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Abstract: We study the equations of overdamped motion of an inextensible triod
with three fixed ends and a free junction under the action of gravity. The problem
can be expressed as a system of PDE that involves unknown Lagrange multipliers
and non-standard boundary conditions related to the freely moving junction. It
can also be formally interpreted as a gradient flow of the potential energy on a
certain submanifold of the Otto-Wasserstein space of probability measures. We
prove global existence of generalized solutions to this problem.
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.Introduction
An inextensible network is a union of several inextensible strings that

meet at some of their endpoints called junctions. The study of inextensible
networks from the mathematical perspective was started a long time ago
by Chebyshev Ghys () and Rivlin Rivlin (), aiming at modelling
textile fabrics. Aside from Novaga and Pozzi (), we are however not
aware of any investigation of evolutionary behavior of inextensible net-
works. Our paper thus seems to be one of the first contributions to this
particular field. On the other hand, there has been a major recent activity
on well-posedness of geometric flows describing time-evolving extensible
networks, see Mantegazza et al. (); Magni et al. (); Garcke et al.
(, ); Dall’Acqua et al. (, ); Kröner et al. () and the
survey Mantegazza et al. (). Whereas the authors of Mantegazza et al.
(); Magni et al. (); Kröner et al. () deal with variants of the
mean curvature flow for networks, Novaga and Pozzi () and the other
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mentioned articles consider elastic flows (interpolations between the mean
curvature flow and the Willmore flow).

The main technical difficulties that appear in the study of networks in
contrast with the evolution of single strings are due to the rather non-
standard boundary conditions at the junction points. Accordingly, to fix
the ideas, we decided to restrict ourselves to the simplest possible network
with only one junction, the so-called triod, cf. Dall’Acqua et al. ();
Mantegazza et al. (). Our triod consists of three inextensible strings
(arms of the triod) that meet at a common point (junction), and the remain-
ing ends are fixed at three distinct points of Rd. Note that the junction is
moving in an unknown way and thus constitutes a kind of a free boundary.

The literature on flows of networks cited above is concerned with vari-
ational evolution driven by “intrinsic” energies (related to the length or
curvature). In this paper we investigate the gradient flow of an “extrin-
sic” energy, namely, the potential energy determined by an external force
(gravity), with respect to a suitable geometry, cf. Shi and Vorotnikov
(a). As we explain below, this models the overdamped motion of a
falling inextensible network (triod).

It is impossible to discuss evolution of inextensible networks without
referring to the state of the art for single inextensible cords (we will not
touch upon the extensible cords because the amount of the correspond-
ing literature is enormous). Various elastic flows of inextensible strings
were studied in Wen (); Koiso (); Öelz (); Oelz (); Ok-
abe (, ); Lin et al. (); Okabe et al. (). The presence of
elastic forces contributes towards non-degenerate parabolicity of the flows
and helps to overcome the difficulties caused by the Lagrange multipliers
related to the inextensibility constraint; in our situation such forces and
hence such an advantage are missing. Our paper has particularly been in-
fluenced by Shi and Vorotnikov (a) (that studied the overdamped dy-
namics of a falling whip) and Shi and Vorotnikov (b) (that dealt with
the “uniformly compressing” counterpart of the mean curvature flow).

The full dynamical equations (Hamiltonian systems) governing the mo-
tion of inextensible strings (with or without elastic forces) are very tricky.
The literature about the solvability of the corresponding initial-boundary
value problems is scarce and includes the studies near the equilibrium
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Reeken (), locally in time Preston (), and globally in time in var-
ious severely relaxed senses Grothaus and Marheineke (); Sengül and
Vorotnikov ().

The equations of motion of an inextensible triod in the ambient space Rd

subject to gravity force can be derived from the least action principle by
following the road map from (Sengül and Vorotnikov, , Section .).
Assuming for simplicity that the length of each arm of the triod is equal
to 1, the initial-boundary value problem reads

∂ttηi = ∂s
(
σ i∂sη

i
)

+ g,

|∂sηi | = 1,
()

subject to the boundary conditions
η1 (t,0) = η2 (t,0) = η3 (t,0) ,
ηi (t,1) = αi (1) ,
σ 1∂sη

1 + σ 2∂sη
2 + σ 3∂sη

3 = 0 at s = 0 for all t,
()

and the initial condition

ηi (0, s) = αi (s) . ()

Here ηi = ηi(t, s) ∈ R
d, i = 1,2,3, is the position vector at time t ≥ 0 of

the particle that is labelled by the arc length parameter s and belongs the
ith arm of the triod. For each i, the scalar function σ i = σ i(t, s) is the
Lagrange multiplier (that is often referred to as the tension) coming from
the inextensibility of the ith arm. Finally, g is a constant gravity vector
for which we assume w.l.o.g. that |g | = 1, and αi(s) determines the initial
configuration of the triod. Note that s = 1 corresponds to the fixed ends,
and s = 0 corresponds to the (moving) junction.

From the geometrical point of view, a natural inifinite-dimensional con-
figuration manifold for the evolving triods is

A = {η = (η1,η2,η3) : ηi ∈H2
(
0,1;Rd

)
,

η1 (0) = η2 (0) = η3 (0) , ηi (1) = αi (1) , |∂sηi(s)| = 1∀s ∈ [0,1]}
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viewed as a submanifold of L2(0,1;R3d) (and hence equipped with a weak
Riemannian metric). Observe that the tangent space at a “point” η is

TηA = {v = (v1,v2,v3) : vi ∈H2
(
0,1;Rd

)
, v1 (0) = v2 (0) = v3 (0) ,

vi (1) = 0, ∂sη
i(s) ·∂svi(s) = 0}.

Note that we never employ Einstein’s summation convention. Then (),
() is at least formally equivalent to Newton’s equation

∇η̇η̇ = −∇AE
(
η
)
. ()

Here

E(η) :=
3∑
i=1

∫ 1

0
−g · ηi(s)ds ()

is the potential energy of a triod.
The Riemannian manifoldA (as well as its counterparts for single strings,

cf. Preston (); Shi and Vorotnikov (a,b)) has some interesting
features. It can be viewed, cf. Shi and Vorotnikov (b), as a subman-
ifold of the Otto-Wasserstein space of probability measures Otto ();
Villani (, ) from the optimal transport theory (this in particular
implies that the geodesic distance on A does not vanish, being bounded
from below by the Wasserstein distance, which is in stark contrast with the
underlying geometry of the mean curvature, Willmore and similar flows,
cf. Michor and Mumford (, , ); Bauer et al. (, )).
It can also be regarded as a particular case (m = 1) of the manifolds of
m-dimensional incompressible membranes (in other words, of volume pre-
serving immersions), cf. Bauer et al. (); Molitor (). The oppo-
site borderline case m = d tallies with Arnold’s formalism Arnold ();
Arnold and Khesin () for ideal incompressible fluids or rather, even
more specifically, with the motion of fluid patches in R

d, which has re-
cently been studied Liu et al. () from a similar perspective. However,
in Arnold’s case (m = d) the manifold has a Lie group structure, which
allows one to work in the corresponding Lie algebra (i.e., in the mechani-
cal language, to use the Eulerian coordinates). In our case m = 1, there is
no Lie algebra structure, and the Lagrangian description as in (), (), ()
seems to be unavoidable.



FALLING NETWORK 

If the fall of the triod is overdamped by a heavily dense environment,
the equations of motion () become∂tηi = ∂s

(
σ i∂sη

i
)

+ g,

|∂sηi | = 1.
()

We refer to Shi and Vorotnikov (a) for the details of the derivation
in the case of a single cord. It is also possible to directly obtain the over-
damped flow () from the full dynamical equation () by employing the
quadratic change of time, cf. Brenier and Duan (). Finally, our prob-
lem (), () can be realized as the gradient flow of the potential energy E
on the manifold A, i.e.,

η̇ = −∇AE
(
η
)
. ()

In light of the previous discussion (see also Preston (, ); Sengül
and Vorotnikov (); Thess et al. ()) equation () has much in com-
mon with the Euler equation of ideal incompressible fluid. In the same
spirit, the overdamped equation () is comparable to the Muskat prob-
lem (also known as the incompressible porous medium equation) that re-
ceived a lot of attention during the last decade, see Córdoba et al. ();
Székelyhidi Jr (); Constantin et al. (); Castro et al. () and the
references therein.

