
Pré-Publicações do Departamento de Matemática
Universidade de Coimbra
Preprint Number 21–51

FULL-LOW EVALUATION METHODS FOR
DERIVATIVE-FREE OPTIMIZATION

A. S. BERAHAS, O. SOHAB AND L. N. VICENTE

Abstract: We propose a new class of rigorous methods for derivative-free opti-
mization with the aim of delivering efficient and robust numerical performance for
functions of all types, from smooth to non-smooth, and under different noise regimes.
To this end, we have developed Full-Low Evaluation methods, organized around
two main types of iterations.

The first iteration type is expensive in function evaluations, but exhibits good
performance in the smooth and non-noisy cases. For the theory, we consider a line
search based on an approximate gradient, backtracking until a sufficient decrease
condition is satisfied. In practice, the gradient was approximated via finite differ-
ences, and the direction was calculated by a quasi-Newton step (BFGS). The second
iteration type is cheap in function evaluations, yet more robust in the presence of
noise or non-smoothness. For the theory, we consider direct search, and in practice
we use probabilistic direct search with one random direction and its negative.

A switch condition from Full-Eval to Low-Eval iterations was developed based
on the values of the line-search and direct-search stepsizes. If enough Full-Eval

steps are taken, we derive a complexity result of gradient-descent type. Under
failure of Full-Eval, the Low-Eval iterations become the drivers of convergence
yielding non-smooth convergence. Full-Low Evaluation methods are shown to be
efficient and robust in practice across problems with different levels of smoothness

Keywords: Derivative-free optimization, black-box functions, quasi-Newton meth-
ods, line search, direct search.
Math. Subject Classification (2010): 90C30, 90C53, 90C56.

1. Introduction
Derivative-Free Optimization (DFO) methods [1, 17, 18, 30, 38] are devel-

oped for the minimization of functions whose corresponding derivatives are
unavailable for use or expensive to compute or approximate. The value of the
functions is often computed via numerical simulations and may be subject
to statistical noise or other forms of inaccuracy. Constraints may be part of
the problem formulation and their derivatives may also be unavailable. DFO
methods have applications in all fields of engineering and applied science, in

Received December 6, 2021.
Support for LNV was partially provided by the Centre for Mathematics of the University of

Coimbra under grant FCT/MCTES UIDB/MAT/00324/2020.

1

2 A. S. BERAHAS, O. SOHAB AND L. N. VICENTE

particular whenever data is fitted with the purpose of finding optimal values
for design or control variables of complex models or systems, or when there
is the need to determine optimal parameters of computational solvers or to
tune hyperparameters in artificial intelligence.

In this paper, we consider the following unconstrained problem

min
x∈Rn

f(x), (1)

where f : Rn → R may be non-smooth and its evaluation subject to noise.
In the smooth and non-noisy setting, the methods discussed and developed
in this paper find application on problems where derivative information is
not available or is too expensive to compute.

1.1. Advantages and disadvantages of the current DFO methods.
When designing numerical algorithms for DFO [17], two main algorithmic
paradigms are often used, in part depending on how f is sampled, leading to
algorithms which are either directional or model-based.

Directional algorithms are based on the concept of a displacement along
a direction. Among those, we find directional direct-search methods [3, 9,
26, 29, 42], which rely only on function evaluations without any implicit or
explicit approximation of the gradient, or construction of a model. At each
iteration, a finite set of directions is first generated, from which a set of
polling points is considered by adding to the current iterate these directions
multiplied by a certain stepsize. The objective function is then evaluated
at all, or some, of these points depending on the polling type (opportunistic
or complete), in order to search for a new point satisfying a (possibly suffi-
cient) decrease condition. The iterate and stepsize are updated according to
the outcome of the polling step. A search step [9] can be taken to improve
numerical performance, with no influence on the convergence analysis. A rel-
evant feature of these methods is their ability to converge when the function
is non-smooth. In fact, if the normalized directions are asymptotically dense
in the unit sphere, the iterates converge to a Clarke stationary point [3, 43].

The directional direct-search framework has two main variants, a determin-
istic one [29, 42] and a probabilistic one [26]. In the deterministic variant, the
directions belong to positive spanning sets (PSS), which are sets of vectors
that span the whole space with non-negative coefficients. When the objec-
tive function is smooth, at least one of these directions is a descent one [29].

FULL-LOW EVALUATION METHODS FOR DERIVATIVE-FREE OPTIMIZATION 3

However, the cardinal number of a PSS is at least n+1, where n is the dimen-
sion of the problem, and one iteration may cost O(n) function evaluations.
The probabilistic variant consists of using randomly generated polling direc-
tions that are probabilistically descent. Such property relies on the existence
of a direction that makes an acute angle with the negative gradient with
a sufficiently large probability, conditioned on the history of iterations [26].
An example of such a set is a uniformly drawn direction on the unit ball
and its negative. In this case, the cost of an iteration is at most 2 function
evaluations, leading to significant gains in efficiency [26]. In summary, di-
rectional direct-search methods are slow when using deterministic directions
(although faster when randomized), but robust and parallelizable. Moreover,
these methods work for non-smooth and possibly noisy functions.

Among directional methods for DFO, one also finds those based on line-
search schemes. In [28, 41], the authors considered fixed predetermined step-
size strategies coupled with directions computed via (possibly randomized) fi-
nite differences (FD) approximations to the gradient of the objective function.
Methods with adaptive stepsize choices have also been proposed [5, 7, 10].
These methods utilize either a simplex gradient approximation or a FD ap-
proximation to the gradient of the objective function (leading to O(n) eval-
uations per iteration), and enhance the search direction by applying a quasi-
Newton scheme. Some form of sufficient decrease condition is imposed to
restrict the size of the step, and possibly a curvature condition to avoid short
steps. In the noisy setting, approximating the gradient can be problematic.
To mitigate this issue, regression techniques can be used to compute the gra-
dient approximation [10]. Alternatively, optimal (in terms of minimizing the
approximation error) FD approximations can be computed if the noise level
is known, or can be estimated [32], and incorporated in a FD scheme [33].
The authors in [5] propose a FD quasi-Newton method with explicit noise
estimation [32] and a relaxed sufficient decrease condition that is robust in
the noisy setting, and that avoids re-estimating the noise at every itera-
tion. These methods are moderately efficient and potentially scalable in the
smooth case. However, when the objective function under consideration is
non-smooth, such line-search methods are no longer suitable.

The other most commonly followed paradigm in the development of DFO
algorithms relies on building models using objective function samples for use
in trust-region methods [14, 16, 22, 37, 44]. Models can be built via in-
terpolation or regression techniques, using basis functions such as quadratic

4 A. S. BERAHAS, O. SOHAB AND L. N. VICENTE

polynomials or radial basis functions. Sample points can result from trust-
region steps, be computed from well-designed deterministic model-improving
techniques, or obtained from random sampling. At each iteration of a trust-
region method [13], one typically considers the minimization of a quadratic
model in a region around the current iterate, from which a trial point is ob-
tained. Accepting the trial point and updating the trust-region radius are
based on the ratio between the decrease achieved in the function and the
one attained at the model. The model serves as a local approximation of the
function curvature, and in the DFO case the quality of the model depends
on the geometry of the sample points [15]. DFO trust-region methods are
efficient and robust when the dimension of the problems is small. However,
these methods do not scale well, not only because the overall computing time
becomes an issue due to the dense linear algebra of the interpolation, but
also due to the ill conditioning (poor geometry) of the sample sets. More-
over, these methods are mainly designed for smooth functions and are not
easily parallelizable. Trust-region methods for DFO have been extended to
handle noise in the objective function [8, 19] (see [30] for a review of recent
developments on stochastic functions).

