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Universidade de Coimbra
Preprint Number 21–50

ON THE CATEGORICAL BEHAVIOUR OF LOCALES
AND D-LOCALIC MAPS

IGOR ARRIETA AND JAVIER GUTIÉRREZ GARCÍA

Abstract: It was shown by Banaschewski and Pultr that the classical adjunction
between Top and Loc restricts to an adjunction between the category TopD of
TD-spaces and their continuous maps, and the category LocD of all locales and
localic maps which preserve coveredness of primes. Despite the fact that LocD
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structure, and it is the aim of this paper to fill this gap. In particular, we show that
LocD is closed under finite products in Loc and moreover we characterize the ex-
istence of equalizers. As a consequence, it is proved that regular monomorphisms
in LocD are precisely the D-sublocales — the notion analogue to sublocale in the
TD-duality — a situation akin to the standard fact that sublocales are precisely
regular monomorphisms in Loc. The results are then applied to obtain the TD-ana-
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TD-spatiality of localic squares in terms of certain discrete covers of locales.
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1.Introduction
It is well known that sobriety and the TD-axiom somehow mirror each

other (cf. [5, 18]). In fact, besides the classical adjunction

Top Loc
Ω

Σ

⊥

that yields the equivalence between sober spaces and spatial locales, there
is also the adjunction

TopD LocD

Ω

Σ′

⊥
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introduced more recently by Banaschewki and Pultr [5]. Here, TopD de-
notes the full subcategory of Top consisting of TD-spaces and LocD is cer-
tain non-full subcategory of locales whose morphisms are D-localic maps
(namely, localic maps sending covered primes into covered primes). The
latter adjunction yields an equivalence between TopD and the category of
TD-spatial locales and D-localic maps between them. This adjunction en-
codes important aspects of TD-spaces, e.g., the fact that, similarly to sober
spaces, TD-spaces can also reconstructed from their lattices of open sets.

Despite the usefulness of the Banaschewski-Pultr adjunction in describ-
ing such phenomena concerning TD-spatiality and related topics (see, e.g.,
[5, 6, 1, 2]), not much is known about the categorical structure of LocD. In
this paper, we prove that finite products in LocD exist and are computed as
in Loc, though infinite products may fail to exist. Moreover, we fully char-
acterize the existence of equalizers thereby establishing relations with the
D-sublocales from [2]. More precisely, we show that the D-sublocales are
precisely the regular subobjects of LocD. Subsequently, we apply these re-
sults in order to obtain some TD-analogues of well-known results for sober
spaces. As another application, we give some new criteria of TD-spatial-
ity of localic squares in connection with the system of smooth sublocales
of a locale — a system that recently has attracted attention in point-free
topology [17, 9, 4, 3, 1].

2.Preliminaries
The main references on point-free topology are Johnstone [12] and the

more recent Picado and Pultr [14]. The standard notation and terminology
in the present paper follows that of [14].

Recall that a topological space X is TD if for each x ∈ X there is an open
neighborhood U of x such that U − {x} is open. Moreover, a locale L is
TD-spatial if L � Ω(X) for some TD-space X (see [5]).

If L is a locale, for each a ∈ L we denote by b(a) the least sublocale of L
containing a. If p is a prime in L, then b(p) = { p, 1 }.

A
∨

-base of a locale is a subset B ⊆ L such that every a ∈ L can be
expressed as a =

∨
B′ with B′ ⊆ B.

We follow the description of localic products (i.e., frame coproducts) as
explained in [14]; in particular L ⊕M stands for the localic product of L
and M. The localic product projections are denoted by π1 : L ⊕ M → L
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and π2 : L ⊕M→M, while their left adjoints, the coproduct injections, are
denoted by ι1 : L→ L ⊕M and ι2 : M→ L ⊕M.

In what follows, we provide some more specific preliminaries.

2.1. Primes and covered primes. The set of prime elements of a locale L
will be denoted by pt(L). Moreover, an element p ∈ L is said to be a covered
prime if for every {ai}i∈I ⊆ L with p =

∧
i∈I ai, there is an i ∈ I with p = ai. The

subset ptD(L) ⊆ pt(L) will denote the set of covered primes of L.

Remark 2.1. Elements p ∈ L such that p =
∧

i∈I ai implies the existence of an
i ∈ I with p = ai were also referred to as completely prime elements in [5].
However, this terminology was corrected in [6] because that term usually
means that

∧
i∈I ai ≤ p implies the existence of an i ∈ I with ai ≤ p. In a

general locale, the notions are not equivalent (see [6, Rem. 1]).

An alternative characterization of covered primes was given in [5,
Prop. 2.1.1]; it is the equivalence between (i) and (ii) of the following propo-
sition. For our purposes it will be convenient to present a modification of
this characterization for

∨
-bases:

Proposition 2.2. Let L be a locale and B ⊆ L a
∨

-base of L. If p ∈ pt(L), then the
following are equivalent:

(i) p is covered;
(ii) there is an a ∈ L with p < a such that p ≤ b ≤ a implies b = p or b = a;

(iii) there is an a ∈ L with p < a such that for all b ∈ B with b ≤ a, either b ≤ p or
a ≤ b ∨ p.