In this article, we are interested in constructing global in time solutions
to (), (), (). We deal with generalized solutions, which allows us to
consider not necessarily smooth but merely rectifiable triods.

In what follows, we denote Ω := (0,1), Qt := (0, t) ×Ω for t ∈ (0,∞] and
g(s) := (g,g,g) ∈ L2(Ω;R3d).

Remark . (Initial data). We fix once and for all Lipschitz initial data αi ∈
W 1,∞ (Ω)d, i = 1,2,3, satisfying the compatibility conditions

α1 (0) = α2 (0) = α3 (0) = 0 ()

and
|∂sαi (s) | = 1 a.e. in Ω. ()

Since () is only required to hold almost everywhere, the arms of the triod
can have shape of any rectifiable curve at the initial moment. Note that we
have also w.l.o.g. assumed that the junction is located at the origin at the
initial moment. We will moreover assume that the arms of the triod are
not fully straight at the initial moment which means that |αi (1) | < 1 (since
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the length of each arm is equal to 1), i = 1,2,3. Finally, we will assume
that the three points α1 (1) ,α2 (1) and α3 (1) are vertices of a triangle with
circumradius R < 1.

Our goal is to prove the following main result.

Theorem . (Global existence of generalized solutions). For every initial
configuration αi (s) ∈ W 1,∞ (Ω)d, i = 1,2,3, meeting the assumptions of Re-
mark ., there exists a generalized solution to (), (), () in Q∞. Moreover,
those solutions satisfy σ i (t, s) ≥ 0 for almost every (t, s) ∈Q∞.

Note that the precise definition of a generalized solution is lengthy and
will be introduced in Definition ..

Observe that A, being a formal submanifold of the Otto-Wasserstein
space, is a metric space with a non-degenerate (Riemannian) distance.
Nevertheless, A is neither a complete metric space nor a geodesic space.
Accordingly, the theory of gradient flows in metric spaces, cf. Ambro-
sio et al. (); Villani (), does not sound to be applicable to well-
posedness of our flow ().

To achieve our goal, we will follow the strategy suggested by Shi and
the second author Shi and Vorotnikov (a) for the evolution of a sin-
gle string. It basically consists in approximation of the original gradient
flow on A by suitable gradient flows on the flat ambient space L2(Ω;R3d).
The idea is to derive uniform estimates for the approximating problem
that would allow us to pass to the limit and to show that the limiting
functions are solutions to (), (), (). However, because of the compli-
cated boundary conditions (), many of the estimates that were used
in Shi and Vorotnikov (a) fail to be generalizable to our setting.
This in particular applies to the crucial L∞ estimate in the spirit of La-
dyzhenskaya, Solonnikov and Uraltseva, cf. Ladyženskaja et al. ().
We will manage to overcome these difficulties and to prove novel and
more refined estimates by leveraging the gradient flow structure of the
approximating problem much more thoroughly than in Shi and Vorot-
nikov (a). This will be combined with careful observations involv-
ing geometric properties of triods, the behaviour of the curvature and
some convexity argument.

Apart from that, in Shi and Vorotnikov (a) the existence of C∞-
smooth solutions to the approximating problem was immediate from Amann’s
theory, cf. Amann (). It is not applicable here anymore (again due to
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the boundary conditions), so we will solve our approximate problem by
the theory of abstract evolution equations with pseudomonotone maps,
cf. Roubiček ().

The paper is organized as follows. In Section , we heuristically motivate
and then introduce the approximating problem. In Section , we prove
its solvability. The main technical work is done in Section  where we
establish various uniform estimates for the approximating problem. A
highlight of that section is the crucial and ingenious L∞ bound for the
tension (Lemma .). In Section , based on the results of Section , we
will be able to pass to the limit and to prove Theorem .. Our results still
hold for the overdamped dynamics of a falling single cord with two fixed
ends, see Remark . and Proposition ..

.Approximating problem
Let us now describe the way of approximation of our gradient flow that

we plan to employ in order to prove Theorem ..
We begin with some heuristics. Consider the extra variables κi = σ i∂sηi,

i = 1,2,3. Then our system () can at least formally be rewritten as
∂tη

i = ∂sκ
i + g,

κi = σ i∂sη
i ,

σ i = κi ·∂sηi .
()

More precisely, the constraints |∂sηi | = 1 yield |κi | = |σ i | and κi = sgn(σ i)|κi |∂sηi.
We make the ansatz σ i ≥ 0 (that will be a posteriori justified by Theorem
.) and infer κi ·∂sηi = σ i (see also Remark . below for a related discus-
sion). Note that we formally have ∂sηi = κi

|κi | , thus the map κi 7→ ∂sη
i is not

a diffeomorphism. To overcome this issue, we fix ε ∈ (0,1) and introduce
the auxiliary functions

Fε : Rd→R
d , Fε(κ) := εκ+

κ√
ε+ |κ|2

()

and

Gε (τ) := (Fε)
−1 (τ).



 A. TELCIYAN AND D. VOROTNIKOV

Approximating the relations κi 7→ ∂sη
i and ∂sη

i 7→ κi by Fε and Gε, re-
spectively, leads from (), (), () to the problem

∂tη
i
ε = ∂s

(
Gε

(
∂sη

i
ε

))
+ g, i = 1,2,3, ()

with the following initial and boundary conditions:

ηiε (0, s) = αi (s),

ηiε (t,1) = αi (1),

η1
ε (t,0) = η2

ε (t,0) = η3
ε (t,0),

3∑
i=1

Gε
(
∂sη

i
ε

)
= 0 at s = 0 for all t.

()

Remark .. Let us make an elementary observation that is very important
in the sequel. The Euclidean norm |Fε (κ) | depends only on |κ| and is an
increasing function of |κ|. If |κ| = 1, then by simple calculation |Fε (κ) | > 1.
Consequently, if |τ | ≤ 1, then |Gε(τ)| < 1.

By explicit computation, ∇Gε is positive-definite and

λε (τ) |ξ |2 ≤ ∇Gε (τ)ξ · ξ ≤Λε (τ) |ξ |2, ∀ξ ∈Rd , τ ∈Rd , ()

where Λε and λε satisfy

1
ε+ ε−1/2 ≤ λε (τ) =

1

ε+
(
ε+ |Gε(τ)|2

)−1/2

Λε (τ) =
ε−1

1 +
(
ε+ |Gε(τ)|2

)−3/2 ≤ ε
−1.

()

Motivated by the original system (), given a solution ηε to the approx-
imating problem (), () we define

κiε := Gε
(
∂sη

i
ε

)
, σ iε := Gε

(
∂sη

i
ε

)
·∂sηiε. ()

Observe from the definition of Gε that there exists a bounded smooth
positive scalar function γε such thatGε(τ) = γε(|τ2|)τ , τ ∈Rd. In particular,
this implies that

σ iε ≥ 0. ()
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Moreover, γε is bounded away from 0 and ∞ (not uniformly w.r.t. ε). Let
Γε be the primitive of γε with Γε(0) = 0. Set

Qε(τ) :=
1
2
Γε(|τ |2).

Observe that
∇Qε(τ) = Gε(τ). ()

Moreover, Qε can be computed explicitly:

Qε (τ) = ε

 |Gε(τ)|2

2
− 1√

ε+ |Gε(τ)|2

+
√
ε. ()

By Remark ., Q(τ) << 1 if |τ | ≤ 1.
We define the associated “total energy” of the approximating problem

(), () by

Eε
(
η
)

:=



3∑
i=1

∫ 1

0
Qε

(
∂sη

i
)
ds+

∫ 1

0

(
−g

)
· ηids


for η ∈ AC2(Ω;R3d) satisfying η(1) = α(1), η1 (0) = η2 (0) = η3 (0) ;

+∞ for any η ∈ L2(Ω;R3d) except those above.
()

Then (), () can at least formally be interpreted as a gradient flow,
with respect to the flat Hilbertian structure of L2(Ω;R3d), that is driven by
this functional, i.e.

η̇ = −∇L2(Ω;R3d )Eε
(
η
)
, η(0) = α.

We will return to this issue in the next section.