1.2. Can one design a rigorous DFO method that is robust for all
function types? As we have seen, most of the existing DFO methods have
been designed and tailored for a specific type of problems, and one has to
carefully choose the class to use for the best results. In this paper, we in-
troduce a new class of derivative-free optimization methods called Full-Low

Evaluation, taking advantage of two types of iterations, with the goal of
achieving sustainedly good performance across all possible function types.
A first iteration type (Full-Eval) is expensive in function evaluations, but
exhibits good performance in the smooth, non-noisy case. A second iter-
ation type (Low-Eval) is cheap in terms of function evaluations and more
appropriate in the presence of non-smoothness or/and noise.

In its general form, the Full-Eval iteration consists of a line-search step
based on an approximate gradient, and the Low-Eval iteration consists of a
direct-search step. The integration of the two iterations is done by switch-
ing from one to the other when it is deemed beneficial or necessary. The
main switch is a form of detection of non-smoothness or noise in f during
Full-Eval iterations. The new class of methods is shown to be globally
convergent with appropriate rates in the smooth case, whenever Full-Eval

FULL-LOW EVALUATION METHODS FOR DERIVATIVE-FREE OPTIMIZATION 5

generates enough iterates. It is also shown to be globally convergent in the
non-smooth case (and this is assured by Low-Eval when Full-Eval fails
to bring the approximate gradient close to zero). Failure of Full-Eval is
detected by the activation of the switch condition which compares the line-
search and direct-search stepsizes. To our knowledge such type of rigorous
results is novel in DFO.

Our practical implementation of Full-Low Evaluation considers a BFGS
step based on a FD gradient for Full-Eval, and a probabilistic direct-search
step based on a random vector and its negative for Low-Eval (see Section
4.1 for more details). The numerical results show that this practical version
is robust and relatively efficient for all function types of varied smoothness,
and noise origin and level.

1.3. Structure of the paper and notation. The paper is organized in
the following way. In Section 2, we start by giving the general algorithmic
description of the Full-Low Evaluation framework. We then present, in
Section 3, the global convergence rate analysis of the method when applied
to a smooth objective function. Specifically, we show that there exists a
subsequence of iterates for which the gradients decay to 0 at a sublinear
rate in the non-convex case, and at a linear one in the strongly convex case.
We also derive in Section 3 a global convergence result for the non-smooth
case. In Section 4, we introduce our practical choices for the Full-Eval and
Low-Eval iterations, as well as the other solvers used in our testing envi-
ronment. Finally, the performance of Full-Low Evaluation is reported in
Section 5, based on tests conducted on different classes of functions (smooth,
non-smooth, and noisy). The paper is concluded with some remarks in Sec-
tion 6.

Let the set of indices corresponding to successful Full-Eval and Low-Eval

iterations be denoted by ISF and ISL, respectively. Similarly, the indices
of unsuccessful iterations are denoted as IUF and IUL, corresponding to the
Full-Eval and Low-Eval iterations, respectively. The set of all iterations is
denoted by ISF ∪ ISL ∪ IUF ∪ IUL. All norms in this paper are Euclidian.

2. Full-low evaluation methods
The main idea of the Full-Low Evaluation methods is based on the com-

bination of two types of steps. As said before, the first type is expensive
in function evaluations (Full-Eval), but exhibits good performance in the

6 A. S. BERAHAS, O. SOHAB AND L. N. VICENTE

smooth, non-noisy case. The second type is cheaper in function evalua-
tions (Low-Eval) and at the same time more appropriate in the presence
of noise and/or non-smoothness. The general mechanism of the Full-Low

Evaluation approach is described in Algorithm 1. Full-Eval steps are
consecutively taken until a certain condition, designed to sense the pres-
ence of non-smoothnes and/or noise, is activated, after which one switches
to Low-Eval iterations. The number of consecutive Low-Eval iterations is a
user defined parameter, and can be selected as a function of the last successful
Full-Eval iteration (see Section 4.1 for details of our practical implementa-
tion of the Full-Low Evaluation method).

Algorithm 1 Full-Low Evaluation Algorithm
Initialization: Choose an initial iterate x0. Set iteration

i-type(0) = Full-Eval.

1: For k = 0, 1, 2, . . .
2: If i-type(k) = Full-Eval, attempt to compute a Full-Eval step.
3: If success, update xk+1 and set i-type(k + 1) = Full-Eval.
4: Else, xk+1 = xk and i-type(k + 1) = Low-Eval.
5: If i-type(k) = Low-Eval, compute a Low-Eval step.
6: Update xk+1. Decide on i-type(k + 1) ∈ {Low-Eval, Full-Eval}.

In the general setting, the instance we consider for the Full-Eval step is
of line-search nature, where the search direction pk calculated based on an
approximate gradient gk. The conditions imposed on both pk and gk will be
stated in Section 3. If the Full-Eval step is successful, the next iterate is
necessarily of the form xk+βkpk, where βk is a positive stepsize. As is typical
in nonlinear optimization, the stepsize βk is required to satisfy a sufficient
decrease condition of the form

f(xk + βpk) ≤ f(xk) + c βg>k pk, (2)

where c ∈ (0, 1) is independent of k [35]. Under appropriate assumptions,
condition (2) can be ensured by backtracking from a fixed stepsize until it is
satisfied. By doing so, one ensures steps that are simultaneously of restricted
size and not too small.

A key modification we introduce in the Full-Eval iteration is that we do
not allow the stepsize βk to become too small compared to a certain function

FULL-LOW EVALUATION METHODS FOR DERIVATIVE-FREE OPTIMIZATION 7

of αk, the direct-search stepsize used in Low-Eval iterations (described be-
low). In fact we only consider a Full-Eval iteration successful if βk satisfies

β ≥ γρ(αk), (3)

where γ > 0 is independent of k and ρ(·) is the forcing function used in the
direct-search scheme of the Low-Eval iteration. If we backtrack too much so
that we violate (3), the Full-Eval step is skipped. The Full-Eval iteration
is described in Algorithm 2.

Algorithm 2 Full-Eval Iteration: Line Search

Input: Iterate xk. Backtracking parameters β̄ > 0 and τ ∈ (0, 1).
Output: i-type(k + 1), xk+1, and αk+1.

1: Compute an approximate gradient gk.
2: Compute a direction pk.
3: Backtracking line-search: Set β = β̄. If (3) is false, stop.
4: While (2) is false
5: Set β = τβ.
6: If (3) is false, set xk+1 = xk and i-type(k + 1) = Low-Eval, and stop

the While cycle.
7: If (3) is true, set βk = β, xk+1 = xk+βkpk, and i-type(k+1) = Full-Eval.

(Note, the Low-Eval parameter αk remains unchanged, αk+1 = αk; see
Algorithm 3.)

Our proposed Low-Eval iteration is described in Algorithm 3, and consists
of applying one step of direct search. The set of polling directions Dk is for
the moment left unspecified. Similar to a line-search, at each iteration, the
stepsize αk is required to satisfy a sufficient decrease condition of the form

f(xk + αkdk) ≤ f(xk)− ρ(αk), (4)

where ρ(·) is a (positive) forcing function satisfying the conditions given
in Section 3. If the iteration is successful the stepsize is kept constant or
increased, otherwise it is decreased. The factors for stepsize increase/decrease
must obey the theory, which is met for instance if they are independent of k.
An initial value of α0 > 0 must be supplied to the first Low-Eval iteration.

8 A. S. BERAHAS, O. SOHAB AND L. N. VICENTE

Algorithm 3 Low-Eval Iteration: Direct Search
Input: Iterate xk and stepsize αk. Direct-search parameters λ ≥ 1 and

θ ∈ (0, 1).
Output: i-type(k + 1), xk+1, and αk+1.

