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Abstract: In the application of data clustering to human-centric decision-making
systems, such as loan applications and advertisement recommendations, the cluster-
ing outcome might discriminate against people across different demographic groups,
leading to unfairness. A natural conflict occurs between the cost of clustering (in
terms of distance to cluster centers) and the balance representation of all demo-
graphic groups across the clusters, leading to a bi-objective optimization problem
that is nonconvex and nonsmooth. To determine the complete trade-off between
these two competing goals, we design a novel stochastic alternating balance fair
k-means (SAfairKM) algorithm, which consists of alternating classical mini-batch
k-means updates and group swap updates. The number of k-means updates and the
number of swap updates essentially parameterize the weight put on optimizing each
objective function. Our numerical experiments show that the proposed SAfairKM
algorithm is robust and computationally efficient in constructing well-spread and
high-quality Pareto fronts both on synthetic and real datasets. Moreover, we pro-
pose a novel companion algorithm, the stochastic alternating bi-objective gradient
descent (SA2GD) algorithm, which can handle a smooth version of the considered
bi-objective fair k-means problem, more amenable for analysis. A sublinear conver-
gence rate of O(1/T ) is established under strong convexity for the determination
of a stationary point of a weighted sum of the two functions parameterized by the
number of steps or updates on each function.

Keywords: Data clustering, fairness, multi-objective optimization, unsupervised
machine learning, Pareto fronts.
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1. Introduction
Clustering is a fundamental task in data mining and unsupervised ma-

chine learning with the goal of partitioning data points into clusters, in such
a way that data points in one cluster are very similar and data points in
different clusters are quite distinct [16]. It has become a core technique
in a huge amount of application fields such as feature engineering, infor-
mation retrieval, image segmentation, targeted marketing, recommendation
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systems, and urban planning. Data clustering problems take on many dif-
ferent forms, including partitioning clustering like k-means and k-median,
hierarchical clustering, spectral clustering, among many others [7, 16]. Given
the increasing impact of automated decision-making systems in our society,
there is a growing concern about algorithmic unfairness, which in the case
of clustering may result in discrimination against minority groups. For in-
stance, female may receive proportionally fewer job recommendations with
high salary [13] due to their under-representation in the cluster of high salary
recommendations. Such demographic features like gender and race are called
sensitive or protected features, which we wish to be fair with respect to.
Related work. An extensive literature work studying algorithmic fairness has
been focused on developing universal fairness definitions and designing fair
algorithms for supervised machine learning problems. Among the broad-
est representative fairness notions proposed for classification and regression
tasks are disparate impact [5] (also called demographic parity [10]), equal-
ized odds [19], and individual fairness [15], based on which the fairness
notions in clustering were proposed accordingly. There are a number of
classes of fairness definitions proposed and investigated for the clustering
task [1, 11, 12, 18, 23, 27]. The most widely used fairness notion is called
balance. It was proposed by [12], and it has been extended in several subse-
quent works [6, 20, 30]. As a counterpart of the disparate impact concept in
fair supervised machine learning, balance essentially aims at ensuring that
the representation of protected groups in each cluster preserves the global
proportion of each protected group.
Depending on the stage of clustering in which the fairness requirements are

imposed, the prior works on fair clustering are categorized into three families,
namely pre-processing, in-processing, and post-processing. A large body of
the literature work [4, 12, 20, 30] falls into the pre-processing category. The
whole dataset is first decomposed into small subsets named fairlets, where
the desired balance can be guaranteed. Any resulting solution from classical
clustering algorithms using the set of fairlets will then be fair. Chierichetti
et al. [12] focused on the case of two demographic groups and formulated ex-
plicit combinatorial problems (such as perfect matching and minimum cost
flow problems) to decompose the dataset into minimal fair sets defining the
fairlets. Their theoretical analysis gave strong guarantees on the quality of
the fair clustering solutions for k-center and k-median problems. Follow-
ing that line of work, Backurs et al. [4] embedded the whole dataset into a
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hierarchical structure tree and improved the time complexity of the fairlet
decomposition step from quadratic to nearly linear time (in the dataset size).
Schmidt et al. [30] introduced the notion of fair coresets and proposed an ef-
ficient streaming fair clustering algorithm for k-means. They introduced a
near-linear time algorithm to construct coresets that helps reduce the input
data size and hence speeds up any fair clustering algorithm. Huang et al. [20]
further boosted the efficiency of coresets construction and made a general-
ization to multiple non-disjoint demographic groups for both k-means and
k-median.
On the contrary, post-processing clustering methods [3, 6, 22, 29] modify

the resulting clusters from classical clustering algorithms to improve fairness.
For example, Bera et al. [6] proposed a fair re-assignment problem as a lin-
ear relaxation of an integer programming model given the clustering results
from any vanilla k-means, k-median, or k-center algorithms. They showed
how to derive a (ρ + 2)-approximation fair clustering algorithm from any
ρ-approximation vanilla clustering algorithm within a theoretical bound of
fairness constraints violation. Moreover, their framework works for datasets
with multiple and potentially overlapping demographic groups. Lastly, in-
processing methods incorporate the fairness constraints into the clustering
process [2, 24, 32]. Our approach falls into this category and allows for the
determination of the trade-offs between clustering costs and fairness. To our
knowledge, the only such other in-processing approach is the one of Ziko
et al. [32], where the clustering balance is approximately measured by the
KL-divergence and imposed as a penalty term in the fair clustering objec-
tive function. The penalty coefficient is then used to control the trade-offs
between clustering cost/fairness.
Our contribution. The partitioning clustering model, also referred to as the
center-based clustering model, consists of selecting a certain number K of
centers and assigning data points to their closest centers. In this paper, we
will focus on the well-known k-means model, and we will introduce a novel
fair clustering algorithm using the balance measure. The main challenge of
the fair clustering task comes from the violation of the assignment routine,
which then indicates that a data point is no longer necessarily assigned to its
closest cluster. The higher the balance level one wants to achieve, the more
clustering cost is added to the final clustering. Hence, there exists a natural
conflict between the fairness level, when measured in terms of balance, and
the classical k-means clustering objective.
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We explicitly formulate the trade-offs between the k-means clustering cost
and the fairness as a bi-objective optimization problem, where both objec-
tives are written as nonconvex and nonsmooth functions of binary assignment
variables defining point assignments in the clustering model (see (2) further
below). Our goal is to construct an informative approximation of the Pareto
front for the proposed bi-objective fair k-means clustering problem, with-
out exploring exhaustively the binary nature of the assignment variables.
The most widely used method in solving general bi-objective optimization
problems is the so-called weighted-sum method [17]. There, one considers
a set of single objective problems, formed by convex linear combinations of
the two functions, and (a portion of) the Pareto front might be approxi-
mated by solving the corresponding weighted-sum problems. However, this
methodology has no rigorous guarantees due to the nonconvexity of both
objective functions. Also, the non-smoothness of the fairness objective poses
an additional difficulty to the weighted-sum method, as one function will
be smooth and the other one no. Moreover, even ignoring the nonconvexity
and non-smoothness issues, the two objectives, namely the clustering cost
and the clustering balance, can have significantly different magnitudes. One
can hardly preselect a good set of weights corresponding to decision-makers’
preferences to capture a well-spread Pareto front.
Therefore, we were motivated to design a novel stochastic alternating bal-