Proof : (i) =⇒ (ii). Let a =
∧
{ b ∈ L | p < b }. Since p is a covered prime, we

have p < a. If p < b ≤ a, we have a ≤ b and hence b = a.
(ii) =⇒ (iii). Let b ∈ B and set b′ = (b ∨ p) ∧ a. Then p ≤ b′ ≤ a, so either
b′ ≤ p or a ≤ b′. In the former case, since p is prime we have b ≤ b ∨ p ≤ p,
and the latter case is equivalent to a ≤ b ∨ p.
(iii) =⇒ (i). Let a ∈ L with p < a such that for all b ∈ B with b ≤ a, either
b ≤ p or a ≤ b ∨ p and suppose that p =

∧
i∈I ai. Then there is an i0 ∈ I such

that a 6≤ ai0. Now write a ∧ ai0 =
∨

Bi0 with Bi0 ⊆ B and let b ∈ Bi0. Then
b ≤ a and a 6≤ b ∨ p (if a ≤ b ∨ p then a ≤ (a ∧ ai0) ∨ p ≤ ai0) and so b ≤ p.
Consequently a ∧ ai0 =

∨
Bi0 ≤ p. By primality of p, we then necessarily

have ai0 ≤ p and so p = ai0.
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If p is a covered prime, it is not difficult to show that the element a > p
in (ii) and (iii) of Proposition 2.2 must coincide with

∧
{ b ∈ L | p < b } and

hence it is uniquely determined. We shall therefore refer to it as the cover
of p and we denote it by p+.

Note that an element p in L is maximal if and only if it is a covered prime
with cover p+ = 1.

Covered primes have the following very useful characterization in terms
of one-point sublocales:

Lemma 2.3 ([11, Prop. 10.2]). A prime p is covered in a locale L if and only if
b(p) is a complemented sublocale of L.

Moreover, coveredness of primes captures the TD-property:

Lemma 2.4 ([5, Prop. 2.3.2]). A T0-space X is TD if and only if X − {x} is a
covered prime in Ω(X) for every x ∈ X.

As is well known, localic maps always send prime elements into prime
elements. However the analogous assertion for covered primes is not
generally true (cf. [5, 6]). We shall say that a localic map f : L → M is
D-localic if f (p) ∈ ptD(L) for each p ∈ ptD(M) — i.e., if it sends covered
primes into covered primes. Following [5] we shall also say that a frame
homomorphism is a D-homomorphism if its right adjoint is a D-localic map.

Lemma 2.5 ([5, 3.2]). If X and Y are TD-spaces and f : X → Y is a continuous
map, then Ω( f ) : Ω(X)→ Ω(Y) is a D-localic map.

2.2.The TD-duality. The material in this subsection is due to Banaschewski
and Pultr [5]. For every a ∈ L, we set Σ′a = { p ∈ ptD(L) | a � p }. It turns
out that the family {Σ′a | a ∈ L } is a topology on ptD(L). This topology is
denoted by Σ′(L) and referred to as the TD-spectrum of L. It is not difficult
to show that Σ′(L) is always a TD-space (see [5, Prop. 3.3.2]). One defines
the following categories:

• FrmD is the category consisting of frames and D-homomorphisms be-
tween them. LocD is by definition the dual of FrmD — i.e., LocD = Frmop

D .
We regard LocD as a concrete category whose morphisms are D-localic
maps;
• TopD is the full subcategory of Top consisting of TD-spaces.
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Because of Lemma 2.5, the functor Ω : Top → Loc can be restricted to
a functor Ω : TopD → LocD. If f : L → M is a D-localic map, it may
be restricted and co-restricted to a map ptD(L) → ptD(M) which is easily
seen to be continuous with respect the topologies of the TD-spectra, and
so one obtains a morphism Σ′( f ) : Σ′(L) → Σ′(M) in TopD and a functor
Σ′ : LocD → TopD. Moreover, there is an adjunction

TopD LocD

Ω

Σ′

⊥

Furthermore, the unit η of the adjunction is a natural isomorphism (and
therefore Ω is full and faithful). Specifically, η has components ηX : X →
Σ′(Ω(X)) which are homeomorphisms and send x ∈ X to X − {x}.

The counit of the adjunction has components εL which are injective D-lo-
calic maps εL : Ω(Σ′(L)) � L sending Σ′a to

∧
{ p ∈ ptD(L) | a ≤ p }. The

map εL is called the TD-spatialization of L. We shall need the following easy
consequence:

Lemma 2.6. A locale is TD-spatial if and only if every element is a meet of covered
primes.