1: Generate a finite set Dk of non-zero polling directions.
2: If (4) is true for some dk ∈ Dk, set xk+1 = xk + αkdk and αk+1 = λαk.
3: Else, set xk+1 = xk and αk+1 = θαk.
4: Decide if i-type(k + 1) = Low-Eval or if i-type(k + 1) = Full-Eval.

In order to switch from Low-Eval to Full-Eval, one can compare the
number of unsuccessful consecutive Low-Eval iterations (nuk) to the number
of line-search backtracks (nbjk) done in the previous Full-Eval iteration (jk).
When nuk becomes greater than nbjk, that is perhaps a sign that too much
effort was put in the current Low-Eval iteration, a switch is desirable. We
will return to this in Section 4. For the purpose of the convergence theory,
we will assume an infinity of Full-Eval or Low-Eval iterations whenever
necessary.

3. Convergence and rates of convergence of full-low eval-
uation methods

Convergence analysis for the Full-Low Evaluation methods is presented
for both the smooth and non-smooth cases. The noisy case will be addressed
within the non-smooth analysis; see Section 3.2.

3.1. Convergence rates in the smooth case. In this section, we analyze
the behavior of the class of Full-Low Evaluation methods in the smooth
case. We show that if the Full-Eval step generates an infinity of iterates, the
convergence and rates of convergence guaranteed match those of deterministic
gradient descent. We now introduce the assumptions needed for the analysis,
starting by the smoothness of f .

Assumption 3.1. The function f is continuously differentiable and its gra-
dient ∇f is Lipschitz continuous with constant L > 0.

The approximate gradient used in Full-Eval iterations is required to sat-
isfy the following assumption.

FULL-LOW EVALUATION METHODS FOR DERIVATIVE-FREE OPTIMIZATION 9

Assumption 3.2. The approximate gradient gk computed at xk satisfies

‖∇f(xk)− gk‖ ≤ ugβk‖gk‖, (5)

where ug > 0 is independent of k.

Note that if ugβk < 1, Assumption 3.2 implies that the negative gradient
approximation −gk is a descent direction. Finally, we state the assumptions
on the Full-Eval directions.

Assumption 3.3. There exist constants κ, up > 0 such that

cos(−gk, pk) =
(−gk)>pk
‖gk‖‖pk‖

> κ (6)

and
‖gk‖ ≤ up ‖pk‖ . (7)

Condition (6) is classical in line-search methods, and imposes an acute
angle between the direction and the approximate negative gradient, bounded
away from ninety degrees. Note that if ugβk < κ, conditions (5) and (6)
together imply that pk is a descent direction. Condition (7) is also mild. In a
Newton or quasi-Newton context, it is essentially saying that the Hessian or
secant matrix is bounded (which is what is imposed in trust-region methods).
One can relax (7) to ‖gk‖ ≤ ka ‖pk‖, with a > 0, although the sublinear rate
k−1/2 would then increase to k−1/(2+a). We start the analysis by establishing
a lower bound on the stepsize βk.

Lemma 3.1. Suppose that Assumptions 3.1–3.3 hold. If k is a successful
Full-Eval iteration, then

βk ≥ min

{
β̄,

2τ(1− c)
2ugup + L

(−gk)>pk
‖pk‖2

}
.

Proof : Using a Taylor expansion and by Assumption 3.1, one has

f(xk + βpk) ≤ f(xk) + βp>k∇f(xk) +
β2

2
L ‖pk‖2

≤ f(xk) + βp>k ((∇f(xk)− gk) + gk) +
β2

2
L ‖pk‖2

≤ f(xk) + βg>k pk +

(
1

2
L+ ugup

)
β2 ‖pk‖2 , (8)

where the last line follows from applying (5) and (7).

10 A. S. BERAHAS, O. SOHAB AND L. N. VICENTE

If βk 6= β̄, then β = βk/τ does not satisfy the sufficient decrease condition,
which means

f(xk + (βk/τ)pk)− f(xk) > c (βk/τ)g>k pk. (9)

We can now plug β = βk/τ into (8), and combine it with (9), to obtain

g>k pk +

(
1

2
L+ ugup

)
βk
τ
‖pk‖2 > c g>k pk.

We conclude that

βk >
2τ(1− c)
2ugup + L

(−gk)>pk
‖pk‖2 ,

where 1−c > 0. The proof is completed by combining the case where βk = β̄
and the one presented above.

Next, we prove that the minimum norm of the true gradient decays at
the appropriate sublinear rate, for iterations k in the set ISF of successful
Full-Eval iterations.

Theorem 3.1. Let Assumptions 3.1–3.3 hold. Assume that f is bounded
from below (and let flow be a lower bound). Then,

min
i=0...k−1

‖∇f(xi)‖ ≤ (β̄ug + 1)

√
f(x0)− flow

M

1
√
nsk

,

where nsk = |ISF ∩ {0, . . . , k − 1}| is the number of successful Full-Eval
iterations up to iteration k, and

M = cmin

{
β̄
κ

up
,
2τκ2(1− c)
2ugup + L

}
. (10)

Proof : Let k ∈ ISF . First, using (6) and (7), we write

((−gk)>pk)2

‖pk‖2
≥ κ2‖gk‖2 and (−gk)>pk ≥

κ

up
‖gk‖2. (11)

Then, from the sufficient decrease condition (2) and the lower bound for the
stepsize established in Lemma 3.1, one obtains

f(xk)− f(xk+1) ≥M ‖gk‖2 , (12)

where M is given in (10).

FULL-LOW EVALUATION METHODS FOR DERIVATIVE-FREE OPTIMIZATION 11

By Assumption 3.2, the triangle inequality, and βk ≤ β̄, we have

1

β̄ug + 1
‖∇f(xk)‖ ≤ ‖gk‖ .

Hence, plugging this bound into inequality (12) yields

f(xk)− f(xk+1) ≥
M

(β̄ug + 1)2
‖∇f(xk)‖2 .

In both unsuccessful Full-Eval and Low-Eval iterations, the function
value does not decrease, and thus

f(x0)− f(xk) ≥
M

(β̄ug + 1)2

∑
i∈ISF∩{0,...,k−1}

‖∇f(xi)‖2 .

The proof is completed by using the lower bound f(xk) ≥ flow.

Suppose now that the sequence ISF of Full-Eval successful iterations is
infinite. From the rate established, one directly concludes that the gradi-
ent of f goes to zero for a subsequence of ISF . However, since the series∑

i∈ISF
‖∇f(xi)‖2 is summable, we can also state limk∈ISF

∇f(xk) = 0.
The convergence rate becomes linear when f is strongly convex, which

is the case when there exists a positive constant µ > 0 such that for all
(x, y) ∈ Rn

f(y) ≥ f(x) +∇f(x)>(y − x) +
µ

2
‖y − x‖2.

The argument proceeds as follows. First, using x = xk and y = x∗ (the
unique minimizer of f), one has

2µ(f(x∗)− f(xk)) ≥ 2µ∇f(xk)
>(x∗ − xk) + µ2‖x∗ − xk‖2.

Giving that

2µ∇f(xk)
>(x∗ − xk) + µ2‖x∗ − xk‖2 ≥ −‖∇f(xk)‖2

one arrives at

‖∇f(xk)‖2 ≥ 2µ(f(xk)− f(x∗)).

At this point it remains to combine this last inequality with (12), and recur-
sively conclude that (when k − 1 ∈ ISF)

f(xk)− f(x∗) ≤ (1− ηµ)nsk(f(x0)− f(x∗))

12 A. S. BERAHAS, O. SOHAB AND L. N. VICENTE

with ηµ = 2µc
(β̄ug+1)2

min
(
β̄ κ
up
, 2τκ2(1−c)

2ugup+L

)
, and again nsk = |ISF ∩{0, . . . , k−1}|.

