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Introduction
The study of effective descent morphisms is in the core of Grothendieck

Descent Theory (see e.g. [JT94, JST04]) and its applications (see, for
instance, [BJ01]). Except for the case of locally cartesian closed cat-
egories, the full characterization of effective descent morphisms is far
from trivial in general. The topological descent case is the main ex-
ample of such non-trivial problem (see the characterization in [RT94]
and the reformulation in [CH02]).

By studying descent for V-categories and (T,V)-categories∗, Clementino
and Hofmann gave further descent results and understanding in various
contexts, including, for instance, the reinterpretation of the topological
results mentioned above and many other interesting connections (see,
for instance, [CH04, CJ11, CH12, CH17]).

On one hand, since they were mainly concerned with spaces, their
study focused on the case where V is a preorder and there is no way to
trivially generalize their approach to more general monoidal categories
V . On the other hand, their work, together with the characterization of
effective descent morphisms for the category of categories and internal
categories (see [JST04, Section 6] and [Cr99]), has raised interest in
further studying descent for generalized categorical structures.

With this in mind, [Lu18, Lemma 9.10] showed that, under suitable
conditions, we can embed the category of V-enriched categories (with
V extensive) in the category of internal ones. From this embedding,
[Lu18, Theorem 1.6] and Ivan Le Creurer’s [Cr99] characterization,
[Lu18, Theorem 1.6] gives effective descent morphisms for V-categories.
However, the literature lacks results for (T,V)-categories for a non-
trivial T and an extensive V .

The present note is part of a project which aims the study of descent
and Janelidze-Galois theory within the realm of generalized multicat-
egories and other categorical structures. Following the approach of
[Lu18, Theorem 1.6], in order to study effective descent morphisms
between more general (enriched) multicategories, the first step is to

∗The notion of (T,V)-categories was introduced in [CT03].
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study effective descent morphisms between internal multicategories†

which is the subject of this paper.
We give two ways of approaching the problem. After fixing some

notation on Section 1, and describing the category of multicategories
as a full embedding in the pseudo-equalizer of categories of diagrams
in Section 2, we discuss each approach in the two subsequent sections.
We end the paper with a short discussion of the known examples of
cartesian monads.

Section 3 has more of an expository value. We exploit the techniques
of [Lu18] and give an example of how one can proceed to use those
techniques to study effective descent morphisms. The basic idea is
to fully embed the category we are studying in a bilimit of simple
enough categories, and, then, use the classical descent result for full
embeddings (see Theorem 3.2). This exposition is especially relevant
to our future work where the second approach isn’t possible.

We can study descent for internal structures exploiting and extending
the techniques established in [Cr99]. That is our second approach
to the case of internal multicategories, presented in Section 4. This
approach has the advantage of refining our previous results. Namely,
under suitable conditions, we find that functors f such that

– f1 is an effecive descent morphism,
– f2 is descent morphism,
– f3 is an almost descent morphism.

to be effective descent morphisms between internal T -multicategories,
where fi are the morphisms between the objects of i-tuples of compos-
able morphisms.

The authors would like to thank Maria Manuel Clementino for her
insightful feedback regarding this work.

1. Preliminaries
Given a diagram J : B → C with limit (lim J, λ), for any cone

γb : x → Jb there exists a unique morphism f : x → lim J such that
γb = λb ◦ f for all b. We denote f as (γb)b∈ob B. As an example, let B

†By internal multicategories, we mean the notion introduced in [He00, Definition 4.2].
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be a category with pullbacks, and let C be an internal category. The
object of pairs of composable morphisms is given by the pullback

C2 C1

C1 C0

d0

d2 d1

d0

thus, if we have morphisms g : X → C1 and f : X → C1 with d1 ◦ g =
d0◦f , we write (g, f) for the uniquely determined morphism X → C2.
Furthermore, we denote the internal composition by g•f = d1◦(g, f),
where d1 : C2 → C1 is the composition morphism. Likewise, we can
talk about tuples of composable “morphisms”, an idea we apply to
T–multicategories.

