Pré-Publicações do Departamento de Matemática Universidade de Coimbra Preprint Number 21–50

ON THE CATEGORICAL BEHAVIOUR OF LOCALES AND D-LOCALIC MAPS

IGOR ARRIETA AND JAVIER GUTIÉRREZ GARCÍA

ABSTRACT: It was shown by Banaschewski and Pultr that the classical adjunction between Top and Loc restricts to an adjunction between the category Top_D of T_D -spaces and their continuous maps, and the category Loc_D of all locales and localic maps which preserve coveredness of primes. Despite the fact that Loc_D plays an important role in the T_D -duality, not much is known about its categorical structure, and it is the aim of this paper to fill this gap. In particular, we show that Loc_D is closed under finite products in Loc and moreover we characterize the existence of equalizers. As a consequence, it is proved that regular monomorphisms in Loc_D are precisely the *D*-sublocales — the notion analogue to sublocale in the T_D -duality — a situation akin to the standard fact that sublocales are precisely regular monomorphisms in Loc. The results are then applied to obtain the T_D -analogues of some familiar results for sober spaces and some new characterizations of T_D -spatiality of localic squares in terms of certain discrete covers of locales.

Keywords: Locale, covered prime, T_D -space, T_D -spatial locale, D-localic map, D-sublocale, product, equalizer.

MATH. SUBJECT CLASSIFICATION (2020): 06D22, 18F70.

1.Introduction

It is well known that sobriety and the T_D -axiom somehow mirror each other (cf. [5, 18]). In fact, besides the classical adjunction

Top
$$\overbrace{\Sigma}^{\Omega}$$
 Loc

that yields the equivalence between sober spaces and spatial locales, there is also the adjunction

$$\mathsf{Top}_{\mathsf{D}} \xrightarrow{\Omega} \mathsf{Loc}_{D}$$

Received December 6, 2021.

introduced more recently by Banaschewki and Pultr [5]. Here, Top_D denotes the full subcategory of Top consisting of T_D -spaces and Loc_D is certain non-full subcategory of locales whose morphisms are *D*-localic maps (namely, localic maps sending covered primes into covered primes). The latter adjunction yields an equivalence between Top_D and the category of T_D -spatial locales and *D*-localic maps between them. This adjunction encodes important aspects of T_D -spaces, e.g., the fact that, similarly to sober spaces, T_D -spaces can also reconstructed from their lattices of open sets.

Despite the usefulness of the Banaschewski-Pultr adjunction in describing such phenomena concerning T_D -spatiality and related topics (see, e.g., [5, 6, 1, 2]), not much is known about the categorical structure of Loc_D. In this paper, we prove that finite products in Loc_D exist and are computed as in Loc, though infinite products may fail to exist. Moreover, we fully characterize the existence of equalizers thereby establishing relations with the *D*-sublocales from [2]. More precisely, we show that the *D*-sublocales are precisely the regular subobjects of Loc_D. Subsequently, we apply these results in order to obtain some T_D -analogues of well-known results for sober spaces. As another application, we give some new criteria of T_D -spatiality of localic squares in connection with the system of smooth sublocales of a locale — a system that recently has attracted attention in point-free topology [17, 9, 4, 3, 1].

2. Preliminaries

The main references on point-free topology are Johnstone [12] and the more recent Picado and Pultr [14]. The standard notation and terminology in the present paper follows that of [14].

Recall that a topological space *X* is T_D if for each $x \in X$ there is an open neighborhood *U* of *x* such that $U - \{x\}$ is open. Moreover, a locale *L* is T_D -spatial if $L \cong \Omega(X)$ for some T_D -space *X* (see [5]).

If *L* is a locale, for each $a \in L$ we denote by b(a) the least sublocale of *L* containing *a*. If *p* is a prime in *L*, then $b(p) = \{p, 1\}$.

A \lor -base of a locale is a subset $B \subseteq L$ such that every $a \in L$ can be expressed as $a = \lor B'$ with $B' \subseteq B$.

We follow the description of localic products (i.e., frame coproducts) as explained in [14]; in particular $L \oplus M$ stands for the localic product of L and M. The localic product projections are denoted by $\pi_1: L \oplus M \to L$

and π_2 : $L \oplus M \to M$, while their left adjoints, the coproduct injections, are denoted by ι_1 : $L \to L \oplus M$ and ι_2 : $M \to L \oplus M$.

In what follows, we provide some more specific preliminaries.

2.1. Primes and covered primes. The set of prime elements of a locale *L* will be denoted by pt(L). Moreover, an element $p \in L$ is said to be a *covered prime* if for every $\{a_i\}_{i \in I} \subseteq L$ with $p = \bigwedge_{i \in I} a_i$, there is an $i \in I$ with $p = a_i$. The subset $pt_D(L) \subseteq pt(L)$ will denote the set of covered primes of *L*.

Remark 2.1. Elements $p \in L$ such that $p = \bigwedge_{i \in I} a_i$ implies the existence of an $i \in I$ with $p = a_i$ were also referred to as *completely prime* elements in [5]. However, this terminology was corrected in [6] because that term usually means that $\bigwedge_{i \in I} a_i \leq p$ implies the existence of an $i \in I$ with $a_i \leq p$. In a general locale, the notions are not equivalent (see [6, Rem. 1]).

An alternative characterization of covered primes was given in [5, Prop. 2.1.1]; it is the equivalence between (i) and (ii) of the following proposition. For our purposes it will be convenient to present a modification of this characterization for \lor -bases:

Proposition 2.2. *Let L be a locale and* $B \subseteq L a \lor$ *-base of L. If* $p \in pt(L)$ *, then the following are equivalent:*

- (i) *p* is covered;
- (ii) there is an $a \in L$ with p < a such that $p \le b \le a$ implies b = p or b = a;
- (iii) there is an $a \in L$ with p < a such that for all $b \in B$ with $b \le a$, either $b \le p$ or $a \le b \lor p$.

Proof: (i) \implies (ii). Let $a = \bigwedge \{b \in L \mid p < b\}$. Since *p* is a covered prime, we have p < a. If $p < b \le a$, we have $a \le b$ and hence b = a.

(ii) \implies (iii). Let $b \in B$ and set $b' = (b \lor p) \land a$. Then $p \le b' \le a$, so either $b' \le p$ or $a \le b'$. In the former case, since p is prime we have $b \le b \lor p \le p$, and the latter case is equivalent to $a \le b \lor p$.