ance fair k-means (SAfairKM) algorithm, inspired from the classical mini-
batch k-means algorithm, which essentially consists of alternatively taking
pure mini-batch k-means updates and swap-based balance improvement up-
dates. In fact, the number of k-means updates (denoted by na) and the
number of swap updates (denoted by nb) play a role similar to the weights
in the weighted-sum method, parameterizing the efforts of optimizing each
objective. In the pure mini-batch k-means updates, we focus on minimizing
the clustering cost. A mini-batch of points is randomly drawn and assigned
to their closest clusters, after which the set of centers are updated using mini-
batch stochastic gradient descent. In the swap-based balance improvement
steps, we aim at increasing the overall clustering balance. For this purpose,
we propose a simple swap routine that is guaranteed to increase the overall
clustering balance by swapping data points between the minimum balance
cluster and a target well-balanced cluster. Similarly to the k-means updates,
the set of centers are updated using the batch of data points selected to swap.
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While the k-means updates reproduce the stochastic gradient descent direc-
tions for the clustering cost function, the swap updates can be seen as taking
steps along some increasing directions for the clustering balance objective
(not necessarily the best ascent direction).
To provide a better understanding of the proposed algorithm, we develop

a novel convergence theory for a companion algorithm named the stochastic
alternating bi-objective gradient descent (SA2GD) algorithm. Such an al-
gorithm is designed to handle a smooth version of the type of bi-objective
optimization problems we considered in the fair clustering context. Besides,
one can apply it to any smooth bi-objective optimization problems when
knowing exactly how to optimize each single objective separately. It is shown
that the SA2GD algorithm has a sublinear convergence rate of O(1/T ) when
determining a stationary point of some weighted-sum function of the two
objectives, under strong convexity and classical assumptions of stochastic
gradients. The derived convergence theory gives us insight into the numer-
ical behavior of the SAfairKM algorithm, in particular in what regards the
determination of a Pareto front by parameterizing the optimization effort
put into optimizing each function at every iteration of the algorithm.
We have evaluated the performance of the proposed SAfairKM algorithm

using both synthetic datasets and real datasets. To endow SAfairKM with
the capability of constructing a Pareto front in a single run, we use a list of
nondominated points updated at every iteration. The list is randomly gener-
ated at the beginning of the process. At every iteration, and for every point
in the current list, we apply SAfairKM for all considered pairs of (na, nb).
For each pair (na, nb), one does na k-means updates and nb swap updates.
At the end of each iteration, we remove from the list all dominated points
(those for each there exists another one with higher clustering cost and lower
clustering balance). Such a simple mechanism is also beneficial for excluding
bad local optima, considering that the two objectives are nonconvex. We
will present the full trade-offs between the two conflicting objectives for four
synthetic datasets and two real datasets. A numerical comparison with the
fair k-means algorithm proposed in [32] further confirms the robustness and
efficiency of the proposed algorithm in constructing informative and high-
quality trade-offs.
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2. The mini-batch k-means algorithm
In the classical k-means problem, one aims to choose K centers (represen-

tatives) and to assign a set of points to their closest centers. The k-means
objective is the sum of the minimum (squared Euclidean) distance of all
points to their corresponding centers. Given a set of N points P = {xp}Np=1,
where xp is the non-sensitive feature vector, the goal of clustering is to assign
N points to K clusters identified by K centroids C = [c1, . . . , cK ]

⊤. Let [K]
denote the set of positive integers up to K. The k-means clustering prob-
lem is formulated as the minimization of a nonsmooth function of the set of
centroids:

min fKM
1 (C) =

1

2

N∑
p=1

min
k∈[K]

∥xp − ck∥2. (1)

Since each data point is assigned to the closest cluster, the K cluster cen-
troids are implicitly dependent on the point assignments. Let sp,k ∈ {0, 1}
be an assignment variable who takes the value 1 if point xp is assigned to
cluster k, and 0 otherwise. For simplicity, we denote sk, k ∈ [K], as an
N -dimensional assignment vector for cluster k, and sp, p = 1, . . . , N , as a
K-dimensional assignment vector for point xp. Let X ∈ RN×d be the data
matrix stacking N data points of dimension d and eN ∈ RN be an all-ones
vector. Then one can compute each centroid using ck = X⊤sk/e

⊤
Nsk.

In practice, Lloyd’s heuristic algorithm [26], also known as the standard
batch k-means algorithm, is the simplest and most popular k-means clus-
tering algorithm, and converges to a local minimum but without worst-case
guarantees [21, 31]. The main idea of Lloyd’s heuristic is to keep updating
the K cluster centroids and assigning the full batch of points to their closest
centroids.
In the standard batch k-means algorithm, one can compute the full gradient

of the objective function (1) with respect to k-th center by ∇ckf
KM
1 (C) =∑

xp∈Ck(ck − xp), where Ck, k = [K], is the set of points assigned to cluster
k. Whenever there exists a tie, namely a point that has the same distance
to more than one cluster, one can randomly assign the point to any of such
clusters. A full batch gradient descent algorithm would iteratively update
the centroids by ct+1

k − ctk = αt
k

∑
xp∈Ck(xp − ck),∀k ∈ [K], where αt

k > 0 is

the step size. Let N t
k be the number of points in cluster k at iteration t. It is

known that the full batch k-means algorithm with αt
k = 1/N t

k converges to a
local minimum as fast as Newton’s method, with a superlinear rate [8].
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The standard batch k-means algorithm is proved to be slow for large
datasets. Bottou and Bengio [8] proposed an online stochastic gradient de-
scent (SGD) variant that takes a gradient descent step using one sample at
a time. Given a new data point xp to be assigned, a stochastic gradient de-
scent step would look like ct+1

k = ctk+αt
k(xp−ctk) if xp is assigned to cluster k.

While the SGD variant is computationally cheap for large datasets, it finds
solutions of lower quality than the batch algorithm due to the stochasticity.
The mini-batch version of the k-means algorithm uses a mini-batch sampling
to lower stochastic noise and, in the meanwhile, speed up the convergence.
The detailed mini-batch k-means is given in Algorithm 1 of Appendix A.