Another remark on notation: in a category B with a choice of pull-
backs, we write

v w

x y

εf

p∗f f

p

for the given choice of pullback of f along p. It is clear that the
change-of-base p∗ : B/y → B/x defines a functor right adjoint to

p! : B/x→ B/y

with counit ε. For a morphism h : f → g in B/y (that is, f = g ◦ h),
write p∗h for the unique morphism p∗f → p∗g such that εg ◦p∗h = h◦εf .

The category Desc(p) of descent data for a morphism p : x → y in
B is defined as the category of algebras for the monad p∗p!. Explicitly,
objects are pairs of morphisms (a, γ) satisfying

– p∗(p◦a) = a◦γ, that is, γ is a morphism p∗(p◦a) → a in B/x,
– γ ◦ p∗εp◦a = γ ◦ p∗γ, which is the multiplication law (note that
p ◦ a ◦ γ = p ◦ p∗(p ◦ a), so that we may apply p∗),

– γ ◦ (a, id) = id, where (a, id) is the unique morphism such that
a = p∗(p ◦ a) ◦ (a, id) and id = εp◦a ◦ (a, id), which is the unit
law,
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and a morphism (a, γ) → (b, θ) of descent data is a morphism f with
a = b ◦ f such that f ◦ γ = θ ◦ p∗f .

By the Bénabou-Roubaud theorem‡, this is equivalent to the classical
formulation of the descent category w.r.t. the basic (bi)fibration.

The following lemma seems to be fairly commonly used in proofs
about effective descent morphisms, but it sometimes is omitted in the
literature. The proof of this result is given in Appendix A.

Lemma 1.1. Kp : B/y → Desc(p) is essentially surjective if and only
if, for all descent data (a, γ), there is f such that p∗f ∼= a and εf ◦γ =
εf ◦ εp◦a.

Throughout, we assume T = (T,m, e) is a cartesian monad on a
category B with pullbacks.

2. Multicategories and pseudoequalizers
In this section, we describe the category Cat(T,B) of internal T -

multicategories in B as a strict equalizer of categories of diagrams in
B. As every strict equalizer is a full subcategory of the corresponding
pseudo-equalizer, we get a full embedding of Cat(T,B) in a pseudo-
equalizer involving the same categories. In Section 3, we use this em-
bedding to study the effective descent morphisms of Cat(T,B). Essen-
tial to this study is the characterization of the internal T -multicategories
among the objects of the pseudo-equalizer via coherence conditions to
which this section is devoted to.

As defined in [He00], a T -multicategory internal to B is a monad in
the bicategory SpanT (B), and a functor between two such T -multicategories
is a monad morphism considering the usual proarrow equipment

B → SpanT (B);
these define a category Cat(T,B). Explicitly, a T -multicategory is
given by an object x0 of B, together with a span

Tx0 x1 x0
d1 d0

‡It was originally proven in [BR70]. See, for instance, [JT94, pag. 258] or [Lu18,
Theorem 7.4 and Theorem 8.5] for generalizations.
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and two morphisms, given by dashed arrows below
x2 x0

Tx0 x0 Tx0 x0

x1 x1

m◦Td1◦d2 d0◦d0

d1

e idx0

s0

d1 d0 d1 d0

which make the triangles commute, where

x2 Tx1

x1 Tx0

d0

d2

Td0

d1

is a pullback diagram. Thus, we say that a pair g : a → x1, f : a →
Tx1 is composable if d1g = (Td0)f , we write (g, f) : a → x2 for the
uniquely defined morphism, and we let g • f = d1(g, f). Likewise,
define k •T f = (Td1)(k, h) for k : a → Tx1 and h : a → TTx1 such
that (Td1)k = (TTd0)h (T -composable).

