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Abstract: Similarly like classical topological groups, the point-free counterparts,
localic groups, possess natural uniformities (see e.g. [4, 2, 10]) obtained from an
involutive binary operation on L (roughly corresponding to the algebra of subsets of
a classical group). It is the operation that naturally induces the uniformities (even
if it would not result from a group) and a study of this aspect of the construction
is the main topic of this article. We have here a functor associating with the localic
groups quantales of a special type (and with frame group homomorphisms quantale
homomorphisms) which are shown to create the uniformities, in fact as a special
case of the natural uniformities connected with metric structures. Also, we present
a condition under which the quantale allows a reconstruction of the localic group.
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Introduction

Recall that when studying spaces we can more often than not forget about
points, and consider a structure mimicking the behavior of classical open
sets. Thus we obtain an extension of the theory of topological spaces, usually
referred to as point-free topology. The classical topological concepts and facts
can be typically naturally extended, often to advantage in the sense that the
results are more satisfactory, or offering new insights into the phenomena.

In this paper we wish to discuss some aspects of the natural uniformities
of localic groups corresponding to the natural uniform structures induced
on topological groups by the algebraic one. Like in the classical case, a
uniformity on a frame (locale) can be defined as a suitable system of covers
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(Tukey’s approach) or as a system of entourages modelling neighborhoods
of the diagonal (Weil’s approach), see [14, 9, 10]. These approaches turn
to be, again, equivalent, although the products of locales (and consequently
the entourages) are not a conservative extension of the classical products of
spaces and neighborhoods of diagonals (see [8, 9, 13]).

The algebraic structure on a classical topological group very naturally in-
duces uniformities on the underlying space, and this is also the case in the
more general localic groups. Considering, however, that a localic group may
lack points (with the exception of the unit) and still be very large we see
that one cannot use the intuition of canonical shifting the neighborhoods of
the unit e to general points a of G by the homeomorphisms ϕa = (x ↦ xa)
creating uniform covers C(U) = {ϕa[U] ∣ a ∈ G} for neighborhoods U of e, and
we have to be careful with the intuition of neighborhoods of the diagonals
that are now in fact something else. Nevertheless there are again naturally
induced uniformities (both of the Tukey and Weil type, and equivalent – see
[4, 2, 10]). The entourage construction is based on a suitably defined (asso-
ciative) binary operation on the underlying frame L, let us denote it by ˚. It
turns out that we have here a quantale (L, ˚) naturally associated with the
group (L,µ, γ, ε). We analyse this quantale and characterize the quantales
obtained this way, showing which properties of (enriched) quantales allow
to reconstruct the group structure. The (localic) group homomorphisms are
shown to correspond to quantale homomorphisms, and discussed in some
detail.

From another point of view, (L, ˚) is simply an ordered semigroup and as
such can be used as a set of values of a generalized metric. The natural group
uniformities can then be shown to be metric uniformities of thus generalized
metrics, quite analogous to the canonical uniformities of metric spaces.

The paper is organized as follows. After necessary Preliminaries we recall
in Section 2 a few technical facts about localic groups. Then, in Section
3, we introduce the concept of a G-quantale, a special case of an involu-
tive quantale, and discuss some of its properties. The following section is
then devoted to the G-quantale induced on a localic group; in particular we
show that under certain continuity properties of the quantic arrows the group
structure can be reconstructed back. Next, in Section 5, the uniformities on
G-quantales are discussed (which implies the slightly more special uniformiz-
ing localic groups); a.o. we show that they can be viewed as uniformities of
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metric type. We conclude the story in Section 6 with a short discussion of
homomorphisms.

1. Preliminaries

1.1. We use the standard notation for meets (infima) and joins (suprema)
in posets a ∧ b, ⋀A or ⋀a∈A a, a ∨ b, ⋁A or ⋁a∈A a. Our posets will typically
be complete lattices, but we will use the symbols also for the infima and
suprema in more general posets in case they exist.

The least resp. largest element (if it exists) will be denoted by 0 resp. 1.
Further, we write

↓a for {x ∣ x ≤ a} and ↓A = {x ∣ ∃ a ∈ A, x ≤ a}.
The subsets A ⊆ (X,≤) such that ↓A = A will be referred to as down-sets.

1.2. Monotone maps f ∶XÐ→Y and g∶Y Ð→X between posets are (Galois)
adjoint, f to the left and g to the right, if

f(x) ≤ y ⇐⇒ x ≤ g(y),
equivalently, if fg ≤ id and gf ≥ id. It is standard that

(1) left adjoints preserve all existing suprema and right adjoints preserve
all existing infima,

(2) and on the other hand, ifX,Y are complete lattices then each f ∶XÐ→Y
preserving all suprema is a left adjoint (has a right adjoint), and each
g∶Y Ð→X preserving all infima is a right adjoint.

1.3. A frame is a complete lattice L satisfying the distributivity law

(⋁A) ∧ b = ⋁{a ∧ b ∣ a ∈ A} (frm)

for all A ⊆ L and b ∈ L. A frame homomorphism preserves all joins and all
finite meets. The resulting category will be denoted by

Frm.

A typical frame is the lattice Ω(X) of open sets of a topological space,
and if f ∶XÐ→Y is a continuous map we have a frame homomorphism
Ω(f)∶Ω(Y )Ð→Ω(X) defined by Ω(f)(U) = f−1[U]. Thus, Ω is a contravari-
ant functor TopÐ→Frm. For an important part of Top this is a full embed-
ding — up to the contravariance; to mend that, one introduces the category
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of locales

Loc = Frmop

for which one usually uses to advantage the concrete representation by right
adjoints of frame homomorphisms.

