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Universidade de Coimbra
Preprint Number 21–48

HIGHER MULTI-COURANT ALGEBROIDS
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Abstract: The binary bracket of a Courant algebroid structure on (E, 〈·, ·〉) can
be extended to a n-ary bracket on Γ(E), yielding a multi-Courant algebroid. These
n-ary brackets form a Poisson algebra and were defined, in an algebraic setting, by
Keller and Waldmann. We construct a higher geometric version of Keller-Waldmann
Poisson algebra and define higher multi-Courant algebroids. As Courant algebroid
structures can be seen as degree 3 functions on a graded symplectic manifold of
degree 2, higher multi-Courant structures can be seen as functions of degree n ≥ 3
on that graded symplectic manifold.
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1. Introduction
Aiming at interpreting the bracket on the Whitney sum TM ⊕T ∗M of the

tangent and cotangent bundle of a smooth manifold M , proposed by Courant
in [2], Liu, Weinstein and Xu [7] introduced the concept of Courant algebroid
on a vector bundle E →M . This vector bundle is equipped with a fiberwise
symmetric bilinear form 〈·, ·〉, a Leibniz bracket on the space Γ(E) of sections
and a morphism of vector bundles ρ : E → TM , called the anchor, satisfying
a couple of compatibility conditions. In [10], Roytenberg described a Courant
algebroid as a degree 2 symplectic graded manifold FE together with a degree
3 function Θ satisfying {Θ,Θ} = 0, where {·, ·} is the graded Poisson bracket
corresponding to the graded symplectic structure. The morphism ρ and the
Leibniz bracket on Γ(E) are recovered as derived brackets (see 2.2).

The Courant bracket, or its no skew-symmetric version called Dorfman
bracket, is a binary bracket. The first attempt to extend it to a n-ary bracket
was given, in purely algebraic terms, by Keller and Waldmann in [5]. They
built a graded Poisson algebra C of degree −2 whose degree 3 elements that
are closed with respect to the graded Poisson bracket correspond to Courant
structures. The graded Poisson algebra C, that we call Keller-Waldmann
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Poisson algebra, is a complex that controls deformation. Keller-Waldmann
algebra elements are n-ary brackets and each bracket comes with a symbol.
In degree 3, the symbol is the anchor of the Courant structure.

We consider the geometric counterpart of the Keller-Waldmann Poisson
algebra, and our starting point is a vector bundle E → M equipped with
a fiberwise symmetric bilinear form 〈·, ·〉. This is also the setting in [1],
where the first author has started the study of the Keller-Waldmann algebra
under a geometric point of view. In this case, the Keller-Waldmann Poisson
algebra is denoted by C(E) and its elements are pre-multi-Courant brackets
on Γ(E). The prefix pre means that elements C ∈ C(E) do not need to close
with respect to the Poisson bracket, denoted by [·, ·]

KW
. If [C,C]

KW
= 0, the

triple (E, 〈·, ·〉, C) is a multi-Courant algebroid. At this point it is important
to notice that, for n 6= 2, what is called n-Courant bracket in Remark 3.2
of [5] is not the same as our n-ary Courant bracket, because we require the
closedness with respect to the [·, ·]

KW
bracket, while in [5] the authors ask the

closedness with respect to a different bracket. For n = 2, the two brackets
coincide (see Remark 3.12).

Very recently, Cueca and Mehta [3] showed that there is an isomorphism
of graded commutative algebras between (FE, ·) and (C(E),∧), where · and
∧ denote the associative graded commutative products of the two Poisson
algebras FE and C(E), respectively. They also remarked that the isomor-
phism is indeed a Poisson isomorphism, but they don’t prove this since they
don’t exhibit the Poisson bracket on C(E).

The main goal of this paper is to give a higher version of the Keller-
Waldmann Poisson algebra and define higher multi-Courant algebroids. This
means that we consider higher (pre-)multi-Courant brackets on Γ(∧≥1E), and
not only on Γ(E). Each higher (pre-)multi-Courant bracket has an associ-
ated symbol and it is the extension by derivation of a (pre-)multi-Courant
bracket. This construction leads to a graded Poisson algebra C(∧≥1E) with
a Poisson bracket [[·, ·]] that extends [·, ·]

KW
.

In literature we find several Courant bracket extensions, in different di-
rections (see [13] and references therein). In [13] Zambon defines higher
analogues of Courant algebroids, replacing the vector bundle TM ⊕ T ∗M ,
originally considered in [2], by TM ⊕∧pT ∗M , p ≥ 0. In an algebraic setting,
Roytenberg [11] extends the usual Courant bracket to a n-ary bracket on
Γ(E), and each n-ary bracket comes with a collection of symbols that con-
trol the defect of their skew-symmetry and also the skew-symmetry of the
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bracket. In [8], under the perspective of Loday-infinity algebras and using
Voronov’s derived bracket construction [12], Peddir defines n-ary Dorfman
brackets on Γ(E) and C∞(M). Having started from the Keller-Waldmann
algebra, whose elements are n-ary brackets on Γ(E), we were led to an ex-
tension of Courant algebroid structures on E → M in two fold: the binary
bracket is replaced by a n-ary bracket and the latter is a bracket on sections
of ∧≥1E. Of course, the symbol goes along the bracket.

The paper is organized in the following way. In Section 2 we make a very
brief summary of Roytenberg’s graded Poisson bracket construction [10] and
we recall the Courant algebroid definition. Section 3 is devoted to Keller-
Waldmann Poisson algebra where we clarify and detail many aspects that
are not covered in [5]. One of them is the explicit formula for the Poisson
bracket [·, ·]

KW
on C(E), that is not given in [5] because the bracket is defined

recursively there. To achieve this, we consider the binary case of a bracket
introduced in [9], built using the interior product of two elements of C(E).
We introduce the concept of multi-Courant algebroid on (E, 〈·, ·〉) as a n-ary
element C ∈ C(E) that is closed under the bracket [·, ·]

KW
. We point out

an alternative definition for the Keller-Waldmann Poisson algebra, already
presented in [5], that is needed in the remaining sections of the paper. In this

setting, each C ∈ C(E) is in a one-to-one correspondence with C
∼

, the latter
being obtained from C and 〈·, ·〉. In Section 4, we extend the symmetric
bilinear form 〈·, ·〉 to Γ(∧•E) and prove that it coincides with the restriction
of [·, ·]

KW
to Γ(∧≥1E). Then, we define higher (pre-)multi-Courant structures

on (E, 〈·, ·〉). These are multilinear maps from Γ(∧≥1E)× (n). . . ×Γ(∧≥1E) to
Γ(∧•E) which are derivations in each entry, together with a symbol that
takes values on the space of derivations Der(C∞(M),Γ(∧•E)). All these
data should satisfy some compatible conditions involving 〈·, ·〉. The exten-

sion by derivation in each entry of every C
∼

is a higher (pre-)multi-Courant
structure on E. Higher (pre-)multi-Courant brackets form a graded Poisson
algebra (C(∧≥1E),∧, [[·, ·]]) of degree −2. In Section 5 we see how the higher
Keller-Waldmann Poisson algebra (C(∧≥1E),∧, [[·, ·]]) is related to Royten-
berg’s Poisson algebra (FE, ·, {·, ·}). We start by establishing a Poisson iso-
morphism between the Keller-Waldmann Poisson algebra (C(E),∧, [·, ·]

KW
)

and Roytenberg’s Poisson algebra and we show that this Poisson isomorphism
gives rise to a Poisson isomorphim between the higher Keller-Waldmann al-
gebra (C(∧≥1E),∧, [[·, ·]]) and Roytenberg’s Poisson algebra.
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Notation. Let τ be a permutation of n elements, n ≥ 1; we denote by sgn(τ)
the sign of τ . We denote by Sh(i, n−i) the set of (i, n−i)-unshuffles, i.e., per-
mutations τ that satisfy the inequalities τ(1) < . . . < τ(i) and τ(i+1) < . . . <
τ(n). For a vector bundle E →M , we denote by Γ(∧nE) the space of homo-
geneous E-multivectors of degree n and we set Γ(∧•E) := ⊕n≥0Γ(∧nE), with
Γ(∧0E) = C∞(M), and Γ(∧≥1E) := ⊕n≥1Γ(∧nE). For n < 0, Γ(∧nE) = {0}.