.Evolution by pseudomonotone maps and solvability of the
approximating problem
For the existence of the solution to the approximating problem, we use

the theory of abstract evolution equations involving pseudomonotone maps.
We prefer this approach (instead of directly employing the theory of gradi-
ent flows in Hilbert spaces, cf. Brézis (); Attouch et al. ()) because
it automatically gives us the regularity of solution that is required for the
manipulations of Section .



 A. TELCIYAN AND D. VOROTNIKOV

Let us start with introducing some concepts and definitions, mainly fol-
lowing the book Roubiček (). Let V be a separable reflexive Banach
space, and V ∗ be the dual space of V . With use the bra-ket notation for
the duality.

Definition .. A mapping A : V → V ∗ is called monotone if ∀u,v ∈ V we
have 〈A (u)−A (v) ,u − v〉 ≥ 0.

Definition .. A mapping A : V → V ∗ is called radially continuous if
∀u,v ∈ V : t 7→ 〈A (u + vt) ,v〉 is continuous.

Definition .. A mapping A : V → V ∗ is called pseudomonotone pro-
vided
(i) A is bounded (i.e., the image of any bounded set is bounded),
(ii) for any sequence uk⇀u weakly with

limsup
k→∞

〈A
(
uk

)
,uk −u〉 ≤ 0

and for every v ∈ V it is true that

〈A (u) ,u − v〉 ≤ liminf
k→∞

〈A
(
uk

)
,uk − v〉.

We will need the following useful criterion of pseudomonotonicity from
Brézis ().

Lemma .. A bounded, radially continuous and monotone mapping is pseu-
domonotone.

Assume that there is a continuous embedding operator i : V → H , and
i(V ) is dense in H , where H is a Hilbert space. This generates the Gelfand
triple V ⊂ H ⊂ V ∗ by the following well-known observation. The adjoint
operator i∗ : H ∗→ V ∗ is continuous and, since i(V ) is dense in H , one-to-
one. Since i is one-to-one, i∗(H ∗) is dense in V ∗, and one may identify H ∗

with a dense subspace of V ∗. Due to the Riesz representation theorem, one
may also identify H with H ∗. Moreover, the H-scalar product of f ∈H,u ∈
V coincides with the value of the functional f from V ∗ on the element
u ∈ V :

(f ,u)H = 〈f ,u〉. ()
Assume that there is a seminorm | · |V on V that satisfies the “abstract Pon-
caré inequality”

‖u‖V . ‖u‖H + |u|V , ∀u ∈ V ,
where ‖ · ‖H is the Eucledian norm in H .
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Definition .. A mapping A : V → V ∗ is called semicoercive if for u ∈ V
we have

〈A (u) ,u〉 ≥ c0|u|2V − c1|u|V − c2‖u‖2H ,
where c0, c1 and c2 are nonnegative constants.

Consider the following abstract initial value problem on the time inter-
val (0,T ):

d
dt
u +A

(
u (t)

)
= f (t), u (0) = u0. ()

The following result can be found in (Roubiček, , Theorem .).

Theorem .. LetA : V → V ∗ be a pseudomonotone and semicoercive mapping
and

f ∈ AC2
(
[0,T ],V ∗

)
,

u0 ∈ V is such that A (u0)− f (0) ∈H ,
〈A (u1)−A (u2) ,u1−u2〉 ≥ c0|u1−u2|2V −c2‖u1−u2‖2H for u1,u2 ∈ V with
some constants c0, c2 > 0.

Then there exists u ∈ W 1,∞ (0,T ;H) ∩AC2
(
[0,T ];V

)
that solves the Cauchy

problem () (the first equality in () holds in the space V ∗ for a.a. in (0,T ),
whereas the second one holds in the space V ).

Our next goal is to apply this theorem to show the existence and regu-
larity of solutions to the approximating problem. It will be convenient to
rewrite our approximating problem ()-() with the help of the simple
transformation

ξ i (t, s) := ηiε (t, s)−αi (s) ,
arriving at 

∂tξ
i −∂s

(
Gε

(
∂s

(
ξ i +αi

)))
= g, i = 1,2,3,

ξ1 (t,0) = ξ2 (t,0) = ξ3 (t,0) ,

ξ i (t,1) = 0,

ξ i (0, s) = 0,
3∑
i=1

Gε

(
∂s

(
ξ i +αi

))
(t,0) = 0.

()
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Let us recast this system in the form of the Cauchy problem (). Let
H = L2 × L2 × L2

(
Ω;Rd

)
be the Hilbert space of triples with the natural

scalar product. Consider the set

V := {u ={ui} ∈ AC2 ×AC2 ×AC2
(
Ω;Rd

)
such that ui(1) = 0

and u1 (0) = u2 (0) = u3 (0)}.

It is a separable reflexive Banach space with the norm inherited from H1.
Define a seminorm on V by |{ui}|V := ‖{∂sui}‖H . The required Poincaré
inequality obviously holds. Let A : V → V ∗ be the mapping that is defined
by duality as follows:

〈A (ξ) ,ζ〉 =
3∑
i=1

∫ 1

0
Gε

(
∂s

(
ξ i +αi

))
·∂sζids. ()

Then () rewrites as

d
dt
ξ +A

(
ξ (t)

)
= g, ξ (0) = 0. ()

Note that the last equality of () is hidden in the duality in ().
In order to check that Theorem . is applicable to () we need to prove

several auxiliary statements. For the sake of readability, we will omit the
subscript ε coming from the approximating problem.

Lemma .. The mapping A satisfies the inequality

〈A (ξ1)−A (ξ2) ,ξ1 − ξ2〉 ≥ c0|ξ1 − ξ2|2V
for some constant c0 > 0 (depending on ε) and any ξ1,ξ2 ∈ V .

Proof : Define Ai :H1
(
Ω;Rd

)
→

(
H1

(
Ω;Rd

))∗
by

〈Ai
(
ξ i

)
,ζ〉 =

∫ 1

0
Gε

(
∂s

(
ξ i +αi

))
·∂sζids.

Throughout the rest of the proof, we omit the index i to avoid heavy nota-
tion in Ai, ξ i1, ξ i2 and αi. With this convention, it suffices to prove that

〈A (ξ1)−A (ξ2) ,ξ1 − ξ2〉 ≥ c0‖∂s(ξ1 − ξ2)‖2L2.
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We compute

〈A (ξ1)−A (ξ2) ,ξ1 − ξ2〉 =∫
Ω

[
G

(
∂s (ξ1 +α)

)
−G

(
∂s (ξ2 +α)

)]
·∂s

(
(ξ1 +α)− (ξ2 +α)

)
ds. ()

Let us denote µ := G
(
∂s (ξ1 +α)

)
and γ := G

(
∂s (ξ2 +α)

)
. Now, we use

the relation between F and G and conclude that F
(
µ
)

= ∂s (ξ1 +α) and

F
(
γ
)

= ∂s (ξ2 +α). We can rewrite the right-hand side of () as∫
Ω

(µ−γ) ·
(
F
(
µ
)
−F

(
γ
))
ds

=
∫
Ω

(
µ−γ

)
·

ε (µ−γ)+
µ√

ε+ |µ|2
−

γ√
ε+ |γ |2

ds
≥
∫
Ω

ε|µ−γ |2ds

because the map r 7→ r√
ε+r2

is a gradient of a convex function. Observe that

|F
(
µ
)
−F

(
γ
)
| ≤ (ε+ ε−1/2)|µ−γ |

by the mean value theorem since the operator norm of the matrix ∇F(r) is
bounded from above by ε+ ε−1/2, cf. ().

Thus we conclude that

〈A (ξ1)−A (ξ2) ,ξ1 − ξ2〉 ≥ ε
∫
Ω

|µ−γ |2ds ≥ c0

∫
Ω

|F(µ)−F(γ)|2ds

= c0‖∂s(ξ1 − ξ2)‖2L2.

Corollary .. The mapping A is monotone.

Proof : It is clear from Lemma ..

