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Abstract: Two-level stochastic optimization formulations have become instru-
mental in a number of machine learning contexts such as neural architecture search,
continual learning, adversarial learning, and hyperparameter tuning. Practical sto-
chastic bilevel optimization problems become challenging in optimization or learning
scenarios where the number of variables is high or there are constraints.

The goal of this paper is twofold. First, we aim at promoting the use of bilevel
optimization in large-scale learning and we introduce a practical bilevel stochastic
gradient method (BSG-1) that requires neither lower level second-order derivatives
nor system solves (and dismisses any matrix-vector products). Our BSG-1 method
is close to first-order principles, which allows it to achieve a performance better than
those that are not, such as DARTS. Second, we develop bilevel stochastic gradient
descent for bilevel problems with lower level constraints, and we introduce a con-
vergence theory that covers the unconstrained and constrained cases and abstracts
as much as possible from the specifics of the bilevel gradient calculation.

Keywords: Bilevel optimization, machine learning, stochastic gradient descent,
DARTS.
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1. Introduction
Many real-world applications are naturally formulated using hierarchical

objectives, which are organized into different nested levels. In the bilevel
case, the main goal is placed into an upper optimization level, while the lower
optimization level aims to determine the best response to a decision made
in the upper level. Bilevel optimization has a rich literature of algorithmic
development and theory (see [1, 6, 9, 44, 46] for extensive surveys and books
on this topic). The main applications are found in game theory, defense
industry, and optimal structural design, and one has recently seen a surge of
contributions to machine learning (see, e.g., [13, 25], and the recent review
[26]).
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In this paper, we consider the following nonlinear bilevel optimization prob-
lem (BLP) formulation

min
x∈Rn, y∈Rm

fu(x, y)

s.t. x ∈ X
y ∈ argmin

y∈Y (x)

f`(x, y).

BLP

The goal of the upper level (UL) problem is to determine the optimal value
of the UL function fu : Rn×Rm → R, where the UL variables x are subjected
to UL constraints (x ∈ X) and the UL variables y are subjected to being
an optimal solution of the lower level (LL) problem. In the LL problem, the
LL function f` : Rn × Rm → R is optimized in the LL variables y, subject
to the LL constraints y ∈ Y (x). Since the goal of this paper is to propose
and analyze a general optimization methodology for a stochastic BLP, the
LL problem is assumed to be well-defined, in the sense of having a unique
solution y(x) for all x ∈ X. Hence, problem BLP is equivalent to a problem
posed solely in the UL variables:

min
x∈Rn

f(x) = fu(x, y(x)) s.t. x ∈ X. (1.1)

Also, note that the UL constraints (x ∈ X) are only posed in the UL vari-
ables x as otherwise problem BLP could become intractable in the sense of
having a disconnected feasible region in the (x, y)–space. Whenever applying
orthogonal projections within stochastic gradient type methods, the sets X
and Y (x) will be assumed closed and convex.

Under appropriate smoothness and non-singularity assumptions, the gra-
dient of f at (x, y(x)), when Y (x) = Rm, is given by the so-called adjoint
formula

∇f = ∇xfu −∇2
xyf`(∇2

yyf`)
−1∇yfu, (1.2)

where all gradients and Hessians are evaluated at (x, y(x)). The adjoint
gradient can be computed by first solving the adjoint equation ∇2

yyf` λ =
−∇yfu for the adjoint variables λ = λ(x, y(x)), and then calculating ∇xfu +
∇2
xyf` λ. One arrives at the adjoint formula by applying the chain rule to

fu(x, y(x)) and calculating the Jacobian of y(x) through the (sensitivity)
equations ∇yf`(x, y(x)) = 0.

When Y (x) 6= Rm, it is no longer possible to explicitly apply an adjoint
principle, but one can compute the steepest descent direction for f through
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an auxiliary linear-quadratic bilevel problem [42] grounded on sensitivity
principles (see Subsection 2.2).

1.1. Bilevel machine learning. A variety of problems arising in machine
learning can be formulated in terms of bilevel optimization problems: contin-
ual learning, neural architecture search, adversarial training, and hyperpa-
rameter tuning are among the most popular examples (see [26] for a review
on this topic).

Continual Learning (CL) aims to train ML models when the static task
usually considered in learning problems (classification, regression, etc.) is re-
placed by a sequence of tasks that become available one at a time [29], and
for which training and validation datasets are increasingly larger. For each
task, a CL instance is formulated as a bilevel problem, where at the UL
problem one minimizes the validation error on a subset of model parameters
(which includes all hyperparameters), and at the LL problem the training
error is minimized on the remaining parameters. A sequence of bilevel prob-
lems is then solved for each consecutive task. In a sense, CL is close to
meta-learning [21], where the goal is to determine the best learning process.
The increasing interest in CL is motivated by the demand for approaches that
help neural networks to learn new tasks without forgetting the previous ones,
a phenomenon which is referred to as catastrophic forgetting [14, 18, 32].

Another relevant ML area where bilevel optimization is instrumental is
Neural Architecture Search (NAS) for Deep Learning. The goal of this prob-
lem is to automate the task of designing Deep Neural Networks (DNNs)
such that the network?s prediction error is minimized. In recent years, NAS
was proposed in a bilevel optimization formulation [25] that represents a
continuous relaxation over the (discrete) architecture search space such that
gradient information can be utilized. In this way, the UL problem consists
of minimizing the validation error of the network over the architecture space
and the LL problem consists of minimizing the training error with respect to
the network weights. Designing these structures is a vital component of any
ML task that utilizes DNNs and typically requires substantial effort through
trial and error on behalf of human experts. As a result, automating this
design phase in an efficient and optimal way is a critical issue at the heart
of the Deep Learning community. For a thorough discussion on the different
approaches that have been proposed for NAS, see the survey [12].
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Finally, two other popular classes of ML problems that can be formulated
by using bilevel optimization are adversarial training and hyperparameter
tuning. Adversarial training aims to robustly address adversarial exam-
ples [45] which cannot be correctly classified by ML models once a small
perturbation is applied. The adversarial training problem is handled by
solving a min-max problem [23], but any such problem can be reformulated
as a bilevel one. The max/LL problem is posed on the variables which per-
turb the data in a worst-case fashion, where the UL/min problem attempts
to minimize the training error on the ML model parameters [17, 31]. Hyper-
parameter tuning aims to find the best value for the hyperparameters used
in a ML model in order to increase its generalization capability [2, 10, 13]. In
the bilevel formulations proposed in the literature, the UL problem optimizes
the validation error over the hyperparameters, while the LL problem has the
goal of finding the NN weights that minimize the training error.

1.2. Bilevel stochastic descent. In bilevel stochastic optimization, fu
and f` can be interpreted as expected values, namely, fu = E[fu(x, y, wu)]
and f` = E[f`(x, y, w`)], where wu and w` are random variables defined in a
probability space (with probability measure independent from x and y) such
that i.i.d. samples can be observed or generated. The same applies to the
functions possibly defining Y (x). (To keep notation simple, we are using the
same fu and f` for deterministic and random variants.)

Having in mind ML applications such as NAS and CL, the methods we are
considering are Stochastic Approximation (SA) techniques, of the type of the
stochastic gradient (SG) method [5, 39, 40] for single-objective optimization.
In fact, the bilevel stochastic gradient (BSG) can be seen as a SG method
applied to (1.1), xk+1 = xk−αkgBSG

k , where αk is the stepsize or learning rate,
and gBSG

k is a stochastic gradient of f , obtained by sampling the gradients
and Hessians in (1.2) at (xk, ỹk). The stochastic gradient gBSG

k may be inexact
when ỹk 6= y(xk).