2. Preliminaries
2.1. Graded Poisson bracket. We briefly recall the construction of a
graded Poisson algebra introduced in [10]. Let E → M be a vector bun-
dle equipped with a fibrewise non-degenerate symmetric bilinear form 〈·, ·〉
and denote by E[m] the graded manifold obtained by shifting the fibre de-
gree by m. Let p∗(T ∗[2]E[1]) be the graded symplectic manifold which is
the pull-back of T ∗[2]E[1] by the map p : E[1]→ E[1]⊕ E∗[1] defined by
X 7→ (X, 1

2〈X, .〉). We denote by FE := ⊕n≥0F
n
E the graded algebra of

functions on p∗(T ∗[2]E[1]), with F0
E = C∞(M) and F1

E = Γ(E) and, con-
sequently, Γ(∧nE) ⊂ Fn

E . The graded algebra FE is equipped with the
canonical Poisson bracket {·, ·} of degree −2, determined by the graded sym-
plectic structure, so that we have a graded Poisson algebra structure on FE.
The Poisson bracket of functions of degrees 0 and 1 is given by

{f, g} = 0, {f, e} = 0 and {e, e′} = 〈e, e′〉,

for all e, e′ ∈ Γ(E) and f, g ∈ C∞(M).

2.2. Courant structures. Recall that, given a vector bundle E → M
equipped with a fibrewise non-degenerate symmetric bilinear form 〈·, ·〉, a
Courant structure on (E, 〈·, ·〉) is a pair (ρ, [·, ·]), where ρ : E → TM is a
morphism of vector bundles called the anchor, and [·, ·] is a R-bilinear bracket
on Γ(E), called the Dorfman bracket, such that

ρ(u)·〈v, w〉 = 〈[u, v], w〉+〈v, [u,w]〉, ρ(u)·〈v, w〉 = 〈u, [v, w]+[w, v]〉, (1)

and

[u, [v, w]] = [[u, v], w] + [v, [u,w]], (2)
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for all u, v, w ∈ Γ(E). The bracket [·, ·] equips the space Γ(E) of sections of E
with a Leibniz algebra structure. Skipping Equation (2) yields a pre-Courant
structure on (E, 〈·, ·〉).

There is a one-to-one correspondence between pre-Courant structures (ρ, [·, ·])
on (E, 〈·, ·〉) and functions Θ ∈ F3

E, while for Courant structures the function
Θ is such that {Θ,Θ} = 0 [10]. In this case, the hamiltonian vector field
XΘ = {Θ, ·} on the graded manifold p∗(T ∗[2]E[1]) is a homological vector
field, and so

(
p∗(T ∗[2]E[1]), XΘ

)
is a Q-manifold.

The anchor and Dorfman bracket associated to a given Θ ∈ F3
E can be

defined, for all e, e′ ∈ Γ(E) and f ∈ C∞(M), by the derived bracket expres-
sions:

ρ(e) · f = {f, {e,Θ}} and [e, e′] = {e′, {e,Θ}}.

3. Multi-Courant structures and Keller-Waldmann Pois-
son algebra

In this section we deepen the study of the Keller-Waldmann Poisson alge-
bra.

3.1. Multi-Courant structures. Let E →M be a vector bundle equipped
with a fibrewise non-degenerate symmetric bilinear form 〈·, ·〉. The next
definition is taken from [5], but within a geometrical perspective. X(M)
denotes the space of vector fields on a manifold M .

Definition 3.1. A n-ary pre-Courant structure on (E, 〈·, ·〉) is a multilinear
n-bracket on Γ(E), n ≥ 0,

C : Γ(E)× (n). . . ×Γ(E)→ Γ(E)

for which there exists a map σC , called the symbol of C,

σC : Γ(E)× (n−1). . . ×Γ(E)→ X(M),

such that for all e, e′, e1, . . . , en−1 ∈ Γ(E), we have

σC(e1, . . . , en−1) · 〈e, e′〉 = 〈C(e1, . . . , en−1, e), e
′〉+ 〈e, C(e1, . . . , en−1, e

′)〉 (3)

and, for n ≥ 2 and 1 ≤ i ≤ n− 1, the following n− 1 conditions hold:

〈C(e1, . . . , ei, ei+1, . . . , en) + C(e1, . . . , ei+1, ei, . . . , en), e〉
= σC(e1, . . . , êi, êi+1, . . . , en, e) · 〈ei, ei+1〉, (4)
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with êi meaning the absence of ei. A 0-ary pre-Courant structure is simply an
element e ∈ Γ(E) (with vanishing symbol). The triple (E, 〈·, ·〉, C) is called
an n-ary pre-Courant algebroid. When we don’t want to specify the arity of
C, we call it a pre-multi-Courant structure and the triple (E, 〈·, ·〉, C) is a
pre-multi-Courant algebroid.

For n = 1, C is derivative endomorphism [6] with symbol σC ∈ X(M).
When n = 2, conditions (3) and (4) coincide with (1) for ρ = σC . So, as
it would be expected, Definition 3.1 generalizes the notion of pre-Courant
structure on (E, 〈·, ·〉).

We denote by Cn+1(E) the space of all n-ary pre-Courant structures on E
and set

C(E) = ⊕n≥0C
n(E),

with C0(E) = C∞(M) and C1(E) = Γ(E).

Remark 3.2. The symbol σC of C ∈ Cn+1(E) is uniquely determined by C [5].
The uniqueness of σC allows to consider an extension of C, also denoted by
C, on the graded space Γ(∧≤1E) = C∞(M)⊕ Γ(E), where f ∈ C∞(M) has
degree 0 and e ∈ Γ(E) has degree 1. The extension of C is a degree 1 − n
bracket,

C : Γ(∧≤1E)× (n). . . ×Γ(∧≤1E)→ Γ(∧≤1E),

with symbol

σC : Γ(∧≤1E)× (n−1). . . ×Γ(∧≤1E)→ X(M),

such that, for all ei ∈ Γ(E) and f ∈ C∞(M),

C(e1, . . . , en−1, f) = σC(e1, . . . , en−1) · f (5)

and

C(e1, . . . ,

i

↓
f, . . . , en−1) = C(e1, . . . ,

j

↓
f, . . . , en−1),

for all 1 ≤ i, j ≤ n.
By degree reasons, C vanishes when applied to at least two functions,

C(e1, . . . , f, . . . , g, . . . , en−2) = 0.

Assuming that σC vanishes when applied to at least one function,

σC(e1, . . . , f, . . . , en−2) = 0,

Equations (3) and (4), with the obvious adaptations, are satisfied.
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3.2. Keller-Waldmann Poisson algebra. Given C ∈ Cn+1(E), n ≥ 1,
and e ∈ Γ(E), we denote by ıeC the element of Cn(E) defined by

ıeC(e1, . . . , en−1) = C(e, e1, . . . , en−1), (6)

for all e1, . . . , en−1 ∈ Γ(E), with symbol given by

σıeC(e1, . . . , en−2) = σC(e, e1, . . . , en−2).