(iii) \Longrightarrow (i). Let $a \in L$ with p < a such that for all $b \in B$ with $b \le a$, either $b \le p$ or $a \le b \lor p$ and suppose that $p = \bigwedge_{i \in I} a_i$. Then there is an $i_0 \in I$ such that $a \nleq a_{i_0}$. Now write $a \land a_{i_0} = \bigvee B_{i_0}$ with $B_{i_0} \subseteq B$ and let $b \in B_{i_0}$. Then $b \le a$ and $a \nleq b \lor p$ (if $a \le b \lor p$ then $a \le (a \land a_{i_0}) \lor p \le a_{i_0}$) and so $b \le p$. Consequently $a \land a_{i_0} = \bigvee B_{i_0} \le p$. By primality of p, we then necessarily have $a_{i_0} \le p$ and so $p = a_{i_0}$.

If *p* is a covered prime, it is not difficult to show that the element a > p in (ii) and (iii) of Proposition 2.2 must coincide with $\bigwedge \{b \in L \mid p < b\}$ and hence it is uniquely determined. We shall therefore refer to it as the *cover* of *p* and we denote it by p^+ .

Note that an element *p* in *L* is maximal if and only if it is a covered prime with cover $p^+ = 1$.

Covered primes have the following very useful characterization in terms of one-point sublocales:

Lemma 2.3 ([11, Prop. 10.2]). *A prime p is covered in a locale L if and only if* b(*p*) *is a complemented sublocale of L.*

Moreover, coveredness of primes captures the T_D -property:

Lemma 2.4 ([5, Prop. 2.3.2]). A T_0 -space X is T_D if and only if $X - \{x\}$ is a covered prime in $\Omega(X)$ for every $x \in X$.

As is well known, localic maps always send prime elements into prime elements. However the analogous assertion for covered primes is not generally true (cf. [5, 6]). We shall say that a localic map $f: L \to M$ is *D-localic* if $f(p) \in pt_D(L)$ for each $p \in pt_D(M)$ — i.e., if it sends covered primes into covered primes. Following [5] we shall also say that a frame homomorphism is a *D-homomorphism* if its right adjoint is a *D*-localic map.

Lemma 2.5 ([5, 3.2]). If X and Y are T_D -spaces and $f: X \to Y$ is a continuous map, then $\Omega(f): \Omega(X) \to \Omega(Y)$ is a D-localic map.

2.2. The T_D -duality. The material in this subsection is due to Banaschewski and Pultr [5]. For every $a \in L$, we set $\Sigma'_a = \{p \in pt_D(L) \mid a \not\leq p\}$. It turns out that the family $\{\Sigma'_a \mid a \in L\}$ is a topology on $pt_D(L)$. This topology is denoted by $\Sigma'(L)$ and referred to as the T_D -spectrum of L. It is not difficult to show that $\Sigma'(L)$ is always a T_D -space (see [5, Prop. 3.3.2]). One defines the following categories:

- Frm_D is the category consisting of frames and D-homomorphisms between them. Loc_D is by definition the dual of Frm_D — i.e., Loc_D = Frm^{op}_D. We regard Loc_D as a concrete category whose morphisms are D-localic maps;
- Top_D is the full subcategory of Top consisting of T_D-spaces.

Because of Lemma 2.5, the functor Ω : Top \rightarrow Loc can be restricted to a functor Ω : Top_{*D*} \rightarrow Loc_{*D*}. If $f: L \rightarrow M$ is a *D*-localic map, it may be restricted and co-restricted to a map $\text{pt}_D(L) \rightarrow \text{pt}_D(M)$ which is easily seen to be continuous with respect the topologies of the T_D -spectra, and so one obtains a morphism $\Sigma'(f): \Sigma'(L) \rightarrow \Sigma'(M)$ in Top_{*D*} and a functor $\Sigma': \text{Loc}_D \rightarrow \text{Top}_D$. Moreover, there is an adjunction

$$\mathsf{Top}_D \xrightarrow{\Omega}_{\Sigma'} \mathsf{Loc}_D$$

Furthermore, the unit η of the adjunction is a natural isomorphism (and therefore Ω is full and faithful). Specifically, η has components $\eta_X \colon X \to \Sigma'(\Omega(X))$ which are homeomorphisms and send $x \in X$ to $X - \overline{\{x\}}$.

The counit of the adjunction has components ϵ_L which are injective *D*-localic maps $\epsilon_L : \Omega(\Sigma'(L)) \rightarrow L$ sending Σ'_a to $\bigwedge \{p \in \text{pt}_D(L) \mid a \leq p\}$. The map ϵ_L is called the T_D -spatialization of *L*. We shall need the following easy consequence:

Lemma 2.6. A locale is T_D -spatial if and only if every element is a meet of covered primes.

Proof: If *X* is a T_D -space and *U* an open set, then $U = \bigwedge_{x \notin U} X - \overline{\{x\}}$ with each $X - \overline{\{x\}}$ covered by Lemma 2.4. For the converse, assume that every element in *L* is a meet of covered primes. Then obviously the map ϵ_L defined above is also surjective and thus an isomorphism. Thus $L \cong \Omega(\Sigma'(L))$ with $\Sigma'(L)$ a T_D -space.

Therefore, ϵ_L is an isomorphism if and only if *L* is T_D -spatial and so the adjunction restricts to an equivalence between Top_D and the category consisting of T_D -spatial locales and *D*-localic maps between them.

Corollary 2.7. Let L and M be locales and $f: L \to M$ be a surjective D-localic map. If L is T_D -spatial then so is M.

2.3. A few properties of primes in finite products of locales. If *L* and *M* are locales and $a \in L$ and $b \in M$, we denote $a \Im b = (a \oplus 1) \lor (1 \oplus b) \in L \oplus M$.

Lemma 2.8. Let *L* and *M* be locales, $L \oplus M$ the localic product of *L* and *M*, $\pi_1: L \oplus M \to L$ and $\pi_2: L \oplus M \to M$ the projections, $a \in L$ and $b \in M$, $\{a_i\}_{i \in I} \subseteq L$ and $\{b_j\}_{j \in J} \subseteq M$. Then:

- (1) $a \Re b = \{ (x, y) \in L \times M \mid x \le a \text{ or } y \le b \}.$
- (2) $\left(\bigwedge_{i\in I} a_i\right) \mathfrak{P}\left(\bigwedge_{j\in I} b_j\right) = \bigwedge_{i\in I, \ j\in J} a_i \mathfrak{P} b_j.$
- (3) If $b \neq 1$ then $\pi_1(a \And b) = a$ and if $a \neq 1$ then $\pi_2(a \And b) = b$.
- (4) If a is prime in L and b is prime in M then a \mathfrak{P} b is prime in $L \oplus M$.
- (5) If a is a covered prime in L with cover a^+ and b is a covered prime in M with cover b^+ then $a \Re b$ is covered in $L \oplus M$ with cover $(a \Re b)^+ = (a^+ \Re b) \land (a \Re b^+)$.