1.4. Coproducts in Frm. The category Frm is complete and cocomplete.
In this paper we will frequently use the coproduct of two frames. Because it
is not quite obvious let us present it in some detail.

The set of all non-empty down-sets of a frame L, ordered by inclusion,
denoted D(L), is obviously a frame. Given frames L,M we speak of U ∈
D(L ×M) as of a saturated U ⊆ L ×M (sometimes one speaks of a cp-ideal)
if

A × {b} ⊆ U ⇒ (⋁A, b) ∈ U and {a} ×B ⊆ U ⇒ (a,⋁B) ∈ U.

Because of the void A,B, every saturated U contains

n = {(0, b), (a,0) ∣ a ∈ L, b ∈M}

and it is easy to see that e.g. each of the sets

a⊕ b = ↓(a, b) ∪ n

is saturated. Then

L⊕M = {U ∈D(L ×M) ∣ U saturated}

with the injections

ιL = (a↦ a⊕ 1)∶LÐ→L⊕M and ιM = (b↦ 1⊕ b)∶M Ð→L⊕M

constitutes a coproduct of L and M (see e.g. [5, 11]).

1.4.1. For every U ∈D(L×M) there is the smallest saturated V containing
U ; it will be denoted by

κ(U).
κ(U) can be constructed by a transfinite process defining

κ0(U) = {(⋁A, b), (a,⋁B)) ∣ A × {b} ⊆ U,{a} ×B ⊆ U},

then κα+1(U) = κ0(κα(U)) and κλ(U) = ⋃α<λ κα(U) and finally κ(U) = κα(U)
if κα+1(U) = κα(U).
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1.4.2. L ⊕M as a tensor product. The same construction can be used
to obtain a tensor product in the category of sup-lattices (complete lattices
with morphisms preserving suprema), see [6] (also e.g. the Appendix in
[12]). Thus, for any mapping f ∶L ×M Ð→K such that all f(a,−)∶M Ð→K
and all f(−, b)∶LÐ→K preserve suprema there is precisely one f̃ ∶L⊕M Ð→K
preserving all suprema in L⊕M such that f̃(a⊕ b) = f(a, b).
1.5. Composition of saturated sets. Now let L =M . For U,V ∈D(L⊕L)
set

U ⋅ V = {(a, c) ∣ ∃b ≠ 0 with (a, b) ∈ U, (b, c) ∈ V } and

U ○ V = ⋁{a⊕ c ∣ ∃b ≠ 0 with (a, b) ∈ U, (b, c) ∈ V } ∈ L⊕L.
Obviously U ○ V = κ(U ⋅ V ) and for U,V saturated

U ○ V = ⋁{a⊕ c ∣ a⊕ b ∈ U, b⊕ c ∈ V for some b ≠ 0} =
= κ(⋃{a⊕ c ∣ a⊕ b ∈ U, b⊕ c ∈ V for some b ≠ 0}).

For a U ∈ L⊕L set

U−1 = ⋁{a⊕ b ∣ b⊕ a ⊆ U}.
1.6. Quantales. Recall that a quantale (see e.g. [15]) is a complete lattice
L with a binary operation ˚ such that

(Q1) ˚ is associative and
(Q2) (⋁A) ˚ b = ⋁{a ˚ b ∣ a ∈ A} and b ˚ (⋁A) = ⋁{b ˚a ∣ a ∈ A} for all A ⊆ L

and b ∈ L.

2. A few facts about localic groups

2.1. Recall that a localic group is a group object in the category Loc. We
will work, however, with its dual form in the category Frm of frames, that
is, with the collection of data (L,µ, γ, ε) with

µ∶LÐ→L⊕L, γ∶LÐ→L and ε∶LÐ→2

satisfying (∇ stands for the codiagonal frame homomorphism L⊕L→ L and
σ = σL∶2Ð→L is the trivial embedding)

(G1) (µ⊕ id)µ = (id⊕ µ)µ
(G2) (ε⊕ id)µ = (id⊕ ε)µ = id and
(G3) ∇(γ ⊕ id)µ = ∇(id⊕ γ)µ = σε.
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2.2. It is well known (see e.g. [7]) that any identity that can be classically
deduced in a variety of algebras also holds for the corresponding categorical
algebras. Thus we have in particular derived the identities

(G4) γγ = id,
(G5) εγ = ε,
(G6) (γ ⊕ γ)µ = τµτ for the isomorphism τ ∶L ⊕ LÐ→L ⊕ L defined by

τιi = ι3−i, and
(Gα) αα = id and αι1 = µ.

((G4) corresponding to (x−1)−1 = x, (G5) corresponding to e−1 = e for the
unit e, (G6) corresponding to (xy)−1 = x−1y−1, and (Gα) following from the
behaviour of the map (x, y) ↦ (xy, y−1)).

2.3. Lemma. If ⋁-homomorphisms ϕ, ψ have left adjoints ϕ#, ψ#, then
ϕ⊕ ψ has a left adjoint ϕ# ⊕ ψ#.

Proof : First we will prove that for a saturated U ,

V = ⋃{ ↓(ϕ(x), ψ(y)) ∣ (x, y) ∈ U}

is saturated and hence equal to (ϕ ⊕ ψ)(U). Let, say (ai, b) ∈ V , hence
(ai, b) ≤ (ϕ(xi), ψ(yi)) with (xi, yi) ∈ U . Then b ≤ ψ(yi) and hence ψ#(b) ≤ yi
for all i, hence (xi, ψ#(b)) ∈ U for all i. As U is saturated, (⋁xi, ψ#(b)) ∈ U ,
and finally (⋁ai, b) ≤ (⋁ϕ(xi), ψψ#(b)) = (ϕ(⋁xi), ψ(ψ#(b))).