If C = e1, ıee1 = 〈e, e1〉 and we set ıef := 0.
If we consider the extension of C as in Remark 3.2 we may define, for

f ∈ C∞(M),

ıfC(e1, . . . , en−1) = C(f, e1, . . . , en−1) = σC(e1, . . . , en−1) · f,

for all e1, . . . , en−1 ∈ Γ(E).

The space C(E) is endowed with an associative graded commutative prod-
uct ∧ of degree zero [5] defined as follows1:{

f ∧ g = fg = g ∧ f
f ∧ e = fe = e ∧ f,

for all f, g ∈ C∞(M) and e ∈ Γ(E), and such that, for all e ∈ Γ(E), ıe is a
derivation of (C(E),∧):

ıe(C1 ∧ C2) = ıeC1 ∧ C2 + (−1)nC1 ∧ ıeC2,

for all C1 ∈ Cn(E) and C2 ∈ C(E). For C1 ∈ Cn(E) and C2 ∈ Cm(E), with
n,m ≥ 1, C1 ∧ C2 is equivalently given by [5]:

C1 ∧ C2 (e1, . . . , en+m−1) =∑
τ∈Sh(n,m−1)

sgn(τ)
〈
C1

(
eτ(1), . . . , eτ(n−1)

)
, eτ(n)

〉
C2

(
eτ(n+1), . . . , eτ(n+m−1)

)
+ (−1)nm

∑
τ∈Sh(m,n−1)

sgn(τ)

〈
C2

(
eτ(1), . . . , eτ(m−1)

)
, eτ(m)

〉
C1

(
eτ(m+1), . . . , eτ(n+m−1)

)
, (7)

for all e1, . . . , en+m−1 ∈ Γ(E).

1Our signs are different from those in [5] and coincide with [1].



8 PAULO ANTUNES AND JOANA NUNES DA COSTA

The symbol of C1 ∧ C2 is given by

σC1∧C2
(e1, . . . , en+m−2) · f =∑
τ∈Sh(n,m−2)

sgn(τ)

〈
C1

(
eτ(1), . . . , eτ(n−1)

)
, eτ(n)

〉
σC2

(
eτ(n+1), . . . , eτ(n+m−2)

)
· f

+
∑

τ∈Sh(n−2,m)

sgn(τ)

(
σC1

(
eτ(1), . . . , eτ(n−2)

)
· f
) 〈
C2

(
eτ(n−1), . . . , eτ(n+m−3)

)
, eτ(n+m−2)

〉
,

(8)

for all e1, . . . , en+m−2 ∈ Γ(E) and f ∈ C∞(M).

Remark 3.3. A homogeneous P ∈ Γ(∧pE), P = e1 ∧ . . . ∧ ep, with ei ∈
Γ(E) = C1(E), can be seen as an element of Cp(E). From the definition
and properties of the interior product, we may obtain an explicit expression
for P (e′1, . . . , e

′
p−1), with e′1, . . . , e

′
p−1 ∈ Γ(E), by means of products of type

〈e′i, ej〉 (see also Equations (22) and (23)). Furthermore, Equation (8) yields
σP = 0. Conversely, If C is an element of Cn(E) with σC = 0, then C ∈
Γ(∧nE) (see Lemma 5.7). For P,Q ∈ Γ(∧•E), P ∧ Q is the usual exterior
product.

Definition 3.4. [5] The space C(E) is endowed with a graded Lie bracket
of degree −2,

[·, ·]
KW

: Cn(E)×Cm(E)→ Cn+m−2(E),

uniquely defined, for all f, g ∈ C∞(M), e, e′ ∈ Γ(E), D ∈ C2(E), C1 ∈
Cn(E) and C2 ∈ C(E) by 2,

i) [f, g]
KW

= 0,
ii) [f, e]

KW
= 0 = [e, f ]

KW
,

iii) [e, e′]
KW

= 〈e, e′〉,
iv) [f,D]

KW
= σD · f = −[D, f ]

KW
,

v) [e, C1]KW
= (−1)n+1[C1, e]KW

= ıeC1

2Our signs in (iv) and (v) are different from those in [5] and coincide with [1].
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and, by recursion,

ıe[C1, C2]KW
= [e, [C1, C2]KW

]
KW

= [[e, C1]KW
, C2]KW

+ (−1)n[C1, [e, C2]KW
]
KW
.

(9)

In [5], it is proved that

[C1, C2 ∧ C3]KW
= [C1, C2]KW

∧ C3 + (−1)nmC2 ∧ [C1, C3]KW
, (10)

for all C1 ∈ Cn(E), C2 ∈ Cm(E) and C3 ∈ C(E). Summing up, we have:

Proposition 3.5. [5] The triple (C(E),∧, [·, ·]
KW

) is a graded Poisson algebra
of degree −2, that we call Keller-Waldmann Poisson algebra.

From Remark 3.3, Definition 3.4 and Equation (10), we have:

Corollary 3.6. For all P ∈ Γ(∧pE) and Q ∈ Γ(∧qE), σ[P,Q]
KW

= 0.

Let V be a vector space and set g = V ⊗(n−1), for a fixed n ∈ N. We denote
by Lp the space of linear maps from g⊗p⊗ V to V and set L = ⊕p≥0L

p, with
L0 = g. In [9] a bilinear bracket of degree zero on L,

[·, ·]nL : Lp × Lq → Lp+q,

was introduced. We don’t need its explicit definition which can be found in
[9]. However, the important feature of [·, ·]nL in the present work is that, since
[·, ·]

KW
is nothing but −[·, ·]2L, we may have an explicit expression for [·, ·]

KW

that is not given in Definition 3.4, where the bracket is defined recursively.

Given C1 ∈ Cn(E) and C2 ∈ Cm(E), n,m ≥ 1, the definition in [9] yields

[C1, C2]KW
= ıC1

C2 − (−1)nmıC2
C1, (11)

with ıC2
C1 ∈ Cn+m−2(E) defined, for all e1, . . . , en+m−3 ∈ Γ(E), as follows:

ıC2
C1(e1, . . . , en+m−3) =

∑
sgn(J, I) (−1)t

C1(ei1, . . . , eit, C2(ej1, . . . , ejm−1
), eit+1

, . . . , ein−2
),

(12)
where the sum is over all shuffles I = {i1 < . . . < in−2} ⊂ {1, . . . , n+m−3} =
N . The j′s and t are defined by {j1 < . . . < jm−1} = N\I, it+1 = jm−1 +1 or,
in case jm−1 = n+m−3, t := n−2. The pair (J, I) denotes the permutation
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(j1, . . . , jm−1, i1, . . . , in−2) of N . When C2 = e ∈ C1(E) = Γ(E), ıeC1 is given
by Equation (6).

Lemma 3.7. The interior product ıC2
C1 ∈ Cn+m−2(E) defined in Equation

(12) is equivalently given by

ıC2
C1(e1, . . . , en+m−3) =

n+m−3∑
k=m−1

∑
τ∈Sh(k−(m−1),m−2)

sgn(τ)(−1)mk

C1(eτ(1), . . . , eτ(k−(m−1)), C2(eτ(k−(m−2)), . . . , eτ(k−1), ek), ek+1, . . . , en+m−3),
(13)

with C1 ∈ Cn(E) and C2 ∈ Cm(E), m ≥ 1.

Proof : We need to prove that (12) can be rewritten as (13). Let us consider
a permutation (i1, . . . , it, j1, . . . , jm−2, jm−1, it+1, . . . , in−2) of N = {1, . . . , n+
m − 3}, as in (12). It is easy to see that the last n − t − 2 permuted
indices, (it+1, . . . , in−2), must coincide with the last n− t− 2 elements of N :
(t+m, . . . , n+m− 3). Then,

(i1, . . . , it, j1, . . . , jm−1, it+1, . . . , in−2) =

= (i1, . . . , it, j1, . . . , jm−1, t+m, . . . , n+m− 3).

