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1. Introduction

We examine Hessian-dependent functionals of the form

FΛ,p[u] :=

∫
B1

F (D2u)pdx+ Λ|{u > 0} ∩B1|, (1)

where F : S(d)→ R is a uniformly elliptic operator, Λ > 0 is a �xed constant,
and p > d/2. Our results include the existence of minimizers for (1), amount-
ing to the existence of solutions to a fully nonlinear mean-�eld game with free
boundaries. We prove Hölder-continuity of minimizers and improved integra-
bility of the density. We also produce a free boundary condition. Finally, we
establish a result on the Γ-convergence of FΛ,p and examine its consequences.
The functional in (1) is inspired by the usual one-phase Bernoulli problem,

driven by the Dirichlet energy. To a limited extent, we understand FΛ,p as a
Hessian-dependent counterpart of that problem. See [7]; see also [19].
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The analysis of (1) relates closely with the system{
F (D2u) = m

1
p−1 in B1 ∩ {u > 0}(

Fi,j(D
2u)m

)
xixj

= 0 in B1 ∩ {u > 0}, (2)

where Fi,j(M) denotes the derivative of F with respect to the entry mi,j ofM .
Here, the unknown is a pair (u,m) solving the problem in a sense we make
precise further.
The system in (2) amounts to the Euler-Lagrange equation associated with

(1). We notice that (2) satis�es an adjoint structure. Its double-divergence
equation is the formal adjoint, in the L2-sense, of the linearized fully nonlinear
problem. Due to such a distinctive pattern, we refer to (2) as a fully nonlinear
mean-�eld game with free boundary. The profession has largely studied fully
nonlinear elliptic operators as well as equations in the double-divergence form.
An attempt to put together a comprehensive list of references on those topics
is unrealistic. For that reason, we mention solely the monographs [16, 17] and
the references therein.
Our analysis sits at the intersection of Hessian-dependent functionals, free

boundary problems, and mean-�eld games systems. Hence we proceed with
some context on those classes of problems. Hessian-dependent functionals play
an essencial role in various contexts. From a purely mathematical viewpoint,
they are useful to produce examples of conformally invariant energies. In di-
mension d = 4, this is the case of

J [u] :=

∫
B1

(∆u)2 dx,

whose Euler-Lagrange equation is the biharmonic operator; see [31, 30].
Another example concerns Hessian-dependent perturbations of nonconvex

functionals. For instance, consider the nonconvex problem

I[u] :=

∫
B1

(
|Du|2 + 1

)2
dx.

To obtain information on I[ · ] one can study the perturbed model

Iε[u] :=

∫
B1

(
|Du|2 + 1

)2
+ ε‖D2u‖dx,

for 0 < ε� 1. Known as Aviles-Giga functional, Iε[ · ] is convex with respect to
higher-order terms; by taking the limit ε→ 0, one expects to derive information
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on the original model [10, 9]; see also [47]. An interesting feature of this limit
is the appearance of further complexities, known as microstructures.
When it comes to applications, we mention the realm of mechanics of solids.

In particular, the analysis of energy-driven pattern formation and nonlinear
elasticity. For example, Hessian-dependent models play a role in studying the
occurrence of wrinkles in a twisted ribbon [48]. The energy modeling the system
depends on the thickness of the ribbon, denoted with h, and two symmetric
tensors M and B. It has the form∫

B1

|M(u, v)|2 + h2|B(u, v)|2dx.

Although M depends on its arguments only through lower-order terms, the
tensor B depends on ‖D2u‖. Another instance where Hessian-dependent func-
tionals appear is the analysis of blister patterns in thin �lms on compliant
substrates [12]. Here the phenomena are modeled in terms of lower-order quan-
tities, a small Hessian-dependent perturbation, and a parameter h > 0. An
important question concerning this class of problems is the limiting behavior
h→ 0; in fact, one expects that the lower and upper bounds of the functional
scale similarly. We refer the reader to [36, 37, 53]. In this context, (1) amounts
to an energy penalized by the measure of the positive phase.
As noticed before, one can state the Euler-Lagrange equation associated with

(1) in terms of the fully nonlinear mean-�eld game system with free boundaries
(2). Mean-�eld games is a set of methods and techniques to model strategic
interactions involving many players [49, 50, 51]; see also [52]. At the intersec-
tion of partial di�erential equations (PDE), stochastic analysis and numerical
methods, this class of problems has attracted the attention of several authors,
who have developed the theory in various directions.
A mean-�eld game can be characterized by its master equation. A Hamilton-

Jacobi equation on the space of probability measures, this object encodes all the
information on the problem under analysis. For recent developments concerning
this equation, we refer the reader to [39, 40, 27, 14, 28, 22, 15, 42]. Under
additional assumptions on the stochastic dynamics governing the problem (e.g.,
independence of the Brownian motions among the population of players), it is
possible to write the master equation in terms of a coupling. It comprises a
Hamilton-Jacobi equation, accounting for the value of the game, and a Fokker-
Planck equation describing the evolution of the population. For the existence
and uniqueness of solutions in this setting, we refer the reader to [24, 21, 25,
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26, 23, 52, 44, 45, 43, 34, 35, 11, 29]; advances in the numerical approach have
been reported in [1, 6, 2, 3, 5] and the references therein. We also mention the
monographs [20, 13, 46, 4]. Fully nonlinear mean-�eld games are the subject
of [8, 32].
The interesting aspect in (2) concerns the appearance of a free boundary.

At least heuristically, the game is played only in the regions where the value
function is strictly positive. Combined with the free boundary condition, (2)
models a game in which players optimize in the region where the value function
is positive and might face extinction according to a �ux condition endogenously
determined.
Our �rst contribution is to prove the existence of solutions for the mean-�eld

game system in (2). We report our �ndings in the following theorem.

