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ABSTRACT: The binary bracket of a Courant algebroid structure on (E, (-,-)) can
be extended to a n-ary bracket on I'(F), yielding a multi-Courant algebroid. These
n-ary brackets form a Poisson algebra and were defined, in an algebraic setting, by
Keller and Waldmann. We construct a higher geometric version of Keller-Waldmann
Poisson algebra and define higher multi-Courant algebroids. As Courant algebroid
structures can be seen as degree 3 functions on a graded symplectic manifold of
degree 2, higher multi-Courant structures can be seen as functions of degree n > 3
on that graded symplectic manifold.

KEYywoRrDS: Courant algebroid, graded symplectic manifold, graded Poisson alge-
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1. Introduction

Aiming at interpreting the bracket on the Whitney sum TM & T*M of the
tangent and cotangent bundle of a smooth manifold M, proposed by Courant
in [2], Liu, Weinstein and Xu [7] introduced the concept of Courant algebroid
on a vector bundle £ — M. This vector bundle is equipped with a fiberwise
symmetric bilinear form (-, -), a Leibniz bracket on the space I'(E) of sections
and a morphism of vector bundles p : £ — T'M, called the anchor, satistying
a couple of compatibility conditions. In [10], Roytenberg described a Courant
algebroid as a degree 2 symplectic graded manifold Fg together with a degree
3 function O satisfying {©, 0} = 0, where {-, -} is the graded Poisson bracket
corresponding to the graded symplectic structure. The morphism p and the
Leibniz bracket on I'(E) are recovered as derived brackets (see 2.2).

The Courant bracket, or its no skew-symmetric version called Dorfman
bracket, is a binary bracket. The first attempt to extend it to a n-ary bracket
was given, in purely algebraic terms, by Keller and Waldmann in [5]. They
built a graded Poisson algebra € of degree —2 whose degree 3 elements that
are closed with respect to the graded Poisson bracket correspond to Courant
structures. The graded Poisson algebra €, that we call Keller-Waldmann
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Poisson algebra, is a complex that controls deformation. Keller-Waldmann
algebra elements are n-ary brackets and each bracket comes with a symbol.
In degree 3, the symbol is the anchor of the Courant structure.

We consider the geometric counterpart of the Keller-Waldmann Poisson
algebra, and our starting point is a vector bundle £ — M equipped with
a fiberwise symmetric bilinear form (-,-). This is also the setting in [!],
where the first author has started the study of the Keller-Waldmann algebra
under a geometric point of view. In this case, the Keller-Waldmann Poisson
algebra is denoted by €(F) and its elements are pre-multi-Courant brackets
on I'(F). The prefix pre means that elements C' € €(F) do not need to close
with respect to the Poisson bracket, denoted by |-, -], If [C,C],,, =0, the
triple (£, (-, -), C) is a multi-Courant algebroid. At this point it is important
to notice that, for n # 2, what is called n-Courant bracket in Remark 3.2
of [5] is not the same as our n-ary Courant bracket, because we require the
closedness with respect to the [-, -], bracket, while in [5] the authors ask the
closedness with respect to a different bracket. For n = 2, the two brackets
coincide (see Remark 3.12).

Very recently, Cueca and Mehta [3] showed that there is an isomorphism
of graded commutative algebras between (#g, ) and (€(E), A), where - and
A denote the associative graded commutative products of the two Poisson
algebras Fp and € (F), respectively. They also remarked that the isomor-
phism is indeed a Poisson isomorphism, but they don’t prove this since they
don’t exhibit the Poisson bracket on €(F).

The main goal of this paper is to give a higher version of the Keller-
Waldmann Poisson algebra and define higher multi-Courant algebroids. This
means that we consider higher (pre-)multi-Courant brackets on T'(A=1E), and
not only on I'(F). Each higher (pre-)multi-Courant bracket has an associ-
ated symbol and it is the extension by derivation of a (pre-)multi-Courant
bracket. This construction leads to a graded Poisson algebra € (A='E) with
a Poisson bracket [-,-] that extends [-, -], .

In literature we find several Courant bracket extensions, in different di-
rections (see [13] and references therein). In [13] Zambon defines higher
analogues of Courant algebroids, replacing the vector bundle T'M & T M,
originally considered in [2], by TM & APT*M, p > 0. In an algebraic setting,
Roytenberg [11] extends the usual Courant bracket to a n-ary bracket on
['(E), and each n-ary bracket comes with a collection of symbols that con-
trol the defect of their skew-symmetry and also the skew-symmetry of the
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bracket. In [8], under the perspective of Loday-infinity algebras and using
Voronov’s derived bracket construction [12], Peddir defines n-ary Dorfman
brackets on ['(E) and C*°(M). Having started from the Keller-Waldmann
algebra, whose elements are n-ary brackets on I'(E), we were led to an ex-
tension of Courant algebroid structures on £ — M in two fold: the binary
bracket is replaced by a n-ary bracket and the latter is a bracket on sections
of AZ1E. Of course, the symbol goes along the bracket.

The paper is organized in the following way. In Section 2 we make a very
brief summary of Roytenberg’s graded Poisson bracket construction [10] and
we recall the Courant algebroid definition. Section 3 is devoted to Keller-
Waldmann Poisson algebra where we clarify and detail many aspects that
are not covered in [5]. One of them is the explicit formula for the Poisson
bracket [-, ], on €(E), that is not given in [5] because the bracket is defined
recursively there. To achieve this, we consider the binary case of a bracket
introduced in [9], built using the interior product of two elements of € (F).
We introduce the concept of multi-Courant algebroid on (E, (-, -)) as a n-ary
element C' € € (F) that is closed under the bracket [-,-] ... We point out
an alternative definition for the Keller-Waldmann Poisson algebra, already
presented in [5], that is needed in the remaining sections of the paper. In this

setting, each C' € €(F) is in a one-to-one correspondence with C, the latter
being obtained from C and (-,-). In Section 4, we extend the symmetric
bilinear form (-, -) to ['(A*E) and prove that it coincides with the restriction
of [, ] ,uw t0 T(AZLE). Then, we define higher (pre-)multi-Courant structures
on (E,(-,-)). These are multilinear maps from T(AZ'E)x ") xI'(AZ1E) to
['(A®E) which are derivations in each entry, together with a symbol that
takes values on the space of derivations Der(C>*(M),I'(A*E)). All these
data should satisfy some compatible conditions involving (-,-). The exten-