Now we have that W ⊆ (ϕ ⊕ ψ)(U) iff for every (a, b) ∈ W there is an
(x, y) ∈ U such that a ≤ ϕ(x) and b ≤ ψ(y), that is, ϕ#(a) ≤ x and ψ#(b) ≤ y,
and hence (ϕ# ⊕ψ#)(a⊕ b) ≤ (x, y) which says that (ϕ# ⊕ψ#)(W ) ⊆ U .

The following result is stated slightly differently in [13, Prop. 6.4.1]. Here
we establish it with different argumentation.

2.4. Theorem. µ has a left adjoint

µ#∶L⊕LÐ→L

and the maps µ⊕ id and id⊕ µ have left adjoints

(µ⊕ id)# = µ# ⊕ id and (id⊕ µ)# = id⊕ µ#.

Proof : The former follows from (Gα): µ = αι1 with α an isomorphism and ι1
a right adjoint to u↦ ⋁{x ∣ ∃y ≠ 0, x⊕ y ⊆ U}. Then we can infer the latter
from the lemma.
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3. G-quantales

3.1. An involutive quantale (L, ˚, (−)−1) is a quantale (L, ˚) with a map
(−)−1∶LÐ→L satisfying

(Q3) (a−1)−1 = a, (a ˚ b)−1 = b−1 ˚a−1 and (⋁ai)−1 = ⋁a−1
i (in particular, (−)−1

is monotone and 0−1 = 0).

3.2. In the literature, frames with a quantale structure are called quantal
frames. We will be concerned with a special case of involutive quantal frames
(L, ˚, (−)−1,N) endowed with a completely prime filter N ⊆ L satisfying,
moreover, the following axioms:

(A1) For every x, x = ⋁{b ∣ ∃a ∈ N,a ˚ b ≤ x} = ⋁{a ∣ ∃b ∈ N,a ˚ b ≤ x}.
(A2) For every a ∈ N , ⋁{x ∣ x−1 ˚ x ≤ a} = ⋁{x ∣ x ˚ x−1 ≤ a} = 1.
(A3) a ∈ N implies a−1 ∈ N .
(A4) If a ∧ b ≠ 0 then a ˚ b−1 ∈ N .
(A5) N is completely prime, that is, ⋁ai ∈ N implies ai ∈ N for some i.

We will speak of G-quantales.

3.2.1. Observation. From (A3), (Q3) and (A1) we immediately see that
also

x = ⋁{b ∣ ∃a ∈ N,a−1 ˚ b ≤ x} = ⋁{a ∣ ∃b ∈ N,a ˚ b−1 ≤ x}.

3.2.2. Lemma. If y ∈ N then for every x, x ≤ x ˚ y and x ≤ y ˚ x.

(Use (A1) for a = x ˚ y resp. y ˚ x.)

3.2.3. Lemma. For every a, a = ⋁{x ˚ y ∣ x ˚ y ≤ a}.

(We have a = ⋁{x ∣ ∃y ∈ N, x ˚ y ≤ a} ≤ ⋁{x ˚ y ∣ ∃y ∈ N, x ˚ y ≤ a} ≤
⋁{x ˚ y ∣ x ˚ y ≤ a} ≤ a.)

3.3. Proposition. If a ∈ N then there are b, c ∈ N such that b ˚ b ≤ a and
c ˚ c−1 ≤ a.

Proof : Use (A1). If a = ⋁{x ∣ ∃y ∈ N, x ˚ y ≤ a} ∈ N there has to be an
x ∈ N and a y ∈ N such that x ˚ y ≤ a. Set b = x ∧ y. Then b ∈ N and by
monotonicity b ˚ b ≤ x ˚ y ≤ a.

Similarly, using the equality a = ⋁{x ∣ ∃y−1 ∈ N, x ˚ y ≤ a} we obtain x ∈ N
and y ∈ N such that x ˚ y−1 ≤ a, and setting c = x ∧ y we obtain the other
statement.
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3.4. Lemma. For every a we have {x ∧ y ∣ x−1 ˚ y ≤ a} = {x ∣ x−1 ˚ x ≤ a}.

Proof : ⊇ is trivial.
⊆: Set z = x ∧ y. Then z−1 ≤ x−1 and z ≤ x and hence z−1 ˚ x ≤ x−1 ˚ y ≤ a.

3.5. Proposition. If c ˚ b ≤ a, u ˚ u−1 ≤ c and u ∧ b ≠ 0, then u ≤ a.

Proof : By (A4), u−1 ˚ b ∈ N and hence, by 3.2.2, u ≤ u ˚ u−1 ˚ b ≤ c ˚ b ≤ a.

3.5.1. Corollary. Let b ∈ N . Denote by C(b) the cover {x ∣ x˚x−1 ≤ b} from
(A2 ). Then C(b)b ≤ b ˚ b and hence b ≺ b ˚ b (for the rather below relation ≺
in L [11]).

(Apply 3.5 for a = b ˚ b and c = b. If x ∈ C(b), that is, x ˚x−1 ≤ b, and x∧ b ≠ 0,
then x ≤ b ˚ b.)