Theorem 1 (Existence and regularity of solutions). Suppose Assumptions A2,
A3, and A4, to be detailed further, are in force. Then there exists a solution
(u,m) to (2). In addition, �x α ∈ (0, 1). We have u ∈ Cα

loc(B1) and there
exists C > 0 such that

‖u‖Cα(B1/2) ≤ C‖g‖W 2,p(B1).

The constant C > 0 depends on the exponent α.

If, in addition, F is strictly convex and p > 2, we can prove that m is
not only integrable but is indeed an L

p
p−1 -function, with estimates; c.f. [41].

To establish Theorem 1, we start with the direct method in the calculus of
variations and the existence of minimizers for (1). Then we turn our attention
to (2). First, we resort to the theory of weak solutions available for equations
in the double-divergence form. Finally, elements in the Lp-viscosity theory lead
to the existence of solutions to the system. To complete the proof, we resort
to a delicate application of Sobolev inequalities.
Once we have established the existence of solutions for (2) and produced a

regularity result, we examine the free boundary. We resort to a variation of the
functional and derive a free boundary condition. Then regularity results for
the solutions build upon ingredients of geometric measure theory to ensure the
reduced free boundary is a set of �nite perimeter. We summarize our �ndings
in this direction in the following result.

Theorem 2 (Free boundary condition and �nite perimeter). Let u ∈ W 2,p
loc (B1)∩

W 1,p
g (B1) be a minimizer for (1), for p > d/2. Suppose Assumptions A3 and
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A4, to be detailed further, are in force. Then ∂∗{u > 0} is a set of �nite
perimeter. Suppose in addition u ∈ C2(B1); then∫

∂{u>0}

(
F (D2u)p−1Fij(D

2u)xiuxj −
Λ

2p

)
〈ξ, ν〉 dHd−1 = 0 (3)

for every ξ ∈ C∞c (B1,Rd).

The remainder of this paper is organized as follows. Section 2.1 details our
main assumptions, whereas Section 2.2 gathers preliminary material and re-
sults. Section 3 presents the proof of Theorem 1. In Section 4, we examine the
free boundary and put forward the proof of Theorem 2. A �nal section closes
the paper with a Γ-convergence result and some consequences.

2. Preliminaries

This section presents the main assumptions under which we work and collects
some preliminary notions and results.

2.1. Main assumptions. We proceed with a condition on the uniform ellip-
ticity of the operator F .

A 1 (Uniform ellipticity). We suppose the operator F : S(d)→ R is λ-elliptic
for some λ ≥ 1. That is,

1

λ
‖N‖ ≤ F (M +N)− F (M) ≤ λ‖N‖ (4)

for every M,N ∈ S(d), with N ≥ 0. We also suppose F (0) = 0

Remark 1. Note that A1 implies a coercivity condition on F over non-negative
matrices. By taking M ≡ 0, the inequalities in (4) yield

1

λ
‖N‖ ≤ F (N) ≤ λ‖N‖

for every N ≥ 0.

Next, we impose a convexity condition on the operator F .

A 2 (Convexity of the operator F ). We suppose the operator F = F (M) to be
convex with respect to M .

Part of our arguments requires F to satisfy a coercivity condition in the entire
S(d). To that end, we strength A1 as follows.
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A 3 (Growth condition). We suppose there exists λ ≥ 1 such that the operator
F satis�es

1

λ
‖M‖ ≤ F (M) ≤ λ‖M‖

for every M ∈ S(d). In addition, F (0) = 0.

We conclude this section with an assumption on the boundary data.

A 4 (Boundary data). We suppose the function g ∈ W 2,p
loc (B1) is non-negative

and non-trivial.

2.2. Preliminary notions and results. For the sake of completeness, we
recall de�nitions and former results we use throughout the manuscript. We
continue with a de�nition

De�nition 1 (A�ne Sobolev spaces). Let p > d/2 and g ∈ W 2,p
loc (B1). We say

that
u ∈ W 2,p

loc (B1) ∩W 1,p
g (B1)

if u ∈ W 2,p
loc (B1) and u− g ∈ W 1,p

0 (B1).

From a PDE perspective, having u ∈ W 2,p
loc (B1) ∩W 1,p

g (B1) is tantamount
to prescribe u = g on ∂B1 in the Sobolev sense. This interpretation will be
helpful when relating (1) and (2).
As usual in the literature on mean-�eld games [49, 50, 51], a solution to (2)

relies on two distinct de�nitions � namely, the notions of viscosity and weak
(distributional) solutions. We proceed by recalling the de�nition of Lp-viscosity
solution of a fully nonlinear elliptic equation; see [18, De�nition 2.1].

De�nition 2 (Lp-viscosity solutions). Let F : S(d) → R be a fully nonlinear
operator satisfying A1 and f ∈ Lploc(B1), for p > d/2. A function u ∈ C(B1)
is an Lp-viscosity sub-solution (resp. super-solution) of

F (D2u) = f in B1

if, for all ϕ ∈ W 2,p
loc (B1), whenever ε > 0, U ⊂ B1 is open, and

F
(
D2ϕ(x)

)
− f(x) ≥ +ε a.e.− x ∈ U

(resp. F
(
D2ϕ(x)

)
− f(x) ≥ −ε a.e.− x ∈ U),

then u − ϕ cannot have a local maximum (resp. minimum) in U . Moreover,
if u is both an Lp-viscosity sub-solution and an Lp-viscosity super-solution, u
is said to be an Lp-viscosity solution.
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The de�nition of Lp-viscosity solution is necessary since Lp-functions might
not be de�ned at the points where the usual conditions must be tested. For a
comprehensive account of this notion, we refer the reader to [18]. We continue
with the de�nition of weak solutions for double-divergence equations.