sion by derivation in each entry of every 8 is a higher (pre-)multi-Courant
structure on F. Higher (pre-)multi-Courant brackets form a graded Poisson
algebra (€(A=1E), A, [+, -]) of degree —2. In Section 5 we see how the higher
Keller-Waldmann Poisson algebra (€ (A=1E), A, [-,-]) is related to Royten-
berg’s Poisson algebra (Zg,-,{-,-}). We start by establishing a Poisson iso-
morphism between the Keller-Waldmann Poisson algebra (€(E), A, [, ] )
and Roytenberg’s Poisson algebra and we show that this Poisson isomorphism
gives rise to a Poisson isomorphim between the higher Keller-Waldmann al-
gebra (€(A=1E), A, [,-]) and Roytenberg’s Poisson algebra.
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Notation. Let 7 be a permutation of n elements, n > 1; we denote by sgn(7)
the sign of 7. We denote by Sh(i,n—i) the set of (i, n—1)-unshuffles, i.e., per-
mutations 7 that satisfy the inequalities 7(1) < ... < 7(i) and 7(i+1) < ... <
7(n). For a vector bundle F — M, we denote by I'(A"E) the space of homo-
geneous E-multivectors of degree n and we set ['(A*E) := @,>0['(A"E), with
[(A°E) = C*(M), and T(A"'E) := @,>1T'(A"E). Forn < 0, [(A"E) = {0}.

2. Preliminaries

2.1. Graded Poisson bracket. We briefly recall the construction of a
graded Poisson algebra introduced in [10]. Let F — M be a vector bun-
dle equipped with a fibrewise non-degenerate symmetric bilinear form (-, -)
and denote by E[m] the graded manifold obtained by shifting the fibre de-
gree by m. Let p*(T*[2]E[1]) be the graded symplectic manifold which is
the pull-back of T*[2]E[1] by the map p: E[l] — E[1] @ E*[1] defined by
X — (X,3(X,.)). We denote by Fp = ®,>0Fp the graded algebra of
functions on p*(T*[2]E[1]), with 2 = C*(M) and %} = I'(E) and, con-
sequently, I'(A"E) C FJ. The graded algebra Fg is equipped with the
canonical Poisson bracket {-, -} of degree —2, determined by the graded sym-
plectic structure, so that we have a graded Poisson algebra structure on Fg.

The Poisson bracket of functions of degrees 0 and 1 is given by

{f,g} =0, {f,e} =0 and {e, e} = {e¢),
for all e,e’ € I'(F) and f,g € C*(M).

2.2. Courant structures. Recall that, given a vector bundle £ — M
equipped with a fibrewise non-degenerate symmetric bilinear form (-,-), a
Courant structure on (E,(-,-)) is a pair (p,[-,-]), where p : E — TM is a
morphism of vector bundles called the anchor, and [-, -] is a R-bilinear bracket
on ['(E), called the Dorfman bracket, such that

p(u)-(v,w> - ([u,v],w>+<v, [u7w]>7 p(u)-(v,w) - <u7 [va]+[wvv]>7 (1)
and
[u> [U,UJH - HU,U], w] + [Uv [uvw“? (2)
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for all u,v,w € T'(E). The bracket |-, -] equips the space I'(E) of sections of F
with a Leibniz algebra structure. Skipping Equation (2) yields a pre-Courant
structure on (E, (-,-)).

There is a one-to-one correspondence between pre-Courant structures (p, |-, ])
on (E, (-,+)) and functions © € %3, while for Courant structures the function
© is such that {©,0} = 0 [10]. In this case, the hamiltonian vector field
Xo = {O,-} on the graded manifold p*(7T*[2]E][1]) is a homological vector
field, and so (p*(T*[2]E[1]), Xe) is a Q-manifold.

The anchor and Dorfman bracket associated to a given © € %3 can be
defined, for all e,¢’ € I'(E) and f € C*(M), by the derived bracket expres-
sions:

ple) - f={f{e,0}} and [ee]={e {e,O}}.

3. Multi-Courant structures and Keller-Waldmann Pois-
son algebra

In this section we deepen the study of the Keller-Waldmann Poisson alge-
bra.

3.1. Multi-Courant structures. Let £ — M be a vector bundle equipped
with a fibrewise non-degenerate symmetric bilinear form (-,-). The next
definition is taken from [5], but within a geometrical perspective. X(M)
denotes the space of vector fields on a manifold M.

Definition 3.1. A n-ary pre-Courant structure on (E, (-,-)) is a multilinear
n-bracket on I'(E), n > 0,

C:T(E)x " xI'(E) - I'(E)
for which there exists a map o¢, called the symbol of C,
oo :T(E)x 7D xI(E) — X(M),
such that for all e, e’ eq,...,e,_1 € I'(E), we have
ocler,...,en 1) -{e, €y =(Cler,...,en1,€),€)+{e,Cler,...,en1,€)) (3)
and, for n > 2 and 1 <7 <n — 1, the following n — 1 conditions hold:

<C(€17---7€i76i+17--' ,Gn) —|—C(€1,... ,€i11,€4, .. .,en),e>

:JC(ela-"aé;76/iE7"'7en7e)'<€i76i—|—1>7 (4)



6 PAULO ANTUNES AND JOANA NUNES DA COSTA

with €; meaning the absence of e;. A 0-ary pre-Courant structure is simply an
element e € I'(E) (with vanishing symbol). The triple (E, (-, -), C) is called
an n-ary pre-Courant algebroid. When we don’t want to specify the arity of
C', we call it a pre-multi-Courant structure and the triple (F, (-,-),C) is a
pre-multi-Courant algebroid.

For n = 1, C is derivative endomorphism [6] with symbol oo € X(M).
When n = 2, conditions (3) and (4) coincide with (1) for p = o¢. So, as
it would be expected, Definition 3.1 generalizes the notion of pre-Courant
structure on (F, (-, -)).