3.6. Lemma. If a ≠ 0 then a ˚ a ∈ N , a ˚ a−1 ∈ N and a−1 ˚ a ∈ N .

Proof : The first statement follows from (A4). The other two follow from (A4)
as well since a ≠ 0 implies a−1 ≠ 0 (indeed, a−1 = 0 implies a = (a−1)−1 = 0−1 = 0
by (Q3)).

3.7. More about the quantale structure. By (Q2) we have quantale
adjunctions with quantale implications↗ and↙

a ˚ b ≤ c iff a ≤ b↗c and a ˚ b ≤ c iff b ≤ a↙c (qadj˚)

and modi ponentes

(c↗b) ˚ b ≤ c, and a ˚ (c↙a) ≤ c.

We have

c↗(a ˚ b) = (c↗b)↗a) and c↙(a ˚ b) = (c↙a)↙b.

From (A1) we immediately obtain

a = ⋁{a↗x ∣ x ∈ N} = ⋁{a↗x−1 ∣ x ∈ N} =
= ⋁{a↙x ∣ x ∈ N} = ⋁{a↙x−1 ∣ x ∈ N}.

Consequently,

for all x ∈ N , a↗x ≤ a and a↙x ≤ a.

From (A4) (in the form a ˚ b−1 ≤ n ⇒ a ∧ b = 0) we obtain that

(n↗a−1) ≤ a∗ and (n↙a)−1 ≤ a∗.
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3.8. The quantale (L⊕L, ○). Recall the ○ from 1.5. We will show that it
is a quantale operation on L⊕L. The L in question is now not enriched by
any further structure. Nevertheless, we will see later in 5.3.2 that in the case
of a localic group it is connected with our (L, ˚).

3.8.1. The following fundamental fact about the composition ○ was proved
in [8]. Since the original proof is not quite easily accessible we reproduce it
here for convenience of the reader.

Lemma. For any A,B ∈D(L ×L),

κ(A) ○ κ(B) = A ○B.

Proof : It suffices to show that κ(A) ⋅ κ(B) ⊆ κ(A ⋅B). For this, consider the
nonempty set

E = {E ∈D(L ×L) ∣ A ⊆ E ⊆ κ(A), E ⋅B ⊆ κ(A ⋅B)}

and let us show that κ0(E) ∈ E whenever E ∈ E.
Consider (x, y) ∈ κ0(E) ⋅B (recall 1.4.1) and z ≠ 0 such that (x, z) ∈ κ0(E)

and (z, y) ∈ B. If (x, z) = (x,⋁S) for some S with {x}×S ⊆ E, then there is a
nonzero s ∈ S such that (x, s) ∈ E and (s, y) ∈ B and, therefore, (x, y) ∈ E ⋅B ⊆
κ(A ⋅B). On the other hand, if (x, z) = (⋁S, z) for some S with S ×{z} ⊆ E,
then (s, y) ∈ E ⋅B for every s ∈ S and, thus, (x, y) ∈ κ0(E ⋅B) ⊆ κ(A ⋅B).

Moreover, ⋃F ∈FF ∈ E for any nonempty F ⊆ E, since

(⋃
F ∈F

F ) ⋅B ⊆ ⋃
F ∈F

(F ⋅B).

Therefore S = ⋃E∈EE belongs to E, i.e., E has a largest element S. But
κ0(S) ∈ E so S = κ0(S), i.e., S is saturated. Hence κ(A) = S ∈ E and,
consequently, κ(A) ⋅B ⊆ κ(A ⋅B). By symmetry, A ⋅ κ(B) ⊆ κ(A ⋅B).

In conclusion, we have κ(A) ⋅κ(B) ⊆ κ(A ⋅κ(B)) ⊆ κ2(A ⋅B) = κ(A ⋅B), as
desired.

3.8.2. Proposition. For any Ai,B ∈ L⊕L, (⋁Ai) ○B = ⋁(Ai ○B).

Proof : The inclusion ‘⊇’ is obvious. To prove the converse, it suffices to
observe that, by the Lemma, (⋁Ai) ○B = (⋃Ai) ○B, and, furthermore, that
(⋃Ai)○B ⊆ ⋁(Ai ○B): indeed, if (x, y) ∈ ⋃Ai and (y, z) ∈ B with y ≠ 0, then
(x, y) belongs to some Aj and (x, z) ∈ Aj ○B ⊆ ⋃(Ai ○B).
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4. A G-quantale on a localic group;
reconstruction of the group structure

4.1. For a localic group (L,µ, γ, ε) define a−1 = γ(a), N = ε−1[{1}]. By 2.4,
µ has a left adjoint µ#; we set

a ˚ b = µ#(a⊕ b).
4.2. The operation ˚ and the mapping µ. In any quantale (L, ˚), (Q2)
claims that ˚∶L×LÐ→L is a bi-⋁-morphism. Since L⊕L is a tensor product
in ∨Lat (recall 1.4.2) we have the unique lifting

L⊕L ϕ
// L

L ×L

((x,y)↦x⊕y)

OO

˚

99

with ϕ a ⋁-morphism, which then has a right adjoint ϕ∗. We have

x⊕ y ≤ ϕ∗(a) iff ϕ(x⊕ y) = x ˚ y ≤ a
and obtain the formula

ϕ∗(a) = ⋁{x⊕ y ∣ x ˚ y ≤ a} = {(x, y) ∣ x ˚ y ≤ a}
(since the last set is obviously saturated). Thus in particular

if (L, ˚) was obtained from a localic group (L,µ, γ, ε), then µ
is uniquely determined by ˚, namely as

µ(a) = ⋁{x⊕ y ∣ x ˚ y ≤ a} = {(x, y) ∣ x ˚ y ≤ a}. (4.2.1)

4.3. Lemma. We have, for every x,

x = ⋁{a ∣ ∃b ∈ N,a ˚ b ≤ x} = ⋁{b ∣ ∃a ∈ N,a ˚ b ≤ x}.