Corollary .. The mapping A is semicoercive.
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Proof : Employing Lemma . and Cauchy-Schwarz inequality, we see that

〈A (ξ) ,ξ〉 = 〈A (ξ)−A (0) ,ξ〉+ 〈A (0) ,ξ〉
≥ |ξ |2V + 〈A (0) ,ξ〉

= |ξ |2V +
3∑
i=1

∫ 1

0
G

(
∂sα

i
)
·∂sξ ids

≥ |ξ |2V −
∥∥∥∥∥{G (

∂sα
i
)}∥∥∥∥∥

H
|ξ |V

≥ |ξ |2V − c2|ξ |V ,

where c2 is a positive constant depending on α.

Lemma .. The mapping A is bounded.

Proof : Indeed,

〈A (ξ) ,ζ〉 =
3∑
i=1

∫ 1

0
G

(
∂s

(
ξ i +αi

))
·∂sζids

≤
∥∥∥∥∥∥
{
G

(
∂s

(
ξ i +αi

))}∥∥∥∥∥∥
H

|ζ|V

.

∥∥∥∥∥{∂s (ξ i +αi
)}∥∥∥∥∥

H
|ζ|V

≤ |ξ +α|V ‖ζ‖V .

(We have used sublinearity of G). Since |α|V is finite, this implies that
‖A(ξ)‖V ∗ is bounded provided ‖ξ‖V is bounded.

Lemma .. The mapping A is radially continuous.

Proof : Fix ξ,ζ ∈ V and let τn→ τ be a sequence. Then it is easy to see that

3∑
i=1

G
(
∂s

(
ξ i + τnζ

i +αi
))

(x) ·∂sζi(x)→
3∑
i=1

G
(
∂s

(
ξ i + τζi +αi

))
(x) ·∂sζi(x)

a.e. in Ω. The claim will follow from Lebesgue’s dominated convergence
theorem if there is a function in L1(Ω) that dominates the left-hand side.
But it is indeed the case since we can we leverage sublinearity of G to
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estimate∣∣∣∣∣∣∣∣
3∑
i=1

G
(
∂s

(
ξ i + τnζ

i +αi
))
·∂sζi

∣∣∣∣∣∣∣∣ ≤ C|∂s (ξ + τnζ +α) | · |∂sζ|

≤ C(|∂sξ |2 + |∂sζ|2 + |∂sα|2),

and the right-hand side is L1 by the assumption.

We can now legitimately use Theorem . in order to solve ().

Corollary .. Given α as in Remark ., the system () has a solution
ξ = {ξ i} ∈W 1,∞ (0,T ;H)∩AC2

(
[0,T ];V

)
that is understood in the same sense

as in Theorem ..

Returning back to the variable η and leveraging elementary properties
of Gε and ∇Gε, we get the existence of approximate solutions.

Corollary .. Given α as in Remark ., there exists a solution η = ηε to
()-() in QT that belongs to the following regularity class:

ηi ∈W 1,∞
(
0,T ;L2 (Ω)

)d
∩AC2

(
[0,T ];AC2

(
Ω

))d
,

∂sη
i ∈ AC2

(
[0,T ];L2 (Ω)

)d
,

κi := Gε(∂sη
i) ∈ L∞

(
0,T ;L2 (Ω)

)d
,

∇Gε(∂sηi) ∈ L∞
(
0,T ;L∞ (Ω)

)d
,

∂tη
i ∈ L∞

(
0,T ;L2 (Ω)

)d
∩L2

(
0,T ;H1 (Ω)

)d
,

∂sκ
i = ∂s

(
Gε

(
∂sη

i
))
∈ L∞

(
0,T ;L2 (Ω)

)d
∩L2

(
0,T ;H1 (Ω)

)d
,

∂ssη
i ∈ L∞

(
0,T ;L2 (Ω)

)d
.

Note that the norms of the solution η = ηε in the corresponding spaces
above may depend on ε. At this stage we cannot infer an L∞ estimate on
∂sη (even ε-dependent) because we do not control ∂sηi on ∂Ω. Anyway,
we will manage to establish a related bound in Corollary ..
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It is straightforward to see that η = ηε from Corollary . coincides
with the unique solution of the gradient flow

η̇ ∈ −∂L2(Ω;R3d )Eε
(
η
)

()

in the sense of (Attouch et al., , Theorem ..), where the driving
functional Eε was defined in (). This in particular implies that t 7→
Eε

(
η(t)

)
is a continuous and non-increasing function.

.Uniform estimates of the approximate solutions
In this section we derive various uniform (in ε) estimates for the approx-

imating solutions ηiε obtained in Corollary .. These bounds are crucial
for passing to the limit in Section . In the sequel, C will always stand
for a constant independent of ε. For the sake of readability, we drop the
dependence on ε in the subscripts and write ηi = ηiε, G = Gε, αi = αiε, etc.,
until the proof of Lemma ..

Lemma . (Energy estimate). Let η = {ηi} be a solution of the approximating
problem ()-() in QT as constructed in Corollary .. Then

E (α) +
3∑
i=1

∫
QT

|∂tηi |2 + |∇G
(
∂sη

i
)
∂ssη

i |2 dsdt
+ ‖η‖2

L∞
(
0,T ;L1(Ω)

) ≤ C. ()

Here the constant may only depend on α and T , but not on ε.

Proof : We first establish a uniform bound (w.r.t. ε) on the initial energies.
Indeed, since |∂sαi (s) | = 1, Remark . implies that |G(∂sαi (s))| < 1, and
using the explicit definition of Q given in (), we get that the first terms
(for each i) in the expansion

E (α) =
3∑
i=1

∫ 1

0
Q

(
∂sα

i (s)
)
ds+

∫ 1

0

(
−g

)
·αi (s)ds


are uniformly bounded. The second terms are obviously uniformly bounded.

We now prove (). Take the L2(Ω)-inner product of () and ∂tηi and
integrate over Qt, t ∈ (0,T ]. We obtain

3∑
i=1

∫
Qt

|∂tηi |2 dsdt =
3∑
i=1

∫
Qt

∂sG
(
∂sη

i
)
·∂tηi dsdt +

3∑
i=1

∫
Qt

g ·∂tηi dsdt
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Then, we perform an integration by parts and also integrate the last term
over time, ending up with

3∑
i=1

∫
Qt

|∂tηi |2 dsdt =−
3∑
i=1

∫
Qt

G
(
∂sη

i
)
·∂stηi dsdt +

3∑
i=1

∫
Ω

g · ηi(t) ds

−
3∑
i=1

∫
Ω

g ·αi ds+
3∑
i=1

∫ t

0
G

(
∂sη

i
)
·∂tηi︸          ︷︷          ︸

at s=1

dt

−
3∑
i=1

∫ t

0
G

(
∂sη

i
)
·∂tηi︸          ︷︷          ︸

at s=0

dt

= −
3∑
i=1

∫
Qt

G
(
∂sη

i
)
·∂stηi dsdt +

3∑
i=1

∫
Ω

g · ηi(t) ds

−
3∑
i=1

∫
Ω

g ·αi ds+
3∑
i=1

∫ t

0
G

(
∂sη

i(1)
)
·∂tαi(1)︸                  ︷︷                  ︸

∂tαi=0︸                  ︷︷                  ︸
=0

dt

−
3∑
i=1

∫ t

0
G

(
∂sη

i(0)
)
·∂tη̄︸              ︷︷              ︸∑3

i=1G(∂sηi(0))=0︸              ︷︷              ︸
=0

dt.