Proof: (1) follows easily from the fact that $\{(x, y) \in L \times M \mid x \le a \text{ or } y \le b\}$ is a *cp*-ideal.

The inequality \leq in (2) is trivial so let us show the reverse one. Let $(x, y) \in \bigwedge_{i \in i, j \in J} a_i \mathfrak{B} b_j$. By (1), we have to show that $x \leq \bigwedge_{i \in i} a_i$ or $y \leq \bigwedge_{j \in J} b_j$. Assume that $x \nleq \bigwedge_{i \in I} a_i$. Then there is an $i_0 \in I$ with $x \nleq a_{i_0}$. But $(x, y) \in \bigwedge_{i \in i, j \in J} a_i \mathfrak{B} b_j$ and so $(x, y) \in a_{i_0} \mathfrak{B} b_j$ for all $j \in J$. By (1), we have $y \leq b_j$ for all $j \in J$ — i.e., $y \leq \bigwedge_{j \in J} b_j$.

For (3), we use the adjunction $\iota_1 \dashv \pi_1$ to compute

$$\pi_1(a \ \mathfrak{B} \ b) = \bigvee \{ x \in L \mid x \oplus 1 \le a \ \mathfrak{B} \ b \} = \bigvee \{ x \in L \mid x \le a \text{ or } b = 1 \}.$$

Similarly $\pi_2(a \Re b) = \bigvee \{ y \in M \mid a = 1 \text{ or } y \leq b \}.$

(4) can be shown using the fact that $\Sigma: \text{Loc} \to \text{Top}$ is a right adjoint and hence it preserves limits. For the sake of completeness, we give a direct proof. First, let $a \in \text{pt}(L)$ and $b \in \text{pt}(M)$. Let $U_1, U_2 \in L \oplus M$ with $U_1 \wedge U_2 \leq a \ b$ and suppose that $U_1 \not\leq a \ b$. Then there is an $(x_1, y_1) \in U_1$ with $x_1 \not\leq a$ and $y_1 \not\leq b$. For each $(x_2, y_2) \in U_2$, one has $(x_1 \wedge x_2, y_1 \wedge y_2) \in U_1 \wedge U_2 \leq a \ b$, and so either $x_1 \wedge x_2 \leq a$ or $y_1 \wedge y_2 \leq b$. By primality of *a* and *b*, it follows that either $x_2 \leq a$ or $y_2 \leq b$. Thus $U_2 \leq a \ b$ and $a \ b \in \text{pt}(L \oplus M)$.

For (5), let $a \in \text{pt}_D(L)$ and $b \in \text{pt}_D(M)$. Since $\{x \oplus y \mid x \in L, y \in M\}$ is a \lor -base of $L \oplus M$, we shall use Proposition 2.2 (iii) for proving that $a \Im b$ is covered with

$$(a \mathfrak{B} b)^+ := (a^+ \mathfrak{B} b) \land (a \mathfrak{B} b^+) = (a^+ \oplus b^+) \lor (a \mathfrak{B} b).$$

Obviously, $a \ \mathfrak{P} b < (a \ \mathfrak{P} b)^+$ (if the equality holds then we would have $(a^+, b^+) \in (a^+ \ \mathfrak{P} b) \land (a \ \mathfrak{P} b^+) = a \ \mathfrak{P} b$ and so either $a^+ \leq a$ or $b^+ \leq b$, a contradiction). Now let $x \in L$ and $y \in M$ with $x \oplus y \leq (a \ \mathfrak{P} b)^+$. If $x \leq a$ or $y \leq b$, then $x \oplus y \leq a \ \mathfrak{P} b$ and we are done. Hence suppose that $x \not\leq a$ and $y \not\leq b$. Then $a^+ \leq x \lor a$ and $b^+ \leq y \lor b$ and so $(a \ \mathfrak{P} b)^+ \leq ((x \lor a) \oplus (y \lor b)) \lor (a \ \mathfrak{P} b) = (x \oplus y) \lor (a \ \mathfrak{P} b)$, as required. Hence $a \ \mathfrak{P} b \in \operatorname{pt}_D(L \oplus M)$.

Corollary 2.9. The map $\varphi_{L,M}$: pt(L) × pt(M) \rightarrow pt($L \oplus M$) given by $\varphi_{L,M}(p,q) = p \Im q$ is a bijection.

Proof: $\varphi_{L,M}$ is well-defined by Lemma 2.8 (4) and it is obviously injective. Moreover, given a prime $U \in pt(L \oplus M)$, since localic maps send primes into primes, one has $p = \pi_1(U) \in pt(L)$ and $q = \pi_2(U) \in pt(M)$ and clearly $p \Re q \leq U$. On the other hand, if $(a, b) \in U$ then $a \oplus b = (a \Re 0) \land (0 \Re b) \leq U$, and since U is prime, either $a \Re 0 \leq U$ or $0 \Re b \leq U$. Assume without loss of generality the former. Then $\iota_1(a) = a \oplus 1 = a \Re 0 \leq U$, i.e., $a \leq \pi_1(U) = p$ and thus $(a, b) \in p \Re q$. Consequently $p \Re q = U$ and $\varphi_{L,M}$ is surjective. ■

3. Finite products in Loc_D

We begin by showing that the localic product projections live in Loc_D.

Lemma 3.1. The localic product projections $\pi_1: L \oplus M \to L$ and $\pi_2: L \oplus M \to M$ are *D*-localic maps.

Proof: Let $U \in \text{pt}_D(L \oplus M)$. Since in particular U is a prime in $L \oplus M$, by Corollary 2.9 there are $p \in \text{pt}(L)$ and $q \in \text{pt}(M)$ with $U = p \Re q$. By Lemma 2.8 (3) we have to show that $p \in \text{pt}_D(L)$ and $q \in \text{pt}_D(M)$. We shall only show that $p \in \text{pt}_D(L)$ since the other case is similar. Assume that $p = \bigwedge_i a_i$ with $\{a_i\}_{i \in I} \subseteq L$ and let $(a, b) \in \bigwedge_i (a_i \Re q)$. If $b \leq q$, then obviously $(a, b) \in p \Re q$. On the other hand, if $b \nleq q$, then $a \leq a_i$ for all $i \in I$, and so $a \leq \bigwedge_i a_i = p$. Thus $(a, b) \in p \Re q$. This shows that $\bigwedge_i (a_i \Re q) \leq p \Re q$, whereas the reverse inequality is trivial. Since $U = p \Re q \in \text{pt}_D(L \oplus M)$, there is an $i_0 \in I$ with $a_{i_0} \Re q = p \Re q$. Since $q \neq 1$, it follows that $p = a_{i_0}$. ■

Corollary 3.2. The map $\psi_{L,M}$: $pt_D(L) \times pt_D(M) \rightarrow pt_D(L \oplus M)$ given by $\psi_{L,M}(p,q) = p \Re q$ is a bijection.