Moreover, the index t in (12) can be equivalently defined by setting

jm−1 = t+m− 1.

Then, permutations (i1, . . . , it, j1, . . . , jm−2, jm−1, it+1, . . . , in−2) considered in
(12) can be rewritten as permutations

(i1, . . . , it, j1, . . . , jm−2, t+m− 1, t+m, . . . , n+m− 3), (14)

where t takes values from 0 to n − 2.3 In addition, if we define the index k
by setting k := t+m− 1, then permutation (14) corresponds to

(τ(1), . . . , τ(k− (m−1), τ(k− (m−2)), . . . , τ(k−1), k, k+ 1, . . . , n+m−3),

where τ ∈ Sh(k − (m− 1),m− 2).

3When t = 0, we have the trivial permutation (1, . . . ,m− 1︸ ︷︷ ︸
j1,...,jm−1

,m, . . . , n+m− 3︸ ︷︷ ︸
i1,...,in−2

).
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Finally, we need to rewrite the sign in (12), using the unshuffle permutation
τ :

sgn(J, I)× (−1)t = sgn(j1, . . . , jm+1, i1, . . . , in−2)× (−1)t

= sgn(τ(k − (m− 2)), . . . , τ(k − 1), k, τ(1), . . . , τ(k − (m− 1),

k + 1, . . . , n+m− 3)× (−1)k−(m−1)

= sgn
(
(τ(k − (m− 2)), . . . , τ(k − 1), k, τ(1), . . . , τ(k − (m− 1))

)
× (−1)k−(m−1)

= (−1)(k−(m−1))(m−1)sgn(τ(1), . . . , τ(k − (m− 1), τ(k − (m− 2)),

. . . , τ(k − 1), k)× (−1)k−(m−1)

= (−1)(k−(m−1))msgn(τ) = (−1)kmsgn(τ).

Therefore, we can rewrite (12) as

ıC2
C1(e1, . . . , en+m−3) =

n+m−3∑
k=m−1

∑
τ∈Sh(k−(m−1),m−2)

sgn(τ)(−1)km

C1(eτ(1), . . . , eτ(k−(m−1)), C2(eτ(k−(m−2)), . . . , eτ(k−1), ek), ek+1, . . . , en+m−3).

Lemma 3.7 together with Equation (11), provide an explicit definition of
the bracket [·, ·]

KW
.

For the sake of completeness, in the next lemma we give the explicit formula
for the symbol of ıC2

C1.

Lemma 3.8. Given C1 ∈ Cn(E) and C2 ∈ Cm(E), the symbol of ıC2
C1 ∈

Cn+m−2(E) is given by

σıC2
C1

(e1, . . . , en+m−4) · f =
n+m−4∑
k=m−1

∑
τ∈Sh(k−(m−1),m−2)

(−1)m(k−(m−1))sgn(τ)

σC1

(
eτ(1), . . . , eτ(k−(m−1)),

C2

(
eτ(k−(m−2)), . . . , eτ(k−1), ek

)
, ek+1, . . . , en+m−4

)
· f

+
∑

τ∈Sh(n−2,m−2)

(−1)m(n−2)sgn(τ)

σC1

(
eτ(1), . . . , eτ(n−2)

)
·
(
σC2

(
eτ(n−1), . . . , eτ(n+m−4)

)
· f
)
,
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for all e1, . . . , en+m−4 ∈ Γ(E) and f ∈ C∞(M).

Definition 3.9. A pre-multi-Courant structure C ∈ Cn(E), n ≥ 2, is a
multi-Courant structure if [C,C]

KW
= 0. In this case, the triple (E, 〈·, ·〉, C)

is called a multi-Courant algebroid.

For n = 3, a multi-Courant structure is simply the usual Courant structure
on (E, 〈·, ·〉).

Remark 3.10. Since the bracket [·, ·]
KW

is graded skew-symmetric, given C ∈
C2k(E), k ≥ 1, we always have [C,C]

KW
= 0. So, all (2k−1)-ary pre-Courant

structures are (2k − 1)-ary Courant structures.

Lemma 3.7, Definition 3.9 and Remark 3.10 yield the next proposition.

Proposition 3.11. A pre-multi-Courant structure C ∈ Cn(E), with n odd,
is a multi-Courant structure if and only if

2n−3∑
k=n−1

∑
τ∈Sh(k−(n−1),n−2)

sgn(τ)(−1)nk

C(eτ(1), . . . , eτ(k−(n−1)), C(eτ(k−(n−2)), . . . , eτ(k−1), ek), ek+1, . . . , e2n−3) = 0,

for all ei ∈ Γ(E), 1 ≤ i ≤ 2n− 3.

Remark 3.12. Let C ∈ Cn+1(E) be a n-ary pre-Courant structure on (E, 〈·, ·〉).
If C satisfies the Filippov identity [4]:

C(e1, . . . , en−1, C(e′1, . . . , e
′
n))

=
n∑
i=1

C(e′1, . . . , e
′
i−1, C(e1, . . . , en−1, e

′
i), e

′
i+1, . . . , e

′
n), (15)

for all e1, . . . , en−1, e
′
1, . . . , e

′
n ∈ Γ(E), we say that C is a n-Filippov Courant

structure on E 4. Notice that n-Filippov Courant structures are called n-
Courant structures in [5].

If C is a n-Filippov Courant structure on (E, 〈·, ·〉), Γ(E) is equipped
with a n-Leibniz algebra structure. Thus, a 2-Filippov Courant structure
on (E, 〈·, ·〉) is the same as a Courant algebroid structure on (E, 〈·, ·〉). How-
ever, comparing Equation (15) with the identity in Proposition 3.11, we see
that, for n ≥ 3, n-Filippov algebroids and n-ary Courant algebroids are
different structures.

4Equation (15) means that C(e1, . . . , en−1, ·) is a derivation of C.
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An interesting aspect of the bracket [·, ·]nL introduced in [9], is that it
characterizes n-Leibniz brackets as those which are closed with respect to it.
Indeed, as it is proved in [9], Equation (15) is equivalent to [C,C]nL = 0.

3.3. An alternative definition. There is an alternative definition of pre-
multi-Courant structure on (E, 〈·, ·〉) that we shall use in the next sections.

Given C ∈ Cn(E), n ≥ 1, we may define a map

C
∼

: Γ(E)× (n). . . ×Γ(E)→ C∞(M)

by setting

C
∼

(e1, . . . , en) := 〈C(e1, . . . , en−1), en〉 (16)

and, for C ∈ C0(E) = C∞(M), C
∼

= C. Notice that for C ∈ C1(E),

C
∼

(e) = 〈C, e〉, for all e ∈ Γ(E).
As it is remarked in [5], Definition 3.1 can be reformulated using the maps

C
∼

. In particular, C
∼

is C∞(M)-linear in the last entry and Equations (3) and
(4) are equivalent to

C
∼

(e1, . . . , ei, ei+1, . . . , en) + C
∼

(e1, . . . , ei+1, ei, . . . , en) =

= σC(e1, . . . , êi, êi+1, . . . , en) · 〈ei, ei+1〉. (17)

Let C
∼n(E) be the collection of maps C

∼
defined by (16), and set C

∼
(E) =

⊕n≥0C
∼n(E). There is a degree zero product on C

∼
(E), that we also denote

by ∧:

C1
∼∧ C2
∼

= C1 ∧ C2
∼

, (18)

for all C1
∼∈ C
∼m(E) and C2

∼∈ C
∼n(E), m,n ≥ 0. Explicitly,

C1
∼∧ C2
∼

(e1, . . . , em+n) =

=
∑

τ∈Sh(m,n)

sgn (τ)C1
∼

(eτ(1), . . . , eτ(m))C2
∼

(eτ(m+1), . . . , eτ(m+n)), (19)

for all e1, . . . , em+n ∈ Γ(E). The map

·∼ : C(E)→ C
∼

(E), C ∈ Cn(E) 7→ C
∼∈ C
∼n(E),

is an isomorphism of graded commutative algebras [5].
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We may define a degree −2 bracket on C
∼

(E), by setting[
C1
∼
, C2
∼]

KW
∼

:= [C1, C2]KW

∼
(20)

i.e., given C1
∼∈ C
∼m(E) and C2

∼∈ C
∼n(E),[

C1
∼
, C2
∼]

KW
∼

(e1, . . . , em+n−2) = 〈[C1, C2]KW
(e1, . . . , em+n−3), em+n−2〉

for all e1, . . . , em+n−2 ∈ Γ(E). In Section 5 we shall see that [·, ·]
KW
∼ is the

bracket referred in Remark 2.6 of [3].
By construction, the map

·∼ : (C(E),∧, [·, ·]
KW

)→ (C
∼

(E),∧, [·, ·]
KW
∼)

is an isomorphism of graded Poisson algebras.

Remark 3.13. Given C ∈ Cn(E), due to (20) and the non-degeneracy of 〈·, ·〉,
we have

[C,C]
KW

= 0 ⇔
[
C
∼
, C
∼]

KW
∼

= 0

and therefore, Definition 3.9 can be given using either C
∼ ∈ C
∼n(E) or C ∈

Cn(E).

4. Higher multi-Courant structures and higher Keller-
Waldmann Poisson algebra

Inspired by the generalization of the Lie bracket by the Schouten bracket,
in this section we extend a pre-multi-Courant structure C ∈ Cn+1(E) on
(E, 〈·, ·〉) to the space Γ(∧≥1E), asking the extension to be a derivation in
each entry.

4.1. Extension of the bilinear form. We start by extending the symmet-
ric bilinear form 〈·, ·〉 on Γ(E) to Γ(∧•E) as follows. Given two homogeneous
elements P ∈ Γ(∧pE) and Q ∈ Γ(∧qE), with p, q ≥ 1, 〈P,Q〉 ∈ Γ(∧p+q−2E),
i.e., 〈·, ·〉 is a degree −2 operation. Moreover, 〈·, ·〉 satisfies the following
conditions:

i) 〈P,Q〉 = −(−1)pq〈Q,P 〉;
ii) 〈f,R〉 = 〈R, f〉 = 0;
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iii)

〈P,Q ∧R〉 = 〈P,Q〉 ∧R + (−1)pqQ ∧ 〈P,R〉; (21)

iv)

〈P, 〈Q,R〉〉 = 〈〈P,Q〉, R〉+ (−1)pq〈Q, 〈P,R〉〉,
for all R ∈ Γ(∧•E) and f ∈ C∞(M). Extending by bilinearity, 〈·, ·〉 is defined
in the whole Γ(∧•E) and (Γ(∧•E), 〈·, ·〉) is a graded Lie algebra. Note that
〈·, ·〉 is C∞(M)-linear in both entries.

Lemma 4.1. Let P = e1∧ . . .∧ ep ∈ Γ(∧pE) and Q = e′1∧ . . .∧ e′q ∈ Γ(∧qE)

be two homogeneous elements of Γ(∧≥1E). Then,

〈P,Q〉 =

q∑
s=1

p∑
k=1

(−1)k−s+p+1〈ek, e′s〉P̂ k ∧ Q̂s, (22)

where P̂ k = e1∧ . . .∧ êk∧ . . .∧ep ∈ Γ(∧p−1E) and Q̂s = e′1∧ . . .∧ ê′s∧ . . .∧e′q ∈
Γ(∧q−1E).

For P ∈ Γ(∧pE), P ∈ Cp(E) and is given by

P (e1, . . . , ep−1) = 〈ep−1, . . . , 〈e2, 〈e1, P 〉〉 . . .〉, (23)

while P
∼∈ C
∼p(E) is given by

P
∼

(e1, . . . , ep) = 〈ep, . . . , 〈e2, 〈e1, P 〉〉 . . .〉,
for all e1, . . . ep ∈ Γ(E).

Lemma 4.2. For P,Q ∈ Γ(∧≥1E),

〈P,Q〉 = [P,Q]
KW
.

Proof : Let us prove this result for homogeneous elements P ∈ Γ(∧pE) and
Q ∈ Γ(∧qE). We shall use induction on n = p+ q. For n = 2, we know from
of Definition 3.4 (iii) that 〈e, e′〉 = [e, e′]

KW
, for all e, e′ ∈ Γ(E). Now, let

us suppose that, for some k ≥ 2 and for all homogeneous elements P,Q ∈
Γ(∧≥1E), such that p + q ≤ k, we have 〈P,Q〉 = [P,Q]

KW
. Let us consider

P,Q ∈ Γ(∧≥1E), such that p + q = k + 1, we need to prove that 〈P,Q〉 =
[P,Q]

KW
. Since p+ q = k+ 1 ≥ 3, we can suppose, without loss of generality,
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that q ≥ 2 and write Q = Q̂ ∧ e, for some e ∈ Γ(E). Then, using (21) and
(10), we have

〈P,Q〉 = 〈P, Q̂ ∧ e〉

= 〈P, Q̂〉 ∧ e+ (−1)p(q−1)Q̂ ∧ 〈P, e〉

= [P, Q̂]
KW
∧ e+ (−1)p(q−1)Q̂ ∧ [P, e]

KW

= [P, Q̂ ∧ e]
KW

= [P,Q]
KW
.

4.2. Higher Multi-Courant algebroids. Now we introduce the main no-
tion of this section. By Der(C∞(M),Γ(∧•E)) we denote the space of deriva-
tions of C∞(M) with values in Γ(∧•E).

Definition 4.3. A higher pre-multi-Courant structure on (E, 〈·, ·〉) is a mul-
tilinear map

C : Γ(∧≥1E)× (n). . . ×Γ(∧≥1E)→ Γ(∧•E), n ≥ 0,

of degree −n, for which there exists a map σC, called the symbol of C,

σC : Γ(∧≥1E)× (n−2). . . ×Γ(∧≥1E) −→ Der(C∞(M),Γ(∧•E)),

such that C is C∞(M)-linear in the last entry and the following conditions
hold:

C(P1, . . . , Pi ∧R, . . . , Pn) = (−1)pi(pi+1+...+pn)Pi ∧ C(P1, . . . , R, . . . , Pn)

+ (−1)r(pi+...+pn)R ∧ C(P1, . . . , Pi, . . . , Pn), (24)

σC(P1, . . . , Pi ∧R, . . . , Pn−2) = (−1)pi(pi+1+...+pn−2)Pi ∧ σC(P1, . . . , R, . . . , Pn−2)

+ (−1)r(pi+...+pn−2)R ∧ σC(P1, . . . , Pi, . . . , Pn−2),
(25)

C(P1, . . . , Pi, e, e
′, Pi+1, . . . , Pn−2) + C(P1, . . . , Pi, e

′, e, Pi+1, . . . , Pn−2) =

= σC(P1, . . . , Pi, Pi+1, . . . , Pn−2) (〈e, e′〉) , (26)

for all e, e′ ∈ Γ(E) and for all homogeneous Pi ∈ Γ(∧piE), and R ∈ Γ(∧rE),
where pi ≥ 1, r ≥ 1 and 1 ≤ i ≤ n. For n = 0, C ∈ C∞(M).
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The triple (E, 〈·, ·〉,C) is called a higher n-ary pre-Courant algebroid or a
higher pre-multi-Courant algebroid, if we don’t want to specify the arity of
C.