Here η̄(t) denotes the spatial position of the junction. Consequently,

3∑
i=1

∫
Qt

|∂tηi |2 dsdt =−
3∑
i=1

∫
Qt

G
(
∂sη

i
)
·∂stηi dsdt

+
3∑
i=1

∫
Ω

g · ηi(t) ds −
3∑
i=1

∫
Ω

g ·αi ds. ()
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For the first term on the right-hand side, we observe that

G(∂sη
i) ·∂stηi = ∂tQ

(
∂sη

i
)
, ()

cf. (), where Q is defined as in (). In view of (), () becomes

3∑
i=1

∫
Qt

|∂tηi |2 dsdt +
3∑
i=1

∫
Ω

Q
(
∂sη

i
)
(t, ·) +

∫
Ω

(
−g

)
· η (t, ·)ds

=
3∑
i=1

∫
Ω

Q
(
∂sα

i (s)
)
ds+

∫
Ω

(
−g

)
·α (s)ds,

whence*
3∑
i=1

∫
Qt

|∂tηi |2 dsdt +E
(
η(t)

)
= E(α). ()

Using Q ≥ 0 and the definition of E, we derive that

E
(
η(t)

)
≥ −‖η(t)‖L1(Ω)‖g‖L∞(Ω). ()

Hence,

1
3
‖η(t)‖2

L1(Ω) ≤
3∑
i=1

‖ηi(t)‖2
L1(Ω) =

3∑
i=1

(∫
Ω

|ηi(t)| ds
)2

=
3∑
i=1

∫
Ω

|αi (s) | ds+
∫
Qt

∂t|ηi | dsdt
2

≤ 2‖α‖2L2(Ω) + 2
3∑
i=1

∫
Qt

|∂tηi | dsdt
2

≤ 2‖α‖2L2(Ω) + 2t
3∑
i=1

∫
Qt

|∂tηi |2 dsdt ≤ 2‖α‖2L2(Ω) + 2TE (α) + 2T ‖η(t)‖L1(Ω)‖g‖L∞(Ω).

Simple algebra implies that ‖η(t)‖L1(Ω) is uniformly bounded. Consequently,∑3
i=1

∫
QT
|∂tηi |2 dsdt is uniformly bounded. On the other hand, from the

*Of course, equality () is a generic property of gradient flows and at least the fact that its
right-hand side is greater than or equal to the left-hand one follows from the general theory, cf.
Attouch et al. (). We decided to present a direct and explicit proof here in order to help the
reader to perceive the non-standard boundary conditions of the problem “by touching”.
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equality ∂s
(
G

(
∂sη

i
))

= ∂tηi − g we deduce

3∑
i=1

∫
QT

|∇G(∂sη
i)∂ssη

i |2 dsdt =
3∑
i=1

∫
QT

|∂s
(
G(∂sη

i)
)
|2 dsdt

≤ 2
3∑
i=1

∫
QT

|∂tηi |2 dsdt + 6
∫
QT

|g |2 dsdt ≤ C.

In view of () we simultaneously proved the following.

Corollary .. The energy of the approximating problem E
(
η(t)

)
is bounded

from below for all t ∈ [0,T ] uniformly in ε.

Since ηi(0) = αi does not depend on ε, the uniform regularity can imme-
diately be improved by the Poincaré inequality.

Corollary .. The norm ||ηi ||
L∞

(
0,T ;L2(Ω)

) is uniformly bounded with respect

to ε.

For the the subsequent family of estimates will need to bound the time
away from zero by some constant δ > 0.

Lemma .. Given δ > 0, the norm ||∂tη||L∞
(
δ,T ;L2(Ω)

) is bounded uniformly in

ε.

Proof : By (Attouch et al., , Theorem ..), the right derivative ∂+
t η

exists for all times, and the expression ||∂+
t η (t) ||2

L2(Ω) is non-increasing in

time. Using (Attouch et al., , formula (.)), we obtain

E (α)−E
(
η (δ)

)
≥ limsup

h↘0
E
(
η
(
h
))
−E

(
η (δ)

)
=
∫ δ

0
||∂tη (t) ||2

L2(Ω)dt

≥
∫ δ

0
||∂+

t η (δ) ||2
L2(Ω)

= δ||∂+
t η (δ) ||2

L2(Ω).
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By () and Corollary ., the left-hand side is bounded from above uni-
formly in ε. Hence, ||∂+

t η
i (δ) ||L2(Ω) ≤ C/δ.

Since ||∂+
t η (t) ||L2(Ω) is non-increasing in time, we infer that

||∂tηi ||L∞
(
δ,T ;L2(Ω)

) = ||∂+
t η

i ||
L∞

(
δ,T ;L2(Ω)

)
is bounded uniformly in ε.

We now derive uniform bounds for κi that were defined in (). We start
with the following lemma.

Lemma .. For fixed δ > 0, ∂sκi and the product |κi ||∂ssηi−ε∂sκi | are bounded
in L∞

(
δ,T ;L2 (Ω)

)
uniformly with respect to ε, i = 1,2,3.

Proof : By Lemma ., we know that ||∂tηi ||L∞
(
δ,T ;L2(Ω)

) ≤ C. Since ∂tηi =

∂sκ
i + g, we infer that ∂sκi is bounded in L∞

(
δ,T ;L2 (Ω)

)
uniformly with

respect to ε. We differentiate both sides of the equality

∂sη
i = Fε(κ

i) = εκi +
κi√

ε+ |κi |2

with respect to s to get

∂ssη
i = ε∂sκ

i +
∂sκ

i√
ε+ |κi |2

−
κi

(
∂sκ

i ·κi
)

(ε+ |κi |2)3/2 .

We multiply this equality by
√
ε+ |κi |2 and deduce

∂ssη
i
√
ε+ |κi |2 = ε∂sκ

i
√
ε+ |κi |2 +∂sκ

i −
κi

(
∂sκ

i ·κi
)√

ε+ |κi |2
.

We reorganize the equality above to obtain(
∂ssη

i − ε∂sκi
)√
ε+ |κi |2 = ∂sκ

i −
κi

(
∂sκ

i ·κi
)√

ε+ |κi |2
.

The right-hand side is bounded in L∞
(
δ,T ;L2 (Ω)

)
uniformly with respect

to ε, hence so is the left-hand side. Consequently, |κi ||∂ssηi − ε∂sκi | is
bounded in L∞

(
δ,T ;L2 (Ω)

)
uniformly with respect to ε.
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Lemma .. Let p1,p1,p3 be three points in R
d whose convex hull is a triangle

containing the origin. Assume that |pi | ≥ 1, i = 1,2,3. Then the circumradius
of that triangle is greater than or equal to 1.

Proof : It suffices to prove that there is no p ∈Rd with |pi −p| < 1, i = 1,2,3.
Indeed, if such p exists, then pi · p ≥ 1

2 |p
i |2 − 1

2 |p
i − p|2 > 0. Since the origin

belongs to the convex hull, we infer 0 > 0, a contradiction.

η1 η2

s = 1 η3

s = 0 s = 1s = 1

Figure . Symbolic depiction of the st scenario in Lemma .:
two arms of the triod tend to the straight position

Now we assemble all the ingredients to get the crucial L∞ bounds for κ
and ∂sη.

Lemma .. Given δ > 0, the norm ||κi ||
L∞

(
δ,T ;L∞(Ω)

) is uniformly bounded

with respect to ε.

Proof : From now on, we do not omit the subscript ε. However, in this
proof we decided to swap the sub- and superindices for the sake of conve-
nience and readability.

Step . We argue by contradiction. Assume that there is a sequence
εn→ 0 such that

||κεn1 ||L∞
(
δ,T ;L∞(Ω)

)→ +∞.

Here, without loss of generality, we have chosen the generic i to be equal to
1. By the regularity of ∂sκε

n
and ∂ssηε

n
there exists a set Tn of full measure

in [δ,T ] such that κε
n

i (t) and ηε
n

i (t) are C1-smooth in Ω whereas ∂ssη
εn
i (t) ∈
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η1 η2

η3

s = 0

s = 1s = 1

s = 1

Figure . Symbolic depiction of the nd scenario in Lemma
.: all the arms of the triod tend to the straight position

L2(Ω) for every i and every t ∈ Tn. Furthermore, by Lemma . without
loss of generality we can assume that ∂sκ

εn
i (t) and |κεni (t, ·) ||∂ssηε

n

i (t, ·) −
εn∂sκ

εn
i (t, ·) | are bounded in L2(Ω) uniformly w.r.t. n and t ∈ Tn. Let T :=

∩n∈NTn. Then there is a sequence (tn, sn) ∈ T ×Ω such that |κεn1 (tn, sn) | →
+∞ as n→∞. Thus,

κε
n

1

(
tn, s

)
= κε

n

1

(
tn, sn

)
︸      ︷︷      ︸
→+∞

+
∫ s

sn
∂ξκ

εn
1

(
tn,ξ

)
∂ξ︸                 ︷︷                 ︸

≤C

when n→∞. Accordingly, |κεn1 (tn)| → +∞ uniformly in s.
Step . By the boundary conditions,

3∑
i=1

κε
n

i (tn,0) = 0. ()