In the bilevel optimization literature, stochastic gradient-based methods
are commonly classified according to the approach used to compute the sec-
ond term in the adjoint formula (1.2). In particular, a first category is
composed of the algorithms that either solve the adjoint equation [35] or
use a truncated Neumann series to approximate the inverse of the Hessian
∇2
yyf` [30], while a second category includes all the approaches based on au-

tomatic differentiation [13]. Note that our BSG-1 method falls into the first
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class of algorithms, which in the numerical experiments reported in [19] is
observed to have better performance. The use of such algorithms for un-
constrained bilevel optimization has been promoted in [7, 8, 16, 20, 22]; see
also [26] for a recent review. In [7], the BSG method has been applied to
hyperparameter tuning in SVM using the adjoint formula, which is simplified
using the structure of the problem. The authors [8] provided a convergence
analysis of the general BSG method but requiring the LL problem to be
solved to optimality at each iteration. In [16], both deterministic and sto-
chastic algorithms are proposed, and their convergence analysis is developed
without requiring an exact solution of the LL problem at each iteration. The
gradient of f was computed using the adjoint formula, approximating the
inverse of the Hessian ∇2

yyf` by a truncated Neumann series. An algorithm
with better complexity bounds than [16] is presented in [22], which also shows
that computing the adjoint gradient by using automatic differentiation may
be less computationally efficient than solving the adjoint equation or using
the truncated Neumann series. Finally, in [20] the authors study how the
convergence results of their algorithm depend on the relative size of the UL
and LL stepsizes, and they adapt their approach for a bilevel problem in
reinforcement learning.

DARTS [25] is an optimization technique related to the BSG method, which
has enjoyed great popularity in NAS. It always considers an inexact solution
to the LL problem, and it starts an iteration by making it less inexact by
applying one step of SG to the LL problem, ỹk = yk − η∇yf`(xk, yk). Then,
it displaces the UL variables using xk+1 = xk − η gDARTS

k , where η is a fixed
stepsize, and gDARTS

k is computed by applying the chain rule to ∇xfu(x, y −
η∇yf`(x, y)), leading to

gDARTS
k = ∇xfu(xk, ỹk)− η∇2

xyf`(xk, yk)∇yfu(xk, ỹk). (1.3)

However, gDARTS
k may not be a descent direction, even in the deterministic

case, and a direct comparison with gBSG
k reveals the lack of LL curvature,

meaning the use of ∇2
yyf`(xk, yk). The matrix-vector product in (1.3) is

approximated by finite differences (see Subsection 5.2), rendering DARTS
free of both second-order derivatives and matrix-vector products.

1.3. Contributions of the paper. A major difficulty in the adjoint for-
mula (1.2) is the use of second-order derivatives of f` and the need to solve
the adjoint equation ∇2

yyf` λ = −∇yfu, which prevents its application to
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large-scale ML problems. A first main contribution of this paper is the idea
of approximating the second-order derivatives by using the outer product of
the corresponding gradients, i.e.,

∇2
xyf` ' ∇xf`∇yf

>
` and ∇2

yyf` ' ∇yf`∇yf
>
` .

The above approximations are inspired by Gauss-Newton (GN) methods for
nonlinear least-squares problems (see, e.g,. [34]), where the Hessian matrix of
the objective function

∑p
i=1(ri−ai)2 (in which each ri is a scalar function and

ai a scalar) is approximated by
∑p

i=1∇ri∇r>i , and also from the fact that
the empirical risk of misclassification in ML is often a sum of non-negative
terms matching a function to a scalar which can then be considered in a
least-squares fashion [3, 15]. The resulting approximate adjoint equation
(∇yf`∇yf

>
` )λ = −∇yfu is most likely infeasible, and we suggest solving it in

the least-squares sense. One solution is λ = −∇yfu/(∇yf
>
` ∇yf`). Plugging

this and ∇2
xyf` ' ∇xf`∇yf

>
` in the adjoint formula (1.2) gives rise to our

practical BSG calculation

∇xfu −
∇yf

>
` ∇yfu

∇yf>` ∇yf`
∇xf`. (1.4)

This approximated BSG allows us to use the adjoint formula without com-
puting Hessians or even Hessian-vector products, which is prohibitively ex-
pensive for the large bilevel problems arising in ML. It will be referred to as
BSG-1, the “1” standing for first-order rank-1 approximations of the Hessian
matrices.

The numerical experiments reported in this paper show that the BSG-1
method performs significantly better than DARTS. A byproduct contribution
of this paper is then precisely a number of ways of potentially improving
DARTS by drawing a comparison between the gBSG

k and gDARTS
k expressions,

and by bringing the new ideas of the BSG-1 gradient approximation (1.4).
One can scale the term ∇yfu(xk, ỹk) in gDARTS

k by 1/‖∇yf`(xk, ỹk)‖2, thus
including the missing curvature (∇2

yyf`)
−1 of the LL objective function. One

can also consider taking η = 1 in gDARTS
k (regardless of the value assigned to η

when updating the LL variables). If we went a step further and address∇2
xyf`

in DARTS as in the BSG-1 method, the two methods would be essentially
the same, with a minor difference being whether the evaluations are done
at (xk, yk) or at (xk, ỹk). There is thus a road-map from one method to the
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other which can give practitioners different computational tools for solving
bilevel ML problems.

Another main contribution of this paper is a general convergence theory
for BSG that is as much as possible abstracted from the specifics of the
adjoint formula (1.2) for the gradient of f , in particular in what regards the
inverse of the Hessian of f` and/or the solution of the adjoint system. Our
theory is grounded on sensitivity principles of nonlinear optimization and
extends naturally to the constrained LL case (Y (x) 6= Rm), which has not
been covered elsewhere, neither algorithmically nor theoretically.

1.4. Organization of this paper. This paper is organized as follows. In
Section 2, we describe the BSG method for both the unconstrained and con-
strained lower-level cases. The convergence analysis of the method, along
with the assumptions required, is reported in Section 3. Section 4 focuses
on continual learning and its formulation as a bilevel optimization problem.
Numerical results for this problem and for a synthetic logistic regression in-
stance are analyzed in Section 5, which also describes the BSG-1 and DARTS
methods used for benchmarking purposes. Finally, in Section 6 we draw
some concluding remarks and we propose ideas for future work. By default,
all norms ‖ · ‖ used in this paper are the `2 ones.

2. The bilevel stochastic gradient method
In this section, we introduce the bilevel stochastic gradient (BSG) method

for solving stochastic BLPs. Let {wu
k}k≥0 and {w`

k}k≥0 be sequences of ran-
dom variables for UL and LL function evaluations, respectively. A realization
of the random variables wu

k and w`
k can be interpreted as a single sample or

a batch of samples for mini-batch SG use. For compactness of notation, let
us set ξk = (wu

k , w
`
k) for the combined UL and LL random variables.

The schema of the Bilevel Stochastic Gradient (BSG) method is presented
in Algorithm 1. An initial point (x0, y0) and a sequence of positive scalars {αk}
are required as input. In Step 1, any arbitrary optimization method can be
applied to approximately solve the LL problem, regardless of being uncon-
strained (Y (x) = Rm) or constrained (Y (x) 6= Rm). In Step 2, one computes
an approximated (negative) BSG, which will be denoted by −d(xk, ỹk, ξk) and
will be detailed in the next two subsections. Finally, at Step 3, the vector
x is updated by using a proper step size taken from the sequence of posi-
tive scalars. When X is a closed and convex constrained set different from
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Rn, we need to compute the orthogonal projection of xk + αk d(xk, ỹk, ξk)
onto X (note that such a projection can be computed by solving a convex
optimization problem).