De�nition 3 (Weak solution). Let A ∈ L∞(B1, S(d)) and denote A(x) =:
[ai,j(x)]di,j=1. Suppose

1

λ
I ≤ A(x) ≤ λI a.e.− x ∈ B1.

We say m ∈ L1(B1) is a weak solution to

(ai,j(x)m)xixj = 0 in B1

if, for every φ ∈ C∞c (B1) we have∫
B1

(ai,jm)φxixjdx = 0.

A solution to the mean-�eld game in (2) combines De�nitions 2 and 3.

De�nition 4 (Solution for the MFG system). The pair (u,m) is a weak solu-
tion to (2) if the following hold:

(1) We have u ∈ C(B1) ∩W 1,p
g and m ∈ L1(B1), with m ≥ 0;

(2) The function u is an Lp-viscosity solution to

F (D2u) = m
1
p−1 in B1 ∩ {u > 0};

(3) The function m is a weak solution to(
Fij(D

2u)m
)
xixj

= 0 in B1 ∩ {u > 0}.

Next, we recall the Poincaré's inequality for functions lacking compact sup-
port. In particular, we are interested in u ∈ W 1,p

g (B1).

Lemma 1 (Poincaré's inequality). Let u ∈ W 1,p
g (B1) and Cp > 0 be the

Poincaré's constant associated with Lp (B1) and the dimension d. Then for
every C < Cp, there exists C1 (C,Cp) > 0 and C2 ≥ 0 such that∫

B1

|Du|pdx− C
∫
B1

|u|pdx+ C2 ≥ C1

(∫
B1

|Du|pdx+

∫
B1

|u|pdx
)
.
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For the detailed proof of this fact, we refer the reader to [38, Lemma 2.7, p.
22]. It follows from u− g ∈ W 1,p

0 (B1) and the usual Poincaré's inequality.
In Section 3, we deal with the existence of minimizers for FΛ,p in W

2,p
loc (B1)∩

W 1,p
g (B1). Our reasoning uses the weak lower-semicontinuity of the functional

u 7→ F0,p[u] :=

∫
B1

(
F (D2u)

)p
dx;

this is the content of the following lemma.

Lemma 2. Let p > d/2 and suppose A2, A3 and A4 hold true. Let (un)n∈N ⊂
W 2,p

loc (B1) ∩W 1,p
g (B1) be such that

D2un ⇀ D2u∞ in Lp (B1, S(d)) ,

Then, ∫
B1

(
F (D2u∞)

)p
dx ≤ lim inf

n→∞

∫
B1

(
F (D2un)

)p
dx

For the proof of Lemma 2, we refer to [8, Proposition 3]. In what follows, we
detail the proof of Theorem 1.

3. Existence of solutions

In this section, we present the proof of Theorem 1; we start by establishing
the existence of minimizers for (1).

Proposition 1 (Existence of minimizers). Suppose Assumptions A2, A3, and
A4 are in force and �x p > d/2, arbitrary. Then there exists u∗ ∈ W 2,p

loc (B1) ∩
W 1,p

g (B1) such that

Fλ,p[u∗] ≤ Fλ,p[u],

for all u ∈ W 2,p
loc (B1) ∩W 1,p

g (B1).

Proof : Under Assumptions A2 and A3, the existence of minimizers follows
from the direct method in the calculus of variations. We split the argument
into three steps.

Step 1 - We �rst examine

γ := inf
{
FΛ,p[u] : u ∈ W 2,p

loc (B1) ∩W 1,p
g (B1)

}
.
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In view of the Remark 1, γ ≥ 0. Furthermore, since g ∈ W 2,p
loc (B1),

γ ≤ FΛ,p[g]

≤
∫
B1

(
F (D2g)

)p
dx+ Λ |B1|

≤ λp‖D2g‖pLp(B1) + Λ |B1| .

Hence, 0 ≤ γ ≤ C(g,Λ) < ∞. Let (un)n∈N ⊂ W 2,p
loc (B1) ∩ W 1,p

g (B1) be a
minimizing sequence; there exists N ∈ N such that

FΛ,p[un] ≤ γ + 1,

for every n ≥ N . Therefore, for all n ≥ N ,∥∥D2un
∥∥
Lp(B1)

≤ λ

(∫
B1

(
F (D2u)

)p
dx

) 1
p

≤ λ

(∫
B1

[
F
(
D2un

)]p
dx+ Λ |{u > 0} ∩B1|

) 1
p

≤ C(γ, p).

In the next step the upper bound for D2un builds upon properties of the func-
tional.

Step 2 - As a consequence of the former inequality, we infer that
(
D2un

)
n∈N

is uniformly bounded in Lp (B1). Since p > d/2, the embedding W 2,p(B1) ↪→
W 1,p(B1) is compact. Furthermore, we conclude that (un)n∈N is uniformly

bounded in W 2,p
loc (B1) ∩ W 1,p

g (B1); it follows from Lemma 1 combined with

general facts [33]. Hence, there exists u∞ ∈ W 2,p
loc (B1) ∩W 1,p

g (B1) such that

un ⇀ u∞ in W 2,p
loc (B1) ∩W 1,p

g (B1) (5)

and

un → u∞ strongly in Lp(B1). (6)

The result follows at once if we ensure that∫
B1

(
F (D2u∞)

)p
dx ≤ lim inf

n→∞

∫
B1

(
F (D2un)

)p
dx (7)

and

|{u∞ > 0} ∩B1| ≤ lim inf
n→∞

|{un > 0} ∩B1| (8)
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hold. Notice that Lemma 2 combines the convergence mode in (5) to yield (7).
In the sequel, we establish (8).