Proof: $\psi_{L,M}$ is well-defined by Lemma 2.8 (5) and it is obviously injective. Moreover, it is surjective by the proof of Lemma 3.1, because we showed that if *U* ∈ pt_{*D*}(*L* ⊕ *M*), then *U* = *p* \Re *q* with *p* ∈ pt_{*D*}(*L*) and *q* ∈ pt_{*D*}(*M*).

Corollary 3.3. *Let L and M be locales. Then the following are equivalent:*

(i) $L \oplus M$ is T_D -spatial;

(ii) $L \oplus M$ is spatial and both L and M are T_D -spatial.

Proof: (i) \implies (ii) follows immediately from Lemma 3.1 and Corollary 2.7. (ii) \implies (i): Let $U \in L \oplus M$. Since $L \oplus M$ is spatial, then one can write $U = \bigwedge_{i \in I} p_i \Re q_i$ with $\{p_i\}_{i \in I} \subseteq pt(L)$ and $\{q_i\}_{i \in I} \subseteq pt(M)$ by Corollary 2.9. Now, *L* is T_D -spatial, so by Lemma 2.6, for each $i \in I$ there is a family $\{p_j^i\}_{j\in I_i} \subseteq \mathsf{pt}_D(L)$ with $p_i = \bigwedge_{j\in I_i} p_j^i$. Similarly, for each $i \in I$ there is a family $\{q_k^i\}_{k\in J_i} \subseteq \mathsf{pt}_D(M)$ with $q_i = \bigwedge_{k\in J_i} q_k^i$. By Lemma 2.8 (2) and (5), it follows that $U = \bigwedge_{i\in I, j\in I_i, k\in J_i} p_j^i \Im q_k^i$ with each $p_j^i \Im q_k^i$ being covered in $L \oplus M$, so the assertion now follows from Lemma 2.6.

We can now show the main result of this section.

Proposition 3.4. Let *L* and *M* be locales. Then the system $(L \oplus M, \pi_1, \pi_1)$ is a product in Loc_D . Consequently, the category Loc_D has finite products and the inclusion functor I: $Loc_D \hookrightarrow Loc$ preserves them.

Proof: The localic product projections π_1 and π_2 are *D*-localic maps by Lemma 3.1. It remains to be proved that if $f: N \to L$ and $g: N \to M$ are *D*-localic maps, then the induced map $\langle f, g \rangle: N \to L \oplus M$ is also *D*-localic. Hence let $p \in \text{pt}_D(N)$. Then

$$\langle f, g \rangle(p) = \bigvee \{ a \oplus b \mid f^*(a) \land g^*(b) \le p \} = \bigvee \{ a \oplus b \mid f^*(a) \le p \text{ or } g^*(b) \le p \}$$
$$= \bigvee \{ a \oplus b \mid a \le f(p) \text{ or } b \le g(p) \} = (f(p) \oplus 1) \lor (1 \oplus g(p))$$
$$= f(p) \Re g(p).$$

Since *f* and *g* are *D*-localic, $f(p) \in \text{pt}_D(L)$ and $g(q) \in \text{pt}_D(M)$, so the conclusion now follows from Lemma 2.8 (5).

Since Σ' : Loc_{*D*} \rightarrow Top_{*D*} is a right adjoint, it preserves products, so by the previous corollary we can improve the bijection in Corollary 3.2 to a homeomorphism (observe that finite products of T_D -spaces are T_D , hence finite products in Top_{*D*} are just products in Top):

Corollary 3.5. Let L and M be locales. Then the canonical map

$$(\Sigma'(\pi_1), \Sigma'(\pi_2)) \colon \Sigma'(L \oplus M) \to \Sigma'(L) \times \Sigma'(M)$$

is a homeomorphism.

As an application of the above, we obtain a *finite* T_D -analogue of a wellknown result for the classical spectrum, namely the fact that for *sober* spaces X_i , if $\bigoplus_{i \in I} \Omega(X_i)$ is spatial, then $\bigoplus_{i \in I} \Omega(X_i) \cong \Omega(\bigoplus_{i \in I} X_i)$ (see [14, IV 5.4.2]).

Corollary 3.6. Let X and Y be T_D -spaces. Then the following are equivalent: (i) $\Omega(X) \oplus \Omega(Y) \cong \Omega(X \times Y)$; (ii) $\Omega(X) \oplus \Omega(Y)$ is spatial;

(iii) $\Omega(X) \oplus \Omega(Y)$ is T_D -spatial.

Proof: (i) \implies (ii) is trivial and the equivalence between (ii) and (iii) follows from Corollary 3.3. Finally, assume that $\Omega(X) \oplus \Omega(Y)$ is T_D -spatial. Then, $\Omega(X) \oplus \Omega(Y) \cong \Omega(\Sigma'(\Omega(X) \oplus \Omega(Y)))$ via the counit of the adjunction $\Omega \vdash \Sigma'$ which is an isomorphism by T_D -spatiality. Finally,

 $\Omega(\Sigma'(\Omega(X) \oplus \Omega(Y)) \cong \Omega(\Sigma'(\Omega(X)) \times \Sigma'(\Omega(Y))) \cong \Omega(X \times Y),$

where the first isomorphism follows by applying Ω to the homeomorphism in Corollary 3.5, and the second isomorphism follows from the fact that the unit of the adjunction $\Omega \vdash \Sigma'$ is always an isomorphism. Hence $\Omega(X) \oplus$ $\Omega(Y) \cong \Omega(X \times Y)$.

3.1. Infinite products in Loc_D. In order to state the fact that

the category Loc_D does not have infinite products,

we shall need the fact that infinite products of the Sierpinski space in Top_D fail to exist.

It is well known that infinite products of Sierpinski spaces are not T_D (see [8, 10]). Actually, infinite products of T_D spaces that are not T_1 are never T_D ([19]). However, some more work has to be done in order to assert that such products do not exist in Top_D. Since we have not found this result in the literature, we present it Appendix A.

Now, for each $n \in \mathbb{N}$, let $L_n = \Omega(\mathbb{S})$ be the Sierpinski locale. If $(L_n)_{n \in \mathbb{N}}$ had a product in Loc_D , we would have a countable product of $\Sigma'(\Omega(\mathbb{S})) \cong \mathbb{S}$ in Top_D because $\Sigma' : Loc_D \to Top_D$ preserves products (as a right adjoint). However, such product does not exist by Fact A.1.