3. A new stochastic alternating balance fair k-means method
3.1. The bi-objective balance k-means formulation. Balance [12] is
the most widely used fairness measure in the literature of fair clustering.
Consider J disjoint demographic groups. Let [J ] denote the set of posi-
tive integers up to J . Let Vj represent the set of points in demographic
group j ∈ [J ]. Then, vp,j takes the value 1 if point xp ∈ Vj. We denote vj
as an N -dimensional indicator vector for the demographic group j ∈ [J ].
The balance of cluster k is formally defined as bk = minj ̸=j′ v

⊤
j sk/v

⊤
j′sk ≤

1,∀k ∈ [K], which calculates the minimum ratio among different pairs of
protected groups. The overall clustering balance is the minimum balance
over all clusters, i.e., b = minKk=1 bk. The higher the overall balance, the
fairer the clustering.
By the definition of cluster balance given above, the balance function can

be easily computed only using the assignment variables. The k-means ob-
jective (1) can be rewritten as a function of the assignment variables as well.
Hence, one can directly formulate the inherent trade-off between clustering
cost and balance as a bi-objective optimization problem, i.e.,

min (f1(S),−f2(S)) s.t. sp ∈ ∆K ,∀p = 1, . . . , N, S ∈ {0, 1}N×K ,
(2)

where

f1(S) =
1

N

K∑
k=1

N∑
p=1

sp,k∥xp − ck∥2, with ck =
X⊤sk
e⊤Nsk

=

∑N
p=1 xpsp,k∑N
p=1 sp,k

,
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f2(S) = min
k∈[K]

min
j ̸=j′

j,j′∈[J ]

v⊤j sk

v⊤j′sk
,

and ∆K ⊂ RK denotes a simplex set. The two constraints in (2) ensure that
one point can only be assigned to one cluster. Note that both objectives are
nonconvex functions of the binary assignment variables.

3.2. The stochastic alternating balance fair k-means method. We
propose a novel stochastic alternating balance fair k-means clustering algo-
rithm to compute a nondominated solution on the Pareto front. We will use
a simple but effective alternating update mechanism, which consists of im-
proving either the clustering objective or the overall balance, by iteratively
updating cluster centers and assignment variables. Specifically, every iter-
ation of the proposed algorithm contains two sets of updates, namely pure
k-means updates and pure swap-based balance improvement steps. The pure
k-means updates were introduced in Section 2, and will consist of taking a
certain number of stochastic k-means steps. In the balance improvement
steps, a certain batch of points is selected and swapped between the mini-
mum balanced cluster and a target well-balanced cluster.
Balance improvement steps. At the current iteration, let Cl be the cluster
with the minimum balance. Then Cl is the bottleneck cluster that defines
the overall clustering balance. Without loss of generality, we assume that
bl = |Cl ∩ V1|/|Cl ∩ V2|, which then implies that the pair of demographic
groups (V1, V2) forms a key to improve the balance of cluster Cl, as well as
the overall clustering balance. In terms of the assignment variables, we have

b = bl =
v⊤1 sl
v⊤2 sl

=

∑N
p=1 vp,1sp,l∑N
p=1 vp,2sp,l

. (3)

One way to determine a target well-balanced cluster Ch is to select it as the
one with the maximum ratio between V1 and V2, i.e.,

h ∈ argmaxk∈[K]

{
v⊤1 sk/v

⊤
2 sk, v

⊤
2 sk/v

⊤
1 sk

}
. (4)

Another way to determine such a target cluster is to select a cluster Ch that
is closest to Cl, i.e.,

h ∈ argmink∈[K],k ̸=l ∥ck − cl∥. (5)
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Algorithm 2 Stochastic alternating balance fair k-means clustering

(SAfairKM) algorithm

0: Input: The set of points P , an integer K, and parameters na, nb.
0: Output: The set of clustering labels ∆ = {δ1, . . . , δN} for all points,

where δp ∈ [K].
0: Randomly generate an initial label {δ1, . . . , δN}, and compute k-means

centers {c1, . . . , cK} and balances {b1, . . . , bK} for all clusters.
0: for t = 1, 2, . . . do
0: Randomly sample a batch of na points Bt ⊆ P .
0: for xp ∈ Bt do
0: Identify its closest center index ip. Update clustering label δp = ip.
0: Update counter Nδp = Nδp + 1 and center cδp = cδp +

1
Nδp

(xp − cδp).

0: for r = 1, 2, . . . , nb do
0: Identify Cl, Ch, and the pair of demographic groups (V1, V2) according

to (3) and (5).
0: Randomly select points xp ∈ Cl ∩ V2 and xp′ ∈ Ch ∩ V1.
0: Swap points: set δp = h and δp′ = l.
0: Update centers cl = cl +

1
Nl
(xp′ − cl) and ch = ch +

1
Nh

(xp − ch).
0: Update balance for clusters Cl and Ch.

We call the target cluster computed by (4) a global target and the one selected
by (5) a local target. Using a global target cluster makes the swap updates
more efficient and stable in the sense that the target cluster is only changed
when the minimum balanced cluster changes. Instead, swapping according
to the local target leads to less increase in clustering costs.
To improve the overall balance, one swaps a point in cluster Cl belonging

to V2 with a point in cluster Ch belonging to V1. Each of these swap updates
will guarantee an increase in the overall balance. The detailed stochastic
alternating balance fair k-means clustering algorithm is given in Algorithm 2.
At each iteration, we alternate between taking k-means updates using a
drawn batch of points (denote the batch size by na) and “swap” updates using
another drawn batch of points (denote the batch size by nb). The generation
of the two batches is independent. The choice of na and nb influences the
nondominated point obtained at the end, in terms of the weight put into
each objective.
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Instead of randomly selecting points to swap in line 11 of Algorithm 2, in
our experiments we have used a more accurate swap strategy by increasing
the batch size. Basically, we randomly sample a batch of points from Cl ∩ V2

(resp. Ch ∩ V1) and select xp (resp. x′p) as the one closest to Ch (resp. Cl).
The batch size could be increased as the algorithm proceeds. Our numeri-
cal experiments show that the combination of local target clusters and the
increasingly accurate swap strategy result in better numerical performance.
One could have converted the bi-objective optimization problem (2) into a

weighted-sum function using the weights associated with the decision-maker’s
preference. However, optimizing such a weighted-sum function hardly re-
flects the desired trade-off due to significantly different magnitudes of the
two objectives. Moreover, the existing k-means algorithm frameworks, in-
cluding Lloyd’s heuristic algorithm, are not capable of directly handling the
weighted-sum objective function. In our proposed SAfairKM algorithm, the
pair (na, nb) plays a role similar to the weights in the weighted-sum method.
Later, we will show in Section 5 that a companion algorithm for solving a
smooth version of the bi-objective optimization problem generates a sequence
converging to a stationary point of the weighted-sum function composed by
the weights defined by (na, nb).

