Pré-Publicações do Departamento de Matemática Universidade de Coimbra Preprint Number 22–02

ON PRESHEAF SUBMONADS OF QUANTALE-ENRICHED CATEGORIES

MARIA MANUEL CLEMENTINO AND CARLOS FITAS

ABSTRACT: This paper focus on the presheaf monad and its submonads on the realm of V-categories, for a quantale V. First we present two characterisations of presheaf submonads, both using V-distributors: one based on admissible classes of V-distributors, and other using Beck-Chevalley conditions on V-distributors. Then we focus on the study of the corresponding Eilenberg-Moore categories of algebras, having as main examples the formal ball monad and the so-called Lawvere monad.

KEYWORDS: Quantale, V-category, distributor, lax idempotent monad, Presheaf monad, Ball monad, Lawvere monad.

MATH. SUBJECT CLASSIFICATION (2000): 18D20, 18C15, 18D60, 18A22, 18B35, 18F75.

Introduction

Having as guideline Lawvere's point of view that it is worth to regard metric spaces as categories enriched in the extended real half-line $[0, \infty]_+$ (see [17]), we regard both the formal ball monad and the monad that identifies Cauchy complete spaces as its algebras – which we call here the *Lawvere monad* – as submonads of the presheaf monad on the category **Met** of $[0, \infty]_+$ -enriched categories. This leads us to the study of general presheaf submonads on the category of V-enriched categories, for a given quantale V.

Here we expand on known general characterisations of presheaf submonads and their algebras, and introduce a new ingredient – conditions of Beck-Chevalley type – which allows us to identify properties of functors and natural transformations, and, most importantly, contribute to a new facet of the behaviour of presheaf submonads.

In order to do that, after introducing the basic concepts needed to the study of V-categories in Section 1, Section 2 presents the presheaf monad and a characterisation of its submonads using admissible classes of V-distributors

Received April 6, 2022.

This work was partially supported by the Centre for Mathematics of the University of Coimbra – UIDB/00324/2020, funded by the Portuguese Government through FCT/MCTES, and the FCT PhD grant SFRH/BD/150460/2019.

which is based on [2]. Next we introduce the already mentioned Beck-Chevalley conditions (BC^{*}) which resemble those discussed in [5], with Vdistributors playing the role of V-relations. In particular we show that lax idempotency of a monad \mathbb{T} on V-**Cat** can be identified via a BC^{*} condition, and that the presheaf monad satisfies fully BC^{*}. This leads to the use of BC^{*} to present a new characterisation of presheaf submonads in Section 4.

The remaining sections are devoted to the study of the Eilenberg-Moore category induced by presheaf submonads. In Section 5, based on [2], we detail the relationship between the algebras, (weighted) cocompleteness, and injectivity. Next we focus on the algebras and their morphisms, first for the formal ball monad, and later for a general presheaf submonad. We end by presenting the relevant example of the presheaf submonad whose algebras are the so-called Lawvere complete V-categories [3], which, when $V = [0, \infty]_+$, are exactly the Cauchy complete (generalised) metric spaces, while their morphisms are the V-functors which preserve the limits for Cauchy sequences.

Acknowledgement. We are grateful to Dirk Hofmann for useful discussions concerning the last example.

1. Preliminaries

Our work focus on V-categories (or V-enriched categories, cf. [7, 17, 15]) in the special case of V being a quantale.

Throughout V is a commutative and unital quantale; that is, V is a complete lattice endowed with a symmetric tensor product \otimes , with unit $k \neq \bot$, commuting with joins, so that it has a right adjoint hom; this means that, for $u, v, w \in V$,

 $u \otimes v \leq w \Leftrightarrow v \leq \hom(u, w).$

As a category, V is a complete and cocomplete (thin) symmetric monoidal closed category.

Definition 1.1. A *V*-category is a pair (X, a) where X is a set and $a: X \times X \to V$ is a map such that:

(R) for each $x \in X$, $k \leq a(x, x)$;

(T) for each $x, x', x'' \in X$, $a(x, x') \otimes a(x', x'') \le a(x, x'')$.

If (X, a), (Y, b) are V-categories, a V-functor $f: (X, a) \to (Y, b)$ is a map $f: X \to Y$ such that

(C) for each $x, x' \in X$, $a(x, x') \leq b(f(x), f(x'))$.

The category of V-categories and V-functors will be denoted by V-Cat. Sometimes we will use the notation X(x, y) = a(x, y) for a V-category (X, a)and $x, y \in X$.

We point out that V has itself a V-categorical structure, given by the right adjoint to \otimes , hom; indeed, $u \otimes k \leq u \Rightarrow k \leq \hom(u, u)$, and $u \otimes \hom(u, u') \otimes \hom(u', u'') \leq u' \otimes \hom(u', u'') \leq u''$ gives that $\hom(u, u') \otimes \hom(u', u'') \leq \hom(u, u'')$. Moreover, for every V-category (X, a), one can define its opposite V-category $X^{\text{op}} = (X, a^{\circ})$, with $a^{\circ}(x, x') = a(x', x)$ for all $x, x' \in X$.

- **Examples 1.2.** (1) For $V = \mathbf{2} = (\{0 < 1\}, \land, 1)$, a 2-category is an *or*dered set (not necessarily antisymmetric) and a 2-functor is a *mono*tone map. We denote 2-Cat by Ord.
 - (2) The lattice $V = [0, \infty]$ ordered by the "greater or equal" relation \geq (so that $r \wedge s = \max\{r, s\}$, and the supremum of $S \subseteq [0, \infty]$ is given by $\inf S$) with tensor $\otimes = +$ will be denoted by $[0, \infty]_+$. A $[0, \infty]_+$ -category is a *(generalised) metric space* and a $[0, \infty]_+$ -functor is a *non-expansive map* (see [17]). We denote $[0, \infty]_+$ -Cat by Met. We note that

$$\hom(u, v) = v \ominus u := \max\{v - u, 0\},\$$

for all $u, v \in [0, \infty]$.