4.*D*-sublocales and equalizers

We recall from [2] that a sublocale $S \subseteq L$ is a *D*-sublocale if the embedding $S \hookrightarrow L$ is a *D*-localic map — i.e., if $pt_D(S) \subseteq pt_D(L)$. Plenty of sublocales are actually *D*-sublocales (e.g. every join of complemented sublocales is a *D*-sublocale, and so is every sublocale without covered primes, cf. [2, p. 11]). In fact, the system of *D*-sublocales of a locale plays an important role in the T_D -duality (see for example [2, Thm. 3.21] for a Niefield-Rosenthal type theorem which characterizes locales whose sublocales are T_D -spatial).

Now, it is clear that if the equalizer of two *D*-localic maps computed in Loc is a *D*-sublocale, then it is also the equalizer in Loc_D . Further, it follows from the results in [2] that there is always the largest *D*-sublocale contained

in a given sublocale, and it can therefore be tempting to conjecture that the equalizer of any pair of *D*-localic maps is given by the largest *D*-sublocale contained in their Loc-equalizer. However, it does not satisfy the appropriate universal property because the embedding part of the factorization of a *D*-localic map is generally not a *D*-sublocale. In fact, equalizers in Loc_D may fail to exist at all.

We start with the following:

10

Lemma 4.1. Let L and M be locales and $f, g: L \to M$ be localic maps. If $e: E \to L$ is an equalizer of f and g in Loc_D then e[E] is a D-sublocale of L.

Proof: Let $p \in pt_D(e[E])$. By Lemma 2.3, b(p) is a complemented sublocale of e[E] and it follows that $e_{-1}[b(p)]$ is a complemented sublocale of E. Indeed, consider the factorization of e, namely

$$E \xrightarrow{j} e[E] \xrightarrow{\iota} L$$
.

Then $e_{-1}[\mathfrak{b}(p)] = j_{-1}[\iota_{-1}[\mathfrak{b}(p)]] = j_{-1}[\mathfrak{b}(p) \cap e[E]] = j_{-1}[\mathfrak{b}(p)]$ and recall that coframe homomorphisms preserve complements.

We distinguish two cases:

(1) Suppose first that there is some $q \in pt_D(e_{-1}[\mathfrak{b}(p)])$. Then $\mathfrak{b}(q) \subseteq e_{-1}[\mathfrak{b}(p)]$ so by adjunction $\mathfrak{b}(e(q)) = e[\mathfrak{b}(q)] \subseteq \mathfrak{b}(p)$ — i.e., e(q) = p. But $e_{-1}[\mathfrak{b}(p)]$ is a complemented sublocale of *E*, so in particular it is a *D*-sublocale (see [2, 2.4]). Thus $q \in pt_D(E)$, and since *e* is a *D*-localic map it follows that $p = e(q) \in pt_D(L)$, as required.

(2) Assume now that $pt_D(e_{-1}[\mathfrak{b}(p)]) = \emptyset$ and select a locale M such that $pt(M) \neq \emptyset$ and $pt_D(M) = \emptyset$ (for example M = [0,1]) and let h be the composite

$$M \longrightarrow \mathfrak{b}(p) \hookrightarrow L$$

where the first map is the unique surjection onto the terminal locale, hence h(1) = 1 and h(a) = p for all a < 1. Since $pt_D(M) = \emptyset$, h is a D-localic map, and it equalizes f and g because so does e and $p \in e[E]$. Hence there is a unique D-localic map $k: M \to E$ such that ek = h. Let $p_0 \in pt(M)$ and $q_0 := k(p_0)$. Since localic maps send primes into primes, we have $q_0 \in pt(E)$, and $e(q_0) = h(p_0) = p$.

Finally, let ℓ be the composite

$$e_{-1}[\mathfrak{b}(p)] \longrightarrow \mathfrak{b}(q_0) \hookrightarrow E$$
.

Then $e \circ \ell = e \circ \iota$ where $\iota: e_{-1}[\mathfrak{b}(p)] \hookrightarrow E$ is the inclusion. Since $\mathsf{pt}_D(e_{-1}[\mathfrak{b}(p)]) = \emptyset$, ℓ and ι are trivially *D*-localic maps and by the uniqueness clause of the equalizer we must then have $\ell = \iota$. But then $\mathfrak{b}(q_0) = e_{-1}[\mathfrak{b}(p)]$ is a complemented sublocale of $E - i.e., q_0 \in \mathsf{pt}_D(E)$. Since *e* is a *D*-localic map, $p = e(q_0) \in \mathsf{pt}_D(L)$, as required.

Proposition 4.2. Let *L* and *M* be locales and let $f, g: L \rightarrow M$ be *D*-localic maps. If the equalizer of *f* and *g* exists in Loc_D then their Loc-equalizer is a D-sublocale.

Proof: Assume that

$$E \xrightarrow{e} L \xrightarrow{f} M$$

is an equalizer in Loc_D and let $S \subseteq L$ be the equalizer of f and g in Loc, hence $e[E] \subseteq S$ by the universal property of the equalizer, and by the previous lemma we know that e[E] is a D-sublocale of L. Let $p \in pt_D(S)$. Select a nontrivial pointless Boolean algebra B and let h be the composite

$$B \longrightarrow \mathfrak{b}(p) \hookrightarrow L$$

where the first map is the unique surjection onto the terminal locale, hence h(1) = 1 and h(a) = p for all a < 1. Since $pt_D(B) \subseteq pt(B) = \emptyset$, h is a D-localic map, and it equalizes f and g because $p \in S$. Hence there is a unique D-localic map $k: B \to E$ such that ek = h. Then $p = h(0) = e(k(0)) \in e[E] \subseteq S$ and since e[E] is a D-sublocale, $p \in pt_D(S) \cap e[E] \subseteq pt_D(e[E]) \subseteq pt_D(L)$. Hence S is a D-sublocale.

Example 4.3. Let $L = \{0\} \cup \{\frac{1}{n} \mid n \in \mathbb{N}\}$ and $f: L \to L$ given by f(0) = 0, f(1) = 1 and $f(\frac{1}{n}) = \frac{1}{n+1}$. One readily verifies that f is a D-localic map. It follows that

$$\mathfrak{b}(0) = \{0,1\} \longleftrightarrow L \xrightarrow[f]{I_L} L$$

is the equalizer in Loc and hence the equalizer of f and 1_L in Loc_D does not exist because b(0) is not a D-sublocale.

By the comment at the beginning of this section we have:

Corollary 4.4. Let *L* and *M* be locales and let $f, g: L \rightarrow M$ be *D*-localic maps. Then the equalizer of *f* and *g* in Loc_D exists if and only if the equalizer of *f* and *g* in Loc is a *D*-sublocale (and so their equalizers in Loc and Loc_D coincide).