Note that if is chosen such that c ∈ (0, 1/2), then ηµ ∈ (0, 1).

3.2. Convergence in the non-smooth case. The analysis in the non-
smooth case is based on the failure of the Full-Eval iterations.

Assumption 3.4. (Full-Eval Failure) The sequence of gradient norms
{‖gk‖}k∈ISF

is bounded away from 0, i.e., there exists εg > 0 such that for all
iterations k ∈ ISF , one has ‖gk‖ > εg.

The switching condition (3) allows us to prove under this assumption that
the Low-Eval iterations generate an infinite subsequence of iterates driv-
ing the direct-search parameter αk to zero. This result requires the forcing
function to satisfy Assumption 3.5.

Assumption 3.5. The function ρ is positive, non-decreasing, and satisfies
limα→0+ ρ(α)/α = 0.

One can see from the proof of Lemma 3.2 (below) that Full-Eval steps
are essentially considered as search steps from the direct-search perspective
of the Low-Eval iterations.

Lemma 3.2. Let Assumptions 3.3–3.5 hold. Assume that the sequence of
iterates {xk} is bounded. Then, there exists a point x∗ and a subsequence
K ⊂ IUL of unsuccessful Low-Eval iterates for which

lim
k∈K

xk = x∗ and lim
k∈K

αk = 0.

Proof : First, consider that there is an infinity of iterations in ISF ∪IUF ∪ISL.
These are all iterations k for which αk does not decrease. By Assumption 3.3,
all successful Full-Eval iterations k ∈ ISF yield

f(xk+1) ≤ f(xk)− c κ upβk ‖gk‖2 .

From the fact that βk satisfies βk ≥ γρ(αk),

f(xk+1)− f(xk) ≤ −c κ upγεgρ(αk). (13)

Successful Low-Eval iterations k ∈ ISL achieve sufficient decrease,

f(xk+1)− f(xk) ≤ −ρ(αk). (14)

Note that in Full-Eval unsuccessful iterations k ∈ IUF neither xk nor αk
changes.

FULL-LOW EVALUATION METHODS FOR DERIVATIVE-FREE OPTIMIZATION 13

Hence, given that for unsuccessful Low-Eval iterations (IUL) the function
does not decrease, we can sum from 0 to k ∈ ISF ∪ IUF ∪ ISL the inequali-
ties (13) and (14) to obtain

f(x0)− f(xk+1) ≥ c γ κ upεg
∑
i∈ISF

ρ(αi) +
∑
i∈ISL

ρ(αi).

By the boundedness (from below) of f , we conclude that the series is sum-
mable, which implies limk∈ISF∪IUF∪ISL

ρ(αk) = 0. In conjunction with As-
sumption 3.5, this in turn implies limk∈ISF∪IUF∪ISL

αk = 0.
It remains to consider the iterations in IUL. For each k ∈ IUL correspond-

ing to an unsuccessful Low-Eval iteration, consider the previous iteration
k′ = k′(k) ∈ ISL ∪ IUF ∪ ISL with k′ < k (k′ could be zero). The direct-
search stepsize can then be written as αk = θk−k

′
αk′. Since k′ → ∞ and

τ ∈ (0, 1), one obtains αk → 0 for all k ∈ IUL.
We have thus proved that αk goes to zero for all k. Since αk is only

decreased in unsuccessful Low-Eval iterations, there must be an infinite sub-
sequence of those. From the boundedness of the sequence of iterates, one can
extract a subsequence K of that subsequnce satisfying the statement of the
lemma.

The main theorem uses the notion of generalized Clarke derivative [12] at
x along a direction d ∈ Rn

f ◦(x; d) = lim
y→x

sup
t↓0

f(y + td)− f(y)

t
,

which is well defined if f is Lipschitz continuous around the point x. Es-
tablishing that there is a limit point which is Clarke stationary requires the
density of the so-called refining directions to be dense in the unit sphere.
The proof follows the arguments in [2, 3, 43].

Theorem 3.2. Let Assumptions 3.3–3.5 hold. Assume that the sequence of
iterates {xk} is bounded. Let the function f be Lipschitz continuous around
the point x∗ defined in Lemma 3.2. Let the set of limit points of{

dk
‖dk‖

, dk ∈ Dk, k ∈ K
}

(15)

be dense in the unit sphere, where K is given in Lemma 3.2.
Then, x∗ is a Clarke stationary point, i.e., f ◦(x∗; d) ≥ 0 for all d ∈ Rn.

14 A. S. BERAHAS, O. SOHAB AND L. N. VICENTE

Proof : Let d̄ be a limit point of (15), identified for a certain subsequence
L ⊆ K. Then, from basic properties of the generalized Clarke derivative,
and k ∈ L,

f ◦(x∗; d̄) = lim
xk→x∗

sup
αk↓0

f(xk + αkdk)− f(xk)

αk

≥ lim
xk→x∗

sup
αk↓0

{
f(xk + αkdk)− f(xk)

αk
+
ρ(αk)

αk

}
.

Since k ∈ L are unsuccessful Low-Eval iterations, it follows that f(xk +
αkdk)− f(xk) > ρ(αk) which implies that

lim
xk→x∗

sup
αk↓0

f(xk + αkdk)− f(xk) + ρ(αk)

αk
≥ 0.

From this and Assumption 3.5, we obtain f ◦(x∗; d̄) ≥ 0. Given the conti-
nuity of f ◦(x∗; ·), one has for any d ∈ Rn such that ‖d‖ = 1, f ◦(x∗; d) =
limd̄→d f

◦(x∗; d̄) ≥ 0.

3.3. More on the non-smooth case (noise). Let us now consider f =
φ+ε, where φ : Rn → R is a smooth function and ε : Rn → R is some additive
noisy function. We assume that both φ and ε are Lipschitz continuous around
x∗. The Clarke stationarity of φ at x∗ is guaranteed if ε satisfies

ε◦(x∗; d) ≤ −σφ◦(x∗; d), (16)

for some σ ∈ [0, 1). In fact, applying Theorem 3.2,

f ◦(x∗; d) = φ◦(x∗; d) + ε◦(x∗; d) ≥ 0,

and then using (16), it follows that φ◦(x∗; d) ≥ 0. In particular the result is
true if ε◦(x∗; d) ≤ 0.

In the multiplicative noise case, where f(x) = φ(x)(1 + ε(x)), one can
still establish similar results. In this case we can write f as a sum, f(x) =
φ(x)+φ(x)ε(x). If φ and ε are Lipschitz continuous around x∗, then it follows
that φ ε is also Lipschitz continuous around x∗. Applying Theorem 3.2,

φ◦(x∗; d)(1 + ε(x∗)) + φ(x∗)ε
◦(x∗; d) ≥ 0.

If φ(x∗) > 0, then the Clarke stationarity of φ at x∗, would result from

ε◦(x∗; d) ≤ −σ φ
◦(x∗; d)(1 + ε(x∗))

φ(x∗)
,

FULL-LOW EVALUATION METHODS FOR DERIVATIVE-FREE OPTIMIZATION 15

for some σ ∈ [0, 1), and as long as 1 + ε(x∗) > 0. The same happens in the
case φ(x∗) < 0, if

ε◦(x∗; d) ≥ −σ φ
◦(x∗; d)(1 + ε(x∗))

φ(x∗)
.

3.4. More on the smooth case (use of finite difference gradients).
Let us return to the smooth case to clarify the imposition of Assumption 3.2.
Such an assumption is related to the satisfaction of the so-called criticality
step in DFO trust-region methods [16, 17] when using fully linear models.
In the context of the line-search method used in the Full-Eval iterations,
those models correspond to using a finite difference (FD) scheme to compute
the approximate gradient gk.