Step 3 - Because of the strong convergence (6), there exists a subsequence,
also denoted with (un)n∈N, such that un(x)→ u∞(x) for almost every x in B1.
As a consequence, we get

χ{u∞>0}(x) ≤ lim inf
n→∞

χ{un>0}(x) (9)

for almost every x ∈ B1. If (9) fails to hold, there exists x∗ ∈ B1 such that
u∞(x∗) > 0 and un(x

∗) ≤ 0, for n � 1. This fact contradicts the pointwise
convergence. Hence,

|{u∞ > 0} ∩B1| =
∫
B1

χ{u∞>0}dx

≤ lim inf
n→∞

∫
B1

χ{un>0}dx

= lim inf
n→∞

|{un > 0} ∩B1| ,

which completes the proof.

We close this section with the proof of Theorem 1.

Proof of Theorem 1: We split the proof into four steps.

Step 1 - Let u∗ ∈ W 2,p
loc (B1) ∩ W 1,p

g (B1) be the minimizer for (1) whose
existence follows from Proposition 1. There exists N ⊂ B1 such that D2u∗(x)
is well-de�ned for every x ∈ B1 \ N , with |N | = 0. This fact, combined with
A3, implies that F (D2u∗(x)) ≥ 0 for almost every x ∈ B1. Therefore, u∗

satis�es F (D2u∗) ≥ 0 in the Lp-viscosity sense; see [18, Lemma 2.6]. Because
g ≥ 0, it follows that u∗ ≥ 0 in B1.

Step 2 - By considering a variation of u∗ compactly supported in B1∩{u > 0},
we obtain ∫

B1∩{u>0}

(
Fij(D

2u∗)F (D2u∗)p−1
)
ϕxixjdx = 0 (10)

for every ϕ ∈ C∞c (B1 ∩ {u > 0}). Set F (D2u∗) =: m
1
p−1 ; we infer that m(x) is

well-de�ned and satis�es m(x) ≥ 0 for almost every x ∈ B1. In addition,∫
B1

m(x)dx ≤ C +

∫
B1

F (D2g)pdx;
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that is, m ∈ L1
loc(B1). Finally, we notice the integral in (10) is well-de�ned and

leads to ∫
B1∩{u>0}

(
Fij(D

2u∗)m
)
ϕxixjdx = 0,

for every ϕ ∈ C∞c (B1 ∩ {u > 0}).

Step 3 - It remains to check that u∗ is an Lp-viscosity solution to the �rst
equation in (2). The de�nition of m implies that u∗ satis�es

F (D2u∗(x)) = m(x)
1
p−1

for almost every x ∈ B1 ∩ {u > 0}. As before, an application of [18, Lemma
2.6] ends the proof.

Step 4 - We prove that Du ∈ Lr(B1) for every 1 < r < ∞. We start
by recalling the Gagliardo-Nirenberg inequality for bounded domains. If u ∈
W 2,p

loc (B1) ∩W 1,p
g (B1) is a minimizer for (1), there exists C1, C2 > 0 such that

‖Du‖Lr(B1) ≤ C1(Λ, d)
[(

1 + ‖D2g‖αLp(B1)

)
‖u‖1−α

Lq1(B1)

]
+ C2‖u‖Lq2(B1), (11)

provided

1

r
=

1

d
+

(
1

p
− 2

d

)
α +

1− α
q1

(12)

for some 1/2 < α < 1 and q2 > 0. Given d ≥ 2, p > d/2, and 1 < r < ∞. it
is always possible to �nd α ∈ (1/2, 1) and q1 > 1 such that (12) is satis�ed.
Because F (D2u) ≥ 0, the Harnack inequality implies that u is essentially
bounded in the unit ball. Hence, (11) becomes

‖Du‖Lr(B1) ≤ C(λ, d,Λ, g)

and a straightforward application of Morrey's Theorem completes the proof.

Remark 2 (Improved integrability for m). In case F is strictly convex and

p > 2, we claim that m ∈ L
p
p−1 (B1). In fact, m is de�ned almost everywhere in

B1 as m = F (D2u)p−1. Under the strict convexity of F and p > 2, solutions
to the Euler-Lagrange equation are minimizers for the functional (1). Hence,
A3 transmits the integrability of D2u ∈ Lp(B1) to m, and the claim follows.
Compare with [41]; see also [16]. Re-writing the exponent above as 1+1/(p−1)
we quantify the improved integrability of m in face of the L1-regime.
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Remark 3 (Improved regularity for the value function). The value function is
α-Hölder-continuous, for every α ∈ (0, 1). Hence, the regularity established in
the former argument amounts to an improvement of the usual Krylov-Safonov
regularity theory implied by uniform ellipticity.

4. Information on the free boundary

In the sequel, we examine some properties of the free boundary ∂{u > 0}
and present the proof of Theorem 2. The following corollary connects the
regularity of minimizers with information on the free boundary. We refer to it
when proving the �rst part of Theorem 2.

Corollary 1. Let u ∈ W 2,p
loc (B1) ∩ W 1,p

g (B1) be a minimizer to FΛ,p, where
p > d/2. Suppose A3 holds true. For every ε > 0 there exists C > 0 such that∫ ε

0

Hd−1 (∂∗{u > t}) dt ≤ εC.

Moreover, C = C(λ,Λ, p).

Proof : We split the argument into two steps and begin by proving that∫
B1∩{0≤u≤ε}

(
F (D2u)

)p
dx < ε. (13)

Step 1 - Given ε > 0 de�ne

uε := max(u− ε, 0).