Proof : By (G2) and (4.2.1) we have

x = (id⊕ ε)µ(x) = (id⊕ ε)(⋁{a⊕ b ∣ a ˚ b ≤ x}) = ⋁{a⊕ ε(b) ∣ a ˚ b ≤ x}.
Now, representing L⊕2 as L (understanding a⊕1 as a and a⊕0 as 0), a⊕ε(b)
is a if ε(b) = 1, that is, if b ∈ N , otherwise it is 0; hence the first equality. The
second one is obtained analogously using (ε⊕ id)µ instead of (id⊕ ε)µ.

4.3.1. Theorem. (L, ˚, (−)−1,N) is a G-quantale.
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Proof : (Q2), (Q3) and (A5) are immediate, (A3) follows from (G3) and (A1)
is in 4.3.

(Q1): Since, by (G1), (µ⊕ id)µ = (id⊕µ)µ, we have, by 2.4, µ#(µ#⊕ id) =
µ#(id⊕ µ#) so that

a ˚ (b ˚ c) = µ#(a⊕ µ#(b⊕ c)) = µ#(id⊕ µ#)(a⊕ b⊕ c) =
= µ#(µ# ⊕ id)(a⊕ b⊕ c) = (a ˚ b) ˚ c.

(A2): By (G3), (4.2.1) and (A1)

1 = σε(a) = ∇(γ ⊕ id)µ(a) = ∇(γ ⊕ id)(⋁{x⊕ y ∣ x ˚ y ≤ a}) =
= ∇(γ ⊕ id)(⋁{x−1 ⊕ y ∣ x−1 ˚ y ≤ a} =
= ⋁{∇(x⊕ y) ∣ x−1 ˚ y ≤ a} = ⋁{x ∧ y ∣ x−1 ˚ y ≤ a} =
= ⋁{x ∣ x−1 ˚ x ≤ a}.

(A4): Let a ˚ b−1 ∉ N . We have a⊕ b−1 ≤ µ(a ˚ b−1) and hence, by (G3),

a ∧ b = ∇(a⊕ b) = ∇(1⊕ γ)(a⊕ b−1) ≤
≤ ∇(1⊕ γ)µ(a ˚ b−1) = σε(a ˚ b−1) = 0.

4.4. Lemma. For (localic group) homomorphisms h∶LÐ→M we have

h(a) ˚ h(b) ≤ h(a ˚ b). (˚hom)

Proof : From µ#(a⊕ b) = a ˚ b we obtain a⊕ b ≤ µ(a ˚ b) and further

h(a) ⊕ h(b) ≤ (h⊕ h)µ(a ˚ b) = µ(h(a ˚ b))
and (˚hom) follows by adjunction.

4.4.1. Note. The inequality (˚hom) is standardly used for the definition of
a quantale homomorphism. Note that here we cannot have more. Consider
(discrete) Z (it is locally compact and scattered; hence everything is the same
classically and localically) and h = Ω(f) for f = (n↦ 2n)∶ZÐ→Z.

Take U = {0,1}. Then U+U = {0,1,2}, f−1[U] = {0} and f−1[U+U] = {0,2}
so that

h(U) + h(U) = {0} ⊂ {0,1} = h(U +U).
4.4.2. Theorem. A map h∶ (L,µ, γ, ε)Ð→(L′, µ′, γ′, ε′) is a localic group ho-
momorphism iff in the associated involutive quantales (with N = {a ∣ ε(a) =
1}) holds

h(a) ˚ h(b) ≤ h(a ˚ b), h(a−1) = h(a)−1 and h[N] ⊆ N ′.
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Proof : To simplify notation we will omit the dashes in “L′” etc..
The second and the third part of the formula is trivial, and in the first one

the implication ⇒ is in Lemma above. Thus, let h(a) ˚h(b) ≤ h(a ˚ b). Then
µ#(h(a) ⊕ h(b)) ≤ h(a ˚ b) and hence

h(a) ⊕ h(b) ≤ µh(a ˚ b). (!)

We have µ(x) = ⋁{a⊕ b ∣ a ˚ b ≤ x} and hence by (!)

(h⊕ h)µ(x) = ⋁{h(a) ⊕ h(b) ∣ a ˚ b ≤ x} ≤
≤ ⋁{µh(a ˚ b) ∣ a ˚ b ≤ x} ≤ µh(x),

that is, (h⊕ h)µ ≤ µh, and since any localic group is regular ([11, XV.1.5.5])
and hence TU

1, (h⊕ h)µ = µh.

4.5. Reconstruction of the group. We will now show that under some
circumstances the group structure can be reconstructed from the quantale
one.

4.5.1. Proposition. Let (L, ˚, (−)−1,N) be a G-quantale and define γ∶LÐ→L
by γ(x) = x−1, ε(x) = 1 iff x ∈ N , and µ as in (4.2.1 ). If µ preserves joins
then (L,µ, γ, ε) is the localic group inducing (L, ˚, (−)−1,N).

Proof : By assumption (and by the adjunction), µ is a (complete) frame ho-
momorphism, by (A5) ε is a frame homomorphism, and by (Q3) and (A3),
γ is an isomorphism.

