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Universidade de Coimbra
Preprint Number 21–49

TRANSFORM ORDERS AND STOCHASTIC
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Abstract: In some inferential statistical methods, such as tests and confidence
intervals, it is important to describe the stochastic behavior of statistical functionals,
aside from their large sample properties. We study such a behavior in terms of
the usual stochastic order. For this purpose, we introduce a generalized family of
stochastic orders, which is referred to as transform orders, showing that it provides
a flexible framework for deriving stochastic monotonicity results. Given that our
general definition makes it possible to obtain some well known ordering relations as
particular cases, we can easily apply our method to different families of functionals.
These include some prominent inequality measures, such as the generalized entropy,
the Gini index, and its generalizations. We also demonstrate the applicability of
our approach by determining the least favorable distribution, and the behavior of
some bootstrap statistics, in some goodness-of-fit testing procedures.
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1. Introduction
In statistics, one is often interested in estimating an unknown characteristic

of a given distribution F , rather than the distribution itself. In many such
cases, these characteristics may be represented by some probability functional
T (F ) : F → R, where F is the space of probability distributions. The most
intuitive way of estimating T (F ) is the plug-in method, which simply consists
in replacing the unknown F with its natural estimator, namely, the empir-
ical distribution function Fn. Correspondingly, we shall refer to T (Fn) as a
statistical functional. However, since the empirical distribution is a random
process, that is, a function of the random sample, then statistical functionals
are random variables, and therefore it is important to study their behavior
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from a stochastic point of view. While most of the work in the literature
focuses on large sample properties of statistical functionals, because of their
applications to estimation theory, we are concerned with a different problem.
In particular, let Fn and Gn be the empirical distribution functions that cor-
respond to random samples from F and G, respectively. We are interested
in determining the conditions on F , G and T such that T (Fn) stochastically
dominates T (Gn), with respect to the usual stochastic order (recalled below
in Definition 1), which is a relevant information for many testing and confi-
dence interval procedures, for instance. Results of this kind may be rather
complicated to derive, depending on the mathematical form of T , and on the
initial conditions on the baseline distributions F and G. In this regard, Aren-
darczyk et al. (2021) recently studied the stochastic dominance behavior of
the Greenwood statistic (Greenwood, 1946) when the baseline distributions
are comparable in terms of the star order. We will show that this result is
a particular case of a much more general one, making it possible to estab-
lish dominance relations within a wider family of statistical functionals. For
this purpose, we introduce a generalized family of stochastic orders, gener-
ated by some reference class of functions C, denoted as transform orders,
which includes many relevant special cases. Our main results, Theorems 5
and 7, show that, if the baseline distributions are ordered with respect to
some transform order, the statistical functionals are stochastically ordered,
provided that the corresponding probability functional is isotonic, or order-
preserving, with respect to the same transform order. This result has a wide
range of applicability, as our definition of transform order includes the usual,
the convex transform, the star, the superadditive and the dispersive order
(Shaked and Shanthikumar, 2007). Therefore, we are able to derive stochas-
tic properties of several important families of functionals. For example, in
this paper we prove the stochastic monotonicity of the most relevant mea-
sures of inequality, including the generalized entropy class (Shorrocks, 1980;
Shorrocks and Slottje, 2002), the established Gini index (Gini, 1912) and
its generalizations (Mehran, 1976; Donaldson and Weymark, 1980). As an
application, our result may be used to determine, in a simple way, the least
favorable distribution, as well as the behavior of some bootstrap statistics,
for some goodness-of-fit testing problems, related to the convex order or to
the star order, which are relevant in areas such as survival analysis, reliabil-
ity, and shape-constrained inference (Barlow et al., 1971; Deshpande, 1983;
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Tenga and Santner, 1984; Hall and Van Keilegom, 2005; Groeneboom and
Jongbloed, 2012; Lando, 2021).

2. Main result
We begin by defining some notations. The random variables X and Y

have cumulative distribution functions F and G and supports SF and SG,
respectively. Let us denote with F−1 the left continuous generalized inverse,
namely, the quantile function, of a distribution F . We recall that a stochastic
order is a binary relation � over F that is reflexive and transitive. In partic-
ular, observe that � does not generally satisfy the antisymmetry property,
that is, F � G and G � F does not necessarily imply X =d Y , and it is
generally not total. A functional T is said to be isotonic, or order-preserving,
with respect to �, whenever, for every pair F,G ∈ F such that F � G, it
holds that T (F ) ≥ T (G). Let us denote by T the class of functionals defined
on F . Then, we may represent by I(�) the class of functionals that are
isotonic with respect to �:

I(�) = {T ∈ T : F � G =⇒ T (F ) ≥ T (G),∀F,G ∈ F}.