Then ∫
B1∩{u>0}

(
F (D2u)

)p
dx+ Λ |{u > 0} ∩B1| ≤ FΛ,p[u] ≤ FΛ,p[uε].

Hence, for every ε > 0,∫
B1∩{u>0}

(
F (D2u)

)p
dx−

∫
B1

(
F (D2uε)

)p
dx+Λ |{0 ≤ u ≤ ε} ∩B1| ≤ 0 < ε.

Because of A1, F (0) = 0; as a consequence,

F (D2uε) :=

{
F (D2u) in {u > ε}
0 in {0 < u ≤ ε}.
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Therefore∫
B1∩{0≤u≤ε}

(
F (D2u)

)p
dx =

∫
B1∩{u>0}

(
F (D2u)

)p
dx

−
∫
B1∩{u>ε}

(
F (D2uε)

)p
dx

≤
∫
B1∩{u>0}

(
F (D2u)

)p
dx−

∫
B1

(
F (D2uε)

)p
dx,

and (13) follows.

Step 2 - Now, Assumption A1 yields

1

λp

∫
B1∩{0≤u≤ε}

∣∣D2u
∣∣p dx ≤

∫
B1∩{0≤u≤ε}

(
F (D2u)

)p
dx.

Since p > d/2, there exists a universal constant C1 := C1(p, d) such that∫
B1∩{0≤u≤ε}

|Du|p dx ≤ C1

∫
B1∩{0≤u≤ε}

∣∣D2u
∣∣p dx.

Also,(∫
B1∩{0≤u≤ε}

|Du| dx
)p
≤ |{0 ≤ u ≤ ε} ∩B1|p(p−1)

∫
B1∩{0≤u≤ε}

|Du|p dx.

By combining the former inequalities, we get∫
B1∩{0≤u≤ε}

|Du| dx < εC |{0 ≤ u ≤ ε} ∩B1|p−1 ,

where C := Cp
1λΛ

1
p . A straightforward application of the area formula yields∫ ε

0

Hd−1 (∂∗({u > t})) dt ≤ εC |{0 ≤ u ≤ ε} ∩B1|p−1

and �nishes the proof.

In what follows, we examine the �rst variation of the functional (1).
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4.1. First variation of the energy. To derive the free boundary condition,
we consider a variation of FΛ,p. Given a compactly supported and smooth
vector �eld ξ : B1 → Rd and 0 < t � 1, we consider two structures: the
di�eomorphism Ψt(x) := x + tξ(x) and the test function ut := u ◦ Ψ−1

t . The
stationarity of u implies

0 =
d

dt

∣∣∣∣
t=0

FΛ,p[ut]. (14)

The free boundary condition follows from (14). Next, we detail its building
blocks.

Lemma 3. Let u ∈ W 2,p
loc (B1) ∩W 1,p

g (B1) be stationary for (1), for p > d/2.

Let ξ ∈ C∞c (B1,Rd) and de�ne Ψt : B1 → Rd as

Ψt(x) := x+ tξ(x).

Then

(1) For small enough t, Ψt : B1 → B1 is a di�eomorphism and by setting
Φt := Ψ−1

t , the function ut = u ◦ Φt is well de�ned and belongs to
W 2,p

loc (B1).
(2) In addition,

d

dt

∣∣∣∣
t=0

∫
B1

(
F (D2ut(x))

)p
dx

= −d
∫
B1

(
F (D2u(x))

)p−1
Fij
(
D2u(x)

)
(〈Du(x), ξ(x)〉)xixj dx.

Proof : Since ξ is smooth and compactly supported in B1, it follows that, for
t small enough, Ψt is a di�eomorphism and ut ∈ W 2,p

loc (B1). This leads to the
�rst claim. To prove (ii), we �rst compute∫

B1

(
F (D2ut(x))

)p
dx,

where ut(x) is de�ned as in (i). Notice that

D2ut(x) = (DΦt(x))T D2u(Φt) (DΦt(x)) +Du(Φt(x))D2Φt(x).

Now, denote

P (x) := (DΦt(x))T D2u(Φt(x)) (DΦt(x))

and
Q(x) := Du(Φt(x))D2Φt(x).
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Consider the change of variables Φt(x) = y, which is tantamount to x = Ψt(y).
Hence∫

B1

(
F (D2ut(x))

)p
dx =

∫
B1

(F (P (Ψt(y)) +Q(Ψt(y))))p |det Ψt(y)| dy.

For 0 < t� 1,

det Ψt(y) = det(I(y) + tξ(y)) = 1 + t div ξ(y) + o(t).

Thus∫
B1

(
F (D2ut(x))

)p
dx =

∫
B1

(F (P (Ψt(y)) +Q(Ψt(y))))p dy

+

∫
B1

(F (P (Ψt(y)) +Q(Ψt(y))))p t div ξ(y)dy

+ o(t).

(15)

By di�erentiating (15) with respect to t and evaluating at t = 0, we get

d

dt

∣∣∣∣
t=0

∫
B1

(
F (D2ut(x))

)p
dx =

∫
B1

∂

∂t

∣∣∣∣
t=0

(F (P (Ψt(y)) +Q(Ψt(y))))p dy

+

∫
B1

(
F (D2u(y))

)p
div ξ(y)dy.