I. ARRIETA AND J. GUTIÉRREZ GARCÍA

A sufficient condition for the situation in Proposition 4.2 is as follows:

Proposition 4.5. If *M* has a complemented diagonal (e.g., if *M* is locally strongly Hausdorff), then, for every pair of morphisms $f, g: L \rightarrow M$ in Loc_D , their equalizer in Loc_D exists and is given by their equalizer in Loc.

Proof: It follows from general category theory that the equalizer of *f* and *g* in Loc can be computed as the preimage (=pullback) of the diagonal along the map $\langle f, g \rangle$: *L* → *M* ⊕ *M*. But the preimage operator is a coframe homomorphism [16, 14] and so it sends complemented sublocales into complemented sublocales. It follows that the equalizer in Loc is a complemented sublocale of *L*. But complemented sublocales are *D*-sublocales (see [2, Cor. 2.4]).

In [2] we claimed that *D*-sublocales play the role of plain sublocales in the duality of T_D -spaces. In what follows, we provide some more evidence of this assertion by showing that they are precisely the regular monomorphisms in Loc_D (cf. the fact that sublocales are precisely regular monomorphisms in Loc).

Proposition 4.6. Any *D*-sublocale is a regular monomorphism in Loc_D.

Proof: Let $S \subseteq L$ be a *D*-sublocale. As is well known, sublocale embeddings are regular monomorphisms in Loc, and hence $S \hookrightarrow L$ is the equalizer of its cokernel pair in Loc — i.e., there is an equalizer diagram

$$S \longleftrightarrow L \xrightarrow{f} P$$

in Loc, where $P = \{(x, y) \in L \times L \mid v_S(x) = v_S(y)\}$ (v_S denotes the nucleus associated to the sublocale *S*),

$$f(a) = \bigvee \{ (b, c) \in P \mid b \le a \} = (a, v_S(a))$$

and

$$g(a) = \bigvee \{ (b, c) \in P \mid c \le a \} = (\nu_S(a), a)$$

for each $a \in L$. Observe that f (resp. g) is the right adjoint of the coordinate projection $P \rightarrow L$ sending (b, c) to b (resp. (b, c) to c).

Clearly, it suffices to show that f and g are D-localic maps, as then the equalizer diagram above will be a equalizer diagram in Loc_D . By symmetry, we shall just prove it for f. Let $p \in pt_D(L)$ and denote by p^+ the cover of p in L. We distinguish two cases:

(1) If $p \in S$ then $\nu_S(p) = p$, and since $p < p^+$ it follows that $f(p) = (p, p) < (p^+, p^+)$. Let $(b, c) \in P$ with

$$f(p) = (p, p) \le (b, c) \le (p^+, p^+).$$

Then $p \le b \land c \le p^+$ and we again distinguish two cases: (1.1) If $b \land c = p$ then $b \le v_S(b) = v_S(b \land c) = v_S(p) = p$ and hence $(b, c) \le f(p)$. (1.2) If $b \land c = p^+$ then $(p^+, p^+) \le (b, c)$. Consequently (p^+, p^+) is the cover of f(p) in P. (2) If $p \notin S$ — i.e., $p < v_S(p)$ then since $p \le v_S(p) \land p^+ \le p^+$ and p is prime, we must have $v_S(p) \land p^+ = p^+$. It follows that $v_S(p^+) = v_S(p)$ and so we have $f(p) = (p, v_S(p)) = (p, v_S(p^+)) < (p^+, v_S(p^+)) = f(p^+)$. Let $(b, c) \in P$ with $f(p) = (p, v_S(p^+)) \le (b, c) \le (p^+, v_S(p^+)) = f(p^+)$.

Then $p \le b \le p^+$ and $c = v_s(p^+)$. If b = p then clearly (b, c) = f(p), and if $b = p^+$ then $(b, c) = f(p^+)$. Consequently $f(p^+)$ is the cover of f(p) in P.

Corollary 4.7. *The D*-*sublocales are precisely the regular subobjects in* Loc_{*D*}*.*

Proof: The "only if" implication follows from Proposition 4.6 whereas the "if" implication follows from Proposition 4.2.

5. *T*_D-spatiality of squares and the system of smooth sublocales

We now give a further characterization of T_D -spatiality of localic squares in terms of functoriality properties of certain subcolocale of S(L). Let us recall from [1] that the system

$$\mathcal{S}_b(L) = \left\{ \bigvee_{a \in A, b \in B} \mathfrak{c}(a) \cap \mathfrak{o}(b) \mid A, B \subseteq L \right\}$$

is a subcolocale of S(L) which is a Boolean algebra — indeed, it is precisely the Booleanization of S(L). Therefore, one may regard $S_b(L)$ as a discretization of L, similar to $S(L)^{op}$, but more discrete (as $S(L)^{op}$ is zero-dimensional but it is seldom Boolean). Sublocales contained in $S_b(L)$ are often referred to as *smooth* sublocales.

Whenever *L* is subfit, $S_b(L)$ coincides with the system of joins of closed sublocales from [17]. This has recently attracted attention in point-free topology; for instance, the naturality of the construction as a maximal essential extension in the category of frames [4], its role as a discretization of

L for modeling not necessarily continuous real-valued functions (conservatively in the class of T_1 -spaces) [15], its (non-) functoriality properties [3], or as a useful tool for studying several (conservative) point-free extensions of classical topological properties [9].

We first recall the following result, which reveals also a strong connection of the Boolean algebra $S_b(L)$ with T_D -spatiality of L:

Theorem 5.1 ([1, Thm. 3.4]). *The following are equivalent for a locale L*:

- (i) L is T_D -spatial;
- (ii) The map $\mathfrak{m}: \mathcal{P}(\mathsf{pt}_D(L)) \to \mathcal{S}_b(L)$ which sends $Y \subseteq \mathsf{pt}_D(L)$ to $\bigvee_{p \in Y} \mathfrak{b}(p)$ is an isomorphism (whose inverse $\mathsf{pt}_D: \mathcal{S}_b(L) \to \mathcal{P}(\mathsf{pt}_D(L))$ sends $S \in \mathcal{S}_b(L)$ to $\mathsf{pt}_D(S)$);
- (iii) There exists an isomorphism $S_b(L) \cong \mathcal{P}(\mathsf{pt}_D(L));$
- (iv) $S_b(L)$ is atomic (i.e., it is spatial).

We are now in position to prove the main result, which connects preservation of localic squares by $S_b(-)$ and their T_D -spatiality.