Proof : If X is a TD-space and U an open set, then U =
∧

x<U X−{x}with each
X−{x} covered by Lemma 2.4. For the converse, assume that every element
in L is a meet of covered primes. Then obviously the map εL defined above
is also surjective and thus an isomorphism. Thus L � Ω(Σ′(L)) with Σ′(L)
a TD-space.

Therefore, εL is an isomorphism if and only if L is TD-spatial and so
the adjunction restricts to an equivalence between TopD and the category
consisting of TD-spatial locales and D-localic maps between them.

Corollary 2.7. Let L and M be locales and f : L → M be a surjective D-localic
map. If L is TD-spatial then so is M.

2.3. A few properties of primes in finite products of locales. If L and M
are locales and a ∈ L and b ∈M, we denote aM b = (a⊕ 1)∨ (1⊕ b) ∈ L⊕M.

Lemma 2.8. Let L and M be locales, L ⊕ M the localic product of L and M,
π1 : L⊕M→ L and π2 : L⊕M→M the projections, a ∈ L and b ∈M, {ai}i∈I ⊆ L
and {b j} j∈J ⊆M. Then:
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(1) aM b = { (x, y) ∈ L ×M | x ≤ a or y ≤ b }.
(2)

(∧
i∈I ai

)
M

(∧
j∈J b j

)
=

∧
i∈I, j∈J ai M b j.

(3) If b , 1 then π1(aM b) = a and if a , 1 then π2(aM b) = b.
(4) If a is prime in L and b is prime in M then aM b is prime in L ⊕M.
(5) If a is a covered prime in L with cover a+ and b is a covered prime in M with

cover b+ then aMb is covered in L⊕M with cover (aMb)+ = (a+Mb)∧ (aMb+).

Proof : (1) follows easily from the fact that { (x, y) ∈ L ×M | x ≤ a or y ≤ b }
is a cp-ideal.

The inequality≤ in (2) is trivial so let us show the reverse one. Let (x, y) ∈∧
i∈i, j∈J aiMb j. By (1), we have to show that x ≤

∧
i∈i ai or y ≤

∧
j∈J b j. Assume

that x �
∧

i∈I ai. Then there is an i0 ∈ I with x � ai0. But (x, y) ∈
∧

i∈i, j∈J aiM b j
and so (x, y) ∈ ai0 M b j for all j ∈ J. By (1), we have y ≤ b j for all j ∈ J — i.e.,
y ≤

∧
j∈J b j.

For (3), we use the adjunction ι1 a π1 to compute

π1(aM b) =
∨
{ x ∈ L | x ⊕ 1 ≤ aM b } =

∨
{ x ∈ L | x ≤ a or b = 1 }.

Similarly π2(aM b) =
∨
{ y ∈M | a = 1 or y ≤ b }.

(4) can be shown using the fact that Σ : Loc → Top is a right adjoint
and hence it preserves limits. For the sake of completeness, we give a
direct proof. First, let a ∈ pt(L) and b ∈ pt(M). Let U1,U2 ∈ L ⊕ M
with U1 ∧ U2 ≤ a M b and suppose that U1 � a M b. Then there is an
(x1, y1) ∈ U1 with x1 � a and y1 � b. For each (x2, y2) ∈ U2, one has
(x1∧x2, y1∧ y2) ∈ U1∧U2 ≤ aMb, and so either x1∧x2 ≤ a or y1∧ y2 ≤ b. By
primality of a and b, it follows that either x2 ≤ a or y2 ≤ b. Thus U2 ≤ aM b
and aM b ∈ pt(L ⊕M).

For (5), let a ∈ ptD(L) and b ∈ ptD(M). Since { x ⊕ y | x ∈ L, y ∈ M } is a∨
-base of L ⊕M, we shall use Proposition 2.2 (iii) for proving that a M b is

covered with

(aM b)+ := (a+ M b) ∧ (aM b+) = (a+
⊕ b+) ∨ (aM b).

Obviously, a M b < (a M b)+ (if the equality holds then we would have
(a+, b+) ∈ (a+ M b) ∧ (a M b+) = a M b and so either a+

≤ a or b+
≤ b, a

contradiction). Now let x ∈ L and y ∈ M with x ⊕ y ≤ (a M b)+. If x ≤ a or
y ≤ b, then x ⊕ y ≤ a M b and we are done. Hence suppose that x � a and
y � b. Then a+

≤ x∨a and b+
≤ y∨b and so (aMb)+

≤ ((x∨a)⊕(y∨b))∨(aMb) =
(x ⊕ y) ∨ (aM b), as required. Hence aM b ∈ ptD(L ⊕M).
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Corollary 2.9. The map ϕL,M : pt(L)×pt(M)→ pt(L⊕M) given by ϕL,M(p, q) =
pM q is a bijection.