If instead of + one considers the tensor product \wedge , then $[0, \infty]_{\wedge}$ -Cat is the category **UMet** of *ultrametric spaces* and *non-expansive maps*.

(3) The complete lattice [0,1] with the usual "less or equal" relation \leq is isomorphic to $[0,\infty]$ via the map $[0,1] \rightarrow [0,\infty]$, $u \mapsto -\ln(u)$ where $-\ln(0) = \infty$. Under this isomorphism, the operation + on $[0,\infty]$ corresponds to the multiplication * on [0,1]. Denoting this quantale by $[0,1]_*$, one has $[0,1]_*$ -**Cat** isomorphic to the category $\mathbf{Met} = [0,\infty]_+$ -**Cat** of (generalised) metric spaces and non-expansive maps.

Since [0, 1] is a frame, so that finite meets commute with infinite joins, we can also consider it as a quantale with $\otimes = \wedge$. The category $[0, 1]_{\wedge}$ -**Cat** is isomorphic to the category **UMet**.

Another interesting tensor product in [0, 1] is given by the *Lukasiewicz* tensor \odot where $u \odot v = \max(0, u+v-1)$; here $\hom(u, v) = \min(1, 1-u+v)$. Then $[0, 1]_{\odot}$ -**Cat** is the category of bounded-by-1 (generalised) metric spaces and non-expansive maps. (4) We consider now the set

$$\Delta = \{ \varphi \colon [0,\infty] \to [0,1] \mid \text{for all } \alpha \in [0,\infty] \colon \varphi(\alpha) = \bigvee_{\beta < \alpha} \varphi(\beta) \},\$$

of distribution functions. With the pointwise order, it is a complete lattice. For $\varphi, \psi \in \Delta$ and $\alpha \in [0, \infty]$, define $\varphi \otimes \psi \in \Delta$ by

$$(\varphi \otimes \psi)(\alpha) = \bigvee_{\beta + \gamma \leq \alpha} \varphi(\beta) * \psi(\gamma).$$

Then $\otimes : \Delta \times \Delta \to \Delta$ is associative and commutative, and

$$\kappa : [0, \infty] \to [0, 1], \ \alpha \mapsto \begin{cases} 0 & \text{if } \alpha = 0, \\ 1 & \text{else} \end{cases}$$

is a unit for \otimes . Finally, $\psi \otimes - : \Delta \to \Delta$ preserves suprema since, for all $u \in [0,1]$, $u * -: [0,1] \to [0,1]$ preserves suprema. A Δ category is a *(generalised) probabilistic metric space* and a Δ -functor is a *probabilistic non-expansive map* (see [13] and references there).

We will also make use of two additional categories we describe next, the category V-**Rel**, of sets and V-relations, and the category V-**Dist**, of V-categories and V-distributors.

Objects of V-**Rel** are sets, while morphisms are V-relations, i.e., if X and Y are sets, a V-relation $r: X \to Y$ is a map $r: X \times Y \to V$. Composition of V-relations is given by relational composition, so that the composite of $r: X \to Y$ and $s: Y \to Z$ is given by

$$(s \cdot r)(x, z) = \bigvee_{y \in Y} r(x, y) \otimes s(y, z),$$

for every $x \in X$, $z \in Z$. Identities in V-Cat are simply identity relations, with $1_X(x, x') = k$ if x = x' and $1_X(x, x') = \bot$ otherwise. The category V-Rel has an involution ()°, assigning to each V-relation $r: X \to Y$ the V-relation $r^\circ: Y \to X$ defined by $r^\circ(y, x) = r(x, y)$, for every $x \in X$, $y \in Y$.

Since every map $f: X \to Y$ can be thought as a V-relation through its graph $f_{\circ}: X \times Y \to V$, with $f_{\circ}(x, y) = k$ if f(x) = y and $f_{\circ}(x, y) = \bot$ otherwise, there is an injective on objects and faithful functor **Set** $\to V$ -**Rel**. When no confusion may arise, we use also f to denote the V-relation f_{\circ} . The category V-**Rel** is a 2-category, when equipped with the 2-cells given by the pointwise order; that is, for $r, r' \colon X \to Y$, one defines $r \leq r'$ if, for all $x \in X, y \in Y, r(x, y) \leq r'(x, y)$. This gives us the possibility of studying adjointness between V-relations. We note in particular that, if $f \colon X \to Y$ is a map, then $f_{\circ} \cdot f^{\circ} \leq 1_Y$ and $1_X \leq f^{\circ} \cdot f_{\circ}$, so that $f_{\circ} \dashv f^{\circ}$.

Objects of V-**Dist** are V-categories, while morphisms are V-distributors (also called V-bimodules, or V-profunctors); i.e., if (X, a) and (Y, b) are Vcategories, a V-distributor – or, simply, a distributor – $\varphi : (X, a) \longrightarrow (Y, b)$ is a V-relation $\varphi : X \longrightarrow Y$ such that $\varphi \cdot a \leq \varphi$ and $b \cdot \varphi \leq \varphi$ (in fact $\varphi \cdot a = \varphi$ and $b \cdot \varphi = \varphi$ since the other inequalities follow from (R)). Composition of distributors is again given by relational composition, while the identities are given by the V-categorical structures, i.e. $1_{(X,a)} = a$. Moreover, V-**Dist** inherits the 2-categorical structure from V-**Rel**.