Notice that, for Pi ∈ Γ(∧piE), 1 ≤ i ≤ n− 2, and f ∈ C∞(M),

σC(P1, . . . , Pn−2)(f) ∈ Γ(∧p1+...+pn−2−n+2E).

Lemma 4.4. If the bilinear form 〈·, ·〉 is full 5, σC is C∞(M)-linear in the
last entry.

Proof : It is a direct consequence of (26) and the fact that 〈·, ·〉 is full and C
is C∞(M)-linear in the last entry.

The space of higher n-ary pre-Courant structures on E is denoted by
Cn(∧≥1E) and we set

C(∧≥1E) = ⊕n≥0C
n(∧≥1E),

with C0(∧≥1E) := C∞(M).

The alternative definition of pre-multi-Courant structure, introduced in 3.3,
allows us to construct an example of higher pre-multi-Courant structure.

Given C
∼ ∈ C
∼n(E), we denote by C

∼
its extension by derivation in each

entry, i.e., C
∼

and C
∼

coincide on sections of E and, furthermore, C
∼

satisfies

C
∼

(P1, . . . , Pi ∧ e, . . . , Pn) = (−1)pi(pi+1+...+pn)Pi ∧ C
∼

(P1, . . . , e, . . . , Pn)

+(−1)pi+...+pne ∧ C∼(P1, . . . , Pi, . . . , Pn), (27)

for all homogeneous Pi ∈ Γ(∧piE), pi ≥ 1, 1 ≤ i ≤ n, and e ∈ Γ(E). For

f ∈ C
∼0(E) = C∞(M), we set f̄ = f . Moreover, we associate to C

∼
the map

σ
C
∼ : Γ(∧≥1E)× (n−2). . . ×Γ(∧≥1E)→ Der(C∞(M),Γ(∧•E)), n ≥ 2,

5The bilinear form is said to be full if 〈·, ·〉 : Γ(E)× Γ(E)→ C∞(M) is surjective.
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that coincides with σC on sections of E and is the extension by derivation in
each entry of σC , i.e., for all f ∈ C∞(M),

σ
C
∼(P1, . . . , Pi ∧ e, . . . , Pn−2) (f) =

= (−1)pi(pi+1+...+pn−2)Pi ∧ σ
C
∼(P1, . . . , e, . . . , Pn−2) (f)

+ (−1)pi+...+pn−2e ∧ σ
C
∼(P1, . . . , Pi, . . . , Pn−2) (f). (28)

Lemma 4.5. For C
∼ ∈ C
∼n(E), C

∼
defined by Equation (27) is an element of

Cn(∧≥1E), with symbol given by Equation (28).

Proof : Applying repeatedly (27) (resp. (28)), we obtain (24) (resp. (25)).

Also, it is immediate that C
∼

is C∞(M)-linear in the last entry.
It remains to prove that, for all e, e′ ∈ Γ(E) and for all homogeneous

Pi ∈ Γ(∧piE), pi ≥ 1, we have

C
∼

(P1, . . . , Pi, e, e
′, Pi+1, . . . , Pn−2) + C

∼
(P1, . . . , Pi, e

′, e, Pi+1, . . . , Pn−2) =

= σ
C
∼(P1, . . . , Pi, Pi+1, . . . , Pn−2) (〈e, e′〉) . (29)

Let us prove this by induction on p1 + . . .+ pn−2.
When

p1 + . . .+ pn−2 = n− 2,

then pi = 1, for i = 1, . . . , n − 2 and (29) reduces to (17), which is satisfied

by C
∼

and σ
C
∼. Now, suppose that (29) is satisfied for all P1, . . . , Pn−2 such

that

n− 2 ≤ p1 + . . .+ pn−2 ≤ k,

for some k ≥ n− 2, and let us prove it for P1, . . . , Pn−2 such that

p1 + . . .+ pn−2 = k + 1.

Because k + 1 ≥ n − 1, there is at least one j ∈ {1, . . . , n − 2} such that

pj ≥ 2 and then we can write Pj = P̂j ∧ u, with u ∈ Γ(E). Then,
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C
∼

(P1, . . . , P̂j ∧ u, . . . , e, e′, . . . , Pn−2) + C
∼

(P1, . . . , P̂j ∧ u, . . . , e′, e, . . . , Pn−2

= (−1)(pj−1)(pj+1+...+pn−2) P̂j ∧ C
∼

(P1, . . . , u, . . . , e, e
′, . . . , Pn−2)

+ (−1)(pj−1+pj+1...+pn−2) u ∧ C∼(P1, . . . , P̂j, . . . , e, e
′, . . . , Pn−2)

+ (−1)(pj−1)(pj+1+...+pn−2) P̂j ∧ C
∼

(P1, . . . , u, . . . , e
′, e, . . . , Pn−2)

+ (−1)(pj−1+pj+1...+pn−2) u ∧ C∼(P1, . . . , P̂j, . . . , e
′, e, . . . , Pn−2)

= (−1)(pj−1)(pj+1+...+pn−2) P̂j ∧
(
C
∼

(P1, . . . , u, . . . , e, e
′, . . . , Pn−2) +

+ C
∼

(P1, . . . , u, . . . , e
′, e, . . . , Pn−2)

)
+ (−1)(pj−1+pj+1...+pn−2) u ∧

(
C
∼

(P1, . . . , P̂j, . . . , e, e
′, . . . , Pn−2)

+ C
∼

(P1, . . . , P̂j, . . . , e
′, e, . . . , Pn−2)

)
= (−1)(pj−1)(pj+1+...+pn−2) P̂j ∧ σ

C
∼(P1, . . . , u, . . . , ê, ê′, . . . , Pn−2) (〈e, e′〉)

+ (−1)(pj−1+pj+1...+pn−2) u ∧ σ
C
∼(P1, . . . , P̂j, . . . , ê, ê′, . . . , Pn−2) (〈e, e′〉)

= σ
C
∼(P1, . . . , P̂j ∧ u, . . . , ê, ê′, . . . , Pn−2) (〈e, e′〉) .

Next proposition establishes a relation between C
∼

(E) and C(∧≥1E).

Proposition 4.6. There is a one-to-one correspondence between C
∼

(E) and
C(∧≥1E) such that, for all n ≥ 1,

· : C∼n(E) → Cn(∧≥1E)

C
∼ 7→ C

∼
,

with C
∼

given by Equation (27). For n = 0, · is the identity map.

Proof : Given C ∈ Cn(∧≥1E), its restriction to Γ(E) satisfies (17) so that

C|Γ(E) ∈ C
∼n(E). It is obvious that C|Γ(E) = C.
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Now, if C
∼

1 = C
∼

2 ∈ Cn(∧≥1E), obviously C
∼

1|Γ(E) = C
∼

2|Γ(E), which means

C
∼

1 = C
∼

2.

Having the one-to-one correspondence given by Proposition 4.6, and if there

is no ambiguity, in the sequel we shall write very often C
∼

instead of C.