Proof : ϕL,M is well-defined by Lemma 2.8 (4) and it is obviously injective.
Moreover, given a prime U ∈ pt(L ⊕M), since localic maps send primes
into primes, one has p = π1(U) ∈ pt(L) and q = π2(U) ∈ pt(M) and clearly
pM q ≤ U. On the other hand, if (a, b) ∈ U then a⊕ b = (aM 0)∧ (0M b) ≤ U,
and since U is prime, either a M 0 ≤ U or 0 M b ≤ U. Assume without loss
of generality the former. Then ι1(a) = a ⊕ 1 = aM 0 ≤ U, i.e., a ≤ π1(U) = p
and thus (a, b) ∈ pM q. Consequently pM q = U and ϕL,M is surjective.

3.Finite products in LocD
We begin by showing that the localic product projections live in LocD.

Lemma 3.1. The localic product projections π1 : L⊕M→ L and π2 : L⊕M→M
are D-localic maps.

Proof : Let U ∈ ptD(L ⊕ M). Since in particular U is a prime in L ⊕ M,
by Corollary 2.9 there are p ∈ pt(L) and q ∈ pt(M) with U = p M q. By
Lemma 2.8 (3) we have to show that p ∈ ptD(L) and q ∈ ptD(M). We shall
only show that p ∈ ptD(L) since the other case is similar. Assume that
p =

∧
i ai with {ai}i∈I ⊆ L and let (a, b) ∈

∧
i(ai M q). If b ≤ q, then obviously

(a, b) ∈ p M q. On the other hand, if b � q, then a ≤ ai for all i ∈ I, and so
a ≤

∧
i ai = p. Thus (a, b) ∈ pMq. This shows that

∧
i(aiMq) ≤ pMq, whereas

the reverse inequality is trivial. Since U = p M q ∈ ptD(L ⊕M), there is an
i0 ∈ I with ai0 M q = pM q. Since q , 1, it follows that p = ai0.

Corollary 3.2. The map ψL,M : ptD(L) × ptD(M) → ptD(L ⊕ M) given by
ψL,M(p, q) = pM q is a bijection.

Proof : ψL,M is well-defined by Lemma 2.8 (5) and it is obviously injective.
Moreover, it is surjective by the proof of Lemma 3.1, because we showed
that if U ∈ ptD(L ⊕M), then U = pM q with p ∈ ptD(L) and q ∈ ptD(M).

Corollary 3.3. Let L and M be locales. Then the following are equivalent:
(i) L ⊕M is TD-spatial;

(ii) L ⊕M is spatial and both L and M are TD-spatial.

Proof : (i) =⇒ (ii) follows immediately from Lemma 3.1 and Corollary 2.7.
(ii) =⇒ (i): Let U ∈ L ⊕ M. Since L ⊕ M is spatial, then one can write
U =

∧
i∈I pi M qi with {pi}i∈I ⊆ pt(L) and {qi}i∈I ⊆ pt(M) by Corollary 2.9.
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Now, L is TD-spatial, so by Lemma 2.6, for each i ∈ I there is a family
{pi

j} j∈Ii ⊆ ptD(L) with pi =
∧

j∈Ii
pi

j. Similarly, for each i ∈ I there is a family
{qi

k}k∈Ji ⊆ ptD(M) with qi =
∧

k∈Ji
qi

k. By Lemma 2.8 (2) and (5), it follows
that U =

∧
i∈I, j∈Ii, k∈Ji

pi
j M qi

k with each pi
j M qi

k being covered in L ⊕M, so the
assertion now follows from Lemma 2.6.

We can now show the main result of this section.

Proposition 3.4. Let L and M be locales. Then the system (L ⊕M, π1, π1) is a
product in LocD. Consequently, the category LocD has finite products and the
inclusion functor I : LocD ↪→ Loc preserves them.

Proof : The localic product projections π1 and π2 are D-localic maps by
Lemma 3.1. It remains to be proved that if f : N → L and 1 : N → M are
D-localic maps, then the induced map 〈 f , 1〉 : N → L ⊕M is also D-localic.
Hence let p ∈ ptD(N). Then

〈 f , 1〉(p) =
∨
{ a ⊕ b | f ∗(a) ∧ 1∗(b) ≤ p } =

∨
{ a ⊕ b | f ∗(a) ≤ p or 1∗(b) ≤ p }

=
∨
{ a ⊕ b | a ≤ f (p) or b ≤ 1(p) } = ( f (p) ⊕ 1) ∨ (1 ⊕ 1(p))

= f (p)M 1(p).

Since f and 1 are D-localic, f (p) ∈ ptD(L) and 1(q) ∈ ptD(M), so the conclu-
sion now follows from Lemma 2.8 (5).

Since Σ′ : LocD → TopD is a right adjoint, it preserves products, so by
the previous corollary we can improve the bijection in Corollary 3.2 to a
homeomorphism (observe that finite products of TD-spaces are TD, hence
finite products in TopD are just products in Top):

Corollary 3.5. Let L and M be locales. Then the canonical map

(Σ′(π1),Σ′(π2)) : Σ′(L ⊕M)→ Σ′(L) × Σ′(M)

is a homeomorphism.