We denote by €™ (E) the space of all n-ary pre-Courant structures on £
and set

C(E) = On=08"(E),
with €°(E) = C*(M) and €Y(E) = T'(E).

Remark 3.2. The symbol o¢ of C € €"(F) is uniquely determined by C [7].
The uniqueness of o¢ allows to consider an extension of (', also denoted by
C, on the graded space T'(AS'E) = C*(M) & T'(E), where f € C°°(M) has
degree 0 and e € T'(E) has degree 1. The extension of C' is a degree 1 —n
bracket,

C:T(AS'E)x M) xT(AS'E) — T'(AS'E),
with symbol
oo DASLE)x 7D xT(ASLE) — X (M),
such that, for all e; € I'(F) and f € C*(M),
0(61,...,€n_1,f):00(61,...,6n_1)'f (5)

and

i

L L
0(61,...,f,...,6n_1) = 0(61,...,f,...,€n_1),
forall 1 <7,7 <n.
By degree reasons, C' vanishes when applied to at least two functions,

Clery ooy fyooygyeesno) =0,
Assuming that oo vanishes when applied to at least one function,

0'0(61,...,f,...,€n_2)20,

Equations (3) and (4), with the obvious adaptations, are satisfied.
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3.2. Keller-Waldmann Poisson algebra. Given C' € €""(E), n > 1,
and e € I'(E), we denote by 1.C' the element of €"(F) defined by

1.C(e1, ... en1) =Cle,er,... e, 1), (6)
for all eq,...,e,_1 € I'(E), with symbol given by
O-ZEC(ela st 7€TL—2) = 00(67 €1y, en—Z)-

If C = ey, 1.1 = (e,e1) and we set 1. f := 0.
If we consider the extension of C' as in Remark 3.2 we may define, for

feC®(M),
17C(e1,. .. enm1) =C(f,e1,...,en1) =0c(er,...,en1) - f,
for all eq,...,e,-1 € I'(E).

The space € (F) is endowed with an associative graded commutative prod-
uct A of degree zero [5] defined as follows':

fANg=fg=gN [
fAhe=fe=eAf,

for all f,g € C*°(M) and e € I'(E), and such that, for all e € ['(E), 1. is a
derivation of (€ (FE), N):

Ze(Cl N CQ) =1,C1 N Csy + (—1)”01 A 1.Co,

for all Cy € €"(F) and Cy € €(F). For Cy € €"(F) and Cy € €™ (F), with
n,m > 1, C; A Cy is equivalently given by [5]:

CiNCy(er, ... enim-1) =

Z Sgn(T) <Ol (67'(1)7 SR eT(n—l)) ) eT(?’L)> Co (eT(n+1)7 s 7€T(n+m—1))
T€Sh(n,m—1)

+ (=" Y sen()

T€Sh(m,n—1)
<02 (67'(1)7 ceey e7'(m—1)) 767'(m)> Cl (eT(m—i—l): <. 767'(n+m—1)) y (7)
for all ey,...,eprm-1 € ['(E).

1Our signs are different from those in [5] and coincide with [1].
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The symbol of C7 A (s is given by

OCL Ny (617 s 7en+m—2) ’ f -

> seu(n)

TE€Sh(n,m—2)
(Ch (er()s- - Er(n1)) »€r(n)) s (Ex(nit)s - - -+ Ex(nim—2)) - [

+ sgn( )
T€Sh(n—2,m)

(JCl (67'(1)7 s 7€T(n—2)) ) f) <02 (eT(n—l)a SR €T(n+m—3)) 7€T(n—|—m—2)> )
(8)
for all eq,...,ep1m—2 € T(F) and f € C>(M).

Remark 3.3. A homogeneous P € I'(APE), P = e; A ... N ey, with ¢; €
['(E) = €'(E), can be seen as an element of €”(E). From the definition
and properties of the interior product, we may obtain an explicit expression
for P(ef,... e, 1), with €},...,e, 1 € ['(F), by means of products of type
(€}, e;) (see also Equations (22) and (23)). Furthermore, Equation (8) yields
op = 0. Conversely, If C'is an element of €"(FE) with ¢ = 0, then C €

['(A"E) (see Lemma 5.7). For P,QQ € I'(A°E), P A Q is the usual exterior
product.

Definition 3.4. [5] The space € (F) is endowed with a graded Lie bracket
of degree —2,

[l E7(E) x EM(E) — €"H(E),

uniquely defined, for all f,g € C®(M), e,¢’ € I'(E), D € €*(E), C; €
€"(E) and Cy € €(F) by ?,

f,g] =0,

€, Cl]KW = (_1)n+1[017 6] = zeC’l

20ur signs in (iv) and (v) are different from those in [5] and coincide with [1].
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and, by recursion,

26[017 CQ]KW - [67 [Clv CQ]KW]KW - [[67 Cl]KW’ CQ]KW + (_1)71[01’ [67 CQ]KW]KVEQ)

In [5], it is proved that
[Cl, Cs A Og]m = [01, OQ]KW A C5 + (_1)nm02 A\ [Cl, C3]KW, (10)
for all Cy € €"(F), Cy € €"(F) and C5 € €(F). Summing up, we have:

Proposition 3.5. [5] The triple (€(E), A, [, | av) s @ graded Poisson algebra
of degree —2, that we call Keller-Waldmann Poisson algebra.

From Remark 3.3, Definition 3.4 and Equation (10), we have:
Corollary 3.6. For all P € I'(A\PE) and Q € I'(ANE), opq = 0.

Let V be a vector space and set g = VZ~D_for a fixed n € N. We denote
by £F the space of linear maps from g“? ® V' to V and set £ = @,>¢LF, with
£Y = g. In [9] a bilinear bracket of degree zero on £,

[ ] 2P x £1 — gPha

was introduced. We don’t need its explicit definition which can be found in
[9]. However, the important feature of |-, -]** in the present work is that, since
-, ],y is nothing but —[-,-|**, we may have an explicit expression for [-, ],
that is not given in Definition 3.4, where the bracket is defined recursively.