Algorithm 1 Bilevel Stochastic Gradient (BSG) Method

Input: (x0, y0) ∈ Rn × Rm, {αk}k≥0 > 0.

For k = 0, 1, 2, . . . do
Step 1. Obtain an approximation ỹk to the LL optimal solution

y(xk).
Step 2. Obtain an approximation d(xk, ỹk, ξk) to −gBSG

k .
Step 3. Compute xk+1 = PX(xk + αk d(xk, ỹk, ξk)).

End do

We point out that as is usual in the literature related to SG methods, a
stopping criterion is not considered due to a lack of reasonable criteria and
for the need to study the asymptotic convergence properties.

2.1. The unconstrained lower level case. Given (xk, ỹk), we denote by
gux(xk, ỹk, w

u
k), guy (xk, ỹk, w

u
k), and g`y(xk, ỹk, w

`
k) the stochastic gradient es-

timates that approximate ∇xfu(xk, ỹk), ∇yfu(xk, ỹk), and ∇yf`(xk, ỹk), re-
spectively. The same notation applies to the stochastic Hessian estimates:
H`
xy(xk, ỹk, w

`
k) and H`

yy(xk, ỹk, w
`
k) approximate, respectively, ∇2

xyf`(xk, ỹk)

and ∇2
yyf`(xk, ỹk).

In the unconstrained LL case (Y (x) = Rm), an approximated (negative)
BSG for use in Step 2 can be computed directly from the adjoint formula (1.2),
as follows:

−d(xk, ỹk, ξk) = gux(xk, ỹk, w
u
k)

−H`
xy(xk, ỹk, w

`
k)(H

`
yy(xk, ỹk, w

`
k))
−1guy (xk, ỹk, w

u
k). (2.1)

The theory of Section 3 will cover (2.1). The data in the formula (1.2)
is referred to as D(x, y) or D(x, y(x)), depending on the point where the
gradients and Hessians are evaluated:

D(x, y) =
(
∇xfu(x, y),∇yfu(x, y),∇2

xyf`(x, y),∇2
yyf`(x, y)

)
. (2.2)
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The data in the calculation (2.1) is referred to as D(xk, ỹk, ξk):

D(xk, ỹk, ξk) =(
gux(xk, ỹk, w

u
k), guy (xk, ỹk, w

u
k), H`

xy(xk, ỹk, w
`
k), H

`
yy(xk, ỹk, w

`
k)
)
. (2.3)

As we have said before, our practical implementation of BSG will use rank-
one approximations for H`

xy(xk, ỹk, w
`
k) and H`

yy(xk, ỹk, w
`
k), and then solve

H`
yy(xk, ỹk, w

`
k)λ = −guy (xk, ỹk, w

u
k) in the least-squares sense.

2.2. The constrained lower level case. Let us now handle the constrained
LL case, in which we consider

Y (x) = {fi(x, y) = 0, i ∈ I, fi(x, y) ≤ 0, i ∈ J},
where I and J are two finite sets of indices. For the LL problem, assume
that at y(x), the gradients of the active constraints are linearly indepen-
dent (LICQ) and the sufficient second-order optimality conditions are sat-
isfied [34]. Let L`(x, y; z) = f`(x, y) +

∑
I(x)∪J zifi(x, y) be the Lagrangian

function, where I(x) includes all the active indices and z are the Lagrange
multipliers. The unique multipliers associated with y(x) under LICQ are
denoted by z(x).

The steepest descent direction d(x, y(x)) ∈ Rn for f at x can be calculated
by solving the following linear-quadratic bilevel problem [42]:

min
dx∈Rn, dy∈Rm

∇xfu(x, y(x))>dx +∇yfu(x, y(x))>dy

s.t. ‖dx‖∞ ≤ 1,

dy ∈ argmin
dy∈Rm

(dx, dy)>∇2L`(x, y(x); z(x))(dx, dy)

s.t. ∇yf`(x, y(x))>dy = −∇xf`(x, y(x))>dx

+∇xL`(x, y(x); z(x))>dx,

∇yfi(x, y(x))>dy ≤ −∇xfi(x, y(x))>dx, i ∈ I(x),

∇yfi(x, y(x))>dy = −∇xfi(x, y(x))>dx, i ∈ J.
LQ(x, y(x))

Note that problem LQ(x, y) can be solved for any pair of variables (x, y),
where y is not necessarily an optimal solution y(x) to the LL problem of BLP.
In such a case, we denote the linear-quadratic problem as LQ(x, y) and its
optimal solution as d(x, y), while the problem data is referred to as D(x, y).
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It is important to point out that when y is not the LL optimal solution y(x),
the direction obtained by solving the problem LQ(x, y) is not guaranteed to
be descent. Also note that the UL problem of this linear-quadratic bilevel
problem constrains dx in the `∞-norm, and thus d(x, y(x)) might not neces-
sarily recover −∇f(x), although the two directions are co-linear. One points
out that in the case Y (x) = Rm, there are no constrains in the LL problem
of LQ(x, y(x)), and the Hessian of its objective function involves only the
second-order derivatives of f`. A simple calculation allows us to conclude
that indeed d(x, y(x)) recovers a positive multiple of the adjoint gradient
in (1.2) (normalized in the `∞-norm).

In the stochastic version of LQ(xk, y(xk)), we replace ∇xfu(xk, y(xk)),
∇yfu(xk, y(xk)), ∇yf`(xk, y(xk)), and ∇2L`(xk, y(xk); z(xk)) by the corre-
sponding stochastic gradient and Hessian estimates at (xk, ỹk), where ỹk is
not necessarily y(xk). A solution of the resulting linear-quadratic bilevel
problem, LQ(xk, ỹk, ξk), is denoted by d(xk, ỹk, ξk). Such a solution is not
guaranteed to yield a descent direction when ỹk = y(xk), as opposed to its
deterministic counterpart d(xk, y(xk)). The data of problem LQ(xk, ỹk, ξk) is
referred to as D(xk, ỹk, ξk).

In practical terms it is important to point out that problem LQ(xk, ỹk, ξk)
can be approximately solved by solving an LP relaxation, which consists of
replacing its LL problem (a QP) by its first-order necessary conditions (which
are linear in dx and dy as long as there are no inequality constraints).

3. Convergence rate of the BSG method in the strongly
convex case

In this section, we extend the convergence theory of the SG method to the
bilevel case when the stepsize is assumed to be decaying. The BSG method
under analysis considers an inexact solution of the LL problem. The BSG
is not required to follow a specific adjunct calculation, and the constrained
LL setting is also comprehensively covered. The BLP objective function f is
assumed to be strongly convex (leading to a 1/k sublinear convergence rate)

or simply convex (1/
√
k rate).

3.1. General assumptions. Again, let us recall that f(x) = fu(x, y(x)).
The true function f will later be assumed sufficiently smooth (Assumption 3.6
below). For the moment we need to impose a certain smoothness of the BLP
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gradients and Hessians involved in the computation of the BSG direction
(Assumption 3.1 below).

Assumption 3.1 (Smoothness of gradients and Hessians for the BSG di-
rection). All gradients and Hessians involved in the computation of the BSG
direction are Lipschitz continuous in (x, y).

In the unconstrained LL case, and when using the adjoint formula (1.2),
Assumption 3.1 amounts to assuming that ∇xfu, ∇yfu, ∇2

xyf`, and ∇2
yyf` are

Lipschitz continuous in y. In the constrained LL case (LQ subproblem), this
is extended to ∇xf`, ∇yf`, ∇xfi, ∇yfi, ∇2

xyfi, and ∇2
yyfi, for all i ∈ I ∪ J .