Theorem 5.2. Let *L* be a locale. Then the localic product $L \oplus L$ in Loc_D is T_D -spatial if and only if there exists an isomorphism $S_b(L) \oplus S_b(L) \cong S_b(L \oplus L)$.

Proof: If $L \oplus L$ is T_D -spatial then, so is L and it follows from Theorem 5.1 that

$$\mathfrak{m}: \mathcal{P}(\mathsf{pt}_D(L \oplus L)) \to \mathcal{S}_b(L \oplus L)$$

and

$$\mathsf{pt}_D \oplus \mathsf{pt}_D \colon \mathcal{S}_b(L) \oplus \mathcal{S}_b(L) \to \mathcal{P}(\mathsf{pt}_D(L)) \oplus \mathcal{P}(\mathsf{pt}_D(L))$$

are isomorphisms. On the other hand, the map

 $\psi_{L,L}$: $\mathsf{pt}_D(L) \times \mathsf{pt}_D(L) \to \mathsf{pt}_D(L \oplus L)$

from Corollary 3.2 is a bijection, and hence $\mathcal{P}(\psi_{L,L})$ is an isomorphism (where \mathcal{P} is the covariant power set functor). Finally, it is well-known (see for example [16, 1.6.4] for a direct proof) that for any set X, the map $\mathcal{P}(X) \oplus \mathcal{P}(X) \to \mathcal{P}(X \times X)$ that sends $A \oplus B \in \mathcal{P}(X) \oplus \mathcal{P}(X)$ to $A \times B$ is an isomorphism. Consequently, the composite

$$\begin{array}{c} \mathcal{S}_{b}(L) \oplus \mathcal{S}_{b}(L) & \longrightarrow & \mathcal{S}_{b}(L \oplus L) \\ & pt_{D} \oplus pt_{D} & & \uparrow^{\mathfrak{m}} \\ \mathcal{P}(\mathsf{pt}_{D}(L)) \oplus \mathcal{P}(\mathsf{pt}_{D}(L)) & \longrightarrow & \mathcal{P}(\mathsf{pt}_{D}(L) \times \mathsf{pt}_{D}(L)) & \xrightarrow{\mathcal{P}(\psi_{L,L})} & \mathcal{P}(\mathsf{pt}_{D}(L \oplus L)) \end{array}$$

is an isomorphism.

Assume now that $S_b(L) \oplus S_b(L) \cong S_b(L \oplus L)$ holds. Since $S_b(L \oplus L)$ is Boolean, so is $S_b(L) \oplus S_b(L)$. In particular, the diagonal in $S_b(L) \oplus S_b(L)$ is open and hence $S_b(L)$ is atomic (see [13]). Now, since $S_b(L)$ is atomic, the product $S_b(L) \oplus S_b(L)$ is atomic as well (recall as we mentioned above that $\mathcal{P}(X \times X) \cong \mathcal{P}(X) \oplus \mathcal{P}(X)$ for any set X). Thus $S_b(L \oplus L)$ is atomic, and by Theorem 5.1 it follows that $L \oplus L$ is T_D -spatial.

Appendix A. Infinite products of *T*_D**-spaces**

Let \$ denote the Sierpinski space — i.e., $\{0,1\}$ with the topology $\{\emptyset, \{1\}, \{0,1\}\}$.

Fact A.1. The countable power of **S** does not exist in the category Top_D .

Proof: Suppose that a countable power of S exists in Top_D , say $(p_n: X \to S)_{n \in \mathbb{N}}$. Clearly, the forgetful functor $U: \text{Top}_D \to Set$ is representable (the singleton space is T_D , hence $U \cong \text{Top}_D(\{*\}, -)$) and so it preserves limits, in particular we may assume that, as sets, $U(X) = \prod_{n \in \mathbb{N}} S$ is the cartesian product and p_n is just the *n*-th coordinate projection. Since the projections $p_n: X \to S$ are continuous, by the universal property of the product in Top, the identity $X \to (\prod_{n \in \mathbb{N}} S, \tau_{Tych})$ is continuous — i.e., $\tau_{Tych} \subseteq \Omega(X)$ (where τ_{Tych} denotes the product (Tychonoff) topology).

However, since a countable product of Sierpinski spaces is not T_D (see [8]) we conclude that $\tau_{Tych} \subsetneq \Omega(X)$ and hence there is an $V_0 \in \Omega(X) - \tau_{Tych}$. Consider now the space

$$(\prod_{n\in\mathbb{N}} \$, \tau_{Box})$$

where τ_{Box} is the box topology and denote by β_{Tych} (resp. β_{Box}) the usual bases of τ_{Tych} (resp. τ_{Box}) consisting of products of opens where all but finitely many are proper (resp. all products of opens).

Observe that $(\prod_{n\in\mathbb{N}} \$, \tau_{Box})$ is a T_D -space. Indeed, let $x = (x_n)_{n\in\mathbb{N}} \in \prod_{n\in\mathbb{N}} \$$. Set $B := \prod_{n\in\mathbb{N}} V_n \in \beta_{Box}$ with $V_n = \{1\}$ if $x_n = 1$ and $V_n = \{0, 1\}$ if $x_n = 0$. Moreover, let $F := \prod_{n\in\mathbb{N}} F_n$ with $F_n = \{0\}$ if $x_n = 0$ and $F_n = \{0, 1\}$ if $x_n = 1$. Then F is closed in the box topology. Thus B is an open neighborhood of x and $B - \{x\} = B - F$ is open and so $(\prod_{n\in\mathbb{N}} \$, \tau_{Box})$ is T_D . Since the projections $p_n: (\prod_{n\in\mathbb{N}} \$, \tau_{Box}) \to \$$ are continuous, by the universal property of the product in Top_D, the identity $(\prod_{n\in\mathbb{N}} \$, \tau_{Box}) \to X$

is continuous — i.e., $\Omega(X) \subseteq \tau_{Box}$. Consequently $V_0 \in \tau_{Box}$ and we can write

$$V_0 = \bigcup_{j \in J} B_j \cup \bigcup_{i \in I} B_i$$

where $B_i \in \beta_{Tych}$ and $B_j \in \beta_{Box} - \beta_{Tych}$ for all $i \in I, j \in J$. (Note that *J* must be non-empty since $V \notin \tau_{Tych}$ and we can assume that $B_i, B_j \neq \emptyset$). Then

$$B_i = \prod_{n \in \mathbb{N}} V_n^i, \quad B_j = \prod_{n \in \mathbb{N}} V_n^j,$$

where $V_n^i, V_n^j \in \{\{1\}, \{0, 1\}\}$, and for $j \in J$, the set $A_j := \{n \in \mathbb{N} \mid V_n^j = \{1\}\}$ is infinite, while for $i \in I$, $V_n^i = \{1\}$ only for finitely many $n \in \mathbb{N}$.