Given C) € €"(F) and Cy € €"(E), n,m > 1, the definition in [9] yields

[01, CQ]KW = 20102 — (—1)nm20201, (11)
with 20,01 € €"7"2(E) defined, for all ey,. .., e,1m_3 € T'(E), as follows:

10,C1(€1, .. epim—3) = ngn(J, I)(-1)!

01(6217 cty ei,&? 02(6]17 Tt ejmfl)7 6it+17 tte 762’7172)7
(12)
where the sum is over all shuffles I = {i; < ... < i, o} C {1,...,n+m—3} =

N. The j's and t are defined by {j; < ... < jm-1} = N\I, it21 = jm_1+1 or,
in case j,,—1 =n+m—3,t:=n—2. The pair (J, I) denotes the permutation
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(415 s Jm—1,%1, - in_2) of N. When Cy = e € €1(E) =T'(E), 1.C} is given
by Equation (6).

Lemma 3.7. The interior product 1c,C, € €™ %(E) defined in Equation
(12) is equivalently given by

n+m—3

10,C1(e1, - ., entm—3) = Z Z sgn(7)(—1)"*

k=m—1 7eSh(k—(m—1),m—2)

Cr(erys - erthm(m=1))> C2(€r(km(m=2))s - - - » Er(k=1), €k); €kt1> - - - » Entm—3),
(13)
with C; € €"(F) and Cy € €™(F), m > 1.

Proof: We need to prove that (12) can be rewritten as (13). Let us consider

a permutation (i1, ...,%, J1, -+ Jm—2, Jm—1, bt+1s- -, in—2) Of N ={1,... ,n+
m — 3}, as in (12). It is easy to see that the last n — t — 2 permuted
indices, (i¢41,.-.,%n_2), must coincide with the last n — ¢ — 2 elements of V:

(t+m,...,n+m —3). Then,

(7’17'"72757.]17"'7]m—17/Lt—|—17'-'7Zn—2) -
= (i1, sy J1y e o s Jme1, My n+m — 3).

Moreover, the index ¢ in (12) can be equivalently defined by setting
jm—l =t+m—1.

Then, permutations (i1, ..., 4, 1, -« Jm—2 Jm—1 941, - - -  in—2) considered in
(12) can be rewritten as permutations

(il,...,it,jl,...,jm_g,t+m—1,t+m,...,n+m—3), (14)

where t takes values from 0 to n — 2.* In addition, if we define the index k
by setting k :=t + m — 1, then permutation (14) corresponds to

(r(1),...,7(k—(m—=1),7(k—(m—=2)),...,7(k—=1),k,k+1,... ,n+m—3),
where 7 € Sh(k — (m —1),m — 2).

3When t = 0, we have the trivial permutation (1,...,m —1,m,...,n+m — 3).

J1yeordm—1 01 yeeeyin—2



HIGHER MULTI-COURANT ALGEBROIDS 11

Finally, we need to rewrite the sign in (12), using the unshuffle permutation
sgn(J, I) x (=1)" =sgn(j1, ..., Jmstsi1y- - in_z) X (—1)°
= sgu(r(k—(m—2)),...,7(k—1),k,7(1),...,7(k — (m — 1),
k+1,...,n+m—3)x (=1)k b
= sgn((T(k —(m—=2),....,7(k—=1),k,7(1),...,7(k — (m — 1)))
> (_1)k—(m—1)
= (=) sen(r(1), .7k = (m = 1), 7(k = (m = 2)),
(k= ) k) x (= ) =)
= (—1)(’“ " DMsgn(7) = (—1)""sgn(r).

Therefore, we can rewrite (12) as

n+m—3

ZCgcl(ela ceey en+m—3) = Z Z Sgn(T)(_l)km

k=m—1 1€Sh(k—(m—1),m—2)
01(67'(1)7 s Er(k—( 02( (m—=2))s+ -5 Er(k—1); ek‘)a Ch+1s -+ €n+m—3)- u
Lemma 3.7 together with Equation (11), provide an explicit definition of
the bracket [, -], .

For the sake of completeness, in the next lemma we give the explicit formula
for the symbol of v¢,C}.

Lemma 3.8. Given Cy € €"(E) and Cy € €™(F), the symbol of 10,Cy €
G"m2(E) is given by

n+m—4

Ouc,Cy (617 ceey en+m—4) : f = Z Z (_1)m(k_(m 1))3977'( )

k=m—1reSh(k—(m—1),m—2)
e (67(1)7 w0y Er(k—(m—1))»

Co (eT(k—(m—Q))a cees Er(k—1)s ek) y Ch+1y -y €n+m—4) ) f

+ ) (R Psgn(r)

TESh(n—2,m—2)

ocy (er(1), - s €rm2)) - (0¢, (Er(nat)s - - s Ex(nim—1)) - [)
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foralley,... enyma €T(E) and f € C°(M).

Definition 3.9. A pre-multi-Courant structure C' € €"(F), n > 2, is a
multi-Courant structure if [C,C],,, = 0. In this case, the triple (E, (-,-),C)
is called a multi-Courant algebroid.

For n = 3, a multi-Courant structure is simply the usual Courant structure
on (E7 <'7 >)
Remark 3.10. Since the bracket [-, -], is graded skew-symmetric, given C' €
G?*(E), k > 1, we always have [C, C],,, = 0. So, all (2k —1)-ary pre-Courant
structures are (2k — 1)-ary Courant structures.

Lemma 3.7, Definition 3.9 and Remark 3.10 yield the next proposition.

Proposition 3.11. A pre-multi-Courant structure C € €"(E), with n odd,
s a multi-Courant structure if and only if
2n—3

>, > sgn(7)(—1)"

k=n—1 7€Sh(k—(n—1),n—2)
C<€T(1)7 w0y Er(k—(n—1))> C<67‘(k—(n—2))7 ceey Er(k—1)s €k>7 Ch+1y -+ 627173) = 07
foralle; e '(E), 1 <i<2n—3.