Each V-functor $f: (X, a) \to (Y, b)$ induces two distributors, $f_*: (X, a) \longrightarrow (Y, b)$ and $f^*: (Y, b) \longrightarrow (X, a)$, defined by $f_*(x, y) = Y(f(x), y)$ and $f^*(y, x) = Y(y, f(x))$, that is, $f_* = b \cdot f_\circ$ and $f^* = f^\circ \cdot b$. These assignments are functorial, as we explain below.

First we define 2-cells in V-Cat: for $f, f': (X, a) \to (Y, b)$ V-functors, $f \leq f'$ when $f^* \leq (f')^*$ as distributors, so that

$$f \leq f' \iff \forall x \in X, \ y \in Y, \ Y(y, f(x)) \leq Y(y, f'(x)).$$

V-Cat is then a 2-category, and we can define two 2-functors

Note that, for any V-functor $f: (X, a) \to (Y, b)$,

$$f_* \cdot f^* = b \cdot f_\circ \cdot f^\circ \cdot b \le b \cdot b = b$$
 and $f^* \cdot f_* = f^\circ \cdot b \cdot b \cdot f_\circ \ge f^\circ \cdot f_\circ \cdot a \ge a$;

hence every V-functor induces a pair of adjoint distributors, $f_* \dashv f^*$. A V-functor $f: X \to Y$ is said to be *fully faithful* if $f^* \cdot f_* = a$, i.e. X(x, x') = Y(f(x), f(x')) for all $x, x' \in X$, while it is *fully dense* if $f_* \cdot f^* = b$, i.e. $Y(y, y') = \bigvee_{x \in X} Y(y, f(x)) \otimes Y(f(x), y')$, for all $y, y' \in Y$. A fully faithful V-functor $f: X \to Y$ does not need to be an injective map; it is so in case

X and Y are separated V-categories (as defined below).

Remark 1.3. In V-Cat adjointness between V-functors

$$Y \xrightarrow{g} X$$

can be equivalently expressed as:

 $f \dashv g \Leftrightarrow f_* = g^* \Leftrightarrow g^* \dashv f^* \Leftrightarrow (\forall x \in X) (\forall y \in Y) X(x, g(y)) = Y(f(x), y).$ In fact the latter condition encodes also V-functoriality of f and g; that is,

In fact the latter condition encodes also V-functoriality of f and g; that is, if $f: X \to Y$ and $g: Y \to X$ are maps satisfying the condition

$$(\forall x \in X) \ (\forall y \in Y) \ X(x, g(y)) = Y(f(x), y),$$

then f and g are V-functors, with $f \dashv g$.

Furthermore, it is easy to check that, given V-categories X and Y, a map $f: X \to Y$ is a V-functor whenever f_* is a distributor (or whenever f^* is a distributor).

The order defined on V-Cat is in general not antisymmetric. For V-functors $f, g: X \to Y$, one says that $f \simeq g$ if $f \leq g$ and $g \leq f$ (or, equivalently, $f^* = g^*$). For elements x, y of a V-category X, one says that $x \leq y$ if, considering the V-functors $x, y: E = (\{*\}, k) \to X$ (where k(*, *) = k) defined by x(*) = x and y(*) = y, one has $x \leq y$; or, equivalently, $X(x, y) \geq k$. Then, for any V-functors $f, g: X \to Y, f \leq g$ if, and only if, $f(x) \leq g(x)$ for every $x \in X$.

Definition 1.4. A V-category Y is said to be *separated* if, for $f, g: X \to Y$, f = g whenever $f \simeq g$; equivalently, if, for all $x, y \in Y$, $x \simeq y$ implies x = y.

The tensor product \otimes on V induces a tensor product on V-**Cat**, with $(X, a) \otimes (Y, b) = (X \times Y, a \otimes b) = X \otimes Y$, where $(X \otimes Y)((x, y), (x', y')) = X(x, x') \otimes Y(y, y')$. The V-category E is a \otimes -neutral element. With this tensor product, V-**Cat** becomes a monoidal closed category. Indeed, for each V-category X, the functor $X \otimes (): V$ -**Cat** $\to V$ -**Cat** has a right adjoint $()^X$ defined by $Y^X = (V$ -**Cat**(X, Y), [[,]]), with $[[f, g]] = \bigwedge_{x \in X} Y(f(x), g(x))$ (see [7, 17, 15] for details).

It is interesting to note the following well-known result (see, for instance, [3, Theorem 2.5]).

Theorem 1.5. For V-categories X and Y, and a V-relation $\varphi \colon X \longrightarrow Y$, the following conditions are equivalent:

- (i) $\varphi \colon X \longrightarrow Y$ is a distributor;
- (ii) $\varphi \colon X^{\mathrm{op}} \otimes Y \to (V, \mathrm{hom})$ is a V-functor.

In particular, the V-categorical structure a of (X, a) is a V-distributor $a: (X, a) \longrightarrow (X, a)$, and therefore a V-functor $a: (X, a)^{\mathrm{op}} \otimes (X, a) \rightarrow (V, \mathrm{hom})$, which induces, via the closed monoidal structure of V-**Cat**, the Yoneda Vfunctor $y_X: (X, a) \rightarrow (V, \mathrm{hom})^{(X,a)^{\mathrm{op}}}$. Thanks to the theorem above, $V^{X^{\mathrm{op}}}$ can be equivalently described as

$$PX := \{ \varphi \colon X \longrightarrow E \, | \, \varphi \, V \text{-distributor} \}.$$

Then the structure \tilde{a} on PX is given by

$$\widetilde{a}(\varphi,\psi) = \llbracket \varphi,\psi \rrbracket = \bigwedge_{x \in X} \hom(\varphi(x),\psi(x)),$$

for every $\varphi, \psi: X \longrightarrow E$, where by $\varphi(x)$ we mean $\varphi(x, *)$, or, equivalently, we consider the associated V-functor $\varphi: X \to V$. The Yoneda functor $y_X: X \to PX$ assigns to each $x \in X$ the distributor $x^*: X \longrightarrow E$, where we identify again $x \in X$ with the V-functor $x: E \to X$ assigning x to the (unique) element of E. Then, for every $\varphi \in PX$ and $x \in X$, we have that

$$\llbracket y_X(x), \varphi \rrbracket = \varphi(x),$$

as expected. In particular y_X is a fully faithful V-functor, being injective on objects (i.e. an injective map) when X is a separated V-category. We point out that (V, hom) is separated, and so is PX for every V-category X.