4. Numerical experiments
4.1. Pareto front SAfairKM algorithm. In our implementation∗, to ob-
tain a well-spread Pareto front, we frame the SAfairKM algorithm into a
Pareto front version using a list updating mechanism. See Algorithm 3 in
Appendix B for a detailed description. In the initialization phase, we specify
a sequence of pairs of the number of k-means updates and swap updates
W = {(na, nb) : na + nb = ntotal, na, nb ∈ N0}, and we generate a list of
random initial clustering labels L0. Then we run Algorithm 2 for a certain
number of iterations (q = 1 in our experiments) parallelly for each label in
the current list Lt, resulting in a new list of clustering labels Lt+1. At the end
of each iteration, the list is cleaned up by removing all the dominated points
from Lt+1. Using this algorithm, the list of nondominated points is refined
towards the true real Pareto front. The process can be terminated when
either the number of nondominated points is greater than a certain budget

∗Our implementation code is available at https://github.com/sul217/SAfairKM. All the ex-
periments were conducted on a MacBook Pro Intel Core i5 processor.

https://github.com/sul217/SAfairKM
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(1500 in our experiments) or when the total number of iterations exceeds a
certain limit (depending on the size of the dataset).
To the best of our knowledge, the only approach in the literature provid-

ing a mechanism of controlling trade-offs between the two conflicting ob-
jectives was suggested by [32] and briefly described in Appendix C. Their
approach (here called VfairKM) consists of solving (7) for different penalty
coefficients µ, resulting in a set of solutions from which we then remove dom-
inated solutions to obtain an approximated Pareto front. To ensure a fair
comparison, we select a set of penalty coefficients evenly from 0 to an upper
bound µmax, which is determined by pre-experiments such that the corre-
sponding fairness error is less than 0.01 or no longer possibly decreased when
further increasing its value. In some cases, we found that VfairKM is not
able to produce a fairer clustering outcome when the penalty coefficient is
greater than µmax due to numerical instability.

4.2. Numerical results.
Trade-offs for synthetic datasets. We randomly generated four synthetic
datasets from Gaussian distributions, and their demographic compositions
are given in Figure 2 of Appendix D.1. Each synthetic dataset has 400 data
points in the R2 space and two demographic groups (J = 2) marked by
black/circle and purple/triangle.
Using the list update mechanism (described by Algorithm 3 in Appen-

dix B), we are able to obtain a well-spread Pareto front with comparable
quality for each of the synthetic datasets. Recall that we are minimizing the
clustering cost and maximizing the clustering balance. The closer the Pareto
front is to the upper left corner, the higher its quality. In particular, Figure 1
(a) gives the approximated Pareto front for the Syn unequal ds2 dataset with
K = 2, which confirms the natural conflict between the clustering cost and
the clustering balance. One can see that the VfairKM algorithm is not able
to output any trade-off information as it always finds the fairest solution
regardless of the value of µ. Due to the special composition of this dataset,
the Pareto front generated by SAfairKM is disconnected (the point at the
right upper corner is both VfairKM and SAfairKM). More results are given
in Appendix D.1.
Trade-offs for real datasets. Two real datasets Adult [25] and Bank [28]
are taken from the UCI machine learning repository [14]. The Adult dataset
contains 32, 561 samples. Each instance is characterized by 12 nonsensitive
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features (including age, education, hours-per-week, capital-gain, and capital-
loss, etc.). For the clustering purpose, only five numerical features among
the 12 features are kept. The demographic proportion of the Adult dataset is
[0.67, 0.33] in terms of gender (J = 2), which corresponds to a dataset balance
of 0.49. The Bank dataset contains 41, 108 data samples. Six nonsensitive
numerical features (age, duration, number of contacts performed, consumer
price index, number of employees, and daily indicator) are selected for the
clustering task. Its demographic composition in terms of marital status (J =
3) is [0.11, 0.28, 0.61], and hence the best clustering balance one can achieve
is 0.185.
For the purpose of a faster comparison, we randomly select a subsample

of size 5000 from the original datasets and set the number of clusters to
K = 10. The resulting Pareto fronts from the two algorithms are given
in Figure 1 (b)-(c). For both datasets, SAfairKM is able to produce more
spread-out Pareto fronts which capture a larger range of balance, and hence
provide more complete trade-offs between the two conflicting goals. In terms
of Pareto front quality (meaning dominance of one over the other), SAfairKM
also performs better than VfairKM. In fact, we can see from Figure 1 that
the Pareto fronts generated by SAfairKM dominate most of the solutions
given by VfairKM. The Pareto fronts corresponding to K = 5 are also given
in Figure 8 of Appendix D.2. SAfairKM results in a Pareto front of higher
spread and slightly lower quality than VfairKM for the Adult dataset, while
the Pareto front output from SAfairKM has better spread and higher quality
for the Bank dataset.
Performance in terms of spread and quality of Pareto fronts. SAfairKM
is able to generate more spread-out and higher-quality Pareto fronts regard-
less of the data distribution (see the trade-off results for the four synthetic
datasets). The robustness partially comes from the list update mechanism
which establishes a connection among parallel runs starting from different
initial points and pairs (na, nb), and thus helps escape from bad local op-
tima.
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Figure 1. Pareto fronts: SAfairKM: 400 iterations for
Syn unequal ds2, 2500 iterations for Adult, and 8000 iterations
for Bank, 30 starting labels, and 4 pairs of (na, nb); VfairKM:
µmax = 0 for Syn unequal ds2, µmax = 3260 for Adult, and
µmax = 2440 for Bank.

Table 1. Average CPU times per nondominated solution.

Dataset SAfairKM VfairKM Dataset SAfairKM VfairKM

Syn equal ds1 0.80 1.06 Adult (K = 10) 18.52 40.43
Syn unequal ds1 0.81 0.98 Bank (K = 10) 59.12 76.29
Syn equal ds2 0.70 1.29 Adult (K = 5) 14.88 15.08
Syn unequal ds2 0.80 0.10 Bank (K = 5) 11.97 50.31

Performance in terms of computational time. Since the two algorithms
(SAfairKM and VfairKM) generally produce Pareto fronts of different car-
dinalities, we evaluate their computational efforts by the average CPU time
spent per computed nondominated solution (see Table 1). Our algorithm
was shown to be clearly more computationally efficient than VfairKM.