By the previous step, |κεn1 (tn,0)| → +∞. Hence we have two possible sce-
narios symbolically pictured in Figures  and , respectively. The first
option is |κεn2 (tn,0)| → +∞ and |κεn3 (tn,0)| ≤ C as n→ +∞ (up to swapping
the second and the third arms). The second one is |κεn2 (tn,0)| → +∞ and
|κεn3 (tn,0)| → +∞ as n→ +∞.
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Step . We start by examining the second scenario. An argument similar
to the one of Step  shows that |κεni (tn)| → +∞ uniformly in s, i = 1,2,3.
Since tn ∈ T, we know that

|κεni
(
tn, ·

)
||∂ssηε

n

i

(
tn, ·

)
− ε∂sκε

n

i

(
tn, ·

)
|

is uniformly bounded in L2 (Ω). Hence,

|∂ssηε
n

i

(
tn, ·

)
− εn∂sκε

n

i

(
tn, ·

)
| → 0

in L2 (Ω) as n→ +∞. On the other hand, ∂sκ
εn
i (tn) is uniformly bounded

in L2 (Ω), whence
|εn∂sκε

n

i

(
tn
)
| → 0

in L2 (Ω). We conclude that |∂ssηε
n

i (tn, ·) | → 0 in L2 (Ω) as n → +∞. By
Remark ., |κεni (tn, ·) | ≥ 1 implies |∂sηε

n

i (tn, ·) | ≥ 1 (assuming n to be large
enough).

Step . The idea now is to compare the triangle† formed by the points
pni := ηε

n

i (tn,0) + ∂sη
εn
i (tn,0) with the fixed triangle formed by ηε

n

i (tn,1) =
αi (1), i = 1,2,3. Observe that

|∂sηε
n

i

(
tn,0

)
−∂sηε

n

i

(
tn,ξ

)
| =

∣∣∣∣∣∣∣
∫ ξ

0
∂ssη

εn
i

(
tn
)
ds

∣∣∣∣∣∣∣
≤

∫ ξ

0
|∂ssηε

n

i

(
tn
)
|ds ≤

√∫ 1

0
|∂ssηε

n

i (tn) |2ds→ 0 uniformly in ξ as n→∞.

Hence,

|pni −αi(1)| = |ηεni
(
tn,0

)
− ηεni

(
tn,1

)
+∂sη

εn
i

(
tn,0

)
|

=
∣∣∣∣∣∫ 1

0
∂sη

εn
i

(
tn,0

)
−∂sηε

n

i

(
tn, s

)
ds

∣∣∣∣∣→ 0 as n→∞.

Since the circumradius is a continuous function of the vertices of a trian-
gle, we must have that the circumradius of the three points pni is less than 1
for n sufficiently large. Since the junction point ηε

n

i (tn,0) does not depend
on i, the circumradius of the three points p̃ni := ∂sη

εn
i (tn,0) is the same as

the previous one. By Step , |p̃ni | ≥ 1.Moreover, since
∑3
i=1κ

εn
i (tn,0) = 0 and

†It is clear from the proof below that these points do not lie on the same straight line, at least
for n large enough.
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p̃ni = Fεn(κ
εn
i (tn,0)), we conclude that the convex hull of {p̃ni } contains the

origin. We arrive at a contradiction because by Lemma . the circumra-
dius of {p̃ni }must be greater than or equal to 1.

Step . We now study the first scenario. Define pni and p̃ni as in Step .
The plan is to look at the angle θn between the position vectors of p̃n1 and
p̃n2 and to obtain a contradiction from that.

We first show that θn cannot tend to π. Indeed, mimicking the argu-
ments of Steps  and , we can prove that for i = 1,2 one has |∂sηε

n

i (tn, ·) | ≥
1 with n large enough, |∂ssηε

n

i (tn, ·) | → 0 in L2 (Ω) and

|pni −αi(1)| → 0 as n→∞.
Hence,

|p̃n1 − p̃n2 | = |pn1 − pn2 | → |α1(1)−α2(1)| < 2.
Since we have |p̃n1 | ≥ 1, |p̃n2 | ≥ 1, the angle θn cannot converge to π.

Now take the wedge product of relation () with the vector

1
|∂sηε

n

1 (tn,0) ||κεn2 (tn,0)|
∂sη

εn
1

(
tn,0

)
to obtain

κε
n

2 (tn,0)
|κεn2 (tn,0)|

∧
∂sη

εn
1 (tn,0)

|∂sηε
n

1 (tn,0) |
+
κε

n

3 (tn,0)
|κεn2 (tn,0)|

∧
∂sη

εn
1 (tn,0)

|∂sηε
n

1 (tn,0) |
= 0.

Since |κεn2 (tn,0)| → +∞ and |κεn3 (tn,0)| ≤ C, the second term converges to 0.
Consequently,

|sinθn| =
∣∣∣∣∣ ∂sηεn2 (tn,0)

|∂sηε
n

2 (tn,0) |
∧
∂sη

εn
1 (tn,0)

|∂sηε
n

1 (tn,0) |

∣∣∣∣∣ =
∣∣∣∣∣ κεn2 (tn,0)
|κεn2 (tn,0)|

∧
∂sη

εn
1 (tn,0)

|∂sηε
n

1 (tn,0) |

∣∣∣∣∣→ 0

as n→∞.
To obtain a contradiction, it remains to observe that θn cannot tend to 0.

Indeed, taking the scalar product of relation () with

1
|∂sηε

n

1 (tn,0) ||κεn2 (tn,0)|
∂sη

εn
1

(
tn,0

)
we get

κε
n

1 (tn,0)
|κεn2 (tn,0)|

·
∂sη

εn
1 (tn,0)

|∂sηε
n

1 (tn,0) |
+
κε

n

2 (tn,0)
|κεn2 (tn,0)|

·
∂sη

εn
1 (tn,0)

|∂sηε
n

1 (tn,0) |
+
κε

n

3 (tn,0)
|κεn2 (tn,0)|

·
∂sη

εn
1 (tn,0)

|∂sηε
n

1 (tn,0) |
= 0.

()
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The first term is equal to σε
n

1

|κεn2 (tn,0)||∂sηε
n

1 (tn,0)|
≥ 0 by () and (). The third

term converges to 0. Accordingly, the second term, which is equal to
cosθn, cannot tend to 1.

Corollary .. Given δ > 0, the norm ||ηiεn ||L∞
(
δ,T ;W 1,∞(Ω)

) is uniformly bounded

with respect to ε.

Proof : Since ∂sη
i
εn = Fεn(κ

i
εn) and the sequence {εn} is bounded, Lemma .

yields a uniform L∞ bound for ∂sηi. By Lemma ., ||ηi ||
L∞

(
δ,T ;L1(Ω)

) is also

uniformly bounded with respect to ε, and the claim follows by the mean
value theorem.

Lemma .. Given δ > 0, the norm ‖σ iεn‖L∞
(
δ,T ;H1(Ω)

) is bounded uniformly in

ε.

Proof : In view of Lemma . and Corollary ., the L∞
(
δ,T ;L∞ (Ω)

)
-bound

for σ immediately follows from the equality σ i = ∂sηi · κi. Differentiating
this equality w.r.t. s we obtain

∂sσ
i = ∂sκ

i ·∂sηi +κi ·∂ssηi .
We estimate the two terms on the right-hand side separately. Firstly, a
uniform L∞

(
δ,T ;L2 (Ω)

)
bound for ∂sκi has been already established, cf.

Lemma .. This together with Corollary . implies the uniform bound-
edness of ∂sκi ·∂sηi in L∞

(
δ,T ;L2 (Ω)

)
.

Now, we estimate κi · ∂ssηi. From the explicit expression of λεn in (),
for τ ∈Rd we have

λεn (τ) =

√
εn + |Gεn (τ) |2

εn
√
εn + |Gεn (τ) |2 + 1

≥ |Gεn (τ) |
εn|Gεn (τ) |+ 1

. ()

Thus,

|Gεn
(
∂sη

i
)
||∂ssηi | ≤

(
εn|Gεn

(
∂sη

i
)
|+ 1

)
|λεn∂ssηi |

≤
(
εn|κi |+ 1

)
|∇Gεn

(
∂sη

i
)
∂ssη

i |.