(16)

Since the �rst term on the right-hand side of (16) depends on P (Ψt(y)) and
Q(Ψt(y)), we compute them directly. We begin with P (Ψt(y)); we have

P (Ψt(y)) =
[
(DΨt(y))−1

]T
D2u(y)

[
(DΨt(y))−1

]
. (17)

Moreover, notice that

Q(Ψt(y)) = Du
(
Φt(Ψt(y))D2Φt(Ψt(y))

)
= Du(y)D2Φt(Ψt(y))

and
D2 (Φt (Ψ(y))) = − (DΨt(y))−1D2Ψt(y) (DΨt(y))−2 ;

Then
Q(Ψt(y)) = −Du(y)

(
[DΨt(y)]−1D2Ψt(y) [DΨt(y)]−2

)
. (18)

Because Ψt ≡ I + tξ, we get

DΨt(x) = I + tDξ(x) and D2Ψt(x) = tD2ξ(x).
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As before, for 0 < t� 1,

(I + tDξ(y))−1 = I − tDξ(y) + o(t).

Therefore,

P (Ψt(y)) = (I − tDξ(y) + o(t))T D2u(y) (I − tDξ(y) + o(t))

= D2u(y)− t
(
D2u(y)Dξ(y) + (Dξ(y))T D2u(y)

)
+ t2 (Dξ(y))T D2u(y) (Dξ(y)) + o(t)

= D2u(y)− t
(
D2u(y)Dξ(y) + (Dξ(y))T D2u(y)

)
+ o(t).

Also,

−Q(Ψt(y)) = Du(y)
(

(I − tDξ(y) + o(t))
(
tD2ξ(y)

)
(I − tDξ(y) + o(t))2

)
= Du(y)

((
tD2ξ(y) + o(t2)

)
(I − 2tDξ(y) + o(t))

)
= Du(y)

(
tD2ξ(y) + o(t2)

)
= tDu(y)D2ξ(y) + o(t2).

As a consequence,

(F (P (Ψt(y)) +Q(Ψt(y))))p =
(
F
(
D2u(y)− tM(y) + o(t)

))p
,

where

M(y) := D2u(y)Dξ(y) + (Dξ(y))T D2u(y) +Du(y)D2ξ(y).

By di�erentiating with respect to t, we get

∂

∂t

∣∣∣∣
t=0

(
F
(
D2ut(Ψt(y))

))p
= −p

(
F (D2u(y))

)p−1
Fij

(
D2u(y)

)
(M(y))ij . (19)

Combining (19) and (16), we obtain

d

dt

∣∣∣∣
t=0

∫
B1

(
F (D2ut(x))

)p
dx

= −p
∫
B1

(
F (D2u(x))

)p−1
Fij
(
D2u(x)

)
(M(x))ij dx

+

∫
B1

(
F
(
D2u(x)

))p
div ξ(x)dx,

(20)
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Finally, notice that

(M(x))ij =
d∑
`=1

(
uxjx`ξ

i
` + uxix`ξ

j
x`

+ ux`ξ
`
xixj

)
=

d∑
`=1

(
uxjx`ξ

i
` + uxix`ξ

j
x`

+ ux`ξ
`
xixj

+ (ux`xi)xj ξ
` − (ux`xi)xj ξ

`
)

= (〈Du, ξ〉)xixj −
d∑
`=1

(ux`xi)xj ξ
`.

Integrating by parts the second term in the right-hand side of (20), we recover∫
B1

(
F
(
D2u(x)

))p
div ξ(x)dx

= −p
∫
B1

(
F
(
D2u(x)

))p−1
Fij
(
D2u(x)

) d∑
`=1

(ux`xi)xj ξ
`dx.

Therefore, (20) becomes

d

dt

∣∣∣∣
t=0

∫
B1

(
F (D2ut(x))

)p
dx

= −d
∫
B1

(
F (D2u(x))

)p−1
Fij
(
D2u(x)

)
(〈Du(x), ξ(x)〉)xixj dx,

which implies assertion (ii) and completes the proof.

Lemma 4. Let u ∈ W 2,p
loc (B1)∩W 1,p

g (B1) be a minimizer for (1), with p > d/2.
Consider

Y :=
d∑

i,j=1

((
F (D2u)

)d−1
Fij(D

2u)
)
xi
∂j,

where ∂1, . . . , ∂d is an orthonormal basis of Tx∂{u > 0}. If u ∈ C2({u > 0}),
then∫

B1

(
F (D2u)

)p−1
Fij(D

2u) 〈Du, ξ〉xixj dx = −2

∫
∂{u>0}

〈〈Du, ξ〉Y, ν〉 dHd−1,

where ν(x) is the outward normal vector to ∂{u > 0} at x.
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Proof : By applying integration by parts twice, we get∫
B1

(
F (D2u)

)p−1
Fij(D

2u)
(
〈Du, ξ〉xixj

)
dx

=

∫
∂{u>0}

(
F (D2u)

)p−1
Fij(D

2u) 〈Du, ξ〉xi 〈∂j, ν〉 dH
d−1

−
∫
∂{u>0}

((
F (D2u)

)p−1
Fij(D

2u)
)
xj
〈Du, ξ〉xi 〈∂i, ν〉 dH

d−1

+

∫
B1

((
F (D2u)

)p−1
Fij(D

2u)
)
xixj
〈Du, ξ〉 dx.

Because u is regular enough,((
F (D2u)

)p
Fij(D

2u)
)
xixj

= 0.

Hence∫
B1

(
F (D2u)

)p−1
Fij(D

2u) 〈Du, ξ〉xixj dx =

∫
∂{u>0}

〈
〈Du, ξ〉xiX, ν

〉
dHd−1

−
∫
∂{u>0}

〈〈Du, ξ〉Y, ν〉 dHd−1,

where

X :=
d∑

i,j=1

((
F (D2u)

)p−1
Fij(D

2u)
)
∂j.