Remark 4.7. Let us explain why we consider C
∼

, the extension of C
∼ ∈ C
∼

(E)
by derivation in each argument, instead of C, the extension of C ∈ C(E)
by derivation in each argument. The reason comes from what should be the
extension by derivation of Equation (4) in Definition 3.1. The corresponding
condition that C should satisfy is

〈C(P1, . . . , e, e
′, . . . , Pn−3) + C(P1, . . . , e

′, e, . . . , Pn−3), Pn−2〉 =

= σC(P1, . . . , êi, êi+1, . . . , Pn−3, Pn−2)(〈e, e′〉),
for all e, e′ ∈ Γ(E) and for all homogeneous Pi ∈ Γ(∧piE). But in this
expression, the right hand side is derivative with respect to each argument
Pi, i = 1, . . . , n−3 while the left hand side is not. On the contrary, Equation
(26) is fully derivative on both sides.

4.3. Higher Keller-Waldmann Poisson algebra. The space C(∧≥1E)
is endowed with an associative graded commutative product of degree zero,

that we denote by ∧ 6, defined as follows. Given C
∼

1 ∈ Cr(∧≥1E) and C
∼

2 ∈
Cs(∧≥1E), set

C
∼

1 ∧ C
∼

2 := C
∼

1 ∧ C
∼

2, (30)

where the product ∧ on the right-hand side is the one defined by Equa-
tion (19). Using Equation (18), we may write

C
∼

1 ∧ C
∼

2 = C1 ∧ C2
∼

.

The space C(∧≥1E) is endowed with the following bracket of degree −2,

[[·, ·]] : Cr(∧≥1E)×Cs(∧≥1E) → Cr+s−2(∧≥1E)

(C
∼

1, C
∼

2) 7→
[[
C
∼

1, C
∼

2

]]
:=
[
C
∼

1, C
∼

2

]
KW
∼
.

6Although we use the same notation, this product is not the one defined in C(E).
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As a consequence of Equation (20) and Lemma 4.2, we have:

Lemma 4.8. For P,Q ∈ Γ(∧≥1E),[[
P
∼
, Q
∼]]

= [P,Q]
KW

∼
= 〈P,Q〉
∼

.

Theorem 4.9. The triple (C(∧≥1E),∧, [[·, ·]]) is a graded Poisson algebra of
degree −2, that we call the higher Keller-Waldmann Poisson algebra.

Proof : Bilinearity and graded skew-symmetry of [[·, ·]] are obvious. Let us

take C
∼
i ∈ C(∧≥1E), i = 1, 2, 3. Since[[[[

C
∼

1, C
∼

2

]]
, C
∼

3

]]
=

[[
[C
∼

1, C
∼

2]KW
, C
∼

3

]]
=

[[
C
∼

1, C
∼

2

]
KW
∼

, C
∼

3

]
KW
∼
,

the graded Jacobi identity of [[·, ·]] follows from the graded Jacobi identity of
[·, ·]

KW
∼. Analogously for the Leibniz rule, since[[

C
∼

1, C
∼

2 ∧ C
∼

3

]]
=

[[
C
∼

1, C
∼

2 ∧ C
∼

3

]]
=
[
C
∼

1, C
∼

2 ∧ C
∼

3

]
KW
∼
.

It is now obvious that

· :
(
C
∼

(E),∧, [·, ·]
KW
∼

)
→
(
C(∧≥1E),∧, [[·, ·]]

)
is an isomorphism of graded Poisson algebras.

Definition 4.10. A higher pre-multi-Courant structure C ≡ C
∼∈ Cn(∧≥1E),

n ≥ 2, is a higher multi-Courant structure if
[[
C,C

]]
= 0. In this case, the

triple (E, 〈·, ·〉,C) is called a higher multi-Courant algebroid.

Note that, because the bracket [[·, ·]] is skew-symmetric, all C ∈ C2k(∧≥1E),
k ≥ 1, are higher multi-Courant structures.

5. On Cueca-Mehta isomorphism
In this section we consider the graded algebras (FE, ·), with FE =

C∞
(
p∗
(
T ∗[2]E[1]

))
(see 2.1), and

(
C
∼

(E),∧
)
' (C(E),∧). The isomorphism

Υ
∼

: (FE, ·)→
(
C
∼

(E),∧
)
,
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introduced in [3], maps Θ ∈ Fn
E , n ≥ 1, into Υ

∼
(Θ) ∈ C

∼n(E) given by

Υ
∼

(Θ)(e1, e2, . . . , en) = {en, . . . , {e2, {e1,Θ}} . . .} ∈ C∞(M), (31)

with symbol

σ
Υ
∼

(Θ)
(e1, . . . , en−1) · f = {f, {en−1, . . . , {e1,Θ}} . . .},

for all e1, . . . , en ∈ Γ(E) and f ∈ C∞(M). For n = 0, and for all f ∈ F0
E =

C∞(M), Υ
∼

(f) = f . Moreover, Υ
∼

is an isomorphism of graded commutative
algebras [3]:

Υ
∼

(Θ ·Θ′) = Υ
∼

(Θ) ∧Υ
∼

(Θ′), Θ,Θ′ ∈ FE. (32)

The isomorphism Υ
∼

induces an isomorphism

Υ : (FE, ·)→ (C(E),∧)

that maps Θ ∈ Fn
E , n ≥ 1, into Υ(Θ) ∈ Cn(E) defined by

〈Υ(Θ)(e1, . . . , en−1), en〉 = Υ
∼

(Θ)(e1, . . . , en),

for all e1, . . . , en ∈ Γ(E), and Υ(f) = f , for all f ∈ C∞(M). Due to the non-
degeneracy of 〈·, ·〉, Υ is well-defined and, since {·, ·} is also non-degenerate,
we have

Υ(Θ)(e1, e2, . . . , en−1) = {en−1, . . . , {e2, {e1,Θ}} . . .} ∈ Γ(E). (33)

In particular, Υ(e) = e, for all e ∈ Γ(E). The symbol of Υ(Θ) is given by

σΥ(Θ)(e1, . . . , en−2) · f = {f, {en−2, . . . , {e1,Θ}} . . .}, (34)

for all f ∈ C∞(M).

Remark 5.1. Equations (33) and (34) show that, in FE, the extension of C ∈
Cn(E) considered in Remark 3.2 and, in particular Equation (5), appears in
a natural way.

Moreover, Υ
∼

being an isomorphism of graded commutative algebras, Υ
inherits the same property, as it is shown in the next lemma.

Lemma 5.2. For every Θ ∈ Fn
E and Θ′ ∈ Fm

E ,

Υ(Θ ·Θ′) = Υ(Θ) ∧Υ(Θ′). (35)
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Proof : Using (7), (32) and the C∞(M)-linearity of 〈·, ·〉 we have, for all
e1, . . . , em+n,〈

Υ(Θ) ∧Υ(Θ′)(e1, . . . , em+n−1), em+n

〉
=

=

〈 ∑
τ∈Sh(m,n−1)

sgn (τ)Υ
∼

(Θ)(eτ(1), . . . , eτ(m)) Υ(Θ′)(eτ(m+1), . . . , eτ(m+n−1)), em+n

〉

+ (−1)mn
〈 ∑

τ∈Sh(n,m−1)

sgn (τ)

Υ
∼

(Θ′)(eτ(1), . . . , eτ(n)) Υ(Θ)(eτ(n+1), . . . , eτ(n+m−1)), em+n

〉
=

∑
τ∈Sh(m,n−1)

sgn (τ)Υ
∼

(Θ)(eτ(1), . . . , eτ(m))Υ
∼

(Θ′)(eτ(m+1), . . . , eτ(m+n−1), em+n)

+ (−1)mn
∑

τ∈Sh(n,m−1)

sgn (τ)

Υ
∼

(Θ′)(eτ(1), . . . , eτ(n))Υ
∼

(Θ)(eτ(n+1), . . . , eτ(n+m−1), em+n)

=
∑

τ∈Sh(m,n)

sgn (τ)Υ
∼

(Θ)(eτ(1), . . . , eτ(m))Υ
∼

(Θ′)(eτ(m+1), . . . , eτ(m+n−1), eτ(m+n))

= Υ
∼

(Θ) ∧Υ
∼

(Θ′)(e1, . . . , em+n) = Υ
∼

(Θ ·Θ′)(e1, . . . , em+n)

= 〈Υ(Θ ·Θ′)(e1, . . . , em+n−1), em+n〉 .