Remark 3.12. Let C' € €""1(F) be a n-ary pre-Courant structure on (£, (-, -)).
If C satisfies the Filippov identity [1]:

0(617 S en*hC(e/l? c '76/ ))

n
n
= 20(6/1’ oy, Cery .. eno1,€l) €, €L, (15)
i=1

for all ey,...,e,—1,€},...,e, € I'(E), we say that C' is a n-Filippov Courant
structure on E *. Notice that n-Filippov Courant structures are called n-
Courant structures in [5].

If C' is a n-Filippov Courant structure on (FE,(-,-)), I'(EF) is equipped
with a n-Leibniz algebra structure. Thus, a 2-Filippov Courant structure
on (F, (-,-)) is the same as a Courant algebroid structure on (E, (-, -)). How-
ever, comparing Equation (15) with the identity in Proposition 3.11, we see
that, for n > 3, n-Filippov algebroids and n-ary Courant algebroids are
different structures.

4Equation (15) means that C(eq,...,e,—_1,-) is a derivation of C.



HIGHER MULTI-COURANT ALGEBROIDS 13

An interesting aspect of the bracket [-,-]"* introduced in [9], is that it
characterizes n-Leibniz brackets as those which are closed with respect to it.
Indeed, as it is proved in [9], Equation (15) is equivalent to [C, C]™* = 0.

3.3. An alternative definition. There is an alternative definition of pre-
multi-Courant structure on (£, (-,-)) that we shall use in the next sections.
Given C' € €"(E), n > 1, we may define a map

C :T(E)x ) xT(E) — C®(M)
by setting

Clery...,en) = {(Cler,...,en-1),€n) (16)

and, for C € €%(F) = C°(M), C = C. Notice that for C' € LU E),
C(e) = (C,e), for all e € T'(F).

As it is remarked in [5], Definition 3.1 can be reformulated using the maps

C. n particular, C' is C°°(M)-linear in the last entry and Equations (3) and
(4) are equivalent to

~J ~J
C(ela"'7ei76i—|—17-"7€n)+C(€17"'7€i+176i7"'76n):

:O-C(elv"')é\iae/i—ﬁa"'aen)'<€i76i+1>- (17)

Let %J”(E) be the collection of maps C defined by (16), and set %J(E) =

®n>06"(E). There is a degree zero product on €(F), that we also denote
by A:

CinCy=CiACh, (18)
for all Cy € ™(E) and Cy € €"(E), m,n > 0. Explicitly,
01 A\ 02(61, cey €m+n) =

= Z sgn (7’) 01(67(1), ceey eT(m)) 02(67(m+1)7 ) eT(m+n))7 (19)
TE€Sh(m,n)

for all ey, ..., epn1n € T'(E). The map
Y B(E) = B(E), CeB'(E)—CeB"(E)

is an isomorphism of graded commutative algebras [5].
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We may define a degree —2 bracket on %J(E), by setting

C.G| =00l (20)
i.e., given a € %Jm(E) and 8; € %J"(E),
LG (ennsemana) = (C1, Gl en, s mens). €min2)
for all e1,...,enin—2 € I'(E). In Section 5 we shall see that [,-] _ is the

bracket referred in Remark 2.6 of [3].
By construction, the map

R (Cg(E)? A, ['7 ]KW) — (%(E)v A, ['7 ]m)
is an isomorphism of graded Poisson algebras.

Remark 3.13. Given C' € €"(F), due to (20) and the non-degeneracy of (-, -),
we have

C.Cl., =0 o [881N _ 0

and therefore, Definition 3.9 can be given using either c € %"(E) or C' €

4. Higher multi-Courant structures and higher Keller-
Waldmann Poisson algebra

Inspired by the generalization of the Lie bracket by the Schouten bracket,
in this section we extend a pre-multi-Courant structure C € €""(E) on
(E, (-,-)) to the space T'(AZ'E), asking the extension to be a derivation in
each entry.

4.1. Extension of the bilinear form. We start by extending the symmet-
ric bilinear form (-, -) on I'(E) to I'(A*E) as follows. Given two homogeneous
elements P € I'(APE) and Q € T'(AYE), with p,q > 1, (P, Q) € T'(APTI12E),
i.e., (-,-) is a degree —2 operation. Moreover, (-,-) satisfies the following
conditions:

1) <P7 Q> - _(_1)pq<Q7P>;
i) (f,R) = (R, [)=0;



HIGHER MULTI-COURANT ALGEBROIDS 15
iii)
(P,QNR) = (P,Q) AR+ (=1)"Q A (P, R); (21)
iv)
(PAQ, R)) = ({(P,Q), k) + (=1)"(Q, (P, R)),
for all R € I'(A*E) and f € C*°(M). Extending by bilinearity, (-, ) is defined

in the whole I'(A*E) and (I'(A*E), (-, -)) is a graded Lie algebra. Note that
(+,+) is C*°(M)-linear in both entries.

Lemma 4.1. Let P =e1 A...Ne, € D(NPE) and Q = ey A... Ne € T(AIE)
be two homogeneous elements of T'(AZ1E). Then,
p

(P,Q) =Y S (1) ey, ) PR A QP (22)

s=1 k=1

where Pk = ey A\...NeLN...Ne, € T(ANPTIE) and Q° = A NELA. . Neg, €
L(ATIE).

For P e I'(A\PE), P € €7(F) and is given by

Pler,...,ep-1) = (€p-1,..-, (e, (€1, P)) ...), (23)
while P € @7 (E) is given by

P(ei,...,ep) = (ep,..., (€2, (e1,P))...),
for all e;,...e, € I'(E).

Lemma 4.2. For P,Q € T(A2'E),
(P, Q) = [P7Q]KW'

Proof: Let us prove this result for homogeneous elements P € ['(APE) and
Q) € I'(AYFE). We shall use induction on n = p+ ¢q. For n = 2, we know from
of Definition 3.4 (iii) that (e,e’) = [e, €], for all e,¢’ € ['(E). Now, let
us suppose that, for some k£ > 2 and for all homogeneous elements P, () €
['(AZ1E), such that p + ¢ < k, we have (P,Q) = [P,Q],,,. Let us consider
P,Q € T(A2'E), such that p+ ¢ = k + 1, we need to prove that (P, Q) =
[P, Q). Since p+q = k+1 > 3, we can suppose, without loss of generality,
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that ¢ > 2 and write Q = @ A e, for some e € I'(F). Then, using (21) and
(10), we have

~
)
I

[
&N

L) :©>
>
g

5
>
D
+

T
—_

=

)

)
>

=

o,

3

|
Y
O ) )

>

Q)

3

4.2. Higher Multi-Courant algebroids. Now we introduce the main no-
tion of this section. By Der(C*>(M),I'(A*E)) we denote the space of deriva-
tions of C*°(M) with values in ['(A°*E).