The i-th component of the forward FD approximation of the gradient at
xk is defined as

[∇hkf(xk)]i =
f(xk + hkei)− f(xk)

hk
, i = 1, . . . , n, (17)

where hk is the finite difference parameter and ei ∈ Rn is the i-th canonical
vector. Computing such a gradient approximation costs n function evalua-
tions per iteration. By using a Taylor expansion, the error in the FD gradient
(in the smooth and noiseless setting) can be shown to satisfy

‖∇f(xk)−∇hkf(xk)‖ ≤
1

2

√
nLhk. (18)

It becomes then clear that one way to ensure Assumption 3.2 in practice
is to enforce hk ≤ u′gβ‖∇hkf(xk)‖, for some u′g > 0, in which case ug =
1
2

√
nLu′g. Enforcing such a condition is expensive but can be rigorously

done through a criticality-step type argument (see Algorithm 4).

Algorithm 4 Criticality step: Performed if hk > u′gβ ‖∇hkf(xk)‖
Input: hk, ∇hkf(xk)

(0) = ∇hkf(xk), β, and ω ∈ (0, 1). Let j = 0.
Output: ∇hkf(xk) = ∇hkf(xk)

(j) and hk.

1: While hk > u′gβ
∥∥∇hkf(xk)

(j)
∥∥ Do

2: Set j = j + 1 and hk = ωju′gβ
∥∥∇hkf(xk)

(0)
∥∥.

3: Compute the FD approximation ∇hkf(xk)
(j) using (17).

It can be proven that Algorithm 4 terminates in a finite number of steps
(see Proposition 3.1).

16 A. S. BERAHAS, O. SOHAB AND L. N. VICENTE

Proposition 3.1. Condition hk ≤ u′gβ‖∇hkf(xk)‖ can be attained in a finite
number of steps using Algorithm 4 if ‖∇f(xk)‖ 6= 0.

Proof : Let us suppose that the algorithm loops infinitely. Then, for all j ≥ 1,
using Step 3 and the satisfaction of the while–condition in Step 1,∥∥∥∇hkf(xk)

(j)
∥∥∥ ≤ ωj

∥∥∥∇hkf(xk)
(0)
∥∥∥ . (19)

On the other hand, for all j ≥ 1, the FD bound (18), followed by Step 3,
gives us ∥∥∥∇f(xk)−∇hkf(xk)

(j)
∥∥∥ ≤ 1

2

√
nLωju′gβk

∥∥∥∇hkf(xk)
(0)
∥∥∥ . (20)

Hence, using (19)–(20), we have

‖∇f(xk)‖ ≤
∥∥∥∇f(xk)−∇hkf(xk)

(j)
∥∥∥+

∥∥∥∇hkf(xk)
(j)
∥∥∥

≤
(√

nLu′gβk

2
+ 1

)
ωj
∥∥∥∇hkf(xk)

(0)
∥∥∥ . (21)

By taking limits (and noting that ω ∈ (0, 1)), we conclude that ‖∇f(xk)‖ =
0, which yields a contradiction.

4. Numerical setup
In this section, we will first present our implementation choices for the

Full-Low Evaluation method. The numerical environment of our experi-
ments is also introduced (other methods/solvers tested, test problems chosen,
and performance profiles). The tests were run using MATLAB R2019b on
an Asus Zenbook with 16GB of RAM and an Intel Core i7-8565U processor
running at 1.80GHz.

4.1. Our practical full-low evaluation implementation. Our proposed
Full-Eval line-search iteration consists of using a direction pk of the form pk =
−Hkgk. Our choice for the approximate gradient gk is forward FD (17) with
hk set to the square root of Matlab’s machine precision. Our choice for
Hk is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton update
[11, 23, 24, 39]. The choice of BFGS is justified by its strong performance
in the presence of derivatives [35]. The combination of BFGS with FD is
regarded as a useful resource for derivative-free optimization in many NLP
solvers such as for instance the fminunc Matlab routine, and as shown in
[5, 6, 40]. Our Full-Eval line-search iteration is described in Algorithm 5.

FULL-LOW EVALUATION METHODS FOR DERIVATIVE-FREE OPTIMIZATION 17

BFGS updates the inverse Hessian approximation Hk using (24), where
jk is the previous Full-Eval iteration, and sk and yk are given in (23).
In our implementation, the first Full-Low Evaluation iteration is always
Full-Eval. In the non-convex case, the products s>k yk cannot be ensured
positive. In order to maintain the positive definiteness of the matrix Hk, we
skip the BFGS update if s>k yk ≥ εc‖sk‖‖yk‖ is not satisfied, for εc ∈ (0, 1)
independent of k. In the implementation, we used εc = 10−10. The line-search
follows the backtracking scheme described in Algorithm 2, using β̄ = 1 and
τ = 0.5. As explained and rigorously proved in our paper, a key feature
of our Full-Low Evaluation methodology is to stop the line-search once
condition (3) is violated. In our implementation, we used

γ = 1, ρ(αk) = min(γ1, γ2α
2
k), with γ1 = 10−5 and γ2 = 10−3.

(22)
When k = 0, we perform a backtracking line-search using p0 = −g0 (and

update i-type(1) and x1) as in Algorithm 2 (with constants as in Algorithm 5).
The initialization of H0 is done as follows. If i-type(1) = Full-Eval, then
we set H0 = (y>0 s0)/(y

>
0 y0)I. This formula attempts to make the size of H0

similar to the one of ∇2f(x0)
−1 (see [35]). However, if i-type(1) = Low-Eval,

we set H0 = I.

Algorithm 5 Full-Eval Iteration: BFGS with FD Gradients
Input: Iterate xk with k ≥ 1. Information (xjk, gjk, Hjk) from the previous
Full-Eval iteration jk (if k > 0). Backtracking parameters β̄ > 0 and
τ ∈ (0, 1). Other parameters εc, γ1, γ2 > 0, γ = 1. Output: i-type(k + 1)

and (xk+1, Hk, gk). Return the number nbk of backtrack attempts.

1: Compute the FD gradient gk = ∇hkf(xk) using (17).
2: Set

sk = xk − xjk and yk = gk − gjk. (23)

3: If s>k yk ≥ εc‖sk‖‖yk‖, set

Hk =

(
I − sky

>
k

y>k sk

)
Hjk

(
I − yks

>
k

y>k sk

)
+
sks
>
k

y>k sk
. (24)

4: Else, set Hk = Hjk.
5: Compute the direction −Hkgk.
6: Perform a backtracking line-search, and update i-type(k + 1) and xk+1

as in Algorithm 2.

18 A. S. BERAHAS, O. SOHAB AND L. N. VICENTE

For the Low-Eval iterations, we considered the set of polling directions
Dk to be formed by one random direction and its negative, a variant which
has shown superior performance compared with deterministic direct search
based on PSS (see [26]). The random direction is drawn uniformly on the
unit sphere. Note that the cost in function evaluations (at most 2 per it-
eration) is considerably lower than in our Full-Eval iteration, especially
when n is large. The forcing function ρ(αk) used to accept polling points is
set as in (22). As suggested after Algorithm 3, the switch from Low-Eval

to Full-Eval will occur when the number nuk of consecutive unsuccessful
Low-Eval iterations reaches the number nbjk of backtracks done in the last
Full-Eval line-search. In the implementation, we set the stepsize updating
factors to λ = 1/θ = 2. See Algorithm 6.

Algorithm 6 Low-Eval Iteration: Probabilistic Direct Search
Input: Iterate xk and stepsize αk. Direct-search parameters λ ≥ 1 and
θ ∈ (0, 1). Number nuk of unsuccessful Low-Eval iterations since last
Full-Eval iteration jk. (Set nuk = 0 if i-type(k − 1) = Full-Eval.)
Number nbjk of backtracks done at Full-Eval iteration jk. Output:

i-type(k + 1), xk+1, αk+1, and nuk+1.