The non-degeneracy of 〈·, ·〉 completes the proof.

Since Υ(f) = f , for all f ∈ C∞(M), and Υ(e) = e, for all e ∈ Γ(E),
Lemma 5.2 yields

Υ|Γ(∧nE) = id, n ≥ 0. (36)

Remark 5.3. In the case where E = A⊕A∗, the above mentioned isomorphism
was defined in [1] recursively by the following procedure. Taking into account
that the algebra (C(E),∧) is generated by its terms of degrees 0, 1 and 2 [5],
the map Υ is defined in F0

A⊕A∗, F1
A⊕A∗ and F2

A⊕A∗ as follows:
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 Υ(f) = f, f ∈ C∞(M);
Υ(e) = e, e ∈ Γ(E);
Υ(Θ) = {·,Θ}, Θ ∈ F2.

Then, Υ is extended to FA⊕A∗ by linearity, asking that Equation (35) holds
for all Θ ∈ Fn

A⊕A∗ and Θ′ ∈ Fm
A⊕A∗. Using the Leibniz rule and the Jacobi

identity for {·, ·}, we conclude that the isomorphisms introduced in [3] an in
[1] are the same.

Lemma 5.4. Let Θ be a function in Fn
E and e ∈ Γ(E). Then,

Υ({e,Θ}) = ıe(Υ(Θ)) = [e,Υ(Θ)]
KW
.

Proof : For all e1, . . . , en−2 ∈ Γ(E), we have

Υ({e,Θ})(e1, . . . , en−2) = {en−2, . . . , {e1, {e,Θ}} . . .}
= Υ(Θ)(e, e1, . . . , en−2)

= ıe(Υ(Θ))(e1, . . . , en−2).

Thus,

Υ({e,Θ}) = ıe(Υ(Θ)).

Proposition 5.5. Let Θ ∈ Fn
E and Θ′ ∈ Fm

E , n,m ≥ 0. Then,

Υ({Θ,Θ′}) = [Υ(Θ),Υ(Θ′)]
KW
. (37)

Proof : The proof is done by induction on the sum n+m of degrees of Θ and
Θ′. First, let us prove directly that (37) holds for all possible cases such that
n + m ≤ 2. For f, g ∈ C∞(M), e ∈ Γ(E) and δ ∈ F2

E, using Definition 3.4
and (36), we have:

i) Υ({f, g}) = 0 = [Υ(f),Υ(g))]
KW

;
ii) Υ({f, e}) = 0 = [Υ(f),Υ(e)]

KW
;

iii) Υ({e, e′}) = Υ(〈e, e′〉) = 〈e, e′〉 = [e, e′]
KW

= [Υ(e),Υ(e′)]
KW

;
iv) Υ({f, δ}) = {f, δ} = σΥ(δ) · f = [Υ(f),Υ(δ)]

KW
.

Now, let us assume that (37) holds for n + m ≤ k, k ≥ 2. Take Θ ∈ Fn
E

and Θ′ ∈ Fm
E , with n+m = k+1. For every e ∈ Γ(E), using (9), Lemma 5.4
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and the Jacobi identity of {·, ·}, we have

ıe(Υ({Θ,Θ′})) = Υ({e, {Θ,Θ′}}) = Υ
(
{{e,Θ},Θ′}}+ (−1)n{Θ, {e,Θ′}}

)
= [Υ({e,Θ}),Υ(Θ′)]

KW
+ (−1)n[Υ(Θ),Υ({e,Θ})]

KW

= [ıe(Υ(Θ)),Υ(Θ′)]
KW

+ (−1)n[Υ(Θ), ıe(Υ(Θ′))]
KW

(9)
= ıe[Υ(Θ),Υ(Θ′)]

KW
,

where in the third equality we use the induction hypothesis. Since e ∈ Γ(E)
is arbitrary, (37) is proved.

We have proved the following.

Theorem 5.6. The map Υ : (FE, ·, {·, ·}) → (C(E),∧, [·, ·]
KW

) is a degree
zero isomorphism of graded Poisson algebras.

Now, we prove a result announced in Remark 3.3.

Lemma 5.7. If C is an element of Cn(E) with σC = 0, then C ∈ Γ(∧nE).

Proof : Let us consider C ∈ Cn(E) such that σC = 0. Because Υ is an
isomorphism, C = Υ(Θ), for some Θ ∈ Fn

E . Using (34) and the Jacobi
identity for {·, ·}, we have

0 = σC(e1, . . . , en−2) · f = {f, {en−2, . . . , {e1,Θ}} . . .}
= {en−2, . . . , {e1, {f,Θ}} . . .},

for all e1, . . . , en−2 ∈ Γ(E) and f ∈ C∞(M). The non-degeneracy of {·, ·}
implies that equation above is equivalent to

{f,Θ} = 0, for all f ∈ C∞(M),

which means (see [10]) that Θ ∈ Γ(∧nE) ⊂ Fn
E . Therefore, since Υ|Γ(∧nE) is

the identity map, we have C ∈ Γ(∧nE).

The isomorphism Υ
∼

: FE → C
∼

(E), defined by Equation (31), naturally
gives rise to a map

Υ
∼

: FE → C(∧≥1E)

such that

Θ ∈ Fn
E 7→ Υ
∼

(Θ) := Υ
∼

(Θ) ∈ Cn(∧≥1E),

where Υ
∼

(Θ) is the extension by derivation in each entry of Υ
∼

(Θ) ∈ C
∼n(E).
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Theorem 5.8. The map Υ
∼

: (FE, ·, {·, ·})→
(
C(∧≥1E),∧, [[·, ·]]

)
is a degree

zero isomorphism of graded Poisson algebras.

Proof : For every Θ ∈ Fn
E and Θ′ ∈ Fm

E , we have

Υ
∼

({Θ,Θ′}) = Υ
∼

({Θ,Θ′}) = Υ({Θ,Θ′})
∼

= [Υ(Θ),Υ(Θ′)]
KW

∼

=
[

Υ
∼

(Θ),Υ
∼

(Θ′)
]
KW
∼

=

[[
Υ
∼

(Θ),Υ
∼

(Θ′)

]]
.

Moreover, (30), (18) and (35) yield

Υ
∼

(Θ ·Θ′) = Υ
∼

(Θ) ∧Υ
∼

(Θ′).

Remark 5.9. We should stress that, although

Υ(Θ)(e1, . . . , en−1) = {en−1, . . . , {e2, {e1,Θ}} . . .},
for all e1, . . . , en−1 ∈ Γ(E), in general

Υ
∼

(Θ)(P1, . . . , Pn) 6= {Pn, . . . , {P2, {P1,Θ}} . . .},
for all P1, . . . , Pn ∈ Γ(∧≥1E).

Notice that from the proof of Theorem 5.8, we get the following result.

Corollary 5.10. The map Υ
∼

: (FE, ·, {·, ·})→
(
C
∼

(E),∧, [·, ·]
KW
∼

)
is a degree

zero isomorphism of graded Poisson algebras.

Remark 5.11. The [·, ·]
KW
∼ bracket, given by Equation (20), is the bracket

announced, but not explicitly defined, in Remark 2.6 of [3].
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