We have, by (Q1),

(µ⊕ id)(µ(a)) = (µ⊕ id)(⋁{x⊕ y ∣ x ˚ y ≤ a}) =
= ⋁{µ(x) ⊕ y ∣ x ˚ y ≤ a} =
= ⋁{⋁{u⊕ v ∣ u ˚ v ≤ x} ⊕ y ∣ x ˚ y ≤ a} =
= ⋁{u⊕ v ⊕ y ∣ u ˚ v ≤ x, x ˚ y ≤ a} =
= ⋁{u⊕ v ⊕ y ∣ u ˚ v ˚ y ≤ a}

and the same is obtained computing (id⊕ µ)(µ(a)).
Next, by (A1), representing 2⊕L as L understanding 1⊕ a as a and 0⊕ a

as 0, we obtain

(ε⊕ id)µ(a) = ⋁{ε(x) ⊕ y ∣ x ˚ y ≤ a} = ⋁{y ∣ x ∈ N,x ˚ y ≤ a} = a.
1The axiom TU claims for a frame L that homomorphisms h1, h2∶LÐ→M such that h1 ≤ h2

coincide. It was introduced by Isbell in [3], and it is implied even by weaker axioms than regularity
— e.g. fitness, or strong Hausdorff property. See also [5, 12].
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Finally, by (A2) (and the monotonicity from (Q1) and (Q3)) we obtain

∇(γ ⊕ id)µ(a) = ⋁{x−1 ∧ y ∣ x ˚ y ≤ a} =
= ⋁{x ∧ y ∣ x−1 ˚ y ≤ a} = ⋁{z ∣ z−1 ˚ z ≤ a}

(if we set z = x ∧ y we have z−1 ≤ x−1 and z ≤ y, hence z−1 ˚ z ≤ x−1 ˚ y).

4.5.2. The formula µ(a) = ⋁{x ⊕ y ∣ x ˚ y ≤ a} = {(x, y) ∣ x ˚ y ≤ a} can be
by (qadj˚) further rewritten as

µ(a) = ⋃
y∈L
↓(y↗a, y) resp. µ(a) = ⋃

x∈L
↓(x,x↙a)

and hence the condition for µ to preserve joins can be formulated as follows:
Let ⋁ai = a. Then, for every saturated U , we have the implications

∀x ∀i, (x↗ai, x) ∈ U ⇒ ∀x, (x↗a, x) ∈ U, and

∀x ∀i, (x,x↙ai) ∈ U ⇒ ∀x, (x,x↙a) ∈ U.
Thus, from 4.5.1 we obtain

4.5.3. Theorem. The construction from 4.5.1 provides a one-to-one cor-
respondence (L,µ, γ, ε) ↔ (L, ˚, (−)−1,N) between localic groups and G-
quantales satisfying for saturated U the implications

∀x ∀i, (x↗ai, x) ∈ U ⇒ ∀x, (x↗⋁
i

ai, x) ∈ U, and

∀x ∀i, (x,x↙ai) ∈ U ⇒ ∀x, (x,x↙⋁
i

ai) ∈ U.

5. The quantale and uniformities

5.1. Entourage (Weil) uniformities. An entourage in L is an element
E ∈ L⊕L such that

{u ∣ u⊕ u ⊆ E}
is a cover2.

For a system E of entourages in L we write

b ⊲E a if there is an E ∈ E such that E ○ (b⊕ b) ⊆ a⊕ a.

A uniformity on L is a system E of entourages such that

2This simple condition expresses precisely the fact that the corresponding open sublocale con-
tains the diagonal of L⊕L (see [11, XII.1.4], or more explicitly [1, 3.4]).
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(E1) if E ∈ E and E ⊆ F then F ∈ E ,
(E2) if E,F ∈ E then E ∩ F ∈ E ,
(E3) if E ∈ E then E−1 ∈ E ,
(E4) for every E ∈ E there is an F ∈ E such that F ○ F ⊆ E, and
(E5) for every a ∈ L, a = ⋁{b ∣ b ⊲E a}.

Without (E5) one speaks of a pre-uniformity, without (E1) one speaks of a
basis of a (pre-) uniformity (in the latter case one obtains, of course, a (pre-)
uniformity adding all the F with F ⊇ E ∈ E).

5.2. Cover (Tukey) uniformities. The uniformities above model the clas-
sical uniformities as defined by Weil ((E5) takes care for the uniformity to be
in agreement with the space structure which is, in the classical case, auto-
matic). Equivalently one defines a cover uniformity (briefly, a c-uniformity),
following the classical approach by Tukey, as a system A of covers of L such
that

(C1) if A ∈ A and A ≤ B then B ∈ A,
(C2) if A,B ∈ A then A ∧B = {a ∧ b ∣ a ∈ A, b ∈ B} ∈ A,
(C4) for every A ∈ A there is a B ∈ A such that BB ≤ A, and
(C5) for every a ∈ L, a = ⋁{b ∣ b ⊲A a}

where

- A ≤ B indicates that the cover A refines B, that is, for each a ∈ A
there is a b ∈ B with a ≤ b,

- one writes for a cover A and an element a, Aa = ⋁{x ∈ A ∣ x ∧ a ≠ 0}
and for two covers A,B, AB = {Ab ∣ b ∈ B}, and

- we write b ⊲A a if there is an A ∈ A such that Ab ≤ a.

5.2.1. Notes. 1. The equivalence is obtained by replacing an entourage
uniformity E by the system of covers {{u ∣ u ⊕ u ⊆ E} ∣ E ∈ E}. In the
classical situation, the fact that this leads to equivalent theories is easy. In
the point-free extension it is in general a non-trivial fact that came as a
pleasant surprise: note that the L⊕L does not precisely correspond with the
product of spaces. In concrete cases (one of which will be discussed below)
the equivalence is more straightforward.