5. Alternating gradient descent for bi-objective optimiza-
tion
A continuous relaxation of the bi-objective optimization problem (2), set-

ting S ∈ [0, 1]N×K , is still a challenging problem from the viewpoint of design-
ing rigorous solution algorithms. One difficulty in optimizing a relaxation of
the bi-objective optimization problem (2) comes from the non-smoothness of
the balance objective. In this section, we consider a continuous and smooth
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version of the bi-objective optimization problem (2) given in the general form

min (fa(x), f b(x)), x ∈ Rn, (6)

and develop a companion algorithm of SAfairKM based on alternating gra-
dient descent for each objective function. Notice that if we smooth out the
min operators in the balance objective, a continuous relaxation of (2) falls
into the smooth formulation (6).
The general idea of the alternating gradient descent method for the bi-

objective optimization problem (6) consists of iteratively taking na steps of
gradient descent for the first objective and then nb steps of gradient descent
for the second objective. For simplicity, we denote such na + nb steps as
one single iteration of the algorithm. The stochastic alternating bi-objective
gradient descent (SA2GD) algorithm is formally described in Algorithm 4.
At every iteration t, starting at xt = ya0,t, SA2GD computes two sequences of

intermediate iterates, {yar,t}
na
r=1 and {ybr,t}

nb
r=1.

Algorithm 4 Stochastic alternating bi-objective gradient descent (SA2GD)

algorithm

0: Input: Initial point x0 = ya0,0 and a step size sequence {αt}.
0: Output: A likely nondominated or Pareto stationary point xT = ya0,T .
0: for t = 0, 1, . . . , T − 1 do
0: for r = 0, . . . , na − 1 do
0: Generate a stochastic gradient ga(yar,t, ξ

r
t ).

0: Update yar+1,t = yar,t − αtg
a(yar,t, ξ

r
t ).

0: Set yb0,t = yana,t
.

0: for r = 0, . . . , nb − 1 do
0: Generate a stochastic gradient gb(ybr,t, ξ

na+r
t ).

0: Update ybr+1,t = ybr,t − αtg
b(ybr,t, ξ

na+r
t ).

0: Set xt+1 = ya0,t+1 = ybnb,t
.

Furthermore, we assume that both objectives involve randomness in its
parameters, in which case we expect that the true gradient ∇f i(x) is not
available or too expensive to compute. Instead, one can generate stochastic
gradients as unbiased estimates of the true gradients, denoted by gi(x, ξ), i ∈
{a, b}, where ξ is some random variable.
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Our main result stated below (see proof in Appendix E) shows that SA2GD
drives the expected optimality gap of the weighted-sum function S(·, λ(na, nb))
to zero at a sublinear rate of 1/T , where λ(na, nb) = na/(na+nb), when using
a decaying step size sequence. By varying na and nb in {1, . . . , ntotal}, such
that ntotal = na+nb, one can capture the entire trade-off between fa and f b.

Theorem 5.1. (sublinear convergence rate of the SA2GD algo-
rithm) Let Assumptions E.1-E.4 hold and x∗ be the unique minimizer of
the weighted function S(·, λ∗) where λ∗ = λ(na, nb) = na/(na+nb). Choosing
a diminishing step size sequence αt =

2
c(t+1)(na+nb)

, the sequence of iterates

generated by the Algorithm 4 satisfies

min
t=1,...,T

E[S(xt, λ∗)]− S(x∗, λ∗) ≤ 4

c(T + 1)

(
n2
a + n2

b

na + nb
Ĝ2 + (na + nb)LΘĜ

)
.

where Ĝ =
√
G+ ḠL2Θ2, L = max(La, Lb), G = max(Ga, Gb), and Ḡ =

max(Ḡa, Ḡb).

The intuition of the proof of Theorem 5.1 is described as follows. At
each iteration t, the algorithm generates two sequences {yar,t}

na
r=1 and {ybr,t}

nb
r=1

related to the alternated optimization of the two objectives. One can first
write the explicit form of the new iterate xt+1 using the sequence of stochastic
gradients and the step size αt. Assuming that the sequence converges to
some Pareto stationary point x∗, the optimality gap can be measured by the
expected iterate error E[∥xt+1 − x∗∥2], and this error can be bounded by the
optimality gap at the current iteration, i.e., E[∥xt − x∗∥2], and two extra
terms.
The first term involves α2

t and the square norms of the stochastic gradi-
ents, and can be bounded above using a combination of Assumptions E.1,
E.3 (b), and E.4, as in classical stochastic gradient descent. The second
term, after taking expectation over random variables, becomes −αt(xt −
x∗)

⊤(
∑na−1

r=0 ∇fa(yar,t)+
∑nb−1

r=0 ∇f b(ybr,t)). By applying a version of the Inter-

mediate Value Theorem (given in Appendix F), there exists a point wi
t in the

convex hull of {yir,t}
ni−1
r=0 , for both i ∈ {a, b}, such that taking ni steps along

the sequence of gradients is the same as taking ni steps along the gradient
at wi

t. The second term can then be written as −αt(xt − x∗)
⊤(na∇fa(wa

t ) +
nb∇f b(wb

t)).
Next, we aim at establishing a connection with a weighted-sum func-

tion naf
a + nbf

b by seeing how this key second term differs from −αt(xt −



16 S. LIU AND L. N. VICENTE

x∗)
⊤(na∇fa(xt) + nb∇f b(xt)). By applying the Cauchy-Schwarz inequality

and Assumption E.1, the difference is of the same order as O(αt(∥xt−wa
t ∥+

∥xt −wb
t∥)). Since one can show that ∥xt −wi

t∥ = O(αt), the second term is
finally rewritten as −αt(xt−x∗)

⊤(na∇fa(xt)+nb∇f b(xt))+O(α2
t ). The part

involving ∇f i is further handled using the strong convexity of the weighted-
sum function associated with the weight λ∗ = na/(na + nb), where x∗ is now
the unique minimizer of S(·, λ∗). The part O(α2

t ) is merged to the other alike
O(α2

t ) which appears in the first term. The rest of the proof is classical, and
by plugging in the decaying step size the desired rate is established. It is in
fact the use of the decaying step size that compensates for the error O(α2

t )
generated when bundling the gradients using the IVT.

6. Concluding remarks
We have investigated the natural conflict between the k-means clustering

cost and the clustering balance from the perspective of bi-objective opti-
mization, for which we designed a novel stochastic alternating algorithm
(SAfairKM). A Pareto front version of SAfairKM has efficiently computed
well-spread and high-quality trade-offs, when compared to an existing ap-
proach based on a penalization of fairness. We also proposed a companion
stochastic alternating bi-objective gradient descent algorithm to handle a
smooth version of these fair clustering bi-objective problems. Under strong
convexity, this algorithm was shown to converge at a rate of O(1/T ) to a
Pareto stationary point, which is identified by weighting differently the ef-
fort put into the optimization of each function. This result validates our
numerical experiments with SAfairKM in the sense that by varying this ef-
fort in a convex combination one can aim at determining an entire Pareto
front.
Note that a balance improvement routine for the SAfairKM algorithm could

be derived to handle more than one demographic group. One might formulate
a multi-objective problem with the clustering cost being one objective and
the balance corresponding to each protected attribute (e.g., race and gender)
written as separate objectives. The balance measured using each attribute
can be improved via alternating swap updates with respect to each balance
objective.
Limitations. The computation of entire Pareto fronts poses dataset scalability
issues to SAfairKM due to the increase in function value evaluations for
dominance checks. Moreover, the proposed approach is limited to disjoint
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demographic compositions and cannot deal with multiple and overlapping
demographic groups.