The identity properties of the monad guarantee that 1d0f •ef = f =
f • 1d1f , and the associativity property guarantees that

h • (g •T f) = (h • g) •mf,
where we are implicitly given the following pullback diagram

x3 Tx2

x2 Tx1

d0

d3

Td0

d2

for h : a → x1, g : a → Tx1 and f : a → TTx1 such that h, g are
composable and g, f are T -composable. Moreover, a functor p : x→ y
between internal T -multicategories is given by a pair of morphisms
p0 : x0 → y0 and p1 : x1 → y1 such that di ◦ p1 = (T ip0) ◦ di for
i = 0, 1, 1p0 = p11 and p1g • p1f = p1(g • f).

Going back to an internal description, we may denote
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– s0 = (id, T s0 ◦ d1) : x1 → x2,
– s1 = (s0 ◦ d0, e) : x1 → x2,
– d1 = (d0 ◦ d0, Td1 ◦ d3),
– d2 = (d1 ◦ d0, m ◦ Td2 ◦ d3),

so the above data can be organized in the following diagram

x0 x1 x2 x3

Tx0 Tx1 Tx2

TTx0 TTx1

s0

e

s0

s1

d0

d1 e

d0

d1
d2

d2

d1

d0

d3

Ts0

Td1

Td0

Td0

Td1

Td2m m

which is also given in [Bu71]. This leads us to the following diagram-
matical description of an internal T -multicategory:

Theorem 2.1. For a cartesian monad (T,m, e) on a category B with
pullbacks, Cat(T,B) is the strict equalizer of the following diagram:

[S,B] [ST ,B]× [Sm0 ,B]× [Sm1 ,B]× [Se0 ,B]× [Se1 ,B]× [Sp0 ,B]× [Sp1 ,B]
S∗
−

Γ

(1)
Moreover, Cat(T,B) has pullbacks and the canonical functor

ι : Cat(T,B) → [S,B]

preserves them.
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The category S is generated by the following diagram

x0 x1 x2 x3

x′0 x′1 x′2

x′′0 x′′1

s0

e0

s0

s1

d0

d1 e1

d0

d1
d2

d2

d1

d0

d3

s′0

d′1

d′0

d′0

d′1

d′2m0 m1

with relations resembling the simplicial conditions

– d1+i ◦ si = ei : xi → x′i, i = 0, 1,
– d0 ◦ s0 = id: x0 → x0,
– d1 ◦ d1 = m0 ◦ d′1 ◦ d2 : x2 → x′0,
– d0 ◦ d1 = d0 ◦ d0 : x2 → x0,
– d2 ◦ s0 = s′0 ◦ d1 : x1 → x′1,
– d0 ◦ s0 = id: x1 → x1,
– d0 ◦ s1 = s0 ◦ d0 : x1 → x1,
– d1 ◦ s0 = d1 ◦ s1 = id: x1 → x1,
– d2 ◦ d2 = m1 ◦ d′2 ◦ d3 : x3 → x1,
– d0 ◦ d2 = d1 ◦ d0 : x3 → x1,
– d2 ◦ d1 = d′1 ◦ d3 : x3 → x1,
– d0 ◦ d1 = d0 ◦ d0 : x3 → x1
– d1 ◦ d2 = d1 ◦ d1 : x3 → x1,

SI , ST , Smi
, Sei, Ssi, and Spi for i = 0, 1 are subcategories of S,

respectively given by

x0 x1 x2

x′0 x′1

s0

d0
d1

d0

d1
d2
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x′0 x′1 x′2

x′′0 x′′1

s′0

d′1

d′0

d′0

d′1
d′2

x′′i x′i
mi

xi x′i
ei

x′i+1 x′i xi+1
d′0 di+1

xi+2 xi+1

x′i+1 x′i

d0

di+2 di+1

d′0

and write S∗
I , S

∗
T , S∗

mi
, S∗

ei
, S∗

si
and S∗

pi
for the restriction functors. Also

write x∗0 and x∗1 : [S,B] → B for the projections. With these, S∗
−, and

Γ are the uniquely determined functors given by the following:

[S,B] [ST ,B]

[SI ,B] [ST ,B]

S∗
T

S∗
I

r∗

T∗

[S,B] [Sm,B]

B

S∗
mi

x∗
i m̂

[S,B] [Sei,B]

B

S∗
ei

x∗
i ê
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[S,B] [Spi ,B]

[Ssi ,B]

S∗
pi

S∗
si

Ranιi

where m̂, ê are (pullback-preserving) functors induced by the respective
(cartesian) natural transformations, r : ST → SI is the projection (note
that ST is free while SI is not), and Ranιi is the right Kan extension
(take the pullback) of the inclusion ιi : Ssi → Spi.