By Lemma ., |κi | is uniformly bounded in L∞
(
δ,T ;L∞ (Ω)

)
, whence

|κi ·∂ssηi | ≤ |Gεn
(
∂sη

i
)
||∂ssηi | ≤ C|∇Gεn

(
∂sη

i
)
∂ssη

i | = C|∂sκi |.
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Since the right-hand side is uniformly bounded in L∞
(
δ,T ;L2 (Ω)

)
, so is

the left-hand side and, consequently, the spatial derivative ∂sσ i itself.

.Existence of generalized solutions
We are now at the position to define generalized solutions to the original

problem (), (), () and to prove their existence.

Definition .. Given initial data αi (s) ∈ W 1,∞ (Ω)d as in Remark ., we
call a pair

(
ηi ,σ i

)
a generalized solution to (), (), () in Q∞ if

(i) - ηi ∈ L∞loc
(
(0,∞;W 1,∞ (Ω)

)d
∩Cloc

(
(0,∞);C

(
Ω

))d
∩AC2

loc

(
[0,∞);L2 (Ω)

)d
,

- ∂tηi ∈ L∞loc
(
(0,∞) ;L2 (Ω)

)d
∩L2

loc

(
[0,∞);L2 (Ω)

)d
,

- σ i ∈ L∞loc
(
(0,∞) ;AC2 (Ω)

)
,

- σ i∂sηi ∈ L∞loc
(
(0,∞) ;AC2 (Ω)

)d
.

(ii) Each pair
(
ηi ,σ i

)
satisfies for a.e. (t, s) ∈Q∞

∂tη
i (t, s) = ∂s

(
σ i (t, s)∂sη

i (t, s)
)

+ g, ()

σ i (t, s)
(
|∂sηi (t, s) |2 − 1

)
= 0, ()

|∂sηi (t, s) | ≤ 1, ()

as well as the initial conditions

ηi (0, s) = αi (s)

and the boundary conditions

η1 (t,0) = η2 (t,0) = η3 (t,0) ,

ηi (t,1) = αi (1) ,
3∑
i=1

σ i (t,0)∂sη
i (t,0) = 0.

(iii) The solutions ηi satisfy the energy dissipation inequality
3∑
i=1

∫
Ω

|∂tηi (t, s) |2 ds ≤
3∑
i=1

∫
Ω

g ·∂tηi (t, s) ds ()

for a.e. t ∈ (0,∞).
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Remark .. Note that (), () is a minor relaxation of the non-convex
constraint

|∂sηi (t, s) | = 1. ()

However, this is not a banal convexification of the constraint since ()
is still not convex. The new constraints (), () naturally appear from
the (η,σ ,κ)-formulation (), cf. () in the proof below. Moreover, if a
generalized (in the sense of Definition .) solution (η,σ ) is C2-smooth,
then it automatically satisfies the strong constraint (). This claim can
be shown by following the lines of (Shi and Vorotnikov, a, Remark
.), (Shi and Vorotnikov, b, Remark .). As in Shi and Vorotnikov
(a), our generalized solutions are, generally speaking, not unique. Yet
this has nothing to do with the fact that we slightly relaxed the constraint
(). As a matter of fact, non-uniqueness can persist even if the strong
constraint () is imposed, cf. (Shi and Vorotnikov, a, Remark .).

For convenience, we first pass to the limit on finite time intervals. In
what follows, we use the shortcut Q∗T := (δ,T )×Ω.

Proposition .. Fix T > 0 and a small δ > 0. Let ηε be a solution to ()
in QT with the initial/boundary conditions () as constructed in Section .
Let

(
κi ,σ i

)
be defined as in (). Then (up to selecting a subsequence εn) there

exists a limit (ηi ,σ i ,κi) such that as ε→ 0 we have

ηiε → ηi weakly∗ in L∞
(
δ,T ;W 1,∞ (Ω)

)d
, strongly in C

(
Q∗T

)d
and weakly in

L2 (QT )d,

∂tη
i
ε→ ∂tη

i weakly-∗ in L∞
(
δ,T ;L2 (Ω)

)d
and weakly in L2 (QT )d,

σ iε→ σ i weakly-* in L∞
(
δ,T ;H1 (Ω)

)
,

κiε→ κi weakly-* in L∞
(
δ,T ;H1 (Ω)

)
.

The limit satisfies the relation

κi = σ i∂sη
i ∈ L∞

(
δ,T ;H1 (Ω)

)
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and solves ()-() in Q∗T in the sense that

∂tη
i = ∂s

(
σ i∂sη

i
)

+ g a.e. in Q∗T ,

σ i
(
|∂sηi |2 − 1

)
= 0 a.e. in Q∗T ,

ηi (t,1) = αi (1) ,

η1 (t,0) = η2 (t,0) = η3 (t,0) ,
3∑
i=1

κi = 0 at s = 0 for a.e. t ∈ (δ,T ).

Remark .. At this stage we don’t discuss the validity of the initial condi-
tion ηi (0, s) = αi (s) that is postponed until Remark ..

Proof : The weak compactness results for ηiε, σ
i
ε and κiε follow immediately

from the estimates above. By the Aubin-Lions-Simon theorem,

L∞
(
δ,T ;W 1,∞ (Ω)

)
∩W 1,∞

(
δ,T ;L2 (Ω)

)
⊂ C

(
[δ,T ];C

(
Ω

))
()

and the embedding is compact, which implies strong compactness of ηiε in

C
(
[δ,T ];C

(
Ω

))
.

Let us show that
κi = σ i∂sη

i , σ i = κi ·∂sηi ()

a.e. in Q∗T . Since both sides of the equalities () are integrable on Q∗T ,
it suffices to prove () in the sense of the distributions, i.e., that for any
φi ∈ L2

(
δ,T ;H1

0 (Ω)
)

3∑
i=1

∫
Q∗T

κiφidsdt = −
3∑
i=1

∫
Q∗T

σ iηi∂sφ
idsdt −

3∑
i=1

∫
Q∗T

∂sσ
iηiφidsdt ()

3∑
i=1

∫
Q∗T

σ iφidsdt = −
3∑
i=1

∫
Q∗T

κi · ηi∂sφidsdt −
3∑
i=1

∫
Q∗T

∂sκ
i · ηiφidsdt. ()

Firstly, applying integration by parts to the equality σ iε = κiε ·∂sηiε we obtain

3∑
i=1

∫
Q∗T

σ iεφ
i = −

3∑
i=1

∫
Q∗T

κiε · ηiε∂sφidsdt −
3∑
i=1

∫
Q∗T

∂sκ
i
ε · ηiεφidsdt,



FALLING NETWORK 

and due to the strong compactness property of {ηε} given above we can
pass to the limit to get (). We now claim

lim
ε→0

∣∣∣∣κiε∣∣∣∣ ∣∣∣∣∣∣∣∣∣∣∂sηiε∣∣∣∣2 − 1

∣∣∣∣∣∣ = 0 ()

uniformly in Q∗T . Before proving the claim we show how () follows
from (). Indeed, with () in our hand and noting that κiε|∂sηiε|2 =(
κiε ·∂sηiε

)
∂sη

i
ε = σ iε∂sη

i
ε we have for each i = 1,2,3

lim
ε→0
||σ iε∂sηiε −κiε||L∞(Q∗T ) = 0. ()

In particular, for any φi ∈ L2
(
δ,T ;H1

0 (Ω)
)

lim
ε→0

3∑
i=1

∫
Q∗T

κiεφ
idsdt = lim

ε→0

3∑
i=1

∫
Q∗T

σ iε∂sη
i
εφ

idsdt.

An integration by parts applied to the integral on the right-hand side gives

lim
ε→0

3∑
i=1

∫
Q∗T

κiεφ
idsdt = lim

ε→0

3∑
i=1

∫
Q∗T

(
−σ iεηiε∂sφiε −∂sσ iεηiεφi

)
dsdt.

This together with the compactness properties established above yields
().