For more information on V-Cat we refer to [12, Appendix].

2. The presheaf monad and its submonads

The assignment $X \mapsto PX$ defines a functor $P: V\operatorname{-Cat} \to V\operatorname{-Cat}$: for each $V\operatorname{-functor} f: X \to Y, Pf: PX \to PY$ assigns to each distributor $X \xrightarrow{\varphi} E$ the distributor $Y \xrightarrow{f^*} X \xrightarrow{\varphi} E$. It is easily checked that the Yoneda functors $(y_X: X \to PX)_X$ define a natural transformation $y: 1 \to P$. Moreover, since, for every $V\operatorname{-functor} f$, the adjunction $f_* \dashv f^*$ yields an adjunction $Pf = () \cdot f^* \dashv () \cdot f_* =: Qf, Py_X$ has a right adjoint, which we denote by $m_X: PPX \to PX$. It is straightforward to check that $\mathbb{P} = (P, m, y)$ is a

2-monad on V-Cat – the so-called *presheaf monad* –, which, by construction of m_X as the right adjoint to Py_X , is lax idempotent (see [11] for details).

Next we present a characterisation of the submonads of \mathbb{P} which is partially in [2]. We recall that, given two monads $\mathbb{T} = (T, \mu, \eta), \mathbb{T}' = (T', \mu', \eta')$ on a category \mathbf{C} , a monad morphism $\sigma \colon \mathbb{T} \to \mathbb{T}'$ is a natural transformation $\sigma \colon T \to T'$ such that

By submonad of \mathbb{P} we mean a 2-monad $\mathbb{T} = (T, \mu, \eta)$ on V-Cat with a monad morphism $\sigma : \mathbb{T} \to \mathbb{P}$ such that σ_X is an embedding (i.e. both fully faithful and injective on objects) for every V-category X.

Definition 2.1. Given a class Φ of V-distributors, for every V-category X let

$$\Phi X = \{ \varphi \colon X \longrightarrow E \, | \, \varphi \in \Phi \}$$

have the V-category structure inherited from the one of PX. We say that Φ is *admissible* if, for every V-functor $f: X \to Y$ and V-distributors $\varphi: Z \longrightarrow Y$ and $\psi: X \longrightarrow Z$ in Φ ,

(1) $f^* \in \Phi;$

(2)
$$\psi \cdot f^* \in \Phi$$
 and $f^* \cdot \varphi \in \Phi$;

- (3) $\varphi \in \Phi \iff (\forall y \in Y) \ y^* \cdot \varphi \in \Phi;$
- (4) for every V-distributor $\gamma: PX \longrightarrow E$, if the restriction of γ to ΦX belongs to Φ , then $\gamma \cdot (y_X)_* \in \Phi$.

Lemma 2.2. Every admissible class Φ of V-distributors induces a submonad $\Phi = (\Phi, m^{\Phi}, y^{\Phi})$ of \mathbb{P} .

Proof: For each V-category X, equip ΦX with the initial structure induced by the inclusion $\sigma_X \colon \Phi X \to PX$, that is, for every $\varphi, \psi \in \Phi X$, $\Phi X(\varphi, \psi) = PX(\varphi, \psi)$. For each V-functor $f \colon X \to Y$ and $\varphi \in \Phi X$, by condition (2), $\varphi \cdot f^* \in \Phi$, and so Pf (co)restricts to $\Phi f \colon \Phi X \to \Phi Y$.

Condition (1) guarantees that $y_X \colon X \to PX$ corestricts to $y_X^{\Phi} \colon X \to \Phi X$.

Finally, condition (4) guarantees that $m_X : PPX \to PX$ also (co)restricts to $m_X^{\Phi} : \Phi \Phi X \to \Phi X$: with $\gamma : \Phi X \longrightarrow E$, also $\tilde{\gamma} := \gamma \cdot (\sigma_X)^* : PX \longrightarrow E$ belongs to Φ by (2), and then, since γ is the restriction of $\tilde{\gamma}$ to ΦX , by (4) $m_X(\tilde{\gamma}) = \gamma \cdot (\sigma_X)^* \cdot (y_X)_* = \gamma \cdot (\sigma_X)^* \cdot (\sigma_X)_* \cdot (y_X^{\Phi})_* = \gamma \cdot (y_X^{\Phi})_* \in \Phi.$

By construction, $(\sigma_X)_X$ is a natural transformation, each σ_X is an embedding, and σ makes diagrams (2.i) commute.

Theorem 2.3. For a 2-monad $\mathbb{T} = (T, \mu, \eta)$ on V-Cat, the following assertions are equivalent:

- (i) \mathbb{T} is isomorphic to Φ , for some admissible class of V-distributors Φ .
- (ii) \mathbb{T} is a submonad of \mathbb{P} .

Proof: (i) \Rightarrow (ii) follows from the lemma above.

(ii) \Rightarrow (i): Let $\sigma: \mathbb{T} \to \mathbb{P}$ be a monad morphism, with σ_X an embedding for every V-category X, which, for simplicity, we assume to be an inclusion. First we show that

$$\Phi = \{\varphi \colon X \longrightarrow Y \mid \forall y \in Y \ y^* \cdot \varphi \in TX\}$$
(2.ii)

is admissible. In the sequel $f: X \to Y$ is a V-functor.