Note that in general, the strict equalizer is a full subcategory of the
pseudo-equalizer: for functors F,G : C → D, the category PsEq(F,G)
is the category whose objects are pairs (c, ϕ) where c is an object of C
and ι : Fy → Gy is an isomorphism, and morphisms (c, ϕ) → (d, ψ)
are morphisms f : c → d such that Gf ◦ ϕ = ψ ◦ Ff . Thus, the
full embedding may be given on objects by x 7→ (x, id). Moreover,
since pullbacks in Cat(T,B) and PsEq(S∗

−,Γ) are calculated pointwise
in [S,B], the full embedding preserves pullbacks.

Lemma 2.2. The inclusion of Cat(T,B) into PsEq(S∗
−,Γ) is full and

preserves pullbacks.

Given an object (y, ι) of PsEq(S∗
−,Γ), ι can be explicitly described

as a family of isomorphisms making the appropriate squares commute:

y′0 y′1 y′2

y′′0 y′′1

Ty′0 Ty′1

Ty0 Ty1 Ty2

s′0

ιT0

d′0

d′1

d′1

d′0

ιT2

d′2

ιT3 ιT4

Ts0

Td0

Td1

Td0

Td1

Td2

ιT1
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y′′i y′i

TTyi Tyi

ι
mi
0

M

ι
mi
1

m

yi y′i

yi Tyi

ei

ι
ei
0

ι
ei
1

e

yi+2 yi+1

· yi+1

y′i+1 y′i

y′i+1 y′i

di+2

d0

di+1

ι
pi
0

ι
pi
1

di+1

ι
pi
2

D0

ι
pi
3

D0

And the following lemma gives a characterization of those objects (y, ι)
which are isomorphic to a T -multicategory.

Lemma 2.3. An object (y, ι) of PsEq(S∗
−,Γ) is isomorphic to a T -

multicategory if and only if the following coherence conditions hold

(i) ιmi
1 = ιei1 = ιTi for i = 0, 1,

(ii) TιTi ◦ ιT3+i = ιmi
0 , for i = 0, 1,

(iii) ιei0 = id for i = 0, 1,
(iv) ιpij = id for i = 0, 1 and j = 0, 1, 2, 3.

Proof : Given such an object, define a T -multicategory ŷ such that
ŷ0 = y0, ŷ1 = y1, and we consider the span

Ty0 y1 y0,
ιT0 ◦d1 d0

so that we have d̂1 = ιT0 ◦ d1, d̂0 = d0, and we let d̂1 = d1 : x2 → x1
and ŝ0 = s0 : x0 → x1.
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Observe that the rectangle below

y2+i y′1+i Ty1+i

y1+i y′i Tyi

d0

d2+i

d′0

ιT1+i

Td0

d1+i ιTi

is a pullback square for i = 0, 1; the left square is a pullback by defini-
tion, while the right square commutes and since ιTi are isomorphisms for
i = 0, 1, 2, it is also a pullback. Thus, we may let d̂0 = d0 : y2+i → y1+i

and d̂2+i = ιT1+i ◦ d2+i : y2+i → y1+i for i = 0, 1.
First, we claim that each triangle below commutes:

y2 y0

Ty0 y0 Ty0 y0

y1 y1

m◦T d̂1◦d̂2 d0◦d0

d1

e

s0

d̂1
d0 d̂1

d0

Of course, both right triangles commute by definition, while

y2 y′1 y′′0 y′0

Ty1 Ty′0 TTy0 Ty0

d2 d′1

ιT1

M

ιm0
ιT3

ιm1

Td1 TιT0
m

where both squares commute by naturality and the triangle by coher-
ence. Since M ◦ d′1 ◦ d2 = d1 ◦ d1 by definition, the left left triangle
commutes, and since e = ιe01 ◦ e0, ιe01 = ιT0 and e0 = d1 ◦ s0, right left
triangle commutes.