We require the approximate BSG direction d(xk, ỹk, ξk) as well as the true
steepest descent direction d(xk, y(xk)) to satisfy Assumption 3.2. The ex-
pected value with respect to ξk = (wu

k , w
`
k) is denoted by Eξk[·].

Assumption 3.2. The vectors d(xk, y(xk)) and d(xk, ỹk, ξk) satisfy the fol-
lowing conditions

(i) There exists a positive scalar Cd such that

Eξk[‖d(xk, y(xk))− (−∇f(xk))‖] ≤ Cd αk. (3.1)

(ii) There exists a positive scalar Gd such that

Eξk[‖d(xk, ỹk, ξk)‖2] ≤ Gd. (3.2)

In the unconstrained LL case, d(xk, y(xk)) = −∇f(xk) is trivially satis-
fied. In the constrained LL case we know that d(xk, y(xk)) is co-linear with
−∇f(xk) but their norms may differ, and thus the need for this assumption.

Note that instead of assuming (3.2), we could have assumed Vξk[d(xk, ỹk, ξk)]
≤ GV and Eξk[d(xk, ỹk, ξk)] ≤ GE, for some positive constants GV , GE. In
fact, from the definition of variance, Eξk[‖d(xk, ỹk, ξk)‖2] ≤ GV + G2

E =
Gd. Also, in the constrained LL case, a bound on the second moment
of d(xk, ỹk, ξk) comes directly from the constraint ‖dx‖∞ ≤ 1 in problem
LQ(xk, ỹk, ξk), which then implies Eξk[‖d(xk, ỹk, ξk)‖2] ≤ n.

3.2. Sensitivity of the approximated bilevel stochastic gradient di-
rection. To bound the expectation of the error between the true gradient
or steepest descent direction d(xk, y(xk)) and the approximate BSG direc-
tion d(xk, ỹk, ξk), we will need to apply sensitivity analysis arguments from
nonlinear optimization. In particular, we need to assume that the calculation
process of the BSG direction is Lipschitz continuous with respect to changes
in its data.
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Assumption 3.3 (Sensitivity of the BSG direction). The calculation of the
BSG direction d(D) is a Lipschitz continuous function of the data, i.e., there
exists a LBSG > 0 such that, for any D1 and D2, one has

‖d(D1)− d(D2)‖ ≤ LBSG‖D1 −D2‖.

In the unconstrained LL case, when the adjoint formula (1.2) or (2.1)
is used, the data D is either the deterministic one (2.2) or the stochastic
one (2.3), respectively. Assumption 3.3 amounts to assuming that all gra-
dient vectors and Hessian matrices involved are bounded and that ∇2

yyf`
and H`

yy are bounded away from singularity. In fact, sum is Lipschitz con-
tinuous, multiplication is Lipschitz continuous if the factors are bounded,
and symmetric matrix inversion is also Lipschitz continuous if its eigenval-
ues are bounded from zero. For the adjoint gradient calculation, we have
d(a, b, A,B) = a − AB−1b, with D = (a, b, A,B), and one can easily prove
that

‖d(D1)− d(D2)‖ ≤ C (‖a1 − a2‖+ ‖b1 − b2‖+ ‖A1 − A2‖+ ‖B1 −B2‖) ,
(3.3)

where C depends on a bound on b, A, and B−1, and the right-hand side is a
norm on (a, b, A,B).

We now introduce Assumption 3.4, which can be easily enforced in practice
by solving the LL problem with the SG method (see Subsection 3.5).

Assumption 3.4. There exists a positive scalar Cy such that

Eξk[‖y(xk)− ỹk‖] ≤ Cy αk. (3.4)

Finally, we need Assumption 3.5 below to hold which essentially amounts to
the sampling error in the data. To enforce this assumption in practice, we re-
fer the reader to the discussion reported in Section 3.6. Recall that D(xk, ỹk)
represents the data defining the true quantity d(xk, ỹk), and D(xk, ỹk, ξk)
the data of the calculation of d(xk, ỹk, ξk). In the unconstrained LL case,
D(xk, ỹk) and D(xk, ỹk, ξk) are given by (2.2) and (2.3), respectively.

Assumption 3.5. There exists a positive scalar CD such that

Eξk[‖D(xk, ỹk)−D(xk, ỹk, ξk)‖] ≤ CD αk.

One is ready to establish the desired error bound in terms of αk, for which
the constant will depend on the above-introduced constants LBSG, Cy, and
CD.
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Lemma 3.1. Under Assumptions 3.1, 3.3, 3.4 and 3.5,

Eξk[‖d(xk, y(xk))− d(xk, ỹk, ξk)‖] ≤ B αk, (3.5)

where B = LBSG(LLLCy + CD), and LLL > 0 is a constant only dependent
on the Lipschitz constants of the gradients and Hessians of Assumption 3.1.

Proof : By adding and subtracting the term d(xk, ỹk) and using the triangle
inequality, we have

Eξk[‖d(xk, y(xk))− d(xk, ỹk, ξk)‖] ≤ Eξk[‖d(xk, y(xk))− d(xk, ỹk)‖] (3.6)

+ Eξk[‖d(xk, ỹk)− d(xk, ỹk, ξk)‖]. (3.7)

Now we derive a bound for the right-hand side in (3.6). By considering the
data D1 = D(xk, y(xk)) and D2 = D(xk, ỹk) in Assumption 3.3, we obtain

‖d(xk, y(xk))− d(xk, ỹk)‖ ≤ LBSG‖D(xk, y(xk))−D(xk, ỹk)‖. (3.8)

Taking the expectation on both sides of (3.8), we have

Eξk[‖d(xk, y(xk))− d(xk, ỹk)‖] ≤ LBSG Eξk[‖D(xk, y(xk))−D(xk, ỹk)‖].
(3.9)

Note that the right-hand side of (3.9) contains exact BLP gradients and
Hessians. Therefore, Lipschitz continuity of those mappings (Assumption 3.1)
implies the existence of a constant LLL > 0 such that

‖D(xk, y(xk))−D(xk, ỹk)‖ ≤ LLL‖y(xk)− ỹk‖. (3.10)

Taking the expectation on both sides of (3.10), we can write

Eξk[‖D(xk, y(xk))−D(xk, ỹk)‖] ≤ LLL Eξk[‖y(xk)− ỹk‖]. (3.11)

Therefore, from (3.9), (3.11), and Assumption 3.4, we obtain

Eξk[‖d(xk, y(xk))− d(xk, ỹk)‖] ≤ LBSG LLLCy αk. (3.12)

Now we derive a bound for (3.7). By considering the data D1 = D(xk, ỹk)
and D2 = D(xk, ỹk, ξk) in Assumption 3.3, we have

‖d(xk, ỹk)− d(xk, ỹk, ξk)‖ ≤ LBSG‖D(xk, ỹk)−D(xk, ỹk, ξk)‖. (3.13)

Taking the expectation on both sides of (3.13), we obtain

Eξk[‖d(xk, ỹk)− d(xk, ỹk, ξk)‖] ≤ LBSG Eξk[‖D(xk, ỹk)−D(xk, ỹk, ξk)‖].
(3.14)

Hence, from (3.14) and Assumption 3.5, we obtain

Eξk[‖d(xk, ỹk)− d(xk, ỹk, ξk)‖] ≤ LBSGCD αk. (3.15)
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The proof can be concluded from (3.6)–(3.7), (3.12), and (3.15).

3.3. Rate in the strongly convex case. Both strongly convex and convex
cases require an explicit assumption on the smoothness of the true function f .