As an application of the above, we obtain a finite TD-analogue of a well-
known result for the classical spectrum, namely the fact that for sober spaces
Xi, if ⊕i∈IΩ(Xi) is spatial, then ⊕i∈IΩ(Xi) � Ω(⊕i∈I Xi) (see [14, IV 5.4.2]).

Corollary 3.6. Let X and Y be TD-spaces. Then the the following are equivalent:
(i) Ω(X) ⊕Ω(Y) � Ω(X × Y);

(ii) Ω(X) ⊕Ω(Y) is spatial;
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(iii) Ω(X) ⊕Ω(Y) is TD-spatial.

Proof : (i) =⇒ (ii) is trivial and the equivalence between (ii) and (iii) follows
from Corollary 3.3. Finally, assume that Ω(X) ⊕Ω(Y) is TD-spatial. Then,
Ω(X) ⊕Ω(Y) � Ω(Σ′(Ω(X) ⊕Ω(Y)) via the counit of the adjunction Ω ` Σ′

which is an isomorphism by TD-spatiality. Finally,

Ω(Σ′(Ω(X) ⊕Ω(Y)) � Ω(Σ′(Ω(X)) × Σ′(Ω(Y))) � Ω(X × Y),

where the first isomorphism follows by applying Ω to the homeomorphism
in Corollary 3.5, and the second isomorphism follows from the fact that
the unit of the adjunction Ω ` Σ′ is always an isomorphism. Hence Ω(X)⊕
Ω(Y) � Ω(X × Y).

3.1.Infinite products in LocD. In order to state the fact that
the category LocD does not have infinite products,

we shall need the fact that infinite products of the Sierpinski space in TopD
fail to exist.

It is well known that infinite products of Sierpinski spaces are not TD (see
[8, 10]). Actually, infinite products of TD spaces that are not T1 are never
TD ([19]). However, some more work has to be done in order to assert that
such products do not exist in TopD. Since we have not found this result in
the literature, we present it Appendix A.

Now, for each n ∈ N, let Ln = Ω(S) be the Sierpinski locale. If (Ln)n∈N
had a product in LocD, we would have a countable product of Σ′(Ω(S)) � S
in TopD because Σ′ : LocD → TopD preserves products (as a right adjoint).
However, such product does not exist by Fact A.1.

4.D-sublocales and equalizers
We recall from [2] that a sublocale S ⊆ L is a D-sublocale if the embedding

S ↪→ L is a D-localic map — i.e., if ptD(S) ⊆ ptD(L). Plenty of sublocales
are actually D-sublocales (e.g. every join of complemented sublocales is
a D-sublocale, and so is every sublocale without covered primes, cf. [2,
p. 11]). In fact, the system of D-sublocales of a locale plays an important role
in the TD-duality (see for example [2, Thm. 3.21] for a Niefield-Rosenthal
type theorem which characterizes locales whose sublocales are TD-spatial).

Now, it is clear that if the equalizer of two D-localic maps computed in
Loc is a D-sublocale, then it is also the equalizer in LocD. Further, it follows
from the results in [2] that there is always the largest D-sublocale contained
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in a given sublocale, and it can therefore be tempting to conjecture that the
equalizer of any pair of D-localic maps is given by the largest D-sublocale
contained in their Loc-equalizer. However, it does not satisfy the appro-
priate universal property because the embedding part of the factorization
of a D-localic map is generally not a D-sublocale. In fact, equalizers in
LocD may fail to exist at all.

We start with the following:

Lemma 4.1. Let L and M be locales and f , 1 : L→M be localic maps. If e : E→ L
is an equalizer of f and 1 in LocD then e[E] is a D-sublocale of L.

Proof : Let p ∈ ptD(e[E]). By Lemma 2.3, b(p) is a complemented sublocale of
e[E] and it follows that e−1[b(p)] is a complemented sublocale of E. Indeed,
consider the factorization of e, namely

E e[E] L
j ι .

Then e−1[b(p)] = j−1[ι−1[b(p)]] = j−1[b(p) ∩ e[E]] = j−1[b(p)] and recall that
coframe homomorphisms preserve complements.

We distinguish two cases:
(1) Suppose first that there is some q ∈ ptD(e−1[b(p)]). Then b(q) ⊆ e−1[b(p)]
so by adjunction b(e(q)) = e[b(q)] ⊆ b(p) — i.e., e(q) = p. But e−1[b(p)] is
a complemented sublocale of E, so in particular it is a D-sublocale (see
[2, 2.4]). Thus q ∈ ptD(E), and since e is a D-localic map it follows that
p = e(q) ∈ ptD(L), as required.
(2) Assume now that ptD(e−1[b(p)]) = ∅ and select a locale M such that
pt(M) , ∅ and ptD(M) = ∅ (for example M = [0, 1]) and let h be the
composite

M b(p) L

where the first map is the unique surjection onto the terminal locale, hence
h(1) = 1 and h(a) = p for all a < 1. Since ptD(M) = ∅, h is a D-localic map,
and it equalizes f and 1 because so does e and p ∈ e[E]. Hence there is
a unique D-localic map k : M → E such that ek = h. Let p0 ∈ pt(M) and
q0 := k(p0). Since localic maps send primes into primes, we have q0 ∈ pt(E),
and e(q0) = h(p0) = p.