2. Note the absence of a counterpart to the (E3) in the c-uniformities: they
are symmetric automatically. A certain advantage of the entourage approach
is that it allows a direct generalization modelling the non-symmetric unifor-
mities.
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5.3. Right and left uniformities on a G-quantale. For each a ∈ N let

Er(a) = ⋁{x⊕ y ∣ x ˚ y−1 ≤ a} ∈ L⊕L and

El(a) = ⋁{x⊕ y ∣ x−1 ˚ y ≤ a} ∈ L⊕L.
We will discuss the right one generated by the Er(a), the left one is quite
analogous.

5.3.1. Lemma. Each Er(a) in an entourage of L.

Proof : By (A2), ⋁{x ∣ x⊕ x ⊆ Er(a)} ≥ ⋁{x ∣ x ˚ x−1 ≤ a} = 1.

5.3.2. Lemma. For every a, b ∈ N , Er(a) ○Er(b) ⊆ Er(a ˚ b).

Proof : It suffices to check that x ˚ y−1 ≤ a and y ˚ z−1 ≤ b, with y ≠ 0, implies
x ˚ z−1 ≤ a ˚ b: by 3.6, if y ≠ 0 then y−1 ˚ y ∈ N ; then, by 3.2.2, x ˚ z−1 ≤
x ˚ y−1 ˚ y ˚ z−1 ≤ a ˚ b.

Remark. Recall 3.8. Note that the inclusion states that we have here a
quantale homomorphism

Er∶ (L⊕L, ○)Ð→(L, ˚).
Similarly with El.

5.3.3. Proposition. The system Er(a) (a ∈ N) is a base for a preuniformity
Ur on L.

Proof :

- Er(a) ∩Er(b) = ⋁{(x⊕ y) ∩ (z ⊕w) ∣ x ˚ y−1 ≤ a, z ˚w−1 ≤ b} = ⋁{(x ∧
z) ⊕ (y ∧w) ∣ x ˚ y−1 ≤ a, z ˚w−1 ≤ b} ⊇ Er(a ∧ b) and a ∧ b ∈ N .

- By (Q3), x ˚ y−1 ≤ a iff y ˚ x−1 ≤ a−1. Hence Er(a)−1 = Er(a−1) and
a−1 ∈ N by (A3).

- By 3.3 and 5.3.2, for every a ∈ N there is some b ∈ N such that
Er(b) ○Er(b) ⊆ Er(b ˚ b) ⊆ Er(a).

5.3.4. Lemma. Let a ∈ N . If a ˚ y ≤ x then Er(a) ○ (y ⊕ y) ⊆ x⊕ x.

Proof : By 3.8.1 we know that

Er(a) ○ (y ⊕ y) = ⋃{x⊕ y ∣ x ˚ y−1 ≤ a} ○ (y ⊕ y).
Let (α,β) such that β ≠ 0 and α ˚ β−1 ≤ a, and let (β, γ) ∈ y ⊕ y. By 3.2.2,
γ ≤ y ≤ x. On the other hand, β ≠ 0 implies β−1 ˚ β ∈ N (by 3.6) and thus,
using 3.2.2 again, α ≤ α ˚ β−1 ˚ β ≤ a ˚ β ≤ a ˚ y ≤ x. Hence (α, γ) ∈ x⊕ x.
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5.3.5. Theorem. Ur is admissible on L, that is, a uniformity.

Proof : Let x ∈ L. By (A1), x = ⋁{y ∣ ∃a ∈ N,a ˚ y ≤ x}. Then, by 5.3.2,

x ≤ ⋁{y ∣ ∃a ∈ N,Er(a) ○ (y ⊕ y) ⊆ x⊕ x} = ⋁{y ∣ y�Ur x} ≤ x.

5.4. Corollary. It follows, in particular, that a G-quantale L is (completely)
regular.

5.5. Uniformities induced by metrics. Let S be a completely ordered
semigroup with an operation + and least element 0. An S-metric (further
just metric) on a frame L is a mapping

d∶L ×LÐ→S
together with an N ⊆ S such that

(M1) if y ≠ 0 then d(x, z) ≤ d(x, y) + d(y, z),
(M2) d(⋁i ai,⋁j bj) = ⋁ij d(ai, bj),
(M3) for every a ∈ N there is a b ∈ N such that b + b ≤ a,
(M4) for each a ∈ N , C(a) = {u ∣ d(u,u) ≤ a} is a cover, and
(M5) for every a ∈ L, a = ⋁{b ∣ b ⊲C a} where C = {C(a) ∣ a ∈ N}.

It is easy to check that the system of covers {C(a) ∣ a ∈ N} constitutes a
cover uniformity in the sense of 5.2. We speak of an S-metric uniformity.

5.5.1. Examples. 1. For a classical metric space (X,ρ) consider on the
frame Ω(X) the R-metric d(U,V ) = diam(U ∪ V ). Then the R-metric uni-
formity is the classical metric uniformity.

2. More generally, consider a metric diameter δ on a frame L (see e.g. [11,
Chapter XI]). Then we have an R-metric d(U,V ) = δ(U∪V ) and the resulting
uniformity is the standard point-free metric uniformity.

5.5.2. The metric nature of the ˚-uniformity on a G-quantale. If
(L, ˚) is a G-quantale then dr(x, y) = x ˚ y−1 is easily seen to be an L-metric
on L. We will show that the resulting metric uniformity coincides with the
uniformity Ur above.