Assumption 3.6 (Smoothness of f). The gradient ∇f is Lipschitz contin-
uous in x with constant L∇f > 0, i.e.,

‖∇f(x)−∇f(x̄)‖ ≤ L∇f‖x− x̄‖ for all (x, x̄) ∈ Rn × Rn.

In the unconstrained LL case, ∇f has the explicit adjoint formula given
in (1.2), and its Lipschitz continuity can be inferred from the Lipschitz conti-
nuity of y(x) and of the gradients and Hessians involved and from the bound-
edness away from singularity of ∇2

yyf`. The details can be easily worked out
(see, for instance, [8, Lemma 2.2]) or simply by applying (3.3) followed by
the Lipschitz continuity of the gradients and Hessians. In the constrained
LL case, this assumption is a supposition on the sensitivity of the auxiliary
subproblem LQ(x, y(x)).

We also need the iterates to lie in a bounded set, which could be ensured
by the boundedness of X in the BLP formulation.

Assumption 3.7 (Boundedness of the iterates). The sequence of iterates
{xk}k∈N yielded by Algorithm 1 is contained in a bounded set.

Assumption 3.7 implies that there exists a positive constant Θ such that,
for any (k1, k2), we have

‖xk1 − xk2‖ ≤ Θ < ∞. (3.16)

Finally, we assume that the true function f is strongly convex.

Assumption 3.8 (Strong convexity). The function f is strongly convex,
namely, there exists a constant c > 0 such that

f(x̄) ≥ f(x) +∇f(x)>(x̄−x) +
c

2
‖x̄−x‖2 for all (x̄, x) ∈ Rn×Rn. (3.17)

The next theorem proves that under the assumption of strong convexity
and decaying stepsize (

∑∞
k=1 αk = ∞ and

∑∞
k=1 α

2
k < ∞), the sequence of

points yielded by Algorithm 1 generates a sequence of f values that decays
sublinearly at the rate of 1/k. We use E[·] to refer to the total expectation
of f , namely, the expected value with respect to the joint distribution of all
the random vectors ξk.
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Theorem 3.2. Let Assumptions 3.1–3.8 hold and x∗ be the unique minimizer
of f . Consider the schema given by Algorithm 1 and assume a decaying step
size of the form αk = 2

c(k+1). The sequence of iterates yielded by Algorithm 1

satisfies

min
s=1,...,k

E[f(xs)]− E[f(x∗)] ≤
2Gd + 4(B + Cd)Θ

c(k + 1)
.

Proof : For any k ∈ N, we can write

Eξk[‖xk+1 − x∗‖2] = Eξk[‖PX(xk + αk d(xk, ỹk, ξk))− x∗‖2]

≤ Eξk[‖xk + αk d(xk, ỹk, ξk)− x∗‖2]

= ‖xk − x∗‖2 + α2
kEξk[‖d(xk, ỹk, ξk)‖2]

+ 2αkEξk[d(xk, ỹk, ξk)]
>(xk − x∗).

Adding and subtracting the terms 2αk(E[d(xk, y(xk))] +∇f(xk))
>(xk − x∗)

and applying the Cauchy-Schwarz inequality, we obtain

Eξk[‖xk+1 − x∗‖2] ≤ ‖xk − x∗‖2 + α2
kEξk[‖d(xk, ỹk, ξk)‖2]

− 2αk(∇f(xk))
>(xk − x∗)

+ 2αkEξk[d(xk, ỹk, ξk)− d(xk, y(xk))]
>(xk − x∗)

+ 2αkEξk[d(xk, y(xk)) +∇f(xk)]
>(xk − x∗)

≤ ‖xk − x∗‖2 + α2
kEξk[‖d(xk, ỹk, ξk)‖2]

− 2αk(∇f(xk))
>(xk − x∗)

+ 2αk‖Eξk[d(xk, ỹk, ξk)− d(xk, y(xk))]‖‖xk − x∗‖
+ 2αk‖Eξk[d(xk, y(xk))− (−∇f(xk))]‖‖xk − x∗‖.

By Jensen’s inequality, the previous expression can be written as follows

Eξk[‖xk+1 − x∗‖2] ≤ ‖xk − x∗‖2 + α2
kEξk[‖d(xk, ỹk, ξk)‖2]

− 2αk(∇f(xk))
>(xk − x∗) (3.18)

+ 2αkEξk[‖d(xk, ỹk, ξk)− d(xk, y(xk))‖]‖xk − x∗‖ (3.19)

+ 2αkEξk[‖d(xk, y(xk))− (−∇f(xk))‖]‖xk − x∗‖. (3.20)

Assumption 3.8 implies that

∇f(xk)
>(xk − x∗) ≥ f(xk)− f(x∗) +

c

2
‖xk − x∗‖2. (3.21)
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Then, by using point (i) of Assumption 3.2, Assumption 3.7, and inequalities
(3.2), (3.5), and (3.21), the terms (3.18), (3.19), and (3.20) can be bounded
as follows

Eξk[‖xk+1 − x∗‖2] ≤ ‖xk − x∗‖2 +Gdα
2
k − 2αkf(xk) + 2αkf(x∗)

− cαk‖xk − x∗‖2

+ 2BΘα2
k + 2CdΘα

2
k

= (1− cαk)‖xk − x∗‖2 + 2αk(f(x∗)− f(xk))

+ (Gd + 2(B + Cd)Θ)α2
k.

Denoting M = Gd + 2(B + Cd)Θ, using αk = 2
c(k+1) , and rearranging, we

obtain

Eξk[f(xk)− f(x∗)] ≤
(1− cαk)‖xk − x∗‖2 + α2

kM − Eξk[‖xk+1 − x∗‖2]

2αk

=
c(k − 1)

4
‖xk − x∗‖2 +

M

c(k + 1)

− c(k + 1)

4
Eξk[‖xk+1 − x∗‖2].

If we replace k by s, we take the total expectation, we multiply both sides
by s, and we sum over s = 1, . . . , k, we obtain

k∑
s=1

sE[f(xs)− f(x∗)] ≤
k∑
s=1

(
cs(s− 1)

4
E[‖xs − x∗‖2]

− cs(s+ 1)

4
E[‖xs+1 − x∗‖2]

)
+

k∑
s=1

(
sM

c(s+ 1)

)

≤ −c k (k + 1)

4
E[‖xk+1 − x∗‖2] +

k∑
s=1

(
sM

c(s+ 1)

)
≤ k

c
M.

If we divide both sides by
∑k

s=1 s, we obtain∑k
s=1 sE[f(xs)]−

∑k
s=1 sE[f(x∗)]∑k

s=1 s
≤ kM

c
∑k

s=1 s
=

2M

c(k + 1)
. (3.22)
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A lower bound for the left-hand side is given by

min
s=1,...,k

E[f(xs)]− E[f(x∗)] ≤
k∑
s=1

s∑k
s=1 s

E[f(xs)]−
k∑
s=1

s∑k
s=1 s

E[f(x∗)].

(3.23)
By combining (3.22) and (3.23), we conclude the proof.

3.4. Rate in the convex case. In this subsection, we state the convergence
rate of the BSG method assuming that f is convex and attains a minimizer x∗.

Assumption 3.9 (Convexity of the UL objective function). Given (ȳ, y) ∈
Rm×Rm, the (continuously differentiable) function f is convex in x, namely,

f(x̄) ≥ f(x) +∇f(x)>(x̄− x) for all (x̄, x) ∈ Rn × Rn. (3.24)

Moreover, f attains a minimizer.