Now, we wish to define
– ŝ0 = (id, T s0 ◦ d̂1)
– ŝ1 = (s0 ◦ d0, e)
– d̂2 = (d1 ◦ d0,m ◦ T d̂2 ◦ d̂3)
– d̂1 = (d0 ◦ d0, Td1 ◦ d̂3)
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and then, we verify that ŝi = si and d̂i = di, as they satisfy the same
universal property, which concludes our proof. To make sure these
expressions make sense, we must verify that

– d̂1 = Td0 ◦ Ts0 ◦ d̂1,
– d̂1 ◦ s0 ◦ d0 = Td0 ◦ e,
– d̂1 ◦ d1 ◦ d0 = Td0 ◦m ◦ T d̂2 ◦ d̂3,
– d̂1 ◦ d0 ◦ d0 = Td0 ◦ Td1 ◦ d̂3,

Since d0 ◦ s0 is the identity, the first equation is satisfied. We have

ιT0 ◦ d1 ◦ s0 ◦ d0 = ιe01 ◦ e0 ◦ d0 = e ◦ d0 = Td0 ◦ e,

which verifies the second. For the third and fourth, we get

ιT0 ◦ d1 ◦ d0 ◦ d0 = ιT0 ◦ d′0 ◦ d2 ◦ d0
= Td0 ◦ ιT1 ◦ d′0 ◦ d3
= Td0 ◦ Td0 ◦ ιT2 ◦ d3
= Td0 ◦ Td1 ◦ d̂3

Td0 ◦m ◦ TιT1 ◦ Td2 ◦ ιT2 ◦ d3 = m ◦ TTd0 ◦ TιT1 ◦ Td2 ◦ ιT2 ◦ d3
= m ◦ TιT0 ◦ Td′0 ◦ Td2 ◦ ιT2 ◦ d3
= m ◦ TιT0 ◦ Td1 ◦ Td0 ◦ ιT2 ◦ d3
= m ◦ TιT0 ◦ Td1 ◦ ιT1 ◦ d′0 ◦ d3
= m ◦ TιT0 ◦ ιT3 ◦ d′1 ◦ d2 ◦ d0
= m ◦ ιm0

0 ◦ d′1 ◦ d2 ◦ d0
= ιm0

1 ◦m0 ◦ d′1 ◦ d2 ◦ d0
= ιm0

1 ◦ d1 ◦ d1 ◦ d0
as desired.

Finally, since the left square in (48) is a pullback for i = 0, 1, it
follows that s0, s1 : x1 → x2 and d1, d2 : x3 → x2 are given by (id, s′0 ◦
d1), (s0 ◦d0, e1), (d1 ◦d0,m1 ◦d′2 ◦d3) and (d0 ◦d0, d′1 ◦d3), respectively.
But these are just ŝ0, ŝ1, d̂1, d̂2, respectively.

The converse is a corollary of our next, stronger result.



14 RUI PREZADO AND FERNANDO LUCATELLI NUNES

Lemma 2.4. Suppose that we have a pointwise epimorphism f : (x, id) →
(y, ι) in PsEq(S∗

−,Γ). Then (y, ι) satisfies the coherence conditions.