5.5.3. Lemma. Let (L, ˚) be a G-quantale and a, b ∈ N . Then

C(a)x ≤ a ˚ x

and if b ˚ b ˚ b−1 ≤ a then

b ˚ x ≤ C(a)x.
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Proof : I. Let y ∈ C(a), that is, y ˚ y−1 ≤ a, and y ∧ x ≠ 0. Then y−1 ˚ x ∈ N
and y ≤ y ˚ y−1 ˚ x ≤ a ˚ x.

II. We can assume that b ˚ x ≠ 0. We have ⋁{u ∣ u ˚ u−1 ≤ b} = 1 and hence

x = ⋁{x ∧ u ∣ u ˚ u−1 ≤ b} = ⋁{y ∣ y ˚ y−1 ≤ b,0 ≠ y ≤ x}

and

b ˚ x = ⋁{b ˚ y ∣ y ˚ y−1 ≤ b,0 ≠ y ≤ x}.

We have for the y on the right hand side

d(b ˚ y, b ˚ y) = b ˚ y ˚ y−1 ˚ b−1 ≤ b ˚ b ˚ b−1 ≤ a and 0 ≠ y ≤ (b ˚ y) ∧ x

so that b ˚ y ≤ C(a)x and, finally,

b ˚ x = ⋁{b ˚ y ∣ y ˚ y−1 ≤ b, y ≤ x} ≤ C(a)x.

5.5.4. Corollary. The metric uniformity of dr and the right group uniformity
of a localic group coincide; similarly for the metric dl(x, y) = x−1 ˚ y and the
left group uniformity.

6. Homomorphisms and uniformity

6.1. Uniformness of homomorphisms. Recall that a frame homomor-
phism h∶LÐ→M is uniform with respect to uniformities E on L and F on
M if

∀E ∈ E , (h⊕ h)(E) ∈ F

(in terms of bases, ∀E ∈ E ∃F ∈ F , (h⊕ h)(E) ⊇ F ).
In the language of cover uniformities we have equivalently (in terms of

bases) h∶ (L,A)Ð→(M,B) uniform if

∀A ∈ A ∃B ∈ B such that h[A] ≥ B

(the last ≥ in the sense of refinement as in 5.2).
It is known that localic group homomorphism are uniform [13]. In this

short section we will discuss this phenomenon from the point of view of the
G-quantale structure.
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6.2. For any localic group homomorphism h∶LÐ→M , the identity µMh =
(h⊕ h)µL means precisely that

(H) ⋁{h(a) ⊕ h(b) ∣ a ˚ b ≤ c} = ⋁{u⊕ v ∣ u ˚ v ≤ h(c)},

since µ(c) = ⋁{a⊕ b ∣ a ˚ b ≤ c}.

6.2.1. Observations. 1. It follows easily from the distributivity law (Q2)
on ˚ that ⋃{a⊕ b ∣ a ˚ b ≤ c} is saturated. Hence

⋁{a⊕ b ∣ a ˚ b ≤ c} = ⋃{a⊕ b ∣ a ˚ b ≤ c}

and (H) reduces to

(H’) ⋃{h(a) ⊕ h(b) ∣ a ˚ b ≤ c} = ⋃{u⊕ v ∣ u ˚ v ≤ h(c)}.

2. From the properties of the involution, it also follows easily that ⋃{a⊕ b ∣
a ˚ b−1 ≤ c} is saturated. Hence

⋁{a⊕ b ∣ a ˚ b−1 ≤ c} = ⋃{a⊕ b ∣ a ˚ b−1 ≤ c}.

In particular, Er(a) = ⋃{x⊕ y ∣ x ˚ y−1 ≤ a}.

6.2.2. Proposition. Let h∶LÐ→M be a frame homomorphism between G-
quantales (L, ˚, (−)−1,NL) and (M, ˚, (−)−1,NM). If h satisfies (H ), h[NL] ⊆
NM and h(x−1) = h(x)−1 for every x ∈ L, then

h∶ (L,ULr )Ð→(M,UMr )

is a uniform homomorphism.

Proof : Let a ∈ NL and EL
r (a) ∈ ULr . Since h(a) ∈ NM , it suffices to show that

(h⊕ h)(EL
r (a)) ⊇ EM

r (h(a)). By 6.2.1, this amounts to

⋃{h(x) ⊕ h(y) ∣ x ˚ y−1 ≤ a} ⊇ ⋃{u⊕ v ∣ u ˚ v−1 ≤ h(a)}.

Let u ˚ v−1 ≤ h(a) and denote v−1 by w. Then v = w−1. By (H), (u,w) ≤
(h(x), h(y)) for some x, y such that x ˚ y ≤ a. Hence (u, v) = (u,w−1) ≤
(h(x), h(y)−1) = (h(x), h(y−1)) and x ˚ (y−1)−1 = x ˚ y ≤ a.

6.3. Observation. It is easy to see that the other inclusion in the proof
above also holds and we have indeed (h ⊕ h)(Er(a)) = Er(h(a)) for every
a ∈ NL.
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6.4. Note. The inclusion ⊇ in (H’) is clearly equivalent to

(H1) u ˚ v ≤ h(c) ⇒ ∃a, b ∈ L ∶ u ≤ h(a), v ≤ h(b), a ˚ b ≤ c
while the converse inclusion is equivalent to the quantale homomorphism
condition h(a) ˚ h(b) ≤ h(a ˚ b).

Hence, for quantale homomorphisms, (H) is equivalent to (H1); it seems
that to obtain the uniform property for the homomorphisms between general
G-quantales, the condition (H1) in some form will have to be assumed.
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