Finally, let ` be the composite

e−1[b(p)] b(q0) E .
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Then e◦` = e◦ιwhere ι : e−1[b(p)] ↪→ E is the inclusion. Since ptD(e−1[b(p)]) =
∅, ` and ι are trivially D-localic maps and by the uniqueness clause of
the equalizer we must then have ` = ι. But then b(q0) = e−1[b(p)] is a
complemented sublocale of E — i.e., q0 ∈ ptD(E). Since e is a D-localic map,
p = e(q0) ∈ ptD(L), as required.

Proposition 4.2. Let L and M be locales and let f , 1 : L→M be D-localic maps.
If the equalizer of f and 1 exists in LocD then their Loc-equalizer is a D-sublocale.

Proof : Assume that

E L Me
f

1

is an equalizer in LocD and let S ⊆ L be the equalizer of f and 1 in Loc, hence
e[E] ⊆ S by the universal property of the equalizer, and by the previous
lemma we know that e[E] is a D-sublocale of L. Let p ∈ ptD(S). Select a
nontrivial pointless Boolean algebra B and let h be the composite

B b(p) L

where the first map is the unique surjection onto the terminal locale, hence
h(1) = 1 and h(a) = p for all a < 1. Since ptD(B) ⊆ pt(B) = ∅, h is a D-localic
map, and it equalizes f and 1 because p ∈ S. Hence there is a unique
D-localic map k : B→ E such that ek = h. Then p = h(0) = e(k(0)) ∈ e[E] ⊆ S
and since e[E] is a D-sublocale, p ∈ ptD(S)∩e[E] ⊆ ptD(e[E]) ⊆ ptD(L). Hence
S is a D-sublocale.

Example 4.3. Let L = { 0 } ∪ { 1
n | n ∈ N } and f : L → L given by f (0) = 0,

f (1) = 1 and f (1
n) = 1

n+1 . One readily verifies that f is a D-localic map. It
follows that

b(0) = { 0, 1 } L L
1L

f

is the equalizer in Loc and hence the equalizer of f and 1L in LocD does not
exist because b(0) is not a D-sublocale.

By the comment at the beginning of this section we have:

Corollary 4.4. Let L and M be locales and let f , 1 : L → M be D-localic maps.
Then the equalizer of f and 1 in LocD exists if and only if the equalizer of f and 1
in Loc is a D-sublocale (and so their equalizers in Loc and LocD coincide).
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A sufficient condition for the situation in Proposition 4.2 is as follows:

Proposition 4.5. If M has a complemented diagonal (e.g., if M is locally strongly
Hausdorff), then, for every pair of morphisms f , 1 : L→M in LocD, their equalizer
in LocD exists and is given by their equalizer in Loc.

Proof : It follows from general category theory that the equalizer of f and
1 in Loc can be computed as the preimage (=pullback) of the diagonal
along the map 〈 f , 1〉 : L→ M ⊕M. But the preimage operator is a coframe
homomorphism [16, 14] and so it sends complemented sublocales into
complemented sublocales. It follows that the equalizer in Loc is a com-
plemented sublocale of L. But complemented sublocales are D-sublocales
(see [2, Cor. 2.4]).

In [2] we claimed that D-sublocales play the role of plain sublocales
in the duality of TD-spaces. In what follows, we provide some more
evidence of this assertion by showing that they are precisely the regular
monomorphisms in LocD (cf. the fact that sublocales are precisely regular
monomorphisms in Loc).

Proposition 4.6. Any D-sublocale is a regular monomorphism in LocD.

Proof : Let S ⊆ L be a D-sublocale. As is well known, sublocale embeddings
are regular monomorphisms in Loc, and hence S ↪→ L is the equalizer of
its cokernel pair in Loc — i.e., there is an equalizer diagram

S L P
f

1

in Loc, where P = { (x, y) ∈ L × L | νS(x) = νS(y) } (νS denotes the nucleus
associated to the sublocale S),

f (a) =
∨
{ (b, c) ∈ P | b ≤ a } = (a, νS(a))

and
1(a) =

∨
{ (b, c) ∈ P | c ≤ a } = (νS(a), a)

for each a ∈ L. Observe that f (resp. 1) is the right adjoint of the coordinate
projection P→ L sending (b, c) to b (resp. (b, c) to c).

Clearly, it suffices to show that f and 1 are D-localic maps, as then the
equalizer diagram above will be a equalizer diagram in LocD. By symmetry,
we shall just prove it for f . Let p ∈ ptD(L) and denote by p+ the cover of p
in L. We distinguish two cases:
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(1) If p ∈ S then νS(p) = p, and since p < p+ it follows that f (p) = (p, p) <
(p+, p+). Let (b, c) ∈ P with

f (p) = (p, p) ≤ (b, c) ≤ (p+, p+).