Definition 4.3. A higher pre-multi-Courant structure on (E, (-,-)) is a mul-
tilinear map

¢C:T(ATE)x W xI(AZ'E) = T(AE), n>0,
of degree —n, for which there exists a map o¢, called the symbol of €,
o¢ - DINTE)x 72 xT(AZ'E) — Der(C™(M),T(A°E)),

such that € is C°°(M)-linear in the last entry and the following conditions
hold:

¢(P,...,PAR,...,P,) = (=1t p A¢(P, ... R,... P,)
+ (=) PtAP) R AC(Py, .. P, ... Py, (24)

O'Q(Pl,...,PZ'/\R,...,Pn_Q) = (—1)pi(pi+1+"'+pn*2)Pi/\O'Qj(Pl,...,R,...,Pn_g)

(1) Pt R A ge(Pr, ..., Py, Pyy),
(25)

+

Q:(Pl,...,H,G,GI,H+1,...,PTL_2) —|—Q:(P1,...,B,BI,G,B+1,...,PH_2) =
— O-Q:(Plv < '7Pia Pi-l—h e Pn—2) (<676/>)7 (26)

for all e,e¢’ € I'(E) and for all homogeneous P; € I'(APE), and R € I'(A"E),
where p; > 1, r>1and 1 <i<n. Forn=0,¢ € C*(M).
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The triple (E, (-, -), ) is called a higher n-ary pre-Courant algebroid or a
higher pre-multi-Courant algebroid, if we don’t want to specify the arity of

()
Notice that, for P, € '(APE), 1 <i<n—2,and f € C*(M),

oe(PL, ..., Pys)(f) € (NPT FPn2=1 42 Fy

Lemma 4.4. If the bilinear form (-,-) is full °, o¢ is C(M)-linear in the
last entry.

Proof: 1t is a direct consequence of (26) and the fact that (-, ) is full and €
is C°°(M)-linear in the last entry. m

The space of higher n-ary pre-Courant structures on F is denoted by
" (A=1E) and we set

C(N'E) = ©nx0€" (AE),

with €Y(AZLE) = C°(M).
The alternative definition of pre-multi-Courant structure, introduced in 3.3,
allows us to construct an example of higher pre-multi-Courant structure.
Y Y Y
Given C € €"(E), we denote by C' its extension by derivation in each
entry, i.e., C' and C coincide on sections of £ and, furthermore, C satisfies

~

(P,...,PAe,...,P) = (—1)pestspp AC(PL . e, .. P)

Q

(1)t A 8(P17 Py By, (27)

for all homogeneous P; € I'(APE), p; > 1,1 <i < n, and e € I'(K). For
f e %JO(E) = C>®(M), we set f = f. Moreover, we associate to C the map

o5 T(AZLE)x 72 xT(AZ'E) — Der(C™®(M),T(A°E)), n > 2,

SThe bilinear form is said to be full if (-,-) : T(E) x T(E) — C*°(M) is surjective.



18 PAULO ANTUNES AND JOANA NUNES DA COSTA

that coincides with o¢ on sections of F and is the extension by derivation in
each entry of o¢, i.e., for all f € C>*(M),

O'g(Pl,...,Pi/\e,...,Pn_Q)(f) =
= (—1)pi(pi+1+"'+p"_2)PZ‘ A Ug(Pl, B Pnf2> (f)
+ (—1)pi+"'+p"726 N O'g(Pl, ceey PZ', ceey Pn_g) (f) (28)

Lemma 4.5. For C ¢ %J”(E), c defined by Equation (27) is an element of
G (ANZLE), with symbol given by Equation (28).

Proof: Applying repeatedly (27) (resp. (28)), we obtain (24) (resp. (25)).

Also, it is immediate that C is C>°(M)-linear in the last entry.
[t remains to prove that, for all e,/ € T'(E) and for all homogeneous
P, e T'(AP'E), p; > 1, we have
8(P17"'7PZ'7€76/7PZ'+17"'7P71*2) +8(P17"'7Pi76l767pi+17"' Pn72) =
:O—g(Pla---7P1'7Pi+1;---7pn—2) (<€,€/>). (29)

Let us prove this by induction on p; + ... 4+ p,_o.
When

pL+...+pPh2=n—2,

then p; = 1, for i = 1,...,n — 2 and (29) reduces to (17), which is satisfied

by C and o Now, suppose that (29) is satisfied for all P;,..., P, 2 such
that

n—2<pi+...+p2 <k,
for some k > n — 2, and let us prove it for P,..., P,_o such that
p1++pn—2:k+1

Because k + 1 > n — 1, there is at least one j € {1,...,n — 2} such that
p; > 2 and then we can write P; = P; A u, with u € I'(E). Then,
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E(Pl,...,Pj/\u,...,e,e’,...,Pn_g) +§(P1,...,]3j/\u,...,e’,e,...,Pn_Q
(1) et BAC(PL s eyel . Pa)
(=)t NC(PL,. By ey o)
(=)D t) BAC(PL . . e, Pas)
(=)t NC(PL, . B e Pa)

~

= (_1)(pj—1)(pj+1+...+pn72) ]3] A (C(Pl, ety ey Pao)

+

Iy
~
=
L
o
S
S
N——

+ (—1)(pj_1+pj+1'“+p”‘2) u A <C(P1, o ISj, coee s Pys)

— (_1)(pj_1)(pj+1+...+pnf2)

5
+ (—1)(pj_1+pj+1'"+p"’_2) (TAN O'g(Pl, cey P\j, . ,A, g/, cey Pn_g) (<€, €,>)
_ a,a(pl,._.,ﬁj Au,....6¢, ..., Pus)(le,€)).