Proof : A morphism f : (x, id) → (y, ι) is a morphism f : x → y such
that Ff = Gf ◦ ι, which translates to the following equations:

f0 = f0 ◦ ιe00
f1 = f1 ◦ ιe10 = f1 ◦ ιp01
f2 = f2 ◦ ιp11
f3 = f3 ◦ ιp10
f ′0 = Tf0 ◦ ιT0 = Tf0 ◦ ιm0

1 = Tf0 ◦ ιe01 = f ′0 ◦ ι
p0
3

f ′1 = Tf1 ◦ ιT1 = Tf1 ◦ ιm1
1 = Tf1 ◦ ιe11 = f ′1 ◦ ι

p0
2 = f ′1 ◦ ι

p1
3

f ′2 = Tf2 ◦ ιT2 = s′2 ◦ ι
p1
2

f ′′0 = Tf ′0 ◦ ιT3 = TTf0 ◦ ιm0
0

f ′′1 = Tf ′1 ◦ ιT4 = TTf1 ◦ ιm1
0

and noting that fi, f ′i , f ′′i all are epimorphisms for all i we recover the
coherences; just note that Tfi and TTfi are epimorphisms as well, and
that Tf ′i = TTfi ◦ TιTi .

3. First approach
We understand the effective descent morphisms of the pseudo-equalizer

PsEq(S∗
−,Γ) in terms of the effective descent morphisms of the involved

categories of diagrams by the following corollary of [Lu18, Theorem
9.2].

Theorem 3.1. Suppose that we have a pseudo-equalizer of categories
and pullback-preserving functors

PsEq(F,G) C DI F

G

and let f be a morphism in the pseudo-equalizer. f is effective for
descent whenever If is effective for descent and FIf ∼= GIf is a
pullback-stable regular epimorphism.
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Now, we study the effective descent morphisms of Cat(T,V) via the
following classical descent result:
Theorem 3.2. Let U : C → D be a fully faithful, pullback-preserving
functor, and let π be a morphism in C such that Uπ is effective for
descent. Then π is effective for descent if and only if for all pullback
diagrams of the form

Up y

Ue Ub

f∗(π)

f

π

there exists an isomorphism Ux ∼= y for x an object of C.
Applying these theorems to our setting, we get:

Corollary 3.3. Let p : x → z be a functor of T -multicategories, and
assume that

– p is effective for descent in [S,B], and
– S∗

−p is a descent morphism.
Then p is effective for descent if and only if for every pullback diagram
of the form

(w, id) (y, ι)

(x, id) (z, id)
(p,id)

(2)

we have (y, ι) isomorphic to a T -multicategory.
Lemma 2.4 implies that in every pullback of the form (2) we have

(y, ι) isomorphic to a T -multicategory; since (p, id) is effective for de-
scent, it is in particular a pullback-stable epimorphism, hence (y, ι)
is the codomain of an epimorphism with a T -multicategory domain,
therefore the lemma applies. This is summed up in the following the-
orem:
Theorem 3.4. If p : x→ z is a functor of T -multicategories such that
p is effective for descent in [S,B] and S∗

−p is a descent morphism, then
p is effective for descent in Cat(T,B).
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Since pointwise effective descent implies effective descent, we get the
corollary:

Corollary 3.5. Let p : x → z be a T -multicategory functor internal
to B. If Tp1, Tp2 and p3 are effective for descent, then so is p.

Proof : By the results in Appendix B (observe Tp1 is a T -graph mor-
phism), our hypothesis give pointwise effective descent in [S,B], as
well as in the projection.

4. Second approach
In this section, we extend the techniques of [Cr99, Chapter 3] to our

setting, in order to refine our result on effective descent morphisms. We
highlight that if p : x → y a functor of internal multicategories, note
that if p1 is a pullback-stable (regular) epimorphism, or of effective
descent, then so is p0 by Lemma B.3.

Theorem 4.1. Let p : x→ y be a functor of internal T–multicategories.
If p1 is an (pullback-stable) epimorphism, then so is p.

Proof : Given functors q, r such that qp = rp, we have qipi = ripi, and
therefore qi = ri for i = 0, 1, hence q = r, thus p is an epimorphism.
Since pullbacks are calculated pointwise, p must be pullback-stable
whenever p1 is.

Theorem 4.2. Let p be a functor of internal T–multicategories. If

– p1 is a (pullback-stable) regular epimorphism,
– p2 is an (pullback-stable) epimorphism,

then p is a (pullback-stable) regular epimorphism.