Then p ≤ b ∧ c ≤ p+ and we again distinguish two cases:
(1.1) If b∧ c = p then b ≤ νS(b) = νS(b∧ c) = νS(p) = p and hence (b, c) ≤ f (p).
(1.2) If b ∧ c = p+ then (p+, p+) ≤ (b, c).
Consequently (p+, p+) is the cover of f (p) in P.
(2) If p < S — i.e., p < νS(p) then since p ≤ νS(p) ∧ p+

≤ p+ and p is prime,
we must have νS(p)∧ p+ = p+. It follows that νS(p+) = νS(p) and so we have
f (p) = (p, νS(p)) = (p, νS(p+)) < (p+, νS(p+)) = f (p+). Let (b, c) ∈ P with

f (p) = (p, νS(p+)) ≤ (b, c) ≤ (p+, νS(p+)) = f (p+).

Then p ≤ b ≤ p+ and c = νS(p+). If b = p then clearly (b, c) = f (p), and if
b = p+ then (b, c) = f (p+). Consequently f (p+) is the cover of f (p) in P.

Corollary 4.7. The D-sublocales are precisely the regular subobjects in LocD.

Proof : The “only if” implication follows from Proposition 4.6 whereas the
“if” implication follows from Proposition 4.2.

5.TD-spatiality of squares and the system of smooth sublo-
cales
We now give a further characterization of TD-spatiality of localic squares

in terms of functoriality properties of certain subcolocale of S(L). Let us
recall from [1] that the system

Sb(L) =
{ ∨

a∈A,b∈B
c(a) ∩ o(b) | A,B ⊆ L

}
is a subcolocale ofS(L) which is a Boolean algebra — indeed, it is precisely
the Booleanization ofS(L). Therefore, one may regardSb(L) as a discretiza-
tion of L, similar to S(L)op, but more discrete (as S(L)op is zero-dimensional
but it is seldom Boolean). Sublocales contained in Sb(L) are often referred
to as smooth sublocales.

Whenever L is subfit, Sb(L) coincides with the system of joins of closed
sublocales from [17]. This has recently attracted attention in point-free
topology; for instance, the naturality of the construction as a maximal es-
sential extension in the category of frames [4], its role as a discretization of
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L for modeling not necessarily continuous real-valued functions (conser-
vatively in the class of T1-spaces) [15], its (non-) functoriality properties [3],
or as a useful tool for studying several (conservative) point-free extensions
of classical topological properties [9].

We first recall the following result, which reveals also a strong connection
of the Boolean algebra Sb(L) with TD-spatiality of L:

Theorem 5.1 ([1, Thm. 3.4]). The following are equivalent for a locale L:
(i) L is TD-spatial;

(ii) The map m : P(ptD(L)) → Sb(L) which sends Y ⊆ ptD(L) to
∨

p∈Y b(p) is
an isomorphism (whose inverse ptD : Sb(L) → P(ptD(L)) sends S ∈ Sb(L) to
ptD(S));

(iii) There exists an isomorphism Sb(L) � P(ptD(L));
(iv) Sb(L) is atomic (i.e., it is spatial).

We are now in position to prove the main result, which connects preser-
vation of localic squares by Sb(−) and their TD-spatiality.

Theorem 5.2. Let L be a locale. Then the localic product L ⊕ L in LocD is
TD-spatial if and only if there exists an isomorphism Sb(L) ⊕ Sb(L) � Sb(L ⊕ L).

Proof : If L ⊕ L is TD-spatial then, so is L and it follows from Theorem 5.1
that

m : P(ptD(L ⊕ L))→ Sb(L ⊕ L)
and

ptD ⊕ ptD : Sb(L) ⊕ Sb(L)→ P(ptD(L)) ⊕ P(ptD(L))
are isomorphisms. On the other hand, the map

ψL,L : ptD(L) × ptD(L)→ ptD(L ⊕ L)

from Corollary 3.2 is a bijection, and hence P(ψL,L) is an isomorphism
(where P is the covariant power set functor). Finally, it is well-known
(see for example [16, 1.6.4] for a direct proof) that for any set X, the map
P(X) ⊕ P(X) → P(X × X) that sends A ⊕ B ∈ P(X) ⊕ P(X) to A × B is an
isomorphism. Consequently, the composite

Sb(L) ⊕ Sb(L) Sb(L ⊕ L)

P(ptD(L)) ⊕ P(ptD(L)) P(ptD(L) × ptD(L)) P(ptD(L ⊕ L))

ptD⊕ptD

P(ψL,L)

m
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is an isomorphism.
Assume now that Sb(L) ⊕ Sb(L) � Sb(L ⊕ L) holds. Since Sb(L ⊕ L) is

Boolean, so is Sb(L) ⊕ Sb(L). In particular, the diagonal in Sb(L) ⊕ Sb(L) is
open and hence Sb(L) is atomic (see [13]). Now, since Sb(L) is atomic, the
product Sb(L) ⊕ Sb(L) is atomic as well (recall as we mentioned above that
P(X × X) � P(X) ⊕ P(X) for any set X). Thus Sb(L ⊕ L) is atomic, and by
Theorem 5.1 it follows that L ⊕ L is TD-spatial.