We now provide a proof of (). By the definition of Fε in (),

|∂sηiε| − 1 =
∣∣∣∣Fε (κiε)∣∣∣∣− 1

= ε|κiε|+
|κiε|√
ε+ |κiε|2

− 1

= ε|κiε| −
ε√

ε+ |κiε|2
(√
ε+ |κiε|2 + |κiε|

) .
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Thus,

|κiε|
∣∣∣∣|∂sηiε|2 − 1

∣∣∣∣ =
∣∣∣∣|∂sηiε|+ 1

∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣ε|κ

i
ε|2 −

ε|κiε|√
ε+ |κiε|2

(√
ε+ |κiε|2 + |κiε|

)
∣∣∣∣∣∣∣∣∣∣∣

≤
∣∣∣∣|∂sηiε|+ 1

∣∣∣∣ (ε|κiε|2 +
√
ε
)
.

This together with uniform L∞ bounds on ∂sηiε and κiε yields ().
Passing to the limit in L2

(
Q∗T

)
in ∂tηiε = ∂sκiε+g and using (), we obtain

∂tη
i = ∂s

(
σ i∂sη

i
)
+g. To get σ i

(
|∂sηi |2 − 1

)
= 0, it suffices to express κi from

the first of the equalities () and substitute the result into second one.
Due to the strong uniform convergence of ηiε, we have αi (1) = ηiε (t,1)→

ηi (t,1), whence ηi (t,1) = αi (1) for all t ∈ [δ,T ]. The condition η1
ε (t,0) =

η2
ε (t,0) = η3

ε (t,0) similarly passes to the limit. To check the validity of the
boundary condition at s = 0 for κ, we swap the variables t and s, noting
that κiε are uniformly bounded and weakly-* converging inH1(0,1;L∞(δ,T )).
Employing, for instance, (Zvyagin and Vorotnikov, , Corollary ..),
we get

H1(0,1;L∞(δ,T )) = AC2([0,1];L∞(δ,T )). ()
Hence, by the Aubin-Lions-Simon theorem, the embedding

H1(0,1;L∞(δ,T )) ⊂ C([0,1];H−1(δ,T ))

is compact, whence we may assume that κiε→ κi strongly inC([0,1];H−1(δ,T )).
Thus,

0 =
3∑
i=1

κiε(·,0)→
3∑
i=1

κi(·,0)

in H−1(δ,T ). Due to (),
∑3
i=1κ

i(·,0) = 0 in L∞(δ,T ).

Remark . (Initial conditions). By the Aubin-Lions-Simon theorem, the
embedding

H1(0,T ;L2(Ω)) ⊂ C([0,T ];H−1(Ω))
is compact. Since ηiε (w.l.o.g.) converge weakly in H1(0,T ;L2(Ω)) we can
pass to the limit in the initial conditions to obtain ηi (0, ·) = αi in H−1(Ω).
However, since H1(0,T ;L2(Ω)) = AC2(0,T ;L2(Ω)), the initial conditions
actually hold in L2(Ω).
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Proposition .. Let
(
ηi ,σ i

)
be the limiting solution obtained in Proposition

.. Then
(i) |∂sηi (t, s) | ≤ 1 for a.e. (t, s) ∈Q∗T ;

(ii) σ i ≥ 0 for a.e. (t, s) ∈Q∗T ;
(iii) () holds for a.a. t ∈ (δ,T ).

We omit the proof since it follows the same lines as the proofs of (Shi
and Vorotnikov, a, Proposition . and Theorem ).

Employing a diagonal argument and taking into account Proposition .
and Remark ., it is easy to deduce Theorem . from Proposition ..

Remark . (Single cord with two fixed ends). The results of the paper,
mutatis mutandis, are valid for the overdamped fall of a single inextensi-
ble string with the ends fixed at two distinct spatial points (it suffices to
observe that such a string can be viewed as a degenerate “triod” with one
arm having zero length); remember that Shi and Vorotnikov (a) stud-
ied the case of one free and one fixed end (i.e., a “whip”). More precisely,
we have the following result.

Proposition .. Given α (s) ∈W 1,∞ (Ω)d satisfying |α(0)−α(1)| < 1, |∂sα(s)| =
1 a.e. in Ω, there exists a generalized solution to

∂tη = ∂s
(
σ∂sη

)
+ g,

|∂sη| = 1,
η (t,0) = α (0) , η (t,1) = α (1) ,
η (0, s) = α (s) .

()

in Q∞. Moreover, σ (t, s) ≥ 0 for almost every (t, s) ∈Q∞.
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Verlag, Basel.
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Kröner, H., Novaga, M., Pozzi, P., . Anisotropic curvature flow of im-
mersed networks. Milan J. Math. , –. URL: https://doi.org/./
s---, doi:./s---.
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Székelyhidi Jr, L., . Relaxation of the incompressible porous media equation. An-
nales scientifiques de l’Ecole normale supérieure , –.

Thess, A., Zikanov, O., Nepomnyashchy, A., . Finite-time singularity in the vortex
dynamics of a string. Phys. Rev. E () , –. URL: https://doi.org/.
/PhysRevE.., doi:./PhysRevE...

Villani, C., . Topics in optimal transportation. American Mathematical Soc.
Villani, C., . Optimal transport: old and new. Springer Science & Business Media.

https://doi.org/10.4310/CMS.2014.v12.n4.a1
https://doi.org/10.4310/CMS.2014.v12.n4.a1
http://dx.doi.org/10.4310/CMS.2014.v12.n4.a1
https://doi.org/10.1512/iumj.2007.56.3015
https://doi.org/10.1512/iumj.2007.56.3015
http://dx.doi.org/10.1512/iumj.2007.56.3015
https://doi.org/10.1007/s00526-008-0179-0
https://doi.org/10.1007/s00526-008-0179-0
http://dx.doi.org/10.1007/s00526-008-0179-0
https://doi.org/10.1007/s00208-019-01885-6
https://doi.org/10.1007/s00208-019-01885-6
http://dx.doi.org/10.1007/s00208-019-01885-6
http://dx.doi.org/10.1081/PDE-100002243
http://dx.doi.org/10.1081/PDE-100002243
http://dx.doi.org/10.1081/PDE-100002243
https://doi.org/10.1512/iumj.1955.4.54037
http://dx.doi.org/10.1512/iumj.1955.4.54037
https://doi.org/10.1007/978-3-0348-0513-1
http://dx.doi.org/10.1007/978-3-0348-0513-1
http://dx.doi.org/10.1007/978-3-0348-0513-1
http://dx.doi.org/10.1016/j.jde.2016.11.040
http://dx.doi.org/10.1016/j.jde.2016.11.040
http://dx.doi.org/10.1016/j.jde.2016.11.040
http://dx.doi.org/10.1007/s00526-019-1524-1
http://dx.doi.org/10.1007/s00526-019-1524-1
http://dx.doi.org/10.1007/s12220-018-00104-z
https://doi.org/10.1103/PhysRevE.59.3637
https://doi.org/10.1103/PhysRevE.59.3637
http://dx.doi.org/10.1103/PhysRevE.59.3637


REFERENCES 

Wen, Y., . L2 flow of curve straightening in the plane. Duke Math. J. ,
–. URL: https://doi.org/./S----, doi:./
S----.

Zvyagin, V.G., Vorotnikov, D.A., . Topological approximation methods for evo-
lutionary problems of nonlinear hydrodynamics. volume  of de Gruyter Series in
Nonlinear Analysis and Applications. Walter de Gruyter & Co., Berlin. URL: http:
//dx.doi.org/./, doi:./.

Ayk Telciyan

University of Coimbra, CMUC, Department of Mathematics, - Coimbra, Portugal
E-mail address: ayktelciyan@mat.uc.pt

Dmitry Vorotnikov

University of Coimbra, CMUC, Department of Mathematics, - Coimbra, Portugal
E-mail address: mitvorot@mat.uc.pt

https://doi.org/10.1215/S0012-7094-93-07016-0
http://dx.doi.org/10.1215/S0012-7094-93-07016-0
http://dx.doi.org/10.1215/S0012-7094-93-07016-0
http://dx.doi.org/10.1515/9783110208283
http://dx.doi.org/10.1515/9783110208283
http://dx.doi.org/10.1515/9783110208283

	1. Introduction
	2. Approximating problem
	3. Evolution by pseudomonotone maps and solvability of the approximating problem
	4. Uniform estimates of the approximate solutions
	5. Existence of generalized solutions
	References