Let us fix an $j_0 \in J$ such that $B_{j_0} \nsubseteq \bigcup_{i \in I} B_i$ (if $B_j \subseteq \bigcup_{i \in I} B_i$ for all $j \in J$ then $V_0 = \bigcup_{i \in I} B_i \in \tau_{Tych}$). Further, let \mathbb{R} be the real line endowed with the usual topology and $f_n \colon \mathbb{R} \to \mathbb{S}$ be the characteristic function of the open interval $(-\frac{1}{n}, \frac{1}{n})$ whenever $V_n^{j_0} = \{1\}$ and the constant function with value 0 whenever $V_n^{j_0} = \{0, 1\}$. Then f_n is obviously continuous for all n and since \mathbb{R} is T_D , by the universal property of the product in Top_D , the map $f := (f_n)_{n \in \mathbb{N}} \colon \mathbb{R} \to X$ is continuous.

We now compute $f^{-1}(B_i)$ and $f^{-1}(B_j)$ for each $i \in I$ and $j \in J$.

Let $i \in I$. Since $B_{j_0} \not\subseteq B_i$, there is an $n_0 \in \mathbb{N}$ with $V_{n_0}^{j_0} = \{0, 1\}$ and $V_{n_0}^i = \{1\}$. Then $f_{n_0} = 0$ and so

$$f^{-1}(B_i) = \bigcap_{n \in \mathbb{N}} f_n^{-1}(V_n^i) \subseteq f_{n_0}^{-1}(V_{n_0}^i) = \emptyset.$$

Let $j \in J$. We distinguish two cases:

(1) If $B_{j_0} \not\subseteq B_j$ then, as in the previous case, $f^{-1}(B_j) = \emptyset$. (2) If $B_{j_0} \subseteq B_j$ and $n \in A_j$ then $V_n^j = \{1\} = V_n^{j_0}$ and f_n is the characteristic function of the open interval $(-\frac{1}{n}, \frac{1}{n})$. Hence

$$f^{-1}(B_j) = \bigcap_{n \in \mathbb{N}} f_n^{-1}(V_n^j) = \bigcap_{n \in A_j} f_n^{-1}(\{1\}) = \bigcap_{n \in A_j} (-1/n, 1/n) = \{0\}$$

(because A_i is infinite).

Hence,

$$f^{-1}(V_0) = \bigcup_{B_{j_0} \subseteq B_j} f^{-1}(V_j) \cup \bigcup_{B_{j_0} \notin B_j} f^{-1}(B_j) \cup \bigcup_{i \in I} f^{-1}(B_i) = \{0\},\$$

which is not open in \mathbb{R} . This is a contradiction and we conclude that the countable power of \mathbb{S} does not exist.

Acknowledgements

This research was supported by the Basque Government (Grant IT974-16) and the Centre for Mathematics of the University of Coimbra (UIDB/00324/2020, funded by the Portuguese Government through FCT/MCTES). The first named author also acknowledges support from a predoctoral fellowship of the Basque Government (PRE-2018-1-0375).

References

- [1] I. Arrieta, On joins of complemented sublocales, *Algebra Universalis*, 83(1) (2021), art. no. 1.
- [2] I. Arrieta and A. L. Suarez, The coframe of *D*-sublocales of a locale and the *T_D*-duality, *Topology Appl.*, **291** (2021), art. no. 107614.
- [3] R. N. Ball, J. Picado, and A. Pultr, Some aspects of (non) functoriality of natural discrete covers of locales, *Quaest. Math.*, **42**(6) (2019), 701–715.
- [4] R. N. Ball and A. Pultr, Maximal essential extensions in the context of frames, *Algebra universalis*, **79**(2) (2018), art. no. 32.
- [5] B. Banaschewski and A. Pultr, Pointfree aspects of the *T_D*-axiom of classical topology, *Quaest. Math.*, 33(3) (2010), 369–385.
- [6] B. Banaschewski and A. Pultr, On covered prime elements and complete homomorphisms of frames, *Quaest. Math.*, **37**(3) (2014), 451–454.
- [7] B. Banaschewski and A. Pultr, Booleanization, *Cahiers Topologie Géom. Différentielle Catég.*, 37(1) (1996), 41–60.
- [8] G. C. L. Brümmer, Initial quasi-uniformities, Indag. Math., **31** (1969), 403–409.
- [9] T. Dube, Maximal lindelöf locales, Appl. Categ. Structures, 27(6) (2019), 687–702.
- [10] O. Echi, On *T_D*-Spaces, *Missouri J. Math. Sci.*, **18**(1) (2006), 54 60.
- [11] M. J. Ferreira, J. Picado, and S. M. Pinto, Remainders in pointfree topology, *Topology Appl.*, 245 (2018), 21–45.
- [12] P. T. Johnstone, Stone Spaces, Cambridge Studies in Advanced Math., 3 Cambridge University Press, Cambridge, 1982.
- [13] A. Joyal and M. Tierney, An Extension of the Galois Theory of Grothendieck, Mem. Amer. Math. Soc., 71(309), (1984).
- [14] J. Picado and A. Pultr, Frames and locales: Topology without points, Frontiers in Mathematics, 28 Springer, Basel, 2012.
- [15] J. Picado and A. Pultr, A boolean extension of a frame and a representation of discontinuity, *Quaest. Math.*, 40(8) (2017), 1111–1125.
- [16] J. Picado and A. Pultr, On equalizers in the category of locales, *Appl. Categ. Structures*, 29(2) (2021), 267–283.
- [17] J. Picado, A. Pultr, and A. Tozzi, Joins of closed sublocales, *Houston J. Math.*, 45 (2019), 21–38.
- [18] A. Pultr and A. Tozzi, Separation axioms and frame representation of some topological facts, *Appl. Categ. Structures*, **2**(1) (1994), 107–118.
- [19] S. M. Robinson and Y. C. Wu, A note on separation axioms weaker than *T*₁, *J. Austral. Math. Soc.*, **9** (1969), 233–236.

Igor Arrieta

CMUC, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COIMBRA, 3001-501 COIMBRA, PORTUGAL, AND DE-PARTMENT OF MATHEMATICS, UNIVERSITY OF THE BASQUE COUNTRY UPV/EHU, 48080 BILBAO, SPAIN *E-mail address*: igorarrieta@mat.uc.pt

I. ARRIETA AND J. GUTIÉRREZ GARCÍA

Javier Gutiérrez García

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF THE BASQUE COUNTRY UPV/EHU, 48080 BILBAO, SPAIN *E-mail address*: javier.gutierrezgarcia@ehu.eus