(1) For each $x \in X$, $x^* \cdot f^* = f(x)^* \in TY$, and so $f^* \in \Phi$.

(2) If $\psi: X \longrightarrow Z$ is a V-distributor in Φ , and $z \in Z$, since $z^* \cdot \psi \in TX$, $Tf(z^* \cdot \psi) = z^* \cdot \psi \cdot f^* \in TY$, and therefore $\psi \cdot f^* \in \Phi$ by definition of Φ . Now, if $\varphi: Z \longrightarrow Y \in \Phi$, then, for each $x \in X$, $x^* \cdot f^* \cdot \varphi = f(x)^* \cdot \varphi \in TZ$ because $\varphi \in \Phi$, and so $f^* \cdot \varphi \in \Phi$.

(3) follows from the definition of Φ .

(4) If the restriction of $\gamma: PX \longrightarrow E$ to TX, i.e., $\gamma \cdot (\sigma_X)_*$, belongs to Φ , then $\mu_X(\gamma \cdot (\sigma_X)_*) = \gamma \cdot (\sigma_X)_* \cdot (\eta_X)_* = \gamma \cdot (y_X)_*$ belongs to TX.

We point out that, with \mathbb{P} , also \mathbb{T} is lax idempotent. This assertion is shown at the end of next section, making use of the Beck-Chevalley conditions we study next. (We note that the arguments of [6, Prop. 16.2], which states conditions under which a submonad of a lax idempotent monad is still lax idempotent, cannot be used directly here.)

3. The presheaf monad and Beck-Chevalley conditions

In this section our aim is to show that \mathbb{P} verifies some interesting conditions of Beck-Chevalley type, that resemble the BC conditions studied in [5]. We recall from [5] that a commutative square in **Set**

$$\begin{array}{ccc} W & \stackrel{l}{\longrightarrow} Z \\ g & & \downarrow h \\ X & \stackrel{f}{\longrightarrow} Y \end{array}$$

is said to be a *BC-square* if the following diagram commutes in **Rel**

where, given a map $t: A \to B$, $t_o: A \to B$ denotes the relation defined by t and $t^o: B \to A$ its opposite. Since $t_o \dashv t^o$ in **Rel**, this is in fact a kind of Beck-Chevalley condition. A **Set**-endofunctor T is said to satisfy BC if it preserves BC-squares, while a natural transformation $\alpha: T \to T'$ between two **Set**-endofunctors satisfies BC if, for each map $f: X \to Y$, its naturality square

$$\begin{array}{ccc} TX & \xrightarrow{\alpha_X} & T'X \\ Tf & & & \downarrow T'f \\ TY & \xrightarrow{\alpha_Y} & T'Y \end{array}$$

is a BC-square.

In our situation, for endofunctors and natural transformations in V-Cat, the role of Rel is played by V-Dist.

Definition 3.1. A commutative square in V-Cat

$$(W, d) \xrightarrow{l} (Z, c)$$

$$g \downarrow \qquad \qquad \downarrow h$$

$$(X, a) \xrightarrow{f} (Y, b)$$

is said to be a BC^* -square if the following diagram commutes in V-Dist

(or, equivalently, $h^* \cdot f_* \leq l_* \cdot g^*$).

Remarks 3.2. (1) For a V-functor $f: (X, a) \to (Y, b)$, to be fully faithful is equivalent to

$$(X, a) \xrightarrow{1} (X, a)$$

$$\downarrow f$$

$$(X, a) \xrightarrow{f} (Y, b)$$

being a BC*-square (exactly in parallel with the characterisation of monomorphisms via BC-squares).

(2) We point out that, contrarily to the case of BC-squares, in BC*squares the horizontal and the vertical arrows play different roles; that is, the fact that diagram (3.i) is a BC*-square is not equivalent to

$$(W,d) \xrightarrow{g} (X,a)$$

$$\downarrow l \qquad \qquad \downarrow f$$

$$(Z,c) \xrightarrow{h} (Y,b)$$

being a BC*-square; it is indeed equivalent to its dual

being a BC*-square.

Definitions 3.3. (1) A functor T: V-Cat $\rightarrow V$ -Cat satisfies BC^* if it preserves BC*-squares.

(2) Given two endofunctors T, T' on V-Cat, a natural transformation $\alpha: T \to T'$ satisfies BC^* if the naturality diagram

is a BC*-square for every morphism f in V-Cat.

(3) A 2-monad $\mathbb{T} = (T, \mu, \eta)$ on V-Cat is said to satisfy fully BC^* if T, μ , and η satisfy BC^{*}.

Remark 3.4. In the case of **Set** and **Rel**, since the condition of being a BC-square is equivalent, under the Axiom of Choice (AC), to being a weak pullback, a **Set**-monad \mathbb{T} satisfies fully BC if, and only if, it is weakly cartesian (again, under (AC)). This, together with the fact that there are relevant **Set**-monads – like for instance the ultrafilter monad – whose functor and multiplication satisfy BC but the unit does not, led the authors of [5] to name such monads as BC-monads. This is the reason why we use fully BC* instead of BC* to identify these V-**Cat**-monads.

As a side remark we recall that, still in the **Set**-context, a partial BCcondition was studied by Manes in [18]: for a **Set**-monad $\mathbb{T} = (T, \mu, \eta)$ to be *taut* requires that T, μ, η satisfy BC for commutative squares where f is monic.

Our first use of BC* is the following characterisation of lax idempotency for a 2-monad \mathbb{T} on V-Cat.

Proposition 3.5. Let $\mathbb{T} = (T, \mu, \eta)$ be a 2-monad on V-Cat.