As a consequence, the result follows if we ensure that

−
∫
∂{u>0}

〈
〈Du, ξ〉xiX, ν

〉
dHd−1 =

∫
∂{u>0}

〈〈Du, ξ〉Y, ν〉 dHd−1. (21)

To prove (21), notice that Y induces the exact form

ω :=
d∑

ij=1

((
F (D2u)

)p−1
Fij(D

2u)
)
xi

dx1 ∧ · · · ∧ ˆdxj ∧ dxd,

In fact, we can de�ne

η :=
∑

I∈Jd−2,d

(F (Du))p−1 Fij(D
2u)dxI ,
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where Jd−2,d := {I = (i1, . . . , id−2) : 1 ≤ i1 < i2 < · · · < id−2 ≤ n}. Hence,∫
Γ

〈Du, ξ〉 dη = −
∫
∂{u>0}

p (〈Du, ξ〉) ∧ η.

We conclude that (21) holds and complete the proof.

Lemma 5. Let u ∈ W 2,p
loc (B1)∩W 1,p

g (B1) be a minimizer for (1), with p > d/2.

Let ξ ∈ C∞c (B1,Rd) and de�ne Ψt(x) := x + tξ(x) in B1. Then the function
t 7→ |{ut > 0} ∩D| is di�erentiable at t = 0 and

d

dt

∣∣∣∣
t=0

|{ut > 0} ∩B1| =
∫
{u>0}∩B1

div ξdx.

Proof : Because ξ is smooth and compactly supported in B1, we immediately
infer that t 7→ |{ut > 0} ∩B1| is di�erentiable at t = 0. It is also clear that
x ∈ {ut > 0} if and only if Φt(x) ∈ {u > 0}; hence χ{ut>0} = χ{u>0} ◦ Φt. As
a result,

|{ut > 0}| =
∫
B1

χ{u>0} (Φt(x)) dx =

∫
B1

χ{u>0}(y) |detDΨt(y)| dy.

Using the expression available for Ψt, we recover

|{ut > 0}| =
∫
{u>0}

(1 + t div ξ(y) + o(t))dy

= |{u > 0}|+ t

∫
{u>0}

div ξdx+ o(t),

and the proof is complete.

4.2. Proof of Theorem 2. In what follows, we organize the previous results
and present the proof of Theorem 2. The Sobolev regularity of minimizers and
its corollary leads to the �nite perimeter of the reduced free boundary. Further-
more, the �rst variation of the functional yields the free boundary condition.

Proof of Theorem 2: For convenience, we split the proof into two steps. We
start with the �nite perimeter of the reduced free boundary.

Step 1 - Because of Corollary 1, there exists a sequence (δn)n∈N ⊂ R of real
numbers, with δn → 0, satisfying

Hd−1(∂∗(u > δn)) ≤ C,
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for every n ∈ N. Standard convergence results ensure that

lim
n→∞

∫
B1

χ{u>δn}dx =

∫
B1

χ{u>0}dx.

Finally, the lower semi-continuity of the perimeter implies

Hd−1(∂∗({u > 0})) ≤ C

and yields the conclusion. We continue with the derivation of the free boundary
condition.

Step 2 - To establish the free boundary condition we start by noticing that

d

dt

∣∣∣∣
t=0

FΛ,p[ut] =
d

dt

∣∣∣∣
t=0

∫
B1

(
F (D2ut)

)p
dx+ Λ

d

dt

∣∣∣∣
t=0

|{ut > 0} ∩B1| .

Putting Lemma 3 and (4.1) together we obtain

d

dt

∣∣∣∣
t=0

FΛ,p[ut] = −p
∫
B1

(
F (D2u(x))

)p−1
Fij
(
D2u(x)

)
(〈Du(x), ξ(x)〉)xixj dx

+ Λ

∫
{u>0}

div ξ(x)dx.

Note also that ∫
{u>0}

div ξ(x)dx =

∫
∂{u>0}

〈ξ, ν〉 dHd−1.

Due to Lemma 4,∫
B1

(
F (D2u)

)p−1
Fij(D

2u) 〈Du, ξ〉xixj dx

= −2

∫
∂{u>0}

((
F (D2u)

)p−1
Fij(D

2u)
)
xi
〈Du, ξ〉 〈∂j, ν〉 dHd−1,
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where {∂1, . . . , ∂d} is an orthonormal frame of T (∂{u > 0}). Because u = 0
on ∂{u > 0} and u > 0 in {u > 0}, we have that Du = ν|Du|. Moreover,

d

dt

∣∣∣∣
t=0

FΛ,p[ut]

=

∫
∂{u>0}

(
2p
((
F (D2u)

)p−1
Fij(D

2u)
)
xi
〈∂j, Du〉+ Λ

)
〈ξ, ν〉 dHd−1

=

∫
∂{u>0}

(
2p
((
F (D2u)

)p−1
Fij(D

2u)
)
xi
uxj + Λ

)
〈ξ, ν〉 dHd−1.

Since u is a minimizer for (1) and ξ is arbitrary, the proof is complete.

5. Perturbation analysis via Γ-convergence
This section specializes the operator F to be the norm and considers small

values of the parameter Λ in (1). We regard the functional

GΛ,p[v] :=

∫
B1∩{u>0}

‖D2v‖pdx+ Λ|{u > 0} ∩B1| (22)

as a free boundary perturbation of

G0,p[v] :=

∫
B1

‖D2v‖pdx. (23)

Denote with uΛ a minimizer for (22) and with u0 the minimizer for (23). We
are interested in the behavior of (uΛ)Λ>0, as Λ → 0. In particular, we search
for the topologies where the convergence uΛ → u0 is available. Our starting

point is a Γ-convergence result. Namely, we �rst prove that GΛ,p
Γ−→ G0,p as

Λ→ 0. We proceed with some auxiliary lemmas.