Next proposition establishes a relation between %J(E) and € (A1E).

Proposition 4.6. There is a one-to-one correspondence between €(E) and
G (AZLE) such that, for alln > 1,

SLE(E) - B(AZLE)

™) )

C — C,

with C' given by Equation (27). Forn =0, ~ is the identity map.

Proof: Given € € €"(AZ1E), its restriction to I'(E) satisfies (17) so that
Clrp) € €"(E). It is obvious that €|y = €.
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~~ ~ ~

Now, if Cy = Cy € €"(A'E), obviously Ci|rg) = Calr(g), which means
Y Y

Cl = CQ. |

Having the one-to-one correspondence given by Proposition 4.6, and if there

Y
is no ambiguity, in the sequel we shall write very often C instead of €.

Remark 4.7. Let us explain why we consider 8, the extension of 8 S %J(E)
by derivation in each argument, instead of C, the extension of C' € €(F)
by derivation in each argument. The reason comes from what should be the
extension by derivation of Equation (4) in Definition 3.1. The corresponding
condition that C should satisfy is

<U(P1,...,€,€/,...,Pn_3) +€(P1,...,e',e,...,Pn_3),Pn_2) =
= O'@(Pl, RPN é\i, G/Z'E, ceey Pnfg, Pnfz)(<€, €/>),
for all e,¢’ € T'(F) and for all homogeneous P, € T'(AP"E). But in this
expression, the right hand side is derivative with respect to each argument

P;,,i=1,...,n—3 while the left hand side is not. On the contrary, Equation
(26) is fully derivative on both sides.

4.3. Higher Keller-Waldmann Poisson algebra. The space €(AZ1E)
is endowed with an associative graded commutative product of degree zero,

that we denote by A °, defined as follows. Given 81 € €"(AZ'E) and 82 €
G*(N21E), set
81 VAN 82 = 81 N gg, (30)

where the product A on the right-hand side is the one defined by Equa-
tion (19). Using Equation (18), we may write

CyACy=Cy ACo.

The space €(A='E) is endowed with the following bracket of degree —2,
[, ]: 6" (A'E) x 8°(A'E) — € (AZE)

@8 » |8.8] = [0.8)

—~—

6Although we use the same notation, this product is not the one defined in €(E).
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As a consequence of Equation (20) and Lemma 4.2, we have:

Lemma 4.8. For P, € T'(AZ'E),

e

|7.3] -fra - v
Theorem 4.9. The triple (€(AZ1E), A, [+, -]) is a graded Poisson algebra of
degree —2, that we call the higher Keller-Waldmann Poisson algebra.

Proof: Bilinearity and graded skew-symmetry of [-,-] are obvious. Let us

take 82 € €(ANZ1E), i =1,2,3. Since

Hcl,@ﬂ ,cgﬂ - [[Cl,CQ]W,Ogﬂ - [[Ol,cz]w,csl ,

KW

the graded Jacobi identity of [-, -] follows from the graded Jacobi identity of
- ]’KW Analogously for the Leibniz rule, since

[C.08] = [CL0AE | - [E.EnT] .

—~—

KW

It is now obvious that
R (%(E)v AY ['7 ]m) — (%(/\ZIE)v A, [['7 ]])
is an isomorphism of graded Poisson algebras.
Definition 4.10. A higher pre-multi-Courant structure € = C e E(NE),

n > 2, is a higher multi-Courant structure if |[€, Q}] = 0. In this case, the
triple (E, (-, ), €) is called a higher multi-Courant algebroid.

Note that, because the bracket [-, -] is skew-symmetric, all € € €2 (AZ1E),
k > 1, are higher multi-Courant structures.

5. On Cueca-Mehta isomorphism

In this section we consider the graded algebras (Fg, ), with Fp =
C>(p*(T*[2]E[1])) (see 2.1), and (%(E), /\) ~ (€(E),N). The isomorphism

T (Fp,-) — <%J(E),/\> ,
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introduced in [3], maps © € FJ, n > 1, into rf(@) € %”(E) given by

Y

T(O)(er,eo,...,6,) ={en, ..., {e2,{€1,0}}...} € C*(M), (31)
with symbol

O-’,}{(@)(el) .. .7€n71> . f = {f, {671717 Cey {61, @}} .. .},
for all ey,...,e, € T'(E) and f € C*(M). For n =0, and for all f € Fp =

C>*(M), Y(f) = f. Moreover, T is an isomorphism of graded commutative
algebras [3]:

Y

YO 0)=TO)AT(©O), 0,0 cFn (32)
The isomorphism rf induces an isomorphism
T (Fs,) = (B(E), A)
that maps © € F, n > 1, into Y(©) € €"(FE) defined by

(T(O) (e, ... en1),en) = T (O)er, ..., en),

for all ey, ...,e, € I'(E), and Y(f) = f, for all f € C*°(M). Due to the non-
degeneracy of (-,-), T is well-defined and, since {-,-} is also non-degenerate,
we have

T(@)(el, €2y ..., en_l) = {en_l, ceey {62, {61, @}} .. } € F(E) (33)
In particular, Y(e) = e, for all e € I'(F). The symbol of T(©) is given by
ore)(er, ... en2) - f={f{en2,...,{e1,0}}.. .}, (34)

for all f e C®(M).

Remark 5.1. Equations (33) and (34) show that, in Fg, the extension of C' €
€"(F) considered in Remark 3.2 and, in particular Equation (5), appears in
a natural way.

Y
Moreover, T being an isomorphism of graded commutative algebras, T
inherits the same property, as it is shown in the next lemma.