(1) The following assertions are equivalent:

- (i) \mathbb{T} is law idempotent.
- (ii) For each V-category X, the diagram

$$\begin{array}{cccc} TX & \xrightarrow{T\eta_X} & TTX \\ \eta_{TX} & & & \downarrow \mu_X \\ TTX & \xrightarrow{\mu_X} & TX \end{array} \tag{3.ii}$$

is a BC^* -square.

(2) If \mathbb{T} is law idempotent, then μ satisfies BC^* .

Proof: (1) (i) \Rightarrow (ii): The monad \mathbb{T} is lax idempotent if, and only if, for every V-category X, $T\eta_X \dashv \mu_X$, or, equivalently, $\mu_X \dashv \eta_{TX}$. These two conditions are equivalent to $(T\eta_X)_* = (\mu_X)^*$ and $(\mu_X)_* = (\eta_{TX})^*$. Hence $(\mu_X)^*(\mu_X)_* = (T\eta_X)_*(\eta_{TX})^*$ as claimed.

(ii) \Rightarrow (i): From $(\mu_X)^*(\mu_X)_* = (T\eta_X)_*(\eta_{TX})^*$ it follows that

$$(\mu_X)_* = (\mu_X)_* (\mu_X)^* (\mu_X)_* = (\mu_X \cdot T\eta_X)_* (\eta_{TX})^* = (\eta_{TX})^*,$$

that is, $\mu_X \dashv \eta_{TX}$.

(2) BC* for μ follows directly from lax idempotency of \mathbb{T} , since

$$\begin{array}{cccc} TTX \xrightarrow{(\mu_X)_*} TX & TTX \xrightarrow{(\eta_{TX})^*} TX \\ (TTf)^* & \uparrow & \uparrow & (Tf)^* \\ TTY \xrightarrow{(\mu_Y)_*} TY & TTY \xrightarrow{(\eta_{TY})^*} TY \end{array}$$

and the latter diagram commutes trivially.

Remark 3.6. Thanks to Remarks 3.2 we know that, if we invert the role of η_{TX} and $T\eta_X$ in (3.ii), we get a characterisation of oplax idempotent 2-monad: \mathbb{T} is oplax idempotent if, and only if, the diagram

$$\begin{array}{c|c} TX \xrightarrow{\eta_{TX}} TTX \\ T\eta_X & & & \downarrow \mu_X \\ TTX \xrightarrow{\mu_X} TX \end{array}$$

is a BC*-square.

Theorem 3.7. The presheaf monad $\mathbb{P} = (P, m, y)$ satisfies fully BC^* .

Proof: (1) P satisfies BC^* : Given a BC*-square

$$(W, d) \xrightarrow{l} (Z, c)$$

$$g \downarrow \qquad \qquad \downarrow h$$

$$(X, a) \xrightarrow{f} (Y, b)$$

in V-Cat, we want to show that

$$PW \xrightarrow{(Pl)_{*}} PZ$$

$$(Pg)^{*} \stackrel{\uparrow}{\downarrow} \ge \stackrel{\uparrow}{\downarrow} (Ph)^{*}$$

$$PX \xrightarrow{(Pf)_{*}} PY.$$

$$(3.iii)$$

For each $\varphi \in PX$ and $\psi \in PZ$, we have

$$\begin{split} (Ph)^*(Pf)_*(\varphi,\psi) &= (Ph)^{\circ} \cdot \widetilde{b} \cdot Pf(\varphi,\psi) \\ &= \widetilde{b}(Pf(\varphi),Ph(\psi)) \\ &= \bigwedge_{y \in Y} \hom(\varphi \cdot f^*(y),\psi \cdot h^*(y)) \\ &\leq \bigwedge_{x \in X} \hom(\varphi \cdot f^* \cdot f_*(x),\psi \cdot h^* \cdot f_*(x)) \\ &\leq \bigwedge_{x \in X} \hom(\varphi(x),\psi \cdot l_* \cdot g^*(x)) \qquad (\varphi \leq \varphi \cdot f^* \cdot f_*, (3.iii) \text{ is BC}^*) \\ &= \widetilde{a}(\varphi,\psi \cdot l_* \cdot g^*) \\ &\leq \widetilde{a}(\varphi,\psi \cdot l_* \cdot g^*) \otimes \widetilde{c}(\psi \cdot l_* \cdot l^*,\psi) \qquad (\text{because } \psi \cdot l_* \cdot l^* \leq \psi) \\ &= \widetilde{a}(\varphi,Pg(\psi \cdot l_*) \otimes \widetilde{c}(Pl(\psi \cdot l_*),\psi) \\ &\leq \bigvee_{\gamma \in PW} \widetilde{a}(\varphi,Pg(\gamma)) \otimes \widetilde{c}(Pl(\gamma),\psi) \\ &= (Pl)_*(Pg)^*(\varphi,\psi). \end{split}$$

(2) μ satisfies BC^* : For each V-functor $f: X \to Y$, from the naturality of y it follows that the following diagram

$$\begin{array}{c} PPX \xrightarrow{(y_{PX})^{*}} PX \\ \xrightarrow{(PPf)^{*}} & & \uparrow \\ PPY \xrightarrow{\circ} & & \uparrow \\ PPY \xrightarrow{(y_{PY})^{*}} PY \end{array}$$

commutes. Lax idempotency of \mathbb{P} means in particular that $m_X \dashv y_{PX}$, or, equivalently, $(m_X)_* = (y_{PX})^*$, and therefore the commutativity of this diagram shows BC* for m.