Proof : Consider the kernel pair r, s of p, and let q : x→ z be a functor
such that q ◦ r = q ◦ s. Then there exist unique morphisms k0, k1 such
that kipi = qi for i = 0, 1. We claim these morphisms define a functor
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y → z. We have

d1 ◦ k1 ◦ p1 = d1 ◦ q1 = Tq0 ◦ d1 = Tk0 ◦ Tp0 ◦ d1 = Tk0 ◦ d1 ◦ p1
(3)

d0 ◦ k1 ◦ p1 = d0 ◦ q1 = q0 ◦ d0 = k0 ◦ p0 ◦ d0 = k0 ◦ d0 ◦ p1 (4)
k1 ◦ d1 ◦ p2 = k1 ◦ p1 ◦ d1 = q1 ◦ d1 = d1 ◦ q2 = d1 ◦ k2 ◦ p2, (5)

and since p1, p2 are epimorphisms, cancellation allows us to conclude
that k is a functor (note that k2 is defined as k2(g, f) = (k1g, k1f),
and hence q2 = k2p2).

Again, “relevant pointwise” pullback-stable is pullback-stable.

Theorem 4.3. Let p be a functor of internal T–multicategories. If
– p1 is an effective descent morphism,
– p2 is a pullback-stable regular epimorphism,
– p3 is a pullback-stable epimorphism,

then p is effective for descent.

Proof : By the previous theorem, the comparison

K : Cat(T,B)/y → Desc(p)

is fully faithful. Hence, we aim to prove that K is also essentially
surjective under our hypotheses, thereby concluding that p is effective
for descent.

Suppose we are given a p∗p!–algebra (a, γ), where a : v → x is a
functor and γ : u → v is the algebra structure. We have equivalences
Ki : B/yi → Desc(pi), for i = 0, 1, and (a, γ) then determines algebras
(ai, γi) for i = 0, 1. Hence, there exist fi : wi → yi and hi : vi → wi

such that the following diagram

vi wi

xi yi

hi

ai fi

pi

is a pullback square, and moreover, we have hi ◦ γi = hi ◦ εpi◦ai. We
claim that

– h0, h1 determine a functor h : v → w,
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– f0, f1 determine a functor f : w → y,

so that the above lifts to a pullback diagram of T–multicategories.
The hypothesis that p1, p2 are pullback-stable regular epimorphisms

implies that h1, h2 are regular epimorphisms. Taking kernel pairs and
noting that T preserves pullbacks, we get

u1 v1 w1

T iu0 T iv0 T iw0

u0 v0 w0

u1 v1 w1

u2 v2 w2

u1 v1 w1

di

h1

di di

T ih0

s0

h0

s0 s0

h1

d1

h2

d1 d1

h1

therefore there exist unique morphisms making every right hand side
square commute. Note that we define h2(g, f) = (h1g, (Th1)f). As-
suming w is in fact a T–multicategory, we may already conclude that h
is a functor. The hypothesis that p1, p2, p3 are pullback-stable epimor-
phisms implies that h1, h2, h3 are epimorphisms. We have equations

d1s0h0 = (Th0)dis0 = (Th0)e = eh0

d0s0h0 = h0d0s0 = h0

d1d1h2 = (Th0)d1d1 = (Th0)m(Td1)d2 = m(Td1)dhk2

d0d1h2 = h0d0d1 = h0d0d0 = d0d0h2

d1sih1 = h1d1si = h1s0d0 = s0d0h1

d1d2h3 = h1d1d2 = h1d1d1 = d1d1h3
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and by cancellation, we conclude w is a T–multicategory (proving our
assumption) and, similarly, we can show that f is a functor, following
the same strategy as in the previous lemma. This shows that p∗ is
essentially surjective.

It remains to show that h ◦ γ = h ◦ εp◦a, which is immediate since
we have hi ◦ γi = hi ◦ εpi◦ai for i = 0, 1, and pullbacks are calculated
pointwise. The result now follows by Lemma 1.1.