The next theorem states that the BSG method exhibits a sublinear con-
vergence rate of 1/

√
k, which implies that the convergence is slower than in

the strongly convex case [27, Theorem 5.3].

Theorem 3.3. Let Assumptions 3.1–3.7 and 3.9 hold. Consider the schema
given by Algorithm 1 and assume a decaying step size of the form αk = ᾱ/

√
k,

with ᾱ > 0. Given a minimizer x∗ of f , the sequence of iterates yielded by
Algorithm 1 satisfies

min
s=1,...,k

E[f(xs)]− E[f(x∗)] ≤
Θ2

2ᾱ + ᾱ(Gd + 2(B + Cd)Θ)
√
k

.

3.5. Imposing a bound on the distance from the LL optimal solu-
tion. In this subsection, we want to discuss a way to enforce Assumption 3.4
when using the stochastic gradient (SG) method to solve the LL problem at
xk. Given an initial point ỹ0

k and a sequence of stepsizes {βi}, such a SG
method can be described as

ỹi+1
k = ỹik − βig`y(xk, ỹik, w`

k,i), i = 1, . . . , ik. (3.25)

We start by introducing the sampling assumptions that are standard in the
literature related to the SG method.

Assumption 3.10. The stochastic gradient g`y(xk, ỹk, w
`
k) is unbiased

Ew`
k
[g`y(xk, ỹk, w

`
k)] = ∇yf`(xk, ỹk). (3.26)
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Moreover, there exists a positive constant Q > 0 such that

Ew`
k
[‖g`y(xk, ỹk, w`

k)‖2] ≤ Q2.

Moreover, we assume f` to be strongly convex (Assumption 3.11 below).

Assumption 3.11 (Strong convexity of the LL objective function). Given
x ∈ Rn, the function f` is strongly convex in y, namely, there exists a constant
µ > 0 such that

f`(x, ȳ) ≥ f`(x, y)+∇f`(x, y)>(x, ȳ−y)+
µ

2
‖x, ȳ−y‖2 for all (y, ȳ) ∈ Rm×Rm.

Assumption 3.11 implies that f`(xk, ·) has a unique minimizer y(xk).
Recalling that the convergence rate of the SG method with decaying step-

size is O(1/
√
i), and by choosing ik equal to k2, one guarantees the existence

of a positive constant Cy such that (3.4) holds. In fact, by choosing a decay-
ing step size sequence {βi} given by βi = γ/i, where γ ≥ 1/(2µ) is a positive
constant, and under Assumptions 3.10–3.11, from [33, Equation (2.9)] it fol-
lows that the choice ik = k2 implies (with ỹk = ỹik+1

k )

E[‖ỹk − y(xk)‖2] ≤ max{γ2Q(2µγ − 1)−1, ‖ỹ0
k − y(xk)‖2}

k2
.

We point out that in order for the previous result to hold in the constrained
LL case, Y (xk) is required to be a nonempty bounded closed convex set.

3.6. Imposing a bound on dynamic sampling. In this subsection, we
want to mention a dynamic sampling strategy to enforce the inequality in
Assumption 3.5. For the sake of simplicity, we will omit the subscript k in this
subsection. Such a dynamic sampling strategy allows reducing the level of
noise by increasing the size of the batch. Since Assumption 3.10 implies that
D(x, y, ξ) (see (2.3) for the unconstrained LL case) is an unbiased estimate of
the corresponding true gradients and Hessians, let us assume that D(x, y, ξ)
is normally distributed with mean D(x, y) (see (2.2) for the unconstrained
LL case) and variance σ2 (and that the dimension of the covariance matrix
is q).

To increase the accuracy of D(x, y, ξ) as an estimator of D(x, y), we can
choose a larger batch size, which is denoted by bD. Let D̄(x, y, ξ) =

(1/bD)
∑bD

r=1D(x, y, ξr) be the corresponding mini-batch stochastic estimate,

where {ξr}bDr=1 are values sampled from ξ. It is known that (for details, see,



BILEVEL STOCHASTIC METHODS FOR OPTIMIZATION AND MACHINE LEARNING 19

for instance, [27, Section 5.3])

Eξk[‖D(x, y)− D̄(x, y, ξ)‖] ≤
σ
√
q

√
bD
.

To guarantee that Assumption 3.5 holds, we need to choose a mini-batch
size nD and a sample standard deviation σ such that

σ
√
q

√
bD
≤ CD αk.

Therefore, when αk decreases, the dynamic sampling strategy would increase
bD.

4. Continual learning
We are going to use instances of Continual Learning (CL) as practical

stochastic bilevel problems to test the performance of BSG and DARTS. CL
was briefly described in Section 1, and is now introduced in more detail. Let
us denote a whole features/labels dataset by D = {(zj, uj), j ∈ {1, . . . , N}},
consisting of N pairs of a feature vector zj and the corresponding true label
uj. For any data point j, the classification is deemed correct if the right label
is predicted. To evaluate the loss incurred when using the prediction function
φ(z; θ), which in this section is supposed to be a Deep Neural Network (DNN),
we use a loss function `(φ(z; θ), u).

The goal of CL is to minimize the prediction error over a sequence of tasks
that become available one at a time. Among the many different formulations
proposed for CL, hierarchical objectives have been used in [36, 43]. In order
to assess the performance of BSG against DARTS on this class of problems,
we adapt the formulation in [36] to an incremental setting where each task
is available as a subset of samples. Given t ∈ {1, . . . , T}, let Dt be the set
of samples for a new task Tt, which can be split into a training set Dt

tr and
a validation set Dt

v. Moreover, let us split the parameters θt of the model
φ(z; θt) into two subvectors, λt and δt, whose roles are to give us flexibility in
minimizing the classification error on the training and validation data along
the sequence of tasks. According to [13], a reasonable strategy is to choose λt
and δt as the vectors of weights in the hidden and output layers, respectively.

To solve the overall CL problem, one starts from the first task T1 and, after
an arbitrary number of iterations, we include in the problem the second task
T2. One reiterates this procedure until all the tasks have been added to the
problem. Let us now suppose that one has already added t tasks. At this
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stage, the goal of the UL and LL problems is to determine the values of λt
and δt that ensure a small classification error on Tt and on all the previous
tasks Ti, with i < t. To this end, the UL problem determines (λt, δt) by
minimizing the prediction error on Dt

val = ∪i≤tDi
v, which is composed of the

data sampled from the validation sets associated with the current and previ-
ous tasks. Similarly, the LL problem determines δt by minimizing the error
on Dt

train = ∪i≤tDi
tr. Note that at each stage one solves a different problem

since the objective functions of the UL and LL change. The formulation of
the problem solved at stage t, with t ∈ {1, . . . , T}, can be written as follows

min
(λt, δt)

1

|Dt
val|

∑
(z,u)∈Dt

val

`(φ(z;λt, δt), u)

s.t. δt ∈ argmin
δt

1

|Dt
train|

∑
(z,u)∈Dt

train

`(φ(z;λt, δt), u).

(4.1)

Moving from one task to a sequence of tasks introduces new challenges
relative to the classic empirical risk minimization. In particular, once a new
task is included in the problem, the performance on the previous tasks tends
to deteriorate, thus resulting in the well-studied phenomenon of catastrophic
forgetting [18]. Moreover, parameters learned on previous tasks are expected
to be close to the parameters required by the new task (this is referred to as
a positive transfer of knowledge between tasks), which leads to accelerating
the learning process as compared with training from scratch. Solving the
sequence of problems given in (4.1) allows the learning process to both over-
come the catastrophic forgetting issue and take advantage of the parameters
determined on the previous tasks. However, we point out that the large di-
mension of the datasets usually considered in ML may prevent the use of the
whole sets Di

tr and Di
v from previous tasks i’s, where i < t and t is the current

task. In such cases, it may be necessary to resort to subsets D̄i
tr ⊂ Di

tr and
D̄i

v ⊂ Di
v, which we will not do in this paper given that our interest focuses

on the solution of stochastic BLPs.