(3) y satisfies BC^* : Once again, for each V-functor $f: (X, a) \to (Y, b)$, we want to show that the diagram

$$X \xrightarrow{(y_X)_*} PX$$

$$f^* \stackrel{\uparrow}{\cup} \qquad \stackrel{\uparrow}{\longrightarrow} PX$$

$$Y \xrightarrow{(y_Y)_*} PY$$

commutes. Let $y \in Y$ and $\varphi \colon X \longrightarrow E$ belong to PX. Then

$$((Pf)^*(y_Y)_*)(y,\varphi) = ((Pf)^{\circ} \cdot \widetilde{b} \cdot y_Y)(y,\varphi) = \widetilde{b}(y_Y(y), Pf(\varphi)) = Pf(\varphi)(y)$$
$$= \bigvee_{x \in X} b(y, f(x)) \otimes \varphi(x) = \bigvee_{x \in X} b(y, f(x)) \otimes \widetilde{a}(y_X(x),\varphi)$$
$$= (\widetilde{a} \cdot y_X \cdot f^{\circ} \cdot b)(y,\varphi) = (y_X)_* \cdot f^*(y,\varphi),$$

as claimed.

Corollary 3.8. Let $\mathbb{T} = (T, \mu, \eta)$ on V-Cat be a 2-monad on V-Cat, and $\sigma: \mathbb{T} \to \mathbb{P}$ be a monad morphism, pointwise fully faithful. Then \mathbb{T} is lax idempotent.

Proof: We know that \mathbb{P} is lax idempotent, and so, for every V-category X, $(m_X)_* = (y_{PX})^*$. Consider diagram (2.i). The commutativity of the diagram on the right gives that $(\mu_X)_* = (\sigma_X)^*(\sigma_X)_*(\mu_X)_* = (\sigma_X)^*(m_X)_*(P\sigma_X)_*(\sigma_{TX})_*$; using the equality above, and preservation of fully faithful V-functors by \mathbb{P} – which follows from BC^{*} – we obtain:

$$(\mu_X)_* = (\sigma_X)^* (y_{PX})^* (P\sigma_X)_* (\sigma_{TX})_* = (\sigma_X)^* (\eta_{PX})^* (\sigma_{PX})^* (P\sigma_X)_* (\sigma_{TX})_* = (\eta_{TX})^* \cdot (\sigma_{TX})^* (P\sigma_X)^* (P\sigma_X)_* (\sigma_{TX})_* = (\eta_{TX})^*.$$

4. Presheaf submonads and Beck-Chevalley conditions

In this section, for a general 2-monad $\mathbb{T} = (T, \mu, \eta)$ on V-Cat, we relate its BC* properties with the existence of a (sub)monad morphism $\mathbb{T} \to \mathbb{P}$. We remark that a necessary condition for \mathbb{T} to be a submonad of \mathbb{P} is that TX is separated for every V-category X, since PX is separated and separated V-categories are stable under monomorphisms.

Theorem 4.1. For a 2-monad $\mathbb{T} = (T, \mu, \eta)$ on V-Cat with TX separated for every V-category X, the following assertions are equivalent:

- (i) \mathbb{T} is a submonad of \mathbb{P} .
- (ii) \mathbb{T} is lax idempotent and satisfies BC^* , and both η_X and $Q\eta_X \cdot y_{TX}$ are fully faithful, for each V-category X.
- (iii) \mathbb{T} is law idempotent, μ and η satisfy BC^* , and both η_X and $Q\eta_X \cdot y_{TX}$ are fully faithful, for each V-category X.
- (iv) \mathbb{T} is lax idempotent, η satisfies BC^* , and both η_X and $Q\eta_X \cdot y_{TX}$ are fully faithful, for each V-category X.

Proof: (i) \Rightarrow (ii): By (i) there exists a monad morphism $\sigma: \mathbb{T} \to \mathbb{P}$ with σ_X an embedding for every V-category X. By Corollary 3.8, with \mathbb{P} , also \mathbb{T} is lax idempotent. Moreover, from $\sigma_X \cdot \eta_X = y_X$, with y_X , also η_X is fully faithful. (In fact this is valid for any monad with a monad morphism into \mathbb{P} .)

To show that \mathbb{T} satisfies BC^{*} we use the characterisation of Theorem 2.3; that is, we know that there is an admissible class Φ of distributors so that $\mathbb{T} = \Phi$. Then BC^{*} for T follows directly from the fact that Φf is a (co)restriction of Pf, for every V-functor f.

BC* for η follows from BC* for y and full faithfulness of σ since, for any commutative diagram in V-Cat

with |1|2| satisfying BC*, and f and g fully faithful, also |1| satisfies BC*.

Thanks to Proposition 3.5, BC* for μ follows directly from lax idempotency of T.

The implications (ii) \Rightarrow (iii) \Rightarrow (iv) are obvious.

(iv) \Rightarrow (i): For each V-category (X, a), we denote by \hat{a} the V-category structure on TX, and define the V-functor

$$(TX \xrightarrow{\sigma_X} PX) = (TX \xrightarrow{y_{TX}} PTX \xrightarrow{Q\eta_X} PX);$$

that is, $\sigma_X(\mathfrak{x}) = (X \xrightarrow{\eta_X} TX \xrightarrow{\widehat{a}} TX \xrightarrow{\mathfrak{x}^\circ} E) = \widehat{a}(\eta_X(), \mathfrak{x})$. As a composite of fully faithful V-functors, σ_X is fully faithful; moreover, it is an embedding because, by hypothesis, TX and PX are separated V-categories.

To show that $\sigma = (\sigma_X)_X \colon T \to P$ is a natural transformation, that is, for each V-functor $f \colon X \to Y$, the outer diagram

$$\begin{array}{cccc} TX \xrightarrow{y_{TX}} PTX \xrightarrow{Q\eta_X} PX \\ Tf & & 1 & P_{\gamma}^{\dagger}f & 2 & \downarrow Pf \\ TY \xrightarrow{y_{TY}} PTY \xrightarrow{Q\eta_Y} PY \end{array}$$

commutes, we only need to observe that $\boxed{1}$ is commutative and BC^{*} for η implies that $\boxed{2}$ is commutative.