Likewise, the class of functionals that are antitonic, or order-reversing, with
�, is denoted as A(�) = {T ∈ T : F � G =⇒ T (F ) ≤ T (G),∀F,G ∈ F}.
It is worth noticing that, if F �0 G =⇒ F �1 G, then I(�1) ⊂ I(�0).

Given that stochastic orders and probability functionals depend only the
distribution functions of the random variables, we may write F � G or
X � Y , and T (F ) or T (X), interchangeably.

We are concerned with the problem of ranking statistical functionals in
terms of the usual stochastic order.

Definition 1. We say that T (Fn) stochastically dominates T (Gn), denoted
by T (Fn) ≥st T (Gn), if P (T (Fn) ≤ x) ≤ P (T (Gn) ≤ x), for every x ∈ R.

Therefore, we are interested in determining the conditions on F , G and T
such that the above relation holds. To this aim, we introduce the following
definition of transform orders, generated by a family of functions C, whose
choice enables the generalization of some well known orders. This new def-
inition is important from a technical point of view, as we will discuss later.
As usual, f |E denotes the restriction of a function f to the set E.
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Definition 2. Let C be some family of non-decreasing functions. We say that
X dominates Y with respect to the C-transform order, denoted by X ≥C Y ,
if F−1 ◦G|SG

∈ C.

Note that X =d F
−1 ◦ G(Y ), so, basically, a transform order holds when

the function that transforms (distributionally) one random variable into the
other satisfies some properties of interest. Such properties fully characterize
the dominance relations. It is easy to see that ≥C fulfils the basic properties
of stochastic orders, moreover, C0 ⊂ C1 entails that F ≥C0 G =⇒ F ≥C1 G.
As limiting cases, if C is the class of non-decreasing functions, then ≥C is
always verified, whereas if C contains just the identity function then ≥C
coincides with equality in distribution, =d. Choosing C as the class of convex,
starshaped, or superadditive functions, we obtain the convex transform order,
the star order, or the superadditive order, respectively. Also the dispersive
order can be obtained by choosing C as the class of functions ψ such that
ψ(x)−x is nondecreasing (Shaked and Shanthikumar, 2007). Since these four
orders are particularly important, we recall their definitions below (remember
that F−1◦G is always non-decreasing by construction). However, Definition 2
above is quite general and enables the possibility of defining new stochastic
orders. Moreover, notice that, in the sense of Definition 2 the usual stochastic
order is also a transform order, as it is obtained by choosing C as the class of
functions ψ such that ψ(x) ≥ x, that is X ≥st Y if and only if F−1◦G(x) ≥ x
for every x ∈ SG.

Definition 3. We say that X dominates Y with respect to

(1) the convex transform order, denoted by X ≥c Y , if F−1 ◦ G|SG
is

convex;
(2) the star order, denoted by X ≥∗ Y , if F−1 ◦G|SG

is starshaped;
(3) the superadditive order, denoted by X ≥su Y , if F−1 ◦G|SG

is supper-
additive;

(4) the dispersive order, denoted by X ≥disp Y , if (F−1 ◦ G(x)− x)|SG
is

increasing.

For non-negative random variables, the following relations hold:

X ≥c Y =⇒ X ≥∗ Y ⇐⇒ logX ≥disp log Y =⇒ X ≥su Y.
As discussed earlier, we are interested in determining conditions under

which T (Fn) ≥st T (Gn). For instance, if T (F ) =
∫
R xdF (x) is the mean of X,

it is easy to see that T ∈ I(≥st) and, if X ≥st Y , then 1
n

∑
iXi ≥st 1

n

∑
i Yi,
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that is, the corresponding sample means are stochastically ordered. More
generally, if X and Y are ranked in the usual stochastic order, this property
holds for every functional which can be seen as an increasing function of the
random sample (see Theorem 1.A.3 of Shaked and Shanthikumar (2007)).
The stochastic monotonicity of the sample mean can be derived similarly
for all stochastic orders that are closed under convolutions, such as the haz-
ard rate order, the likelihood ratio order, the convolution order, the convex
(concave) order and the increasing convex (concave) order (Shaked and Shan-
thikumar, 2007). However, results of this kind are not predictable in general,
especially if one is interested in the behavior of statistical functionals that
are not related to the stochastic orders discussed above, or which may have
more general mathematical representations, not necessarily sums of random
variables. In this regard, intuitively, one may wonder whether T (F ) ≥ T (G)
is sufficient for T (Fn) ≥st T (Gn), or whether X � Y and T ∈ I(�) imply
T (Fn) ≥st T (Gn), for a general order �. It is important to remark that,
in general, this is not true (see Subsection 3.3 below). Our main results,
Theorem 5 and Theorem7, show that transform orders provide a general
framework for deriving stochastic monotonicity of statistical functionals of
the form T (Fn), conditionally on the isotonicity properties of T . However,
before proceeding, we need some further preliminary definitions and nota-
tions. Indeed, transform orders might be not defined for realizations, Fn and
Gn, of the empirical distribution functions Fn and Gn, as Fn and Gn are
discrete. For instance, absolute continuity is necessary for comparisons in
terms of ≥c, and in the empirical case the composition F−1

n ◦ Gn is a step
function, hence not convex. Therefore, to prove our main result, we must
extend, when needed, any transform order to the class of observed empirical
distributions, according to the following general definition.

Definition 4. Let C be some family of non-decreasing functions. We say that
X dominates Y with respect to the extended C-transform order, denoted as
X ≥eC Y , if there exists a function φ ∈ C such that φ|SG

= F−1 ◦G|SG
.

Note the distinction between Definitions 2 and 4: the former requires that
F−1 ◦ G satisfies some property, described by C, on the support of G, while
the latter assumes the existence of some function φ ∈ C, which coincides with
the composition F−1 ◦ G on the support of G, formally, φ|SG

= F−1 ◦ G|SG
.

This makes it possible to consider C as the class of convex or starshaped
functions, even when F and G are empirical distributions, which is out of
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the scope of Definition 2. Indeed, with regard to the pair Fn, Gn, where
SGn

= {y1, . . . , yn}, Fn≥eCGn holds, if there exists a function φ ∈ C such that
φ(yi) = F−1

n ◦Gn(yi), i = 1, . . . , n. Moreover, note that ≥eC is a weaker version
of ≥C, that is, if X ≥C Y then X ≥eC Y also holds.

Theorem 5. If X ≥eC Y and T ∈ I(≥eC), then T (Fn) ≥st T (Gn)

Proof : Consider a sample y1, . . . , yn from Y . As X =d F
−1◦G(Y ), the values

x∗i =F−1 ◦ G(yi), i = 1, . . . , n, may be seen as observations from X. Now,
let us denote with Gn the realization of Gn corresponding to the sample
y1, . . . , yn, and with F ∗n the particular realization of Fn corresponding to the
sample x∗1, . . . , x

∗
n. Moreover, let X̃n and Ỹn be two random variables whose

distributions are F ∗n and Gn, respectively. Obviously, F−1 ◦ G(Ỹn) =d X̃n.
If X ≥eC Y , then there exists some φ ∈ C satisfying Definition 4. Let Z
be a random variable with distribution H and support SH included in SG.
X ≥eC Y implies

φ|SH
= (φ|SG

)|SH
= (F−1 ◦G|SG

)|SH
= F−1 ◦G ◦H−1 ◦H|SH

.

Note that the quantile function of F−1 ◦ G(Z) is F−1 ◦ G ◦ H−1, hence the
latter relation is equivalent to F−1 ◦ G(Z) ≥eC Z, for every random variable

Z with support included in that of Y . Because the support of Ỹn is always
included in the support of Y , this yields X̃n =d F

−1 ◦G(Ỹn) ≥eC Ỹn. Now, as
we are assuming that T ∈ I(≥eC), it follows that T (F ∗n) ≥ T (Gn). Note that
we are not interested in comparing Gn and F ∗n , however, this result contains
information about the distributional behavior of T (Fn) and T (Gn). In fact,
since T (F ∗n) ≥ T (Gn) holds for every possible pairs of realizations x∗1, . . . , x

∗
n

and y1, . . . , yn, obtained as above, the latter relation can be equivalently
expressed as T (Fn) ≥st T (Gn) (again, this characterization of the usual sto-
chastic order is due the probability integral transform, see Theorem 1.A.1 of
Shaked and Shanthikumar (2007)).

Remark 6. With regard to Definition 4, if φ = F−1
n ◦Gn, then ≥C is already

defined on the support of Gn by Definition 2. However, the extended Defi-
nition 4 is useful because, for instance, notions as convexity and starshaped-
ness are generally not defined for functions whose support is a discrete set of
points. Moreover, it seems that, although theoretically I(≥eC) ⊂ I(≥C), in
practice T ∈ I(≥C) is often equivalent to T ∈ I(≥eC). However, we cannot
guarantee this in general.
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Theorem 5 demonstrates the practical usefulness of our Definition 4. In
fact, transform orders may not be meaningful sometimes, especially when
choosing an unusual reference class C, but they may be employed merely as
tools for deriving stochastic properties of statistical functionals. To apply
Theorem 5, it is enough to show that the functional of interest T belongs to
some isotonic family, I(≥eC). To do so, one may use existing results which
ensure that T ∈ I(≥eC). In particular, as we discuss in the next section,
this approach works when C is the star order or the convex transform order,
enabling the determination of the stochastic monotonicity of the main mea-
sures of inequality and skewness. Of course, if T is isotonic with more than
one of the orders in Definition 4, we should use the weakest one, in order to
enlarge the range of applicability of the result. On the other hand, it might
happen that our functional T is not isotonic with known orders. In this case,
we may try to define a new ad hoc transform order such that T ∈ I(≥eC),
for instance by choosing a wider class C or by defining C according to the
properties of T .

Before closing this section, it is worth noticing that the assumptions of
Theorem 5 may be relaxed. In fact, one may replace the isotonicity assump-
tion, T ∈ I(≥eC), with a weaker order-preserving property. In particular, let
Gn and F ∗n be a pair of empirical distribution functions, where F ∗n is obtained
from the sample F−1 ◦ G(yi), i = 1, . . . , n (as in the proof of Theorem 5).
Going back to the proof of Theorem 5, it is easy to see that the following
result is also true.

Theorem 7. If X ≥eC Y and T (F ∗n) ≥ T (Gn), then T (Fn) ≥st T (Gn).

The isotonicity assumption in Theorem 5 is stronger than that in Theo-
rem 7. Nevertheless, several results available in literature assert the isotonic-
ity of popular probability functionals, with respect to some of the transform
orders mentioned above, hence Theorem 5 immediately provides the ordering
between the corresponding statistical functionals, as discussed in the follow-
ing section. When such isotonicity results are not available, Theorem 7 offers
a weaker order-preserving assumption, allowing for the same conclusion. This
latter approach will be explored in Section 4.

3. Stochastic behavior of inequality measures
We now consider some important families of statistical functionals that

are commonly employed in several fields, including statistics, economic and
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finance. It should be noted that functionals that are isotonic with the usual
stochastic order are generally seen as location functionals. Since every func-
tion of the random sample, which is nondecreasing in each argument, has a
stochastically increasing behavior (Shaked and Shanthikumar, 2007, Theo-
rem 1.A.3), then the stochastic monotonicity of location estimators may be
easily derived. Therefore, we focus on some other families of functionals,
that are generally not isotonic with the usual stochastic order, namely in-
equality measures. As discussed later in this section, inequality measures
must be isotonic with the star order, so they fit perfectly to our framework.
Similarly, notice that isotonicity with the convex transform order is a basic
condition for skewness measure (van Zwet, 1964; Oja, 1981; Eberl and Klar,
2021), therefore our method may be also applied to skewness measures, but
this is beyond the purpose of this paper.

Hereafter we focus on non-negative random variables with finite mean.
Let LF (p) = 1

µX

∫ p
0 F

−1(t) dt, p ∈ [0, 1] be the Lorenz curve of F (as usual,
µX and σX represent the mean and the standard deviation of X, respec-
tively). The Lorenz curve is a primary tool for representation of inequality
(e.g. income inequality), as it is typically understood that the higher of two
non-intersecting Lorenz curves shows less inequality. This gives rise to the
definition of the Lorenz order.

Definition 8. We say that X dominates Y with respect to the Lorenz order,
denoted by X ≥L Y , if LF (p) ≤ LG(p) for every p ∈ [0, 1].

Note that the reverse relation (LF (p) ≥ LG(p)) is sometimes used to define
the Lorenz order. We use the same notation as Marshall et al. (2011), that
is, X dominates Y if it exhibits higher inequality, as measured by the Lorenz
curve. Using standard arguments in the ordering theory, it is possible to
derive several classes of probability functionals that are isotonic with ≥L. In
particular, any functional I(X) satisfying the following basic properties (see
Shorrocks (1980)), may be seen as an inequality measure:

(1) I ∈ I(≥L);
(2) I(X) ≥ I(µX);
(3) I(aX) = I(X), a > 0;
(4) I(X + b) ≤ I(X), b > 0.

Actually, properties (2)–(4) are redundant, as they are implied by (1), that
is, the Lorenz isotonicity of the inequality measure I is the crucial property.
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It is well known that the star order implies the Lorenz order (Shaked and
Shanthikumar, 2007), so that I(≥L) ⊂ I(≥∗). However, since the star order
is usually defined only in the continuous case, we need the following extension.

Proposition 9. I(≥L) ⊂ I(≥e∗).

Proof : Choose T ∈ I(≥L). The inclusion follows if we prove that Fn ≥e∗
Gn =⇒ Fn ≥L Gn, as this latter implies that T (Fn) ≥ T (Gn). Let F̃n,
G̃n be the linear interpolators of the jump points of Fn, Gn, respectively. If
Fn ≥e∗ Gn, then we can take φ = F̃−1

n ◦ G̃n in Definition 4. The function
φ coincides with the linear interpolator of F−1

n ◦ Gn, which is starshaped
by construction. Then, since F̃n, G̃n are continuous, F̃n ≥∗ G̃n and the

ratio F̃−1
n

G̃−1
n

is nondecreasing (Shaked and Shanthikumar, 2007, p. 214), the

sequence
F−1
n ( i

n )

G−1
n ( i

n )
is nondecreasing for i = 1, . . . , n, whereas F−1

n (p)

G−1
n (p)

is constant

between i−1
n and i

n , for i = 2, . . . , n. Hence, the function R = F−1
n

G−1
n

is a

nondecreasing step function. Without loss of generality, let µX = µY = 1.
Then LFn

(p)−LGn
(p) =

∫ p
0 (F−1

n (u)−G−1
n (u)) du. If R is nondecreasing, and

the means are equal, the quantile functions must cross, and R(·) − 1 must
have one sign change. However, R(·) − 1 has the same sign as F−1

n − G−1
n ,

therefore the argument of Theorem 4.B.4 of Shaked and Shanthikumar (2007)
implies the result.

Now, the following result is an immediate consequence of Theorem 5.

Corollary 10. If I ∈ I(≥L) and X ≥∗ Y , then I(Fn) ≥st I(Gn).

In the next subsections, we will focus on some particularly relevant families
of inequality measures.

3.1. Expected transformations. It is well known that X ≥L Y if and
only if E(φ( XµX

)) ≥ E(φ( Y
µY

)), for every convex function φ (Marshall et al.,

2011). Therefore, any functional of the form

Tφ(F ) = E
(
φ

(
X

µX

))
=

∫ ∞
0

φ

(
x

µX

)
dF (x) =

∫ 1

0

φ

(
F−1(p)

µX

)
dp,

where φ is convex, is isotonic with ≥L, as it is easily seen to satisfy the
properties of inequality measures (Lando and Bertoli-Barsotti, 2016). Now,
the corresponding statistical functional is Tφ(Fn) = 1

n

∑
φ( Xi

Xn
), where Xn is

the sample mean. Several well-known indices belong to this general family,
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among which we may note the class of generalized entropy, or additively
decomposable measures of inequality (Shorrocks, 1980; Shorrocks and Slottje,
2002), obtained by setting φr(x) = 1

r(r−1)x
r, r 6= 0, 1, φ0(x) = − log x, or

φ1(x) = x log x, respectively, which yield

Ir(Fn) =


1

r(r−1)n

∑
( Xi

Xn
)r r 6= 0, 1

1
n

∑
log(Xn

Xi
) r = 0

1
n

∑ Xi

Xn
log( Xi

Xn
) r = 1.

This class gives, for r = 1, the Theil index, that is, a shifted version of the
Shannon’s entropy measure, applied to the quantities Xi

nXn
instead of prob-

abilities; for r ∈ (0, 1], a monotonic transformation of the Atkinson’s class
(Atkinson, 1970); and, for r = 2, a simple transformation of the coefficient

of variation CVn, that is, (2Ir)
1
2 = CVn. Moreover, when φ(x) = |x − 1|,

we obtain the relative mean absolute deviation Tφ(Fn) = 1
nXn

∑
|Xi − Xn|.

Then, the following result is an immediate consequence of Corollary 10.

Corollary 11. If X ≥∗ Y , then 1
n

∑
φ( Xi

Xn
) ≥st 1

n

∑
φ( Yi

Y n
), for every convex

function φ.

Notice that Arendarczyk et al. (2021) proved that the Greenwood statistic
has a stochastic increasing behavior with respect to the star order. However,
since the Greenwood statistic is a transformation of the coefficient of varia-
tion, namely (1 + CV 2

n )/n, Theorem 1 of Arendarczyk et al. (2021) follows
as a consequence of Corollary 11.

3.2. Distorted expectations. Let H be a distortion function, that is a non-
decreasing function on the unit interval, such that H(0) = 0 and H(1) = 1,
and let H̃(p) = 1−H(1− p) be the corresponding dual distortion function.
Probability functionals of the form

EH(F ) =
1

µX

∫ ∞
0

x dH ◦ F (x) =
1

µX

∫ 1

0

F−1(p) dH(p)

=
1

µX

∫ ∞
0

H̃(1− F (x)) dx,

are generally referred to as distorted expectations, distortion risk measures,
or Gini-type functionals (Wang and Young, 1998; Muliere and Scarsini, 1989;
Lando and Bertoli-Barsotti, 2020). It can be seen that X ≥L Y if and only
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if EH(F ) ≤ (≥)EH(G), for every concave (convex) distortion H. Then, EH
is antitonic with respect to ≥L, provided that H is concave. If we denote
by X(1), . . . , X(n) the order statistics of a random sample from X, the corre-
sponding statistical functional is

EH(Fn) =
1

Xn

∑
X(i)

∫ i
n

i−1
n

dH(p) =
1

Xn

∑
X(i)

[
H

(
i

n

)
−H

(
i− 1

n

)]
.

Such linear combinations of order statistics are generally referred to as L-
statistics (Serfling, 1984). Several important indices belong to this family.
For instance, by choosing H(p) = 1− (1− p)k, k ≥ 1, we obtain the class of
generalized Gini indices ΓH = 1−EH , introduced by Donaldson and Weymark
(1980). In particular, the classic Gini coefficient of inequality (Gini, 1912) is
given by Γ = ΓH , with H(p) = 1− (1− p)2, that is

Γ(Fn) = 1− 1

n2Xn

∑
X(i)(2n− 2i+ 1) = 1− 2

∫ 1

0

LFn
(p) dp

=

∑n
i=1

∑n
j=1 |X(i) −X(j)|
2n2Xn

.

As for the expressions above, we recall that there are several alternative
ways to represent Γ (see Chapter 1 of Yitzhaki and Schechtman (2013)).
For example, note that, if k is a positive integer,

∫∞
0 (1 − F (x))k dx =

E(min(X1, . . . , Xk)), so that Γ(F ) = 1− E(min(X1,X2))
µX

.

Similarly, the functional 1
µX

∫∞
0 F−1(p)h(p) dp, where h is non-decreasing

and such that H(p) =
∫ p

0 h(t) dt, p ∈ [0, 1], is isotonic with respect to ≥L.
If we set w(p) = h(p) − 1, p ∈ [0, 1], without loss of generality in terms of
isotonicity, we obtain the family of linear inequality measures

Γ̃w(F ) =
1

µX

∫ 1

0

F−1(p)w(p) dp,

studied by Mehran (1976). In particular, it can be shown that the weight
function w(p) = 2p−1 yields again the Gini coefficient, whereas w(p) = 0, p ∈
(0, 1), w(0) = −1, w(1) = 1 gives the relative range Γ̃w(Fn) = 1

Xn
(X(n)−X(1)).

It is easy to see that ΓH and Γ̃w, as probability functionals, satisfy the four
properties of inequality measures discussed earlier. Again, Corollary 10 gives
the following result.
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Corollary 12. If X ≥∗ Y , then ΓH(Fn) ≥1 ΓH(Gn), for every concave dis-
tortion function H, and Γ̃w(Fn)≥stΓ̃w(Gn), for every non-decreasing weight

function w on [0, 1] such that
∫ 1

0 w(p) dp = 0.

3.3. Some useful remarks. One may wonder if, in Theorem 5, a transform
order may be replaced by a different kind of order �, that is, if, in general,
F � G and T ∈ I(�) imply T (Fn) ≥st T (Gn), where � is not a transform
order. For instance, can one replace ≥∗ by ≥L in Corollary 10? More gener-
ally, one may even wonder if the stochastic ordering assumption between the
baseline distributions could be relaxed: for instance, would T (F ) ≥ T (G) suf-
fices to obtain T (Fn) ≥st T (Gn)? (This would also mean that T (F ) = T (G)
implies T (Fn) =d T (Gn)). The following counterexample provides a negative
answer to these conjectures.

Let X and Y be the discrete random variables with uniform probabilities
on the supports {1, 3.5, 6, 6.5, 9, 11} and {2, 3, 5, 7, 7.5, 10}, respectively. It
is easily seen that F ≥L G and Γ(F ) > Γ(G), but F 6≥e∗ G. Note that we
focus on discrete distributions, because, using continuous parametric models,
it is difficult to find instances such that F ≥L G and F 6≥e∗ G. In the dis-
crete case, the distributions of Γ(Fn) and Γ(Gn) are also discrete, with finite
support included in the unit interval. Therefore, we may obtain a precise
approximation of these distributions, for small sample size, by using a large
number of simulation runs. An approximate representation of the cumula-
tive distribution functions of Γ(Fn) and Γ(Gn), based on one million random
samples of size n = 3 from F and G, is shown in Figure 1. The functions are
clearly crossing, hence Γ(Fn) 6≥st Γ(Gn). In particular, we observe that these
functions exhibit some “bumps” within different intervals, and this repre-
sents an obstruction for the dominance relation. When the distributions are
star ordered (F ≥e∗ G), such bumps occur within some overlapping intervals,
indeed the dominance relation is guaranteed by Corollary 10. We obtained
a similar behavior for other small sample sizes, such as n = 4, 5. This re-
sult is quite unexpected, however, we may conclude that both conjectures
above are false. In particular, the behavior of the functionals is not “under
control” if the sample size is small, whereas we know that, for large sample
sizes, under some conditions (which are satisfied for probability functionals
of the form

∫
t(x) dF (x), such as transformed and distorted expectations),
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Figure 1. Cumulative distribution functions of the Gini coeffi-
cient, generated by 1000000 samples from F (thick) and G (thin).

statistical functionals converge to the constant value T (F ). Therefore, trans-
form orders provide suitable tools for controlling the stochastic behavior of
statistical functionals.

4. Application to goodness-of-fit tests
In the statistical literature, tests for the null hypothesis

H0 : G−1F ∈ C, (1)

where F is the distribution of interest and G is known, may be particularly
interesting. Hereafter we will focus on the case in which G(0) = 0, to avoid
some technical issues. Tests for H0 : G ≥c F and H0 : G ≥∗ F have several
applications: for example, by choosing G to be the unit exponential distri-
bution, we obtain tests for the increasing hazard rate (the hazard rate is the
derivative of − log(1−F )) and the increasing hazard rate average properties,
respectively, which are fundamental tools for survival analysis and reliability
theory (Marshall and Olkin, 2007). Tests of this kind have been studied,
for example, by Proschan and Pyke (1967), Barlow and Proschan (1969),
Bickel (1969), Bickel and Doksum (1969), Deshpande (1983), Tenga and
Santner (1984), Hall and Van Keilegom (2005), Durot (2007), Groeneboom
and Jongbloed (2012), Gijbels and Heckman (2004), Lando et al. (2021), or
Lando (2021), among many other authors.

4.1. Testing convexity. Let us define the greatest convex minorant of a
function φ, as the largest convex function φc that does not exceed φ (see Tenga
and Santner (1984) or Lando et al. (2021) for an explicit characterization of
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this function). An intuitive way of testing H0 : G ≥c F (Tenga and Santner,
1984; Durot, 2007; Groeneboom and Jongbloed, 2012; Lando et al., 2021)
consists in measuring the distance between G−1◦Fn and its greatest convex
minorant (G−1◦Fn)c, that is

Tc(Fn) = sup
Sn

|G−1◦Fn − (G−1◦Fn)c| = sup
Sn

(G−1◦Fn − (G−1◦Fn)c),

where Sn is the set of points X(2), . . . , X(n−1) (X(1), X(n) are neglected because

the difference G−1◦Fn− (G−1◦Fn)c is always 1
n there). A weighted version of

Tc(Fn) may also be considered without loss of generality. Of course, since H0

is a composite hypothesis, the determination of the least favorable distribution
of Tc(Fn) underH0 is especially critical. With regard to the increasing hazard
rate hypothesis, this distribution is indeed obtained by simulating from the
unit exponential, as proved by Tenga and Santner (1984). We remark that
a more general result may be achieved as an application of Theorem 7. As
expected, the least favorable distribution for Tc(Fn) under H0 : G ≥c F , is
determined just by simulating from G. Let ΦG

p (F ) = (G−1 ◦ F )c(F
−1(p)).

The following lemma is a consequence of Theorem 2.2 of Tenga and Santner
(1984), and it establishes the order-reversing behavior of ΦG

p .

Lemma 13. Assume that G ≥c F . Then ΦG
i
n

(Gn) ≤ ΦG
i
n

(F ∗n), for i = 1, . . . , n.

Then, Theorem 7 gives the following result. Note that this has been already
obtained by Lando et al. (2021), however, here we show it to illustrate our
method, as a particular case of a more general family of testing procedures.

Theorem 14. Under H0 : G ≥c F , Tc(Gn) ≥st Tc(Fn).

Proof : Clearly, by Lemma 13, −ΦG
i
n

(Gn) ≥ −ΦG
i
n

(F ∗n). Note that Tc(Fn) =

supi=2,...,n−1(G
−1( in)− ΦG

i
n

(Fn)), then Theorem 7 implies the result.

Therefore, we reject H0 when Tc(Fn) ≥ cα,n, where cα,n is the solution of
P (Tc(Gn) ≥ cα,n) ≥ α, and α is the size of the test. Alternatively, we can
compute the p-value of the test, that is, p = P (Tc(Gn) ≥ Tc(Fn)).

4.2. Testing starshapedness. Note that G ≥∗ F requires that F (0) =
0. Define the greatest starshaped minorant of a function φ, as the largest
starshaped function φ∗ that does not exceed φ. The same arguments used
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earlier may determine the least favorable distribution of the test statistic

T∗(Fn) = sup
Sn

|G−1◦Fn − (G−1◦Fn)∗| = sup
Sn

(G−1◦Fn − (G−1◦Fn)∗),

under H0 : G ≥∗ F .
Let ΨG

p (F ) = (G−1 ◦ F )∗(F
−1(p)). The following lemma establishes the

order-reversing behavior of ΨG
p , corresponding to Lemma 13.

Lemma 15. Assume that G ≥∗ F . Then ΨG
i
n

(Gn) ≤ ΨG
i
n

(F ∗n), for i =

1, . . . , n.

Proof : To simplify notations, let y1, . . . , yn be ordered realizations from G.
The function u = F−1 ◦G is, by assumption, anti-starshaped, and recall that
x∗i = u(yi) are the observations which determine F ∗n . Note that G−1◦Gn(yi) =
G−1( in). We now describe explicitly (G−1 ◦ Gn)∗ (see Wang (1988)). Let

ai = 1
yi
G−1( i−1

n ) be the slope of the line connecting the origin to the point

(yi, G
−1( i−1

n )). The analytical expression of the greatest starshaped minorant
is given by (G−1 ◦ Gn)∗(x) = αix, for x ∈ [yi−1, yi), where y0 = 0 and
αi = min{aj, j = i, . . . , n} (note that α = 0, and, moreover, starshapedness
requires that the slopes are increasing). (G−1◦F ∗n)∗ is defined similarly. Note
that the two functions have different domains, but coincide at corresponding
points: G−1 ◦ F ∗n((x∗i )

−) = G−1 ◦Gn(y
−
i ) = G−1( i−1

n ). We want to prove that
(G−1 ◦ F ∗n)∗(u(yi)) ≥ (G−1 ◦Gn)∗(yi), for i = 1, . . . n. It is sufficient to prove

G−1(k−1
n )

u(yk)
u(yi) ≥

G−1(k−1
n )

yk
yi ⇐⇒

u(yi)

yi
≥ u(yk)

yk
,

for k = i, . . . , n, which follows due to the anti-starshapedness of the function
u, that is, 1

xu(x) is decreasing.

Then, the following result is an immediate consequence of Theorem 7. The
proof is omitted.

Theorem 16. Under H0 : G ≥∗ F , T∗(Gn) ≥st T∗(Fn).

This is a novel result, which can be useful for testing goodness-of-fit to the
increasing hazard rate average family (see, for instance, Deshpande (1983))
or some generalizations of such a property, as described by Barlow et al.
(1971).

Remark 17. Note that the results obtained above may be further general-
ized. For instance we may consider other types of distances instead of the
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supremum norm, such as an empirical L1 distance between the estimators,
in the spirit of Groeneboom and Jongbloed (2012). Moreover, we may take,
as a test statistic, any distance between Fn and FGn = G◦ (G−1 ◦Fn)c (Lando,
2021), that is the so-called isotonic estimator of F under G ≥c F , as these are
just monotonic transformations of G−1◦Fn and (G◦Fn)c. The least favorable
distribution of test statistics of these kinds may be similarly derived via the
aforementioned method, and clearly the same arguments can be extended to
tests for G ≥∗ F .

4.3. A less conservative approach. As well known, the determination of
the least favorable distribution of Tc yields conservative tests. In order to
improve the power of the test against non-convex alternatives (H1 : G 6≥c F ),
a more modern approach consists in performing bootstrap resampling from
the distribution FG

n = G ◦ (G−1 ◦ Fn)c, that is the isotonic estimate of F ,
instead of sampling from G (Hall and Van Keilegom, 2005; Groeneboom and

Jongbloed, 2012). In particular, denote with F̂Gm the (bootstrap) empirical
distribution obtained by a random sample of size m from FG

n . The following
result holds.

Theorem 18. Under H0 : G ≥c F , Tc(Gn) ≥st Tc(F̂Gm).

Proof : Let FG
n be the s estimate of F which corresponds to the empirical

distribution F ∗n . FG
n is a realization of F̂Gm. Lemma 13 yields ΦG

i
n

(Gn) ≤
ΦG

i
n

(F ∗n), for i = 1, . . . , n. Note that FG
n is a minorant of F ∗n (equivalently,

(F ∗n)−1 is a minorant of (FG
n )−1). Then, since G−1 ◦ FG

n = (G−1 ◦ F ∗n)c, we
obtain

ΦG
i
n
(Gn) ≤ ΦG

i
n
(F ∗n) = (G−1 ◦ F ∗n)c((F

∗
n)−1(

i

n
))

≤ (G−1 ◦ F ∗n)c((F
G
n )−1(

i

n
)) = (G−1 ◦ FG

n )c((F
G
n )−1(

i

n
)) = ΦG

i
n
(FG

n ).

Hence, as shown in the proof of Theorem 14, we obtain that Tc(Gn) ≥st
Tc(F̂Gm).

Since quantiles are isotonic with ≥st, Theorem 18 ensures that, with this
method, we obtain a smaller critical value and, correspondingly, a higher
value of the power function under H1. The same arguments apply to tests
for G ≥∗ F .
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Summing up, Theorem 7 provides a flexible approach for determining the
least favorable distribution, as well as the behavior of bootstrap statistics,
in different kinds of testing procedures, especially when the test statistic, or
a suitable transformation of it, may be shown to fulfil an order-preserving
property with respect to a transform order.
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