1: Generate d ∈ Rn uniformly on the unit sphere of Rn, and setDk = [d,−d].
2: Poll as in Algorithm 3.
3: Set nuk+1 = nuk in the successful case, nuk+1 = nuk + 1 otherwise.
4: If nuk < nbjk, i-type(k + 1) = Low-Eval.
5: Else, i-type(k + 1) = Full-Eval.

4.2. Other solvers tested. We compared the numerical performance of
our implementation of Full-Low Evaluation to four other approaches: (i)
a line-search BFGS method based on FD gradients (as if there were only
Full-Eval iterations), referred to as BFGS-FD; (ii) probabilistic direct search
(as if there were only Low-Eval iterations), referred to as pDS; (iii) an interpo-
lation-based trust-region solver, DFO-TR [4]; (iv) a line-search BFGS method
based on FD gradients and noise estimation, FDLM [5].
DFO-TR [4] builds models by quadratic interpolation. At the first iteration,

the function is evaluated using a sample set of 2n+ 1 points, given by x0 and
x0±∆0ei, with ei the i-th canonical vector. Until the cardinal number of the
sample set reaches pmax = (n+1)(n+2)/2, all trust-region trial points xk+sk
are added to the sample set, and models are computed by minimum Frobenius

FULL-LOW EVALUATION METHODS FOR DERIVATIVE-FREE OPTIMIZATION 19

norm interpolation [17, 36]. Once there are pmax points in the sample set,
a quadratic model is built by determined interpolation. Then, for each new
trial point added, an existing sample point is discarded (the farthest away
from xk + sk). When ∆k falls below a certain threshold, points that are too
far from the current iterate are discarded, expecting that the next iterations
will refill the sample set, providing an effect similar to a criticality step. The
trust-region radius ∆k is updated as it is common in trust-region methods,
the major difference being that it is never reduced when the sample set has
less than n+ 1 points.
FDLM [5] is a linesearch BFGS method for noisy functions where the gradi-

ents are approximated using FD. This approach differs from our Full-Eval
iterations in two main ways. First, in FDLM the noise level is estimated us-
ing [32], and such estimate is used to select the FD parameter as suggested
in [33]. Second, in [5], the sufficient decrease condition is relaxed using
the estimated noise level to prevent valuable points from being discarded.
Moreover, to avoid estimating the noise at every iteration, the authors [5]
developed a recovery procedure that estimates the noise only as needed (as
the optimization progresses). The FDLM solver was chosen to compare our
method to a version of FD-based BFGS where the noise is directly taken into
account. We should emphasize again that in our proposed method, Full-Low
Evaluation, the noise is directly handled by the Low-Eval iterations.

4.3. Classes of problems tested and profiles used. We considered 62
problems∗ from the CUTEst library [25] for the smooth case, with dimensions
between 2 and 51; Table 1 summarizes the distribution of the problems in
terms of their dimensions.

Dimension of the problem 2 3 4 5 6 7 8 9 10 31 50 51
Number of problems 21 9 5 1 2 1 10 1 5 2 4 1

Table 1. 62 problems from [25].

∗ALLINITU, ARGLINB, ARGLINC, BARD, BEALE, BOX3, BRKMCC, BROWNAL, BROWNBS, BROWNDEN,
CHNROSNB, CUBE, DECONVU, DENSCHNA, DENSCHNB, DENSCHNC, DENSCHND, DENSCHNF, DIXON3DQ, DJTL,
ENGVAL2, ERRINROS, EXPFIT, EXTROSNB, GENHUMPS, GROWTH, GROWTHLS, HAIRY, HEART6LS, HEART8LS,
HELIX, HILBERTA, HILBERTB, HIMMELBF, HIMMELBG, HUMPS, JENSMP, KOWOSB, LOGHAIRY, MARATOSB,
METHANB8, MEXHAT, MEYER3, NONMSQRT, PALMER1C, PALMER1D, PALMER2C, PALMER3C, PALMER4C,
PALMER4E, PALMER5C, PALMER5D, PALMER6C, PALMER7C, PALMER8C, ROSENBR, SINEVAL, SISSER,
TOINTQOR, WATSON, YFITU, and ZANGWIL2.

20 A. S. BERAHAS, O. SOHAB AND L. N. VICENTE

In order to test the scalability of the methods, we selected 12 problems†

from the CUTEst library [25] that represent problems with different features
(non-linearity, non-convexity, partial separability) and for which one can vary
the dimension n. For these problems, we considered dimensions n = 40 and
n = 80.

For the non-smooth and noisy cases, we chose 53 problems from the test
set described in [31]. The dimensions in this set vary from 2 to 12, and
its distribution is summarized in Table 2. The problems in [31] come in
three different perturbed forms: piecewise smooth, deterministic noise, and
stochastic noise. In [31], the authors considered the multiplicative noise case,
however, we also tested additive noise.

Additive noise. The function has the form f(x) = φ(x) + ε(x), where
φ is a smooth function. In the case of deterministic noise, ε(x) = εfψ(x),
where ψ : x ∈ Rn → [−1, 1]n is a deterministic noisy function (see [31] for a
full description of the function ψ). When considering stochastic noise, ε(x)
is a realization of a uniform random variable U(−εf , εf).

Multiplicative noise. The function takes the form f(x) = φ(x)(1+ξ(x))
where φ is a smooth function. As in the additive noise case, when the noise
is deterministic ξ(x) = εfψ(x). In the case of stochastic noise, the values
ξ(x) are drawn from a uniform random variable as described earlier. The
multiplicative noise case can be regarded as a special case of the additive
noise case as f(x) = φ(x) + ε(x), where ε(x) = φ(x)ξ(x). When the true
optimal objective function value is equal to 0, the noise is also decaying to 0
when converging to the optimum.

Dimension of the problem 2 3 4 5 6 7 8 9 10 11 12
Number of problems 5 6 5 4 4 5 6 5 4 4 5

Table 2. 53 problems from [31].

Performance profiles are a metric of comparison introduced in [20] to assess
the performance of a given set of solvers S for a given set of problems P .
They are a visual tool where the highest curve (top and left) corresponds to
the solver with the best overall performance. Let tp,s > 0 be a performance
measure of the solver s ∈ S on the problem p ∈ P , which in our case was set

†ARGLINA, ARWHEAD, BROYDN3D, DQRTIC, ENGVAL1, FREUROTH, PENALTY2, NONDQUAR, ROSENBR,
SINQUAD, TRIDIA, and WOODS.

FULL-LOW EVALUATION METHODS FOR DERIVATIVE-FREE OPTIMIZATION 21

to the number of function evaluations. The curve for a solver s is defined as
the fraction of problems where the performance ratio is at most α,

ρs(α) =
1

|P|
size {p ∈ P : rp,s ≤ α} ,

where the performance ratio rp,s is defined as

rp,s =
tp,s

min{tp,s : s ∈ S}
.

The convention rp,s = +∞ is used when a solver s fails to satisfy the conver-
gence test for problem p. The convergence test used is

f(x0)− f(x) ≥ (1− τ)(f(x0)− fL),

where τ > 0 is a tolerance, x0 is the starting point for the problem, and
fL is computed for each problem p ∈ P as the smallest value of f obtained
by any solver within a given number of function evaluations. Solvers with
the highest values of ρs(1) are the most efficient, and those with the highest
values of ρs(α), for large α, are the most robust.

5. Numerical results
In the tests performed, all solvers were given a budget of 2000n function

evaluations. Comparisons are based on two values of the performance profile
optimality tolerance parameter τ ∈ {10−2, 10−5}.

5.1. Smooth problems. Figure 1 shows that DFO-TR (magenta downward
triangles) is the most efficient method for the small smooth problems. The
Full-Low Evaluation method (blue squares) and BFGS-FD (black upward
triangles) exhibit essentially the same performance, and this is because con-
dition (3) is rarely violated for smooth problems. For low accuracy, pDS (red
circles) does perform quite well as expected. For the n = 40, 80 smooth
problems (see Figure 2), the Full-Low Evaluation method appears to be
both the most efficient and the most robust solver (performance similar to
BFGS-FD). The performance of DFO-TR (magenta downward triangles) deteri-
orates with the dimension, perhaps due to ill-conditioning of the sample set.
In all the tests for smooth problems, FDLM (light blue stars) delivers poor
efficiency but strong robustness.

22 A. S. BERAHAS, O. SOHAB AND L. N. VICENTE

H

1 2 4 8 16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 = 10 -2

Full-Low
pDS
BFGS-FD
DFO-TR
FDLM

1 2 4 8 16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 = 10 -5

Figure 1. Performance profiles with τ = 10−2, 10−5 for the 5 solvers.
Results for the 62 small smooth problems from CUTEst [25].

5.2. Non-smooth problems. In Figure 3, we present the results on the
piecewise smooth problems. One can see that the Full-Low Evaluation

curve is above all, followed by the BFGS-FD. On this set of problems, one
can see that Full-Low Evaluation performs better that BFGS-FD, due to
the presence of non-smoothness. In fact, the use of Low-Eval iterations
has significantly improved the performance of BFGS-FD. Note that pDS and
DFO-TR have the worst performance, but FDLM is not much better than these
two. Note that none of these methods were designed to handle problems with
non-smoothness.

5.3. Noisy problems. We now compare the 5 solvers on the noisy problems
described in Section 4.3. The noise level εf is chosen to be equal to 10−3 for
both deterministic and stochastic cases.

From Figure 4, one can see that for additive deterministic noise the best
performance is the one by DFO-TR, which is not surprising. For these prob-
lems, it is still the case that Full-Low Evaluation has the same efficiency
and robustness as BFGS-FD, due to the fact that BFGS-FD (i.e., always doing

FULL-LOW EVALUATION METHODS FOR DERIVATIVE-FREE OPTIMIZATION 23

H

1 2 4 8 16 32 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 = 10 -5

Full-Low
pDS
BFGS-FD
DFO-TR
FDLM

1 2 4 8 16 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 = 10 -5

Figure 2. Performance profiles with τ = 10−5 for the 5 solvers. Results for
the 12 not-so-small smooth problems from CUTEst [25] (n = 40 on left and

n = 80 on the right).

Full-Eval iterations) has a superior performance compared to pDS (i.e., al-
ways doing Low-Eval iterations). In the additive stochastic case (Figure 5),
FDLM is clearly the best in terms of robustness. Even though BFGS-FD is
the worst, Full-Low Evaluation is still robust compared to the remaining
methods due to the incorporation of pDS in the Low-Eval iterations.

In the multiplicative deterministic case (see Figure 6), we can see that
Full-Low Evaluation is both efficient and robust regardless of the accuracy.
DFO-TR is a little more efficient for low accuracy. FDLM performs better than
in the additive deterministic case. We can see that in this case, Full-Low
Evaluation performs better than just doing Full-Eval or Low-Eval itera-
tions.

The results for the stochastic multiplicative noise are given in Figure 7. The
best solver in terms of efficiency is pDS for both high and low accuracy. This
time, the curve corresponding to Full-Low Evaluation is no longer above
the BFGS-FD and pDS, instead it is in between them. This is because BFGS-FD
performs poorly when h is equal to the square root of machine precision (and

24 A. S. BERAHAS, O. SOHAB AND L. N. VICENTE

H

1 2 4 8 16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 = 10 -2

Full-Low
pDS
BFGS-FD
DFO-TR
FDLM

1 2 4 8 16 32 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 = 10 -5

Figure 3. Performance profiles with τ = 10−2, 10−5 for the 5 solvers.
Results for the piecewise smooth problems in [31].

the noise is “differentiated”). Note that FDLM exhibits the best robustness
for low accuracy even though it relies mostly on BFGS.

Taking into consideration all problem types, Full-Low Evaluation stands
out as the best overall performer, when both efficiency and robustness are
considered. For the noisy problems, we have also tried noise levels εf =
10−2, 10−4, but the relative positions of the curves in the profiles remain the
same.

6. Concluding remarks
We introduced a new framework for unconstrained derivative-free optimiza-

tion, consisting of the rigorous integration of two different methodologies.
The goal was to combine the strengths of both methodologies in order to
achieve solid numerical behavior (efficiency and robustness) regardless of the
smoothness or noise regime of the objective function. The first methodology
is related to the computation of fully linear models (in our case by comput-
ing finite difference gradients). The second is based on the low evaluation
paradigm of probabilistic direct search. Our convergence analysis is novel in

FULL-LOW EVALUATION METHODS FOR DERIVATIVE-FREE OPTIMIZATION 25

H

1 2 4 8 16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 = 10 -2

Full-Low
pDS
BFGS-FD
DFO-TR
FDLM

1 2 4 8 16 32 64 128
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 = 10 -5

Figure 4. Performance profiles with τ = 10−2, 10−5 of the 5 solvers.
Results for the additive deterministic noise problems (modified from [31]).

the way it connects the two methodologies, to rigorously extract their best
properties.

The Full-Low Evaluation framework can be analyzed and implemented
with other choices for the Full-Eval and Low-Eval iterations. For exam-
ple, a trust-region step based on fully linear models [4] is a candidate for
the Full-Eval iterations. Other possibilities include line search methods
that use simplex gradients [27] or deterministic direct search (with complete
polling on a set of points defined by a PSS) [29], instead of FD. Candidates
for Low-Eval include, for instance, randomized Gaussian smoothing methods
(one-point [34] or two-point approaches [21]).

There are a number of future research items to be investigated, and two
stand out naturally. The extension to the constrained case, in particular to
bound and linear constraints, and the consideration of DFO problems with
larger dimensions. We plan to report on these topics in future manuscripts.

References
[1] C. Audet and W. Hare. Derivative-Free and Blackbox Optimization. Springer Series in Oper-

ations Research and Financial Engineering. Springer, Cham, Switzerland, 2017.

26 A. S. BERAHAS, O. SOHAB AND L. N. VICENTE

H

1 2 4 8 16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 = 10 -2

Full-Low
pDS
BFGS-FD
DFO-TR
FDLM

1 2 4 8 16 32 64 128
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 = 10 -5

Figure 5. Performance profiles with τ = 10−2, 10−5 of the 5 solvers.
Results for the additive stochastic noise problems (modified from [31]).

[2] C. Audet and J. E. Dennis Jr. Analysis of generalized pattern searches. SIAM J. Optim.,
13:889–903, 2002.

[3] C. Audet and J. E. Dennis Jr. Mesh adaptive direct search algorithms for constrained opti-
mization. SIAM J. Optim., 17:188–217, 2006.

[4] A. S. Bandeira, K. Scheinberg, and L. N. Vicente. Computation of sparse low degree inter-
polating polynomials and their application to derivative-free optimization. Math. Program.,
134:223–257, 2012.

[5] A. S. Berahas, R. H. Byrd, and J. Nocedal. Derivative-free optimization of noisy functions via
quasi-Newton methods. SIAM J. Optim., 29:965–993, 2019.

[6] A. S. Berahas, L. Cao, K. Choromanski, and K. Scheinberg. A theoretical and empirical
comparison of gradient approximations in derivative-free optimization. Foundations of Com-
putational Mathematics, DOI: 10.1007/s10208-021-09513-z, 2021.

[7] A. S. Berahas, L. Cao, and K. Scheinberg. Global convergence rate analysis of a generic line
search algorithm with noise. SIAM J. Optim., 31:1489–1518, 2021.

[8] S. C. Billups, J. Larson, and P. Graf. Derivative-free optimization of expensive functions with
computational error using weighted regression. SIAM J. Optim., 23:27–53, 2013.

[9] A. J. Booker, J. E. Dennis Jr., P. D. Frank, D. B. Serafini, V. Torczon, and M. W. Trosset.
A rigorous framework for optimization of expensive functions by surrogates. Structural and
Multidisciplinary Optimization, 17:1–13, 1998.

[10] D. M. Bortz and C. T. Kelley. The simplex gradient and noisy optimization problems. In
J. T. Borggaard, J. Burns, E. Cliff, and S. Schreck, editors, Computational Methods in Op-
timal Design and Control, Progress in Systems and Control Theory, volume 24, pages 77–90.
Birkhäuser, Boston, 1998.

FULL-LOW EVALUATION METHODS FOR DERIVATIVE-FREE OPTIMIZATION 27

H

1 2 4 8 16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 = 10 -2

Full-Low
pDS
BFGS-FD
DFO-TR
FDLM

1 2 4 8 16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 = 10 -5

Figure 6. Performance profiles with τ = 10−2, 10−5 of the 5 solvers.
Results for the multiplicative deterministic noise problems in [31].

[11] C. G. Broyden. The convergence of a class of double-rank minimization algorithms 1. General
considerations. IMA J. Appl. Math., 6:76–90, 1970.

[12] F. H. Clarke. Optimization and Nonsmooth Analysis. John Wiley & Sons, New York, 1983.
Reissued by SIAM, Philadelphia, 1990.

[13] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. MPS-SIAM Series on
Optimization. SIAM, Philadelphia, 2000.

[14] A. R. Conn and Ph. L. Toint. An algorithm using quadratic interpolation for unconstrained
derivative free optimization. In G. Di Pillo and F. Gianessi, editors, Nonlinear Optimization
and Applications, pages 27–47. Plenum Publishing, New York, 1996.

[15] A. R. Conn, K. Scheinberg, and L. N. Vicente. Geometry of interpolation sets in derivative
free optimization. Math. Program., 111:141–172, 2008.

[16] A. R. Conn, K. Scheinberg, and L. N. Vicente. Global convergence of general derivative-free
trust-region algorithms to first and second order critical points. SIAM J. Optim., 20:387–415,
2009.

[17] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free Optimization.
MPS-SIAM Series on Optimization. SIAM, Philadelphia, 2009.

[18] A. L. Custódio, K. Scheinberg, and L. N. Vicente. Methodologies and software for derivative-
free optimization. In M. F. Anjos T. Terlaky and S. Ahmed, editors, Chapter 37 of Advances
and Trends in Optimization with Engineering Applications, MOS-SIAM Book Series on Opti-
mization. SIAM, Philadelphia, 2017.

[19] G. Deng and M. C. Ferris. Adaptation of the UOBYQA algorithm for noisy functions. In
L. F. Perrone, F. P. Weiland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, editors,
Proceedings of the 2006 Winter Simulation Conference, pages 312–319, 2006.

28 A. S. BERAHAS, O. SOHAB AND L. N. VICENTE

H

1 2 4 8 16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 = 10 -2

Full-Low
pDS
BFGS-FD
DFO-TR
FDLM

1 2 4 8 16 32 64 128
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 = 10 -5

Figure 7. Performance profiles with τ = 10−2, 10−5 of the 5 solvers.
Results for the multiplicative stochastic noise problems in [31].

[20] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles.
Math. Program., 91:201–213, 2002.

[21] J. C. Duchi, M. I. Jordan, M. J. Wainwright, and A. Wibisono. Optimal rates for zero-
order convex optimization: The power of two function evaluations. IEEE Transactions on
Information Theory, 61:2788–2806, 2015.

[22] G. Fasano, J. L. Morales, and J. Nocedal. On the geometry phase in model-based algorithms
for derivative-free optimization. Optim. Methods Softw., 24:145–154, 2009.

[23] R. Fletcher. A new approach to variable metric algorithms. The Computer Journal, 13:317–
322, 1970.

[24] D. Goldfarb. A family of variable-metric methods derived by variational means. Math. Comp.,
24:23–26, 1970.

[25] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEst: a Constrained and Unconstrained
Testing Environment with safe threads. Comput. Optim. Appl., 60:545–557, 2015.

[26] S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang. Direct search based on probabilistic
descent. SIAM J. Optim., 25:1515–1541, 2015.

[27] C. T. Kelley. Implicit filtering. SIAM, 2011.
[28] J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression function.

Ann. Math. Statist., 23:462–466, 1952.
[29] T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by direct search: New perspectives

on some classical and modern methods. SIAM Rev., 45:385–482, 2003.
[30] J. Larson, M. Menickelly, and S. Wild. Derivative-free optimization methods. Acta Numer.,

28:287–404, 2019.

FULL-LOW EVALUATION METHODS FOR DERIVATIVE-FREE OPTIMIZATION 29

[31] J. J. Moré and S. M. Wild. Benchmarking derivative-free optimization algorithms. SIAM J.
Optim., 20:172–191, 2009.

[32] J. J. Moré and S. M. Wild. Estimating computational noise. SIAM J. Sci. Comput., 33:1292–
1314, 2011.

[33] J. J. Moré and S. M. Wild. Estimating derivatives of noisy simulations. ACM Trans. Math.
Software, 38:1–21, 2012.

[34] Y. Nesterov. Random gradient-free minimization of convex functions. Technical Report
2011/1, CORE, 2011.

[35] J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag, Berlin, second edition,
2006.

[36] M. J. D. Powell. Least Frobenius norm updating of quadratic models that satisfy interpolation
conditions. Math. Program., 100:183–215, 2004.

[37] M. J. D. Powell. Developments of NEWUOA for minimization without derivatives. IMA J.
Numer. Anal., 28:649–664, 2008.

[38] L. M. Rios and N. V. Sahinidis. Derivative-free optimization: a review of algorithms and
comparison of software implementations. Journal of Global Optimization, 56(3):1247–1293,
2013.

[39] D. F. Shanno. Conditioning of quasi-Newton methods for function minimization. Math. Comp.,
24:647–656, 1970.

[40] H. J. M. Shi, M. Q. Xuan, F. Oztoprak, and J. Nocedal. On the numerical performance of
derivative-free optimization methods based on finite-difference approximations. arXiv preprint
arXiv:2102.09762, 2021.

[41] J. C. Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation. IEEE Trans. Automat. Control, 37:332–341, 1992.

[42] V. Torczon. On the convergence of pattern search algorithms. SIAM J. Optim., 7:1–25, 1997.
[43] L. N. Vicente and A. L. Custódio. Analysis of direct searches for discontinuous functions.

Math. Program., 133:299–325, 2012.
[44] D. Winfield. Function minimization by interpolation in a data set. J. Inst. Math. Appl., 12:339–

347, 1973.

A. S. Berahas
Department of Industrial & Operations Engineering, University of Michigan, 1205 Beal
Avenue, Ann Arbor, MI 48109-2102, USA (albertberahas@gmail.com).

O. Sohab
Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA
18015-1582, USA (ous219@lehigh.edu).

L. N. Vicente
Department of Industrial and Systems Engineering, Lehigh University, 200 West Packer
Avenue, Bethlehem, PA 18015-1582, USA and Centre for Mathematics of the University
of Coimbra (CMUC), Portugal (lnv@mat.uc.pt).