It remains to show σ is a monad morphism: for each V-category (X, a) and $x \in X$,

$$(\sigma_X \cdot \eta_X)(x) = \widehat{a}(\eta_X(x), \eta_X(x)) = a(-, x) = x^* = y_X(x),$$

and so $\sigma \cdot \eta = y$. To check that, for every V-category (X, a), the following diagram commutes

let $\mathfrak{X} \in TTX$. We have

$$m_X \cdot P\sigma_X \cdot \sigma_{TX}(\mathfrak{X}) =$$

$$= (X \xrightarrow{y_X} PX \xrightarrow{\tilde{a}} PX \xrightarrow{\sigma_X^\circ} TX \xrightarrow{\eta_{TX}} TTX \xrightarrow{\hat{a}} TTX \xrightarrow{\mathfrak{X}^\circ} E)$$

$$= (X \xrightarrow{\eta_X} TX \xrightarrow{\hat{a}} TX \xrightarrow{\eta_{TX}} TTX \xrightarrow{\hat{a}} TTX \xrightarrow{\tilde{a}^\circ} E),$$
inco $\sigma^\circ : \tilde{a} : w_T(x, \mathfrak{x}) = \tilde{a} : w_T(x, \mathfrak{x}) \text{ and}$

since $\sigma_X^{\circ} \cdot \widetilde{a} \cdot y_X(x, \mathfrak{x}) = \widetilde{a}(y_X(x), \sigma_X(\mathfrak{x})) = \sigma_X(\mathfrak{x})(x) = \widehat{a} \cdot \eta_X(x, \mathfrak{x})$, and

$$\sigma_X \cdot \mu_X(\mathfrak{x}) = (X \xrightarrow{\eta_X} TX \xrightarrow{\widehat{a}} TX \xrightarrow{\mu_X^\circ} TTX \xrightarrow{\mathfrak{X}^\circ} E).$$

Hence the commutativity of the diagram follows from the equality $\hat{a} \cdot \eta_{TX} \cdot \hat{a} \cdot \eta_X = \mu_X^\circ \cdot \hat{a} \cdot \eta_X$ we show next. Indeed,

$$\widehat{\widehat{a}} \cdot \eta_{TX} \cdot \widehat{a} \cdot \eta_X = (\eta_{TX})_* (\eta_X)_* = (\eta_{TX} \cdot \eta_X)_* = (T\eta_X \cdot \eta_X)_* = (T\eta_X)_* (\eta_X)_*$$
$$= \mu_X^* (\eta_X)_* = \mu_X^\circ \cdot \widehat{a} \cdot \eta_X.$$

The proof of the theorem allows us to conclude immediately the following result.

Corollary 4.2. Given a 2-monad $\mathbb{T} = (T, \mu, \eta)$ on V-Cat such that η satisfies BC^* , there is a monad morphism $\mathbb{T} \to \mathbb{P}$ if, and only if, η is pointwise fully faithful.

5. On algebras for submonads of \mathbb{P} : a survey

In the remainder of this paper we will study, given a submonad \mathbb{T} of \mathbb{P} , the category $(V-\mathbf{Cat})^{\mathbb{T}}$ of (Eilenberg-Moore) \mathbb{T} -algebras. Here we collect some known results which will be useful in the following sections. We will denote by $\Phi(\mathbb{T})$ the admissible class of distributors that induces the monad \mathbb{T} (defined in (2.ii)).

The following result, which is valid for any lax idempotent monad \mathbb{T} , asserts that, for any V-category, to be a \mathbb{T} -algebra is a property (see, for instance, [9] and [6]).

Theorem 5.1. Let \mathbb{T} be law idempotent monad on V-Cat.

- (1) For a V-category X, the following assertions are equivalent:
 - (i) $\alpha: TX \to X$ is a \mathbb{T} -algebra structure on X;
 - (ii) there is a V-functor $\alpha \colon TX \to X$ with $\alpha \dashv \eta_X$ and $\alpha \cdot \eta_X = 1_X$;
 - (iii) there is a V-functor $\alpha \colon TX \to X$ such that $\alpha \cdot \eta_X = 1_X$;
 - (iv) $\alpha: TX \to X$ is a split epimorphism in V-Cat.
- (2) If (X, α) and (Y, β) are \mathbb{T} -algebra structures, then every V-functor $f: X \to Y$ satisfies $\beta \cdot Tf \leq f \cdot \alpha$.

Next we formulate characterisations of \mathbb{T} -algebras that can be found in [11, 2], using *injectivity* with respect to certain *embeddings*, and using the existence of certain *weighted colimits*, notions that we recall very briefly in the sequel.

Definition 5.2. [8] A V-functor $f: X \to Y$ is a *T*-embedding if Tf is a left adjoint right inverse; that is, there exists a V-functor Tf_{\sharp} such that $Tf \dashv Tf_{\sharp}$ and $Tf_{\sharp} \cdot Tf = 1_{TX}$.

For each submonad \mathbb{T} of \mathbb{P} , the class $\Phi(\mathbb{T})$ allows us to identify easily the *T*-embeddings.

Proposition 5.3. For a V-functor $h: X \to Y$, the following assertions are equivalent:

(i) h is a T-embedding;

(ii) h is fully faithful and h_* belongs to $\Phi(\mathbb{T})$.

In particular, P-embeddings are exactly the fully faithful V-functors.

Proof: (ii) \Rightarrow (i): Let h be fully faithful with $h_* \in \Phi(\mathbb{T})$. As in the case of the presheaf monad, $\Phi h : \Phi X \to \Phi