5. Numerical experiments
All tests were run using MATLAB R2021a on an Acer Aspire with 8GB

of RAM and an Intel Core i7-8550U processor running at 1.80GHz. In all
figures, we plot an accurate approximation for the true function f of the BLP
(f(x) = fu(x, y(x))).
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5.1. Our practical BSG method (BSG-1). In the numerical experi-
ments for unconstrained LL BLPs (Y (x) = Rm), we are mainly interested
in testing the practical version of the BSG method (Algorithm 1), with the
BSG approximation introduced in Section 1.3. This version is referred to as
the BSG-1 method and requires no second-order derivatives (not even finite-
difference approximations) and no Hessian-vector products; see Algorithm 2.
It essentially consists of using first-order rank-1 approximations for the Hes-
sian matrices appearing in the adjoint formula (1.2). The BSG-1 formula for
the deterministic case was already given in (1.4). In the stochastic setting,
we have

d(xk, ỹk, ξk) =

−

(
gux(xk, ỹk, w

u
k)−

(g`y(xk, ỹk, w
`
k))
>guy (xk, ỹk, w

u
k)

(g`y(xk, ỹk, w
`
k))
>g`y(xk, ỹk, w

`
k)
g`x(xk, ỹk, w

`
k)

)
. (5.1)

Algorithm 2 BSG-1 Method (unconstrained UL case)

Input: (x0, y0) ∈ Rn × Rm, {αk}k≥0 > 0.

For k = 0, 1, 2, . . . do
Step 1. Obtain an approximation ỹk to the LL optimal solution

y(xk).
Step 2. Draw the stochastic gradients gux(xk, ỹk, w

u
k), guy (xk, ỹk, w

u
k),

g`x(xk, ỹk, w
`
k), and g`y(xk, ỹk, w

`
k). Compute d(xk, ỹk, ξk) using (5.1).

Step 3. Compute xk+1 = xk + αk d(xk, ỹk, ξk).
End do

We will also test the BSG method with stochastic Hessians, where the
direction is calculated from (2.1). This version is referred to as BSG-H.
The adjoint system H`

yy(xk, ỹk, w
`
k)λ = −guy (xk, ỹk, w

u
k) is solved by the linear

conjugate gradient method until non-positive curvature is detected.
In both BSG-1 and BSG-H versions of the BSG method, we will apply

the SG method (3.25) in Step 1 of Algorithm 1 for a certain budget ik of
iterations, obtaining an approximation ỹk to the LL optimal solution y(xk).
We will consider two inexact schemes for the solution of the LL problem. The
first one (1 step) consists of taking a single step of SG (ik = 1,∀k). In the
second one (inc. acc.), the number of SG steps increases by 1 every time the
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difference of the UL objective function between two consecutive iterations is
less than a given threshold, thus leading to an increasing accuracy strategy.
In any of the two cases, we feed SG with a hotstart ỹ0

k = ỹk−1 (and set
ỹ−1 = y0).

5.2. DARTS. DARTS was proposed in [25] for the solution of stochastic
BLPs arising from NAS, and was briefly mentioned in Section 1.2. Only the
unconstrained LL case (Y (x) = Rm) has been considered. To avoid the com-
putation of the second-order derivatives in (1.3), DARTS approximates the
matrix-vector product ∇2

xyf`(xk, yk)∇yfu(xk, ỹk) by a finite-difference (FD)
scheme [25]:

∇2
xyf`(xk, yk)∇yfu(xk, ỹk) =

∇xf`(xk, y
+
k )−∇xf`(xk, y

−
k )

2ε
,

where

y±k = yk ± ε∇yfu(xk, ỹk) with ε = 0.01/‖∇yfu(xk, ỹk)‖. (5.2)

Algorithm 3 reports the schema of DARTS for the stochastic setting. In
Step 1, a single step of SG (with fixed stepsize η) is applied to the LL problem
to obtain an approximation ỹk to the LL optimal solution. Then, in Step 2,
the UL variables are updated by moving along the “approximated” descent
direction using a fixed stepsize α.

Algorithm 3 Differentiable Architecture Search (DARTS)

Input: (x0, y0) ∈ Rn × Rm, α > 0, η > 0.

For k = 0, 1, 2, . . . do
Step 1. Compute ỹk = yk − η g`y(xk, yk, w`

k).
Step 2. Compute xk+1 =

xk−α
(
gux(xk, ỹk, w

u
k)− η

2ε(g
`
x(xk, y

+
k , w

`
k)− g`x(xk, y−k , w`

k))
)
,

with y±k and ε as in (5.2), with guy (xk, ỹk, w
u
k) instead of ∇yfu(xk, ỹk), and

set yk+1 = ỹk+1.
End do

5.3. Results for synthetic learning instances. We first report results
for a “synthetic” bilevel supervised ML problem, where one attempts to
minimize the prediction error on both levels, but where the LL training set
is a subset of the upper one. It is as if we wanted to learn a predictor from a
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superset (the UL one) but guaranteeing a good performance in a subset (the
LL one).

For simplicity, we will perform binary classification using a logistic regres-
sion loss for misclassification. Let us denote the whole features/labels dataset
by D = {(zj, uj), j ∈ {1, . . . , N}}. The prediction model consists of a sepa-
rating hyperplane c>z + b that delivers a correct classification if{

c>zj + b ≥ 0 when uj = +1,

c>zj + b < 0 when uj = −1.

To measure misclassification, we use the (smooth and convex) logistic regres-
sion loss function `(z, u; c, b) = log(1 + exp(−u(c>z + b))).

We split the dataset into two groups of dimension NT1 and NT2, respectively,
which are used to train the prediction model at both levels of the BLP, which
is formulated as

min
(c̄, b̄, c, b)

1

NT1

NT1∑
j=1

`(zj, uj; c̄, b̄) +
1

NT2

NT2∑
j=1

`(zj, uj; c, b)

s.t. (c, b) ∈ argmin
(c, b)

1

NT2

NT2∑
j=1

`(zj, uj; c, b) +
λ

2
‖(c̄, b̄)− (c, b)‖2.

(5.3)

We refer to the UL objective function as the prediction error. Note that
x = (c, b) are the UL variables, while y = (c̄, b̄) are the LL variables. The
second term in the LL objective function (where λ is a positive parameter)
requires the y’s to be close to the x’s, so that the model predicted on the
superset does not deviate much from the one predicted on the subset. In
the numerical experiments reported, we used the Adult Income dataset [24]
(which can be found in the UCI Machine Learning repository [11]), after
performing the preprocessing described in [28, Appendix D]. We randomly
chose 37,500 instances (split into NT1 = 30, 000 and NT2 = 7, 500).

We compared BSG-1 and BSG-H with DARTS using the best decaying
stepsize (DS) sequence found for both (i.e., {10/k}k∈N for BSG-1/BSG-H
and {1/k}k∈N for DARTS). Three metrics are used for the comparison: the
number of iterations, the number of accessed data points, and the CPU time.
The number of accessed data points refers to the number of samples that are
used in each algorithm to compute the stochastic gradients and, in the BSG-
H case, also the Hessians.



