity assumptions. Commun. Contemp. Math., 19(6):1750009, 39,
2017.

[20] N. V. Krylov. C1+α-regularity of viscosity solutions of general nonlinear parabolic equations.
J. Math. Sci. (N.Y.), 232(4, Problems in mathematical analysis. No. 93 (Russian)):403�427,
2018.

[21] N. V. Krylov. Sobolev and viscosity solutions for fully nonlinear elliptic and parabolic equa-
tions, volume 233 of Mathematical Surveys and Monographs. American Mathematical Society,
Providence, RI, 2018.

[22] N. V. Krylov. Linear and fully nonlinear elliptic equations with Ld-drift. Comm. Partial Dif-
ferential Equations, 45(12):1778�1798, 2020.

[23] Y. Li and L. Nirenberg. Estimates for elliptic systems from composite material. volume 56,
pages 892�925. 2003. Dedicated to the memory of Jürgen K. Moser.

[24] Y. Li and M. Vogelius. Gradient estimates for solutions to divergence form elliptic equations
with discontinuous coe�cients. Arch. Ration. Mech. Anal., 153(2):91�151, 2000.

[25] M. Picone. Sur un problème nouveau pour l'équation linéaire aux dérivées partielles de la
théorie mathématique classique de l'élasticité. In Colloque sur les équations aux dérivées par-
tielles, CBRM, Bruxelles, pages 9�11, 1954.

[26] E. A. Pimentel. Regularity theory for the Isaacs equation through approximation methods.
Ann. Inst. H. Poincaré Anal. Non Linéaire, 36(1):53�74, 2019.

[27] E. A. Pimentel and M. S Santos. A fully nonlinear free transmission problem. arXiv preprint
arXiv:2010.15910, 2020.

[28] E. A. Pimentel and E. V. Teixeira. Sharp Hessian integrability estimates for nonlinear elliptic
equations: an asymptotic approach. J. Math. Pures Appl. (9), 106(4):744�767, 2016.

[29] L. Silvestre and E. V. Teixeira. Regularity estimates for fully non linear elliptic equations which
are asymptotically convex. In Contributions to nonlinear elliptic equations and systems, vol-
ume 86 of Progr. Nonlinear Di�erential Equations Appl., pages 425�438. Birkhäuser/Springer,
Cham, 2015.

[30] G. Stampacchia. Su un problema relativo alle equazioni di tipo ellittico del secondo ordine.
Ricerche Mat., 5:3�24, 1956.

[31] A. �wi¦ch. W 1,p-interior estimates for solutions of fully nonlinear, uniformly elliptic equations.
Adv. Di�erential Equations, 2(6):1005�1027, 1997.

Edgard A. Pimentel
University of Coimbra, CMUC, Department of Mathematics, 3001-501 Coimbra, Portugal
and Pontifical Catholic University of Rio de Janeiro � PUC-Rio 22451-900, Gávea, Rio
de Janeiro-RJ, Brazil



18 E. A. PIMENTEL AND A. �WI�CH

E-mail address: edgard.pimentel@mat.uc.pt
URL: http://www.mat.uc.pt/∼edgard.pimentel

Andrzej �wi¦ch
School of Mathematics, Georgia Institute of Technology, Atlanta GA 30332 USA

E-mail address: swiech@math.gatech.edu