Appendix A.Mini-batch k-means algorithm

Algorithm 1 Mini-batch k-means algorithm

0: Input: The set of points P and an integer K.
0: Output: The set of centers C = {c1, . . . , cK}.
0: Randomly select K points as initial centers.
0: for t = 0, 1, 2, . . . do
0: Randomly sample a batch of points Bt.
0: for k = 1, . . . , K do
0: Identify the set of points Bk

t ⊆ Bt whose closest center is ck.
0: Nk = Nk + |Bk

t |.
0: ck = ck +

1
Nk

∑
xp∈Bk

t
(xp − ck).

Appendix B.Pareto-Front SAfairKM Algorithm

Algorithm 3 Pareto-Front SAfairKM Algorithm

0: Generate a list of starting labels L0. Select parameter q ∈ N and a
sequence of pairs W = {(na, nb) : na + nb = ntotal, na, nb ∈ N0}.

0: for t = 0, 1, . . . do
0: Set Lt+1 = Lt.
0: for each clustering label ∆ in the list Lk+1 do
0: for (na, nb) ∈ W do
0: Apply q iterations of Algorithm 2 starting from ∆ using the

parameters (na, nb).
0: Add the final output label to the list Lt+1.
0: Remove all the dominated points from Lt+1: for each label ∆ in the

list Lt+1 do
0: If ∃ ∆′ ∈ Lt+1 such that f1(∆

′) < f1(∆) and f2(∆
′) > f2(∆) hold,

remove ∆.
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Appendix C.Description of an existing approach for com-
parison

The authors in [32] considered the fairness error computed by the Kullback-
Leibler (KL)-divergence, and added it as a penalized term to the classical
clustering objective. When using the k-means clustering cost, the resulting
problem takes the form:

min fKM
1 + µ

N∑
k=1

DKL(U∥Pk) s.t. sp ∈ ∆K ,∀p = 1, . . . , N, (7)

where DKL is the KL divergence between the desired demographic propor-
tion U = [uj, j = 1, . . . , J ] (usually specified by the demographic compo-
sition of the whole dataset) and the marginal probability Pk = [P(j|k) =
s⊤k vj/eN

⊤sk, j = 1, . . . , J ]. The penalty coefficient µ associated with the fair-
ness error is the tool to control the trade-offs between the clustering cost and
the clustering balance. To solve problem (7) for a fixed µ ≥ 0, the authors
in [32] have developed an optimization scheme based on a concave-convex
decomposition of the fairness term.
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Appendix D.More numerical results
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Figure 2. Demographic composition of four synthetic datasets.
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Figure 3. Syn equal ds1 data: SAfairKM: 400 iterations, 10
starting labels, and 3 pairs of (na, nb); VfairKM: µmax = 202.

(a) f1(s). (b) f2(s).

Figure 4. Syn equal ds1 dataset: 3 pairs of (na, nb),
3, 000/(na + nb) iterations.

D.1. More trade-off results for synthetic datasets. After having ap-
plied SAfairKM to the Syn equal ds1 dataset using three different pairs of
(na, nb), we show in Figure 4 how the two objective function values change
along iterations. Taking far more k-means updates than swap updates, one
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converges to a nondominated solution of zero balance and minimum clus-
tering cost. Using far more swap updates than k-means updates leads to a
nondominated point of perfect balance and relatively higher clustering cost.
In between, one can observe that after a certain number of iterations, the
clustering cost and balance are driven to some intermediate range.
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(c) Clust. balance b = 0.16. (d) Clust. balance b = 0.33.

Figure 5. Syn unequal ds1 data: SAfairKM: 400 iterations, 10
starting labels, and 3 pairs of (na, nb); VfairKM: µmax = 223.
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Figure 6. Syn equal ds2 data: SAfairKM: 400 iterations, 10
starting labels, and 3 pairs of (na, nb); VfairKM: µmax = 60.
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Figure 7. Syn unequal ds2 data: SAfairKM: 400 iterations, 10
starting labels, and 3 pairs of (na, nb); VfairKM: µmax = 0.

Figure 7 (b)-(d) depicts the clustering outcomes associated with three non-
dominated points on the Pareto front computed by our algorithm. Specifi-
cally, Figure 7 (b) and (d) correspond to the two extreme points of zero bal-
ance and perfect balance respectively. The k-means updates tend to group
the same demographic group into one cluster as points in the same demo-
graphic group are closer to each other. On the contrary, SAfairKM manages
to find a clustering solution of perfect balance, where a half of each demo-
graphic group is assigned to each of the two clusters. Finally, Figure 7 (c)
shows a clustering outcome of balance b = 0.17, where each cluster contains
a mixture of points from the two demographic groups.
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D.2.More trade-off results for real datasets. space
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Figure 8. Pareto fronts for K = 5: SAfairKM: 2500 iterations
for Adult and 1500 iterations for Bank, 30 starting labels, and
4 pairs of (na, nb); VfairKM: µmax = 6190 for Adult and µmax =
4790 for Bank.

Appendix E.Rate of convergence for the stochastic al-
ternating bi-objective gradient descent (as-
sumptions and proof)

Let us now describe the assumptions under which SA2GD will be analyzed.
We first formalize the classical smoothness assumption of Lipschitz continuity
of the gradients, which is often satisfied in practice.

Assumption E.1. (Lipschitz continuous gradients) The individual true
gradients are Lipschitz continuous with Lipschitz constants Li > 0, i ∈ {a, b},
i.e.,

∥∇f i(x)−∇f i(x̄)∥ ≤ Li∥x− x̄∥, ∀(x, x̄) ∈ Rn × Rn.

In addition to Assumption E.1, we impose strong convexity in both objec-
tive functions.

Assumption E.2. (Strong convexity) For all i = {a, b}, there exists a
scalar ci > 0 such that

f i(x̄t) ≥ f i(xt) +∇f i(xt)
⊤(x̄t − xt) +

ci

2
∥x̄t − xt∥2, ∀(xt, x̄t) ∈ Rn × Rn.

Note that based on the above assumption, the weighted-sum function
S(x, λ) = λfa(x) + (1 − λ)f b(x), λ ∈ [0, 1] is also strongly convex with con-
stant c = min(ca, cb). Given the individual stochastic gradients gi(xt, ξt),∀i ∈
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{a, b}, generated with random variable ξt, we use Eξt[·] to denote the con-
ditional expectation taken with respect to ξt. We also impose the following
two classical assumptions of stochastic gradients.