24 T. GIOVANNELLI, G. KENT AND L. N. VICENTE

From Figure 1, we can see that all BSG variants perform significantly bet-
ter than DARTS. The BSG versions equipped with the LL inc. acc. (with
threshold equal to 10−4) yield the smallest prediction error in the least num-
ber of iterations. However, this requires accessing a large number of samples.
The most cost-effective performance in terms of accessed data points is ex-
hibited by the BSG versions equipped with the LL 1 step, especially the
BSG-1.

Considering the stronger performance achieved by BSG-1, we performed
additional testing to study possible ways of improving DARTS, as discussed
in Subsection 1.3. In particular, we assessed the performance of DARTS
when scaling the term ∇yfu(xk, ỹk) in gDARTS

k by the factor 1/‖∇yf`(xk, ỹk)‖2

(which in the plots is referred to as ‖∇yf`‖−2) and when taking η = 1 in
gDARTS
k regardless of the value assigned to η for updating the LL variables

(we indicate this modification as η = 1). Figure 2 shows that on the logistic
regression instance considered, DARTS significantly improves in both cases,
and the improvement is even larger when both modifications are considered
together.

The red dotted horizontal lines in both figures represent the minimum
value of the true function f (recall that f(x) = fu(x, y(x))), found by the
full-batch/deterministic BSG method with line-search. The red dashed hor-
izontal lines in both figures mark the minimum value of the upper level
function fu (in x and y) when relaxing the original problem by suppressing
the LL problem, found by MATLAB with fmincon.

5.4. Results for continual learning instances. We now present numer-
ical results comparing BSG-1 and DARTS on the CL problems (4.1) that
were posed in Section 4. In our implementation, we determine λt on the cur-
rent problem by starting from the parameter values found from the previous
problem. However, since each consecutive task increases the output space of
the DNN, we entirely re-initialize δt at the start of each new task so that the
model outputs are not biased from previous tasks.

In order to test our algorithm on a large-scale ML scenario, we chose the
well-studied MNIST dataset that consists of 70,000 black-and-white images
(28 × 28) of hand-written digits. We used 60,000 images for training and the
remaining 10,000 images for validation. We solved five problems (4.1) with an
increasing number of tasks from 1 to 5, where the first task datasets (D1

val and
D1

train) consist of only the images with class labels in {0, 1}, the second task
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Figure 1. Comparison of four different variants of the BSG
method with the DARTS one (the lower plots zoom in for the
BSG ones). The mini-batch size is 512 for both the UL and LL
problems.

datasets (D2
val and D2

train) consist of the images with class labels in {0, 1, 2, 3},
etc., until the final task datasets (D5

val and D5
train), which are the original

training and validation sets and consist of all the class labels {0, 1, ..., 9}.
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Figure 2. Comparison of four different variants of the DARTS
method with the BSG-1 one. The mini-batch size is 512 for both
the UL and LL problems.

Further, we implemented a DNN with two convolutional layers and one linear
layer as our model. The network consisted of 18,816 and 125,450 weights in
the hidden and output layers, respectively. For the UL and LL problems, we
have used batches of sizes equal to 0.5% and 0.1% of the ones of the current
task’s validation and training datasets, respectively. When evaluating the UL
and LL objective functions, such percentages are increased to 5% and 1%,
respectively, to ensure better accuracy.

The results from the numerical experiment can be seen in Figure 3, where
two variants of BSG-1 are compared against DARTS when fixed stepsizes
(FS) are used. In particular, for BSG-1, such results were gathered when
using in the LL problem either 1 step or an increasing accuracy strategy
with threshold equal to 10−1. By the nature of the CL problem, we expect
to see five separate “jumps” in the validation error indicating the start of
a new task. As the tasks progress, both variants of BSG-1 converge faster
than DARTS, as they achieve smaller values of the validation error, especially
the BSG variant using the increasing accuracy strategy. DARTS is not able
to guarantee a sufficiently small error on the validation data for all tasks,
despite some initial improvement obtained. For this problem, we used UL



BILEVEL STOCHASTIC METHODS FOR OPTIMIZATION AND MACHINE LEARNING 27

Figure 3. Comparison of two variants of the BSG-1 method (1
step and inc. acc.) with the DARTS one when fixed stepsizes (FS)
(of value equal to 0.007) are used. The comparison is based on
the number of iterations.

and LL fixed stepsizes of 0.007 for the three algorithmic variants such that
the results would be comparable. We emphasize that DARTS cannot make
further improvements by taking more steps in the LL problem, whereas BSG-
1 will perform better the more accurately the LL problem is solved, leaving
room for even further improvement in performance.

6. Concluding remarks and future work
In this paper, we introduced a practical bilevel stochastic gradient (BSG)

method for large-scale bilevel optimization problems, we suggested simple
and effective improvements for DARTS, and we provided a general conver-
gence theory for BSG methods that also covers the constrained LL case. Even
in the unconstrained LL case, the convergence theory presented in this paper
allows for more abstraction from the building blocks of adjoint gradients.

In particular, the use of rank-1 Hessian approximations in our BSG-1
method allowed us to both approximate the second-order derivatives in the
adjoint formula and avoid explicitly solving the adjoint equation (also dis-
missing any matrix-vector products). Although DARTS does not incorpo-
rate descent or first-order principles, it is commonly applied to solve NAS
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problems due to its practical satisfactory performance. Our numerical exper-
iments showed that BSG-1 performs significantly better than DARTS on the
logistic regression and continual learning instances considered. The modifi-
cations we suggested for improving DARTS are effective when tested on the
logistic regression instances. Further exploration of improvements for BSG-1
and DARTS methods on other large-scale learning problems is left as fu-
ture work (in particular the use of variance reduction techniques, as already
proposed in [4, 47]).

Moreover, BSG methods have been so far limited to the unconstrained
LL case because the only resource used has been the adjoint formula. It
is however possible to calculate a descent direction in the constrained LL
case, and we have thus shown how to develop BSG methods for such a case.
An approximate BSG direction can be obtained through the solution of an
auxiliary LQ bilevel problem; see Subsection 2.2. Our convergence theory
already indicates that if the error in the norm between such a direction and
the negative gradient of f is of the order of the stepsize, one retains the
classical sublinear SG rate. One needs to numerical test the constrained LL
approach presented in this paper and make it efficient, robust, and scalable.
Finally, the algorithmic framework and the convergence theory have to be
further developed to address the non-convex case (at both upper and lower
levels) as well as UL constraints in both UL and LL variables.

Significant innovation is expected when BSG is applied to the formulations
that are proposed to overcome the critical issue of catastrophic forgetting
in continual learning. The formulation introduced in [29] uses inequality
constraints to ensure that, at each stage, the current model outperforms
the old model on the previous tasks, thus preventing the deterioration of the
classification accuracy when learning new tasks. A similar idea is exploited in
the bilevel formulation proposed in [43], where the violation of the constraints
in [29] is penalized (and hence such constraints are possibly not satisfied at
the optimal solution). One expects a considerable improvement by adapting
problem (4.1) to the constrained LL case, and then solving it using the BSG
direction described in Subsection 2.2.

The promising results on the ML instances considered in this proposal
suggest that the BSG-1 method has the potential to perform well on the
unconstrained bilevel formulations of NAS, which in the literature are still
tackled by using DARTS when a continuous relaxation of the (discrete) search
space is used [38]. We point out that using the rank-1 Hessian approximations
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is crucial to allow the application of the BSG method to NAS, which would
not be possible otherwise due to the extreme dimensions of the resulting
bilevel problems. Moreover, the fact that BSG can solve bilevel optimization
problems with constrained LL problems paves the way for the solution of
new NAS formulations. In particular, one could think of including in the LL
problem constraints that help the model avoid overfitting [37] or constraints
that depend on the specific learning instances considered [41].
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