Lemma 6 (Equicoerciveness). Let p > 1 be �xed and (Λn)n∈N be a sequence
such that Λn → 0, as n→∞. De�ne the functional Gn,p : Lp(B1)→ R as

Gn,p[v] :=

∫
B1

‖D2v‖pdx+ Λn|{v > 0} ∩B1|

if v ∈ W 2,p
loc (B1), and Gn,p[v] := +∞ in case v ∈ Lp(B1) \ W 2,p

loc (B1). Let
(um)m∈N ⊂ Lp(B1) be such that

Gn,p[um] ≤ C, (24)

for every m ∈ N and some C > 0. Then ‖um‖W 2,p(B1) ≤ C, uniformly in
m ∈ N, for some C > 0.



22 J. C. CORREA AND E. A. PIMENTEL

Proof : It follows from (24) that∫
B1

‖D2um‖pdx ≤ Gn,p[um] ≤ C.

By Lemma 1 and standard inequalities available for Sobolev spaces [33], there
exists C > 0 such that

‖um‖W 2,p(B1) ≤ C,

uniformly in m ∈ N.
Before continuing, we introduce the functional G0,p : Lp(B1)→ R, given by

G0,p[v] :=

∫
B1

‖D2v‖pdx

if v ∈ W 2,p
loc (B1), and G0,p[v] := +∞ if v ∈ Lp(B1)\W 2,p

loc (B1). The next lemma
relates Gn,p and G0,p.

Lemma 7. Let p > 1 be �xed and (Λn)n∈N be a sequence of real numbers
so that Λn → 0, as n → ∞. For each u ∈ Lp(B1) there exists a sequence
(un)n∈N ∈ Lp(B1) converging strongly to u in Lp(B1), such that

lim
n→∞
Gn,p[un] = G0,p[u]. (25)

Proof : Let u ∈ Lp(B1) be given and un := u, for every n ∈ N. If u ∈
Lp(B1) \W 2,p(B1), we get

Gn,p[un] = +∞ and G0,p[u] = +∞,
and (25) is immediately satis�ed. Conversely, suppose u ∈ W 2,p

loc (B1). In that
case, we have

lim
n→∞
Gn,p[un] =

∫
B1

‖D2u‖pdx+ lim
n→∞

Λn|{u > 0} ∩B1| = G0,p[u].

Lemma 8. Let p > 1 be �xed and (Λn)n∈N be a sequence of real numbers so
that Λn → 0, as n → ∞. Given (un)n∈N ⊂ Lp(B1) and u ∈ Lp(B1), with
un → u strongly in Lp(B1), we have

G0,p[u] ≤ lim inf
n→∞

Gn,p[un]. (26)

Proof : To deduce (26) from the strong convergence, suppose �rst (un)n∈N ⊂
Lp(B1) \W 2,p(B1). Then ∫

B1

‖D2un‖pdx = +∞
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and (26) follows. Otherwise, suppose (un)n∈N ⊂ W 2,p(B1). Then

Gn,p[un] ≤ C,

for some C > 0. As a consequence, ‖D2un‖Lp(B1) is uniformly bounded; evoking
once again standard inequalities for Sobolev functions, one infers the existence
of a constant C > 0 such that

‖un‖W 2,p
loc (B1) ≤ C.

The weakly lower semi-continuity of the Lp-norm yields

G0,p[u] =

∫
B1

‖D2u‖pdx ≤ lim inf
n→∞

∫
B1

‖D2un‖pdx ≤ lim inf
n→∞

Gn,p[un]

and completes the proof.

By combining Lemmas 6, 7, and 8, we derive the following theorem.

Theorem 3 (Gamma Convergence). Let p > d/2 be �xed and (Λn)n∈N be a

sequence of real numbers so that Λn → 0, as n→∞. Then Gn,p
Γ−→ G0,p.

In the sequel, we explore a consequence of the Γ-convergence result. It con-
sists of an approximation result by C1,α-regular functions.

5.1. Regular approximations. We have proved that minimizers for (1) are
Hölder-continuous. However, the use of Γ-convergence allows us to arbitrarily
approximate minimizers by C1,α-regular functions. This is the content of the
following proposition

Proposition 2 (C1,α-approximation). Let p > d/2 be �xed. Given δ > 0,
there exists ε > 0 such that if Λ < ε one can �nd h ∈ C1,α

loc (B1) satisfying

‖u− h‖W 1,p
g (B1) < δ

Proof : We use a contradiction argument. Suppose the statement of the propo-
sition is false. In this case, there exist a real number δ0 > 0 and sequences
(un)n∈N and (Λn)n∈N such that

Λn → 0

as n→∞,

Gn,p[un] ≤ Gn,p[u]
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for every u ∈ W 2,p
loc (B1) ∩W 1,p

g (B1) and every n ∈ N, but
‖un − h‖W 1,p

g (B1) > δ0, (27)

for every h ∈ C1,α
loc (B1).

However,
‖un‖W 2,p(B1) ≤ C

(
‖g‖W 2,p(B1) + 1

)
,

for some C > 0. Hence, there exists

u∞ ∈ W 2,p
loc (B1) ∩W 1,p

g (B1)

such that un converges u∞, weakly in W 2,p(B1) and strongly in W 1,p
g (B1).

That is tantamount to say that u∞ is an accumulation point for the sequence
(un)n∈N.
Because of Theorem 3, we conclude that u∞ is a minimizer for G0,p. Previous

results in the literature ensure that u∞ ∈ C1,α
loc (B1) [8]. By taking h := u∞ in

(27), we get a contradiction and complete the proof.
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