Assumption E.3. For both objective functions i ∈ {a, b}, and all iterates
t ∈ N, the individual stochastic gradients gi(xt, ξt) satisfy the following:

(a) (Unbiased gradient estimation) Eξt[g
i(xt, ξt)] = ∇f i(xt), ∀i ∈

{a, b}.
(b) (Bound on the second moment) There exist positive scalars Gi >

0 and Ḡi > 0 such that

Eξt[∥gi(xt, ξt)∥2] ≤ Gi + Ḡi∥∇f i(xt)∥2, ∀i ∈ {a, b}.

The above assumptions are commonly used ones in classical stochastic gra-
dient methods [9], basically assuming reasonable bounds on the expectation
and variance of the individual stochastic gradients. Lastly, we make a rea-
sonable assumption that the sequence of points generated by the algorithm
is bounded.

Assumption E.4. The sequence {xt}Tt=0 generated by the Algorithm 4 is
contained in a bounded set, i.e., there exists a positive constant Θ such that

max
t,t′∈{0,...,T}

∥xt − xt′∥ ≤ Θ < ∞.

Notice that the above assumption together with Assumption E.1 implies
that ∥∇f i(xt)−∇f i(xt′)∥ ≤ LiΘ holds for any xt, xt′ in the sequence. Letting
xt′ be the unique minimizer of f i(x) results in an upper bound on the true
gradient norm, i.e., ∥∇f i(xt)∥ ≤ LiΘ,∀i ∈ {a, b}.
Proof of Theorem 5.1. The proof is divided in three parts for better organiza-
tion and understanding. In the first part, one obtains an upper bound on the
norm of the iterates, E[∥xt+1 − x∗∥2]. Strong convexity of the weighted-sum
function is applied in the second part. The third part concludes the rate
using standard arguments. For simplicity, we let zt = yb0,t = yana,t

.

Part I: Bound on the iterates error. At any iteration t, the sequence
of stochastic gradients is computed from drawing the sequence of random
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variables ξt = {ξ0t , . . . , ξ
na+nb−1
t }. We have

xt+1 − x∗ = zt − x∗ − αt

nb−1∑
r=0

gb(ybr,t, ξ
r
t ),

= xt − x∗ − αt

na−1∑
r=0

ga(yar,t, ξ
r
t )− αt

nb−1∑
r=0

gb(ybr,t, ξ
na+r
t ).

Since the sequence ξt is drawn independently, using Assumption E.3 (a) one
has

Eξt[g
a(yar,t, ξ

r
t )] = Eξ0t ,...,ξ

r−1
t

[Eξrt [g
a(yar,t, ξ

r
t )]]

= Eξ0t ,...,ξ
r−1
t

[∇fa(yar,t)] = Eξt[∇fa(yar,t)],

where the second and last equalities hold due to the independence between
yar,t and {ξrt , . . . , ξ

na−1
t }. Similarly, we have Eξt[g

b(ybr,t, ξ
na+r
t )] = Eξt[∇f b(ybr,t)].

Taking square norms and expectations over the random variables ξt on
both sides and using Assumption E.3 (a) yield

Eξt[∥xt+1 − x∗∥2] = ∥xt − x∗∥2 + α2
tEξt[∥

na−1∑
r=0

ga(yar,t, ξ
r
t ) +

nb−1∑
r=0

gb(ybr,t, ξ
na+r
t )∥2]

− Eξt[2αt(xt − x∗)
⊤

na−1∑
r=0

∇fa(yar,t) +

nb−1∑
r=0

∇f b(ybr,t)].

(8)

We now claim, by applying a version of the Intermediate Value Theorem
given in Proposition F.1, that the last term of the right-hand side in (8) can
be written as −2αt(xt − x∗)

⊤Eξt[na∇fa(wa
t ) + nb∇f b(wb

t)]. In fact, we apply
Proposition F.1 to the real continuous function ϕi(y) = 2αt(xt−x∗)

⊤∇f i(y),
from which we then know that wi

t is a convex combination of a sequence of
points {yir,t}

ni−1
r=0 for both i ∈ {a, b}.

As for the second term in the right-hand side of (8), we can use a combi-
nation of Assumptions E.1, E.3 (b), and E.4 to derive an upper bound for
the second moment of the sequence of stochastic gradients {ga(yar,t, ξrt )}

na−1
r=0
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and {gb(ybr,t, ξ
na+r
t )}nb−1

r=0 at each iteration t, i.e.,

Eξt[∥
na−1∑
r=0

ga(yar,t, ξ
r
t ) +

nb−1∑
r=0

gb(ybr,t, ξ
na+r
t )∥2] ≤ 2Eξt[∥

na−1∑
r=0

ga(yar,t, ξ
r
t )∥2]

+ 2Eξt[∥
nb−1∑
r=0

gb(ybr,t, ξ
na+r
t )∥2]

≤ 2na

na−1∑
r=0

Eξt[∥ga(yar,t, ξrt )∥2]

+ 2nb

nb−1∑
r=0

Eξt[∥gb(ybr,t, ξ
na+r
t )∥2]

≤ 2(n2
a + n2

b)(G+ ḠL2Θ2),

where L = max(La, Lb), G = max(Ga, Gb), and Ḡ = max(Ḡa, Ḡb). We thus
arrive at

Eξt[∥xt+1 − x∗∥2] ≤ ∥xt − x∗∥2 + 2α2
t (n

2
a + n2

b)(G+ ḠL2Θ2)

− 2αt(xt − x∗)
⊤Eξt[na∇fa(wa

t ) + nb∇f b(wb
t)].

(9)

By adding and subtracting 2αt(xt − x∗)
⊤(na∇fa(xt) + nb∇f b(xt)) in the

right-hand side of (9), we further rewrite it as

Eξt[∥xt+1 − x∗∥2] ≤ ∥xt − x∗∥2 + 2α2
t (n

2
a + n2

b)(G+ ḠL2Θ2)

− 2αt(xt − x∗)
⊤(na∇fa(xt) + nb∇f b(xt))

+ 2αt∥xt − x∗∥Eξt[∥na∇fa(wa
t )− na∇fa(xt)∥]

+ 2αt∥xt − x∗∥Eξt[∥nb∇f b(wb
t)− nb∇f b(xt)∥].

(10)

Note that the last two terms are derived by the Cauchy-Schwarz and Jensen’s
inequalities.

Part II: Using strong convexity. Selecting λ∗ = λ(na, nb) = na/(na+nb),
by the strong convexity of the weighted-sum function, one has

∇xS(xt, λ∗)
⊤(xt − x∗) ≥ S(xt, λ∗)− S(x∗, λ∗) +

c

2
∥xt − x∗∥2,
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which is equivalent to

(xt−x∗)
⊤(na∇fa(xt)+nb∇f b(xt)) ≥ (na+nb)(S(xt, λ∗)−S(x∗, λ∗)+

c

2
∥xt−x∗∥2).