Lemma 5.2. For every © € &} and ©' € F}1,
T(O-0)="T(O)AT(O). (35)
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Proof: Using (7), (32) and the C°°(M)-linearity of (-,-) we have, for all

€1,y Emin,

TO) AY(O)(er, ..\ emin-i); Emin ) =
( )

- < Z Sgn (T)T(@)(er(l)a SRR e7'(m)) T(Gl) (eT(m—l—l)a R eT(m—l—n—l))a em+n>

TeSh(m,n—1)

RC L D DE=TC

T€Sh(n,m—1)
T(©)(eray, ---serm) T(O)(ertntt)s - - - €r(nam—1)), €m+n>
- Z Sgi (T)T(@)(BT(1)7 SRR eT(m)>T(®/>(6T(m+1)7 oo Cr(mAn—1)s eern)

T€Sh(m,n—1)

+(=D"™ Y sen(r)

T€Sh(n,m—1)
T(Gl) (67'(1)7 <o 7€T(7’L))T(®)(€T(n+1)7 <oy Er(ndm—1), €m+n)

= Z sgn (7)Y (O)(erqy, - - - erm)) L (O)(€r(mit)s - - -+ €r(man—1)s €r(msn))
T€Sh(m,n)

—T(O) AT(O)(en, ... emin) = T(O-O)(er,. ... emin)
=(T(O-0")(e1,.. .\ emin1);Cmin) -

The non-degeneracy of (-, -) completes the proof. |

Since Y(f) = f, for all f € C*(M), and Y(e) = e, for all e € ['(F),
Lemma 5.2 yields

T|]_"(/\TLE) = id, n > 0. (36)

Remark 5.3. In the case where £ = A®A*, the above mentioned isomorphism
was defined in [1] recursively by the following procedure. Taking into account
that the algebra (€ (FE), A) is generated by its terms of degrees 0, 1 and 2 [5],
the map T is defined in 92@ e ,Zi@ 4 and 9}1@ 4+ as follows:
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T(f) =", f e Cx(M);
Te)=e e e I'(E);
T(O)={,0}, 6cF.
Then, T is extended to Faga- by linearity, asking that Equation (35) holds
for all © € F) 4. and ©" € F}, 4.. Using the Leibniz rule and the Jacobi

identity for {-,-}, we conclude that the isomorphisms introduced in [3] an in
[1] are the same.

Lemma 5.4. Let © be a function in F3} and e € I'(E). Then,

T({e,0}) =2(Y(0)) = [, T(O)] -
Proof: For all eq,...,e,_o € I'(E), we have

T({e,O})(e1,...,en—2) ={en-9,...,{€1,{e,0}} ...}
=T(O)(e,e1,...,6n-2)

=12.(T(0))(e1,...,en—2).
Thus,
Y({e.0}) = 1(X(0)). =

Proposition 5.5. Let © € F} and © € FI', n,m > 0. Then,

T({6,0}) = [1(6), T(6)] - (37)

Proof: The proof is done by induction on the sum n + m of degrees of © and
©’. First, let us prove directly that (37) holds for all possible cases such that
n+m <2 For f,ge C®°(M), e € ['(F) and § € F2, using Definition 3.4
and (36), we have:

) T({f,9}) =0=[T (f)aT(g))]KW,

i) T({fe}) =0 =[T(f),T(e)]
i) Y({e,e'y) = T({e, ¢)) = (e, > €5 €y = [T(e), T(€')] o

) Y({£.5}) = 1£.6) = ox(s) - f = [T(F): T(0)] -

Now, let us assume that (37) holds for n +m < k, k > 2. Take © € F}
and © € ', with n+m = k+1. For every e € I'(F), using (9), Lemma 5.4
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and the Jacobi identity of {-,-}, we have

(Y({0,01)) = T({e.{0,0'}}) =T({{e,0},0}} + (=1)"{0,{e, 0'}})
= [T({e, 0}), (O], + (=1)"[T(0), T({e, O})] v
= [1(Y(0)), T(O)] 0y + (=1)"[T(0),2(Y(O))]

9

- ZG[T(@)7 T(@/)]KWJ

where in the third equality we use the induction hypothesis. Since e € T'(F)
is arbitrary, (37) is proved. u

—~
~

We have proved the following.

Theorem 5.6. The map Y : (Fg,-, {,-}) = (G(E),A, [, ],v) s a degree
zero 1somorphism of graded Poisson algebras.

Now, we prove a result announced in Remark 3.3.
Lemma 5.7. If C' is an element of €"(FE) with oc =0, then C' € I'(A"E).

Proof: Let us consider C' € €"(FE) such that o = 0. Because T is an
isomorphism, C' = Y(0), for some © € Fj2. Using (34) and the Jacobi
identity for {-,-}, we have

0=ocler,...,en2) - f={f {en-2,...,{e1,0}}...}
={en_9,...,{e1,{f,0}}...},
for all e1,...,e,—2 € I'(F) and f € C*(M). The non-degeneracy of {-,-}
implies that equation above is equivalent to
{f,©} =0, for all f € C*(M),

which means (see [10]) that © € I'(A"E) C . Therefore, since Yipanpy is
the identity map, we have C' € T'(A"E). |

The isomorphism T Fp — %J(E), defined by Equation (31), naturally
gives rise to a map

such that o
O Fpr— T(0):=7(0) e € (NE),

%

where L}J(@) is the extension by derivation in each entry of fY\“J(@) € 6"(F).
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Theorem 5.8. The map T (Fe,{,}) — (‘[g(/\zlE),/\, I ]]) is a degree
zero 1somorphism of graded Poisson algebras.

Proof: For every © € F}! and ©' € F}I', we have

& @ — s T @ —— "

T({0.0) = T({0.0) = 1({6.6}) = [T(€). T()],,

Moreover, (30), (18) and (35) yield
TO©.-0)=TO)ATO). =
Remark 5.9. We should stress that, although

T(@)(el, . ,en_l) = {6n_1, ceey {62, {61, @}} .. .},

for all eq,...,e,-1 € I'(F), in general

Y

T(@)(Plnapn) # {Pna"'J{P27{P17@}}"'}7
for all P,..., P, € T(AZIE).

Notice that from the proof of Theorem 5.8, we get the following result.

Corollary 5.10. The map T (Fe,{,}) — (%J(E), A, [ ]’KW) is a degree

zero 1somorphism of graded Poisson algebras.

Remark 5.11. The [-,-] _ bracket, given by Equation (20), is the bracket
announced, but not explicitly defined, in Remark 2.6 of [3].
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