5. Note on examples
There are sparse examples of cartesian monads, and therefore sparse

examples of categories of internal multicategories over a monad. For B
finitely extensive with finite limits and pullback-stable nested count-
able unions, as in [Le04, Appendix D], the free category monad on
graphs internal to B is cartesian, and therefore so is the free monoid
monad W on B. In fact, Leinster’s construction is iterable, and most
known examples fit into the above conditions. A family of examples
outside of this setting is given by free monoid monads on extensive cat-
egories with finite limits. These are also cartesian; the idea is that the
coproduct functor Fam(B) → B preserves finite limits, so we may con-
struct the required limit diagrams in Fam(B), allowing us to conclude
that such monads preserve pullbacks and that the required naturality
squares are pullbacks.

Another result of Leinster, Corollary 6.2.5 ibid : for C an internal T -
multicategory, we can construct a cartesian monad TC on B/C0. We
have an equivalence of categories

Cat(TC ,B/C0) ∼= Cat(T,B)/C ,
and since universal (regular) epimorphisms and effective descent re-
main unchanged on slice categories, this allows us to say something
about effective descent of complicated internal multicategories in terms
of simpler ones.
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Appendix A.The Eilenberg-Moore comparsion
Lemma 1.1 is a fairly elementary observation. It has been, some-

times, implicitly assumed in the literature about effective descent mor-
phisms. The instance of Le Creurer’s argument in Proposition 3.2.4,
where he implicitly uses this result, is of particular interest for our
work.

Since we have defined descent data as algebra structures, we re-
strict our attention to this context. We state Lemma 1.1 as a result
(Lemma A.1) about the Eilenberg-Moore comparison. It should be
noted, however, that the result holds for much more general contexts,
and hence its applicability in descent arguments does not depend on
the Bénabou–Roubaud theorem.§

Lemma A.1. Let (l ⊣ u, ε, η) : A → B be an adjunction that induces
a monad t = (ul, uεl, η). An algebra (a ∈ B, γ : ul (a) → a) is in the
image of the Eilenberg-Moore comparison K : A → t-alg if, and only
if, there is w ∈ A such that u(w) = a and

εw ◦ l (γ) = εw ◦ εlu(w). (6)

Proof : If the algebra (a, γ) is in the image of K, we have that

(u(w), u (εw)) = (a, γ)

for some w ∈ A. Hence, of course, (6) holds by naturality. Recipro-
cally, if

(a = u(w) ∈ B, γ : ulu (w) → u(w))

is an algebra structure such that (6) holds, then

γ = u (εw) · ηu(w) · γ
= u (εw) · ul (γ) · ηulu(w)
= u (εw) · u

(
εlu(w)

)
· ηulu(w)

= u (εw) .

This proves that (a, γ) = (u(w), u (εw)) = K (w) .
§Although it is out of the scope of our work and we don’t give further details, the

observation has, for instance, a natural generalization in the context of [Lu18] which
does not depend on the Bénabou–Roubaud theorem at all.
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Appendix B.T -stability of pullback-stable classes
We establish in this appendix some auxiliary lemmas about preser-

vation of pullback-stable classes.

Lemma B.1. T creates any pullback-stable property in its essential
image.

Proof : If Tf satisfies a property P , stable under pullback, then the
unit and multiplication naturality squares guarantee that f and TTf
also satisfy P .

Corollary B.2. If Tf is a pullback-stable (regular) epimorphism, ef-
fective for descent, then f and TTf also have the respective property.

Lemma B.3. Let f : x → y be a T -graph morphism, and let E be a
class of epimorphisms, containing all split epimorphisms, closed under
composition and cancellation. If f1 is in E , then so is f0.

Proof : Note that d0 : x1 → x0 is a split epimorphism, hence d0f1 =
f0d0 is in E , and thus so is f0.

We are interested in the cases E is the class of pullback-stable epi-
morphisms, descent morphisms and effective descent morphisms.
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