(11)
From Assumption E.1, we obtain a bound for the last two terms of (10) in

the form, for i ∈ {a, b},

2αt∥xt − x∗∥Eξt[∥ni∇f i(wi
t)− ni∇f i(xt)∥] ≤ 2αtLni∥xt − x∗∥Eξt[∥xt −wi

t∥].
(12)

According to Proposition F.1, wi
t is a convex combination of a sequence of

points {yir,t}
ni−1
r=0 for i ∈ {a, b}. One can write wi

t =
∑ni−1

r=0 βry
i
r,t with βr ≥ 0,

r = 0, . . . , ni − 1 , and
∑ni−1

r=0 βr = 1. An explicit upper bound of ∥xt − wi
t∥

can then be derived using Jensen’s inequality

Eξt[∥xt −
ni−1∑
r=0

βry
i
r,t∥] = Eξt[∥

ni−1∑
r=0

βr(xt − yir,t)∥] ≤
ni−1∑
r=0

βrEξt[∥xt − yir,t∥].

(13)

Using yir,t = yi0,t −
∑r−1

j=0 αtg
i(yij,t, ξ

j
t ) and applying the triangle inequality, we

have

Eξt[∥xt − yar,t∥] ≤ αt

r−1∑
j=0

Eξt[∥ga(yaj,t, ξ
j
t )∥], (14)

and

Eξt[∥xt − ybr,t∥] = Eξt[∥xt − yana,t
+

r−1∑
j=0

αtg
b(ybj,t, ξ

na+j
t )∥]

≤ αt

na−1∑
j=0

Eξt[∥ga(yaj,t, ξ
j
t )∥] + αt

r−1∑
j=0

Eξt[∥gb(ybj,t, ξ
na+r
t )∥].

(15)

Recall that using a combination of Assumptions E.1, E.3 (b), and E.4,
the bound for the second moment of the stochastic gradients is given by
Eξ[∥gi(yir,t)∥2] ≤ G + ḠL2Θ2, where L, G, and Ḡ are constants defined in
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Part I. Plugging (14) into (13) with i = a results in

Eξt[∥xt − wa
t ∥] ≤

na−1∑
r=1

βrαt

r−1∑
j=0

Eξt[∥ga(yaj,t, ξ
j
t )∥]

≤ αt

√
G+ ḠL2Θ2

na−1∑
r=0

βr r ≤ αt(na − 1)
√
G+ ḠL2Θ2.

(16)

Similarly, plugging (15) into (13) with i = b leads to

Eξt[∥xt − wb
t∥] ≤ αt(na + nb − 1)

√
G+ ḠL2Θ2. (17)

Finally, combining (12) and (16)-(17) yields

2αt∥xt − x∗∥
∑

i∈{a,b}

Eξt[∥ni∇f i(wi
t)− ni∇f i(xt)∥]

≤ 2α2
tLΘ(na + nb)

2
√
G+ ḠL2Θ2.

(18)

Part III: Bound on the optimality gap in terms of weighted-sum
function. Applying inequalities (11) and (18) to (10) leads to

Eξt[∥xt+1 − x∗∥2] ≤ (1− αt(na + nb)c)∥xt − x∗∥2 + 2α2
t ((n

2
a + n2

b)(G+ ḠL2Θ2)

+ (na + nb)
2LΘ

√
G+ ḠL2Θ2)− 2αt(na + nb)(S(xt, λ∗)

− S(x∗, λ∗)).

To simplify, let M̄ = 2((n2
a+ n2

b)(G+ ḠL2Θ2) + (na+ nb)
2LΘ

√
G+ ḠL2Θ2).

Plugging in αt =
2

c(na+nb)(t+1) and rearranging the last inequality results in

S(xt, λ∗)− S(x∗, λ∗) ≤ (1− αt(na + nb)c)∥xt − x∗∥2 − Eξt[∥xt+1 − x∗∥2] + α2
tM̄

2αt(na + nb)

≤ c(t− 1)

4
∥xt − x∗∥2 −

c(t+ 1)

4
Eξt[∥xt+1 − x∗∥2] +

M̃

c(t+ 1)
,
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where M̃ = M̄
na+nb

. Taking total expectation over {ξt}, multiplying both sides
by t, and summing over t = 1, . . . , T , one obtains

T∑
t=1

t(E[S(xt, λ∗)]− S(x∗, λ∗))

≤
T∑
t=1

(
ct(t− 1)

4
E[∥xt − x∗∥2]−

ct(t+ 1)

4
E[∥xt+1 − x∗∥2]

)

+
T∑
t=1

M̃t

c(t+ 1)

≤ − cT (T + 1)

4
E[∥xT+1 − x∗∥2] +

T∑
t=1

M̃t

c(t+ 1)

≤ T

c
M̃.

Dividing both sides of the last inequality by
∑T

t=1 t yields

min
t=1,...,T

E[S(xt, λ∗)]− S(x∗, λ∗) ≤ 2

c(T + 1)
M̃,

which concludes the proof. □

Appendix F.Proposition using Intermediate Value The-
orem

Based on the Intermediate Value Theorem, we derive the following propo-
sition for the purpose of convergence rate analysis of Algorithm 4 (SA2GD).

Proposition F.1. Given a continuous real function ϕ(x) : Rn → R and a
set of points {xj}mj=1, there exists w ∈ Rn such that

mϕ(w) =
m∑
j=1

ϕ(xj),

where w =
∑m

j=1 µjxj, with
∑m

j=1 µj = 1, µj ≥ 0, i = 1, . . . ,m, is a convex
combination of {xj}mj=1.

Proof : The proposition is obtained by consecutively applying the Intermedi-
ate Value Theorem to ϕ(x). First, for the pair of points x1 and x2, there
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exists a point w12 = µ12x1 + (1 − µ12)x2, µ12 ≥ 0, such that ϕ(w12) =
(ϕ(x1) + ϕ(x2))/2 according to the Intermediate Value Theorem, which im-
plies that

∑m
j=1 ϕ(xj) = 2ϕ(w12) +

∑m
j=3 ϕ(xj). Then, there exists w13 =

µ13w12 + (1− µ13)x3, µ13 ≥ 0, such that ϕ(w13) = (2ϕ(w12) + ϕ(x3))/3 holds
given that the average function value (2ϕ(w12)+ϕ(x3))/3 lies between ϕ(w12)
and ϕ(x3). Notice that w13 can also be written as convex combination
of {y1, y2, y3}. The proof is concluded by continuing this process until xm
is reached.
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