Appendix A. Infinite products of TD-spaces

Let S denote the Sierpinski space — i.e., { 0, 1 } with the topology
{∅, {1}, {0, 1} }.

Fact A.1. The countable power of S does not exist in the category TopD.

Proof : Suppose that a countable power of S exists in TopD, say (pn : X →
S)n∈N. Clearly, the forgetful functor U : TopD → Set is representable (the
singleton space is TD, hence U � TopD({∗},−)) and so it preserves limits,
in particular we may assume that, as sets, U(X) =

∏
n∈N S is the cartesian

product and pn is just the n-th coordinate projection. Since the projections
pn : X→ S are continuous, by the universal property of the product in Top,
the identity X → (

∏
n∈N S, τTych) is continuous — i.e., τTych ⊆ Ω(X) (where

τTych denotes the product (Tychonoff) topology).
However, since a countable product of Sierpinski spaces is not TD (see

[8]) we conclude that τTych ( Ω(X) and hence there is an V0 ∈ Ω(X) − τTych.
Consider now the space

(
∏

n∈N
S, τBox)

where τBox is the box topology and denote by βTych (resp. βBox) the usual
bases of τTych (resp. τBox) consisting of products of opens where all but
finitely many are proper (resp. all products of opens).

Observe that (
∏

n∈N S, τBox) is a TD-space. Indeed, let x = (xn)n∈N ∈∏
n∈N S. Set B :=

∏
n∈N Vn ∈ βBox with Vn = {1} if xn = 1 and Vn = {0, 1} if

xn = 0. Moreover, let F :=
∏

n∈N Fn with Fn = {0} if xn = 0 and Fn = {0, 1}
if xn = 1. Then F is closed in the box topology. Thus B is an open
neighborhood of x and B − {x} = B − F is open and so (

∏
n∈N S, τBox) is

TD. Since the projections pn : (
∏

n∈N S, τBox) → S are continuous, by the
universal property of the product in TopD, the identity (

∏
n∈N S, τBox)→ X
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is continuous — i.e., Ω(X) ⊆ τBox.Consequently V0 ∈ τBox and we can write

V0 =
⋃
j∈J

B j ∪
⋃
i∈I

Bi

where Bi ∈ βTych and B j ∈ βBox − βTych for all i ∈ I, j ∈ J. (Note that J must be
non-empty since V < τTych and we can assume that Bi,B j , ∅). Then

Bi =
∏

n∈N
Vi

n, B j =
∏

n∈N
V j

n,

where Vi
n,V

j
n ∈ { {1}, {0, 1} }, and for j ∈ J, the set A j := {n ∈N | V j

n = {1} } is
infinite, while for i ∈ I, Vi

n = {1} only for finitely many n ∈N.
Let us fix an j0 ∈ J such that B j0 *

⋃
i∈I Bi (if B j ⊆

⋃
i∈I Bi for all j ∈ J

then V0 =
⋃

i∈I Bi ∈ τTych). Further, let R be the real line endowed with the
usual topology and fn : R → S be the characteristic function of the open
interval (−1

n ,
1
n) whenever V j0

n = {1} and the constant function with value
0 whenever V j0

n = {0, 1}. Then fn is obviously continuous for all n and
since R is TD, by the universal property of the product in TopD, the map
f := ( fn)n∈N : R→ X is continuous.

We now compute f−1(Bi) and f−1(B j) for each i ∈ I and j ∈ J.
Let i ∈ I. Since B j0 * Bi, there is an n0 ∈N with V j0

n0
= {0, 1} and Vi

n0
= {1}.

Then fn0 = 0 and so

f−1(Bi) =
⋂

n∈N
f−1
n (Vi

n) ⊆ f−1
n0

(Vi
n0

) = ∅.

Let j ∈ J. We distinguish two cases:
(1) If B j0 * B j then, as in the previous case, f−1(B j) = ∅.
(2) If B j0 ⊆ B j and n ∈ A j then V j

n = {1} = V j0
n and fn is the characteristic

function of the open interval (−1
n ,

1
n). Hence

f−1(B j) =
⋂

n∈N
f−1
n (V j

n) =
⋂

n∈A j

f−1
n ({1}) =

⋂
n∈A j

(−1/n, 1/n) = {0}

(because A j is infinite).
Hence,

f−1(V0) =
⋃

B j0⊆B j

f−1(V j) ∪
⋃

B j0*B j

f−1(B j) ∪
⋃
i∈I

f−1(Bi) = {0},

which is not open in R. This is a contradiction and we conclude that the
countable power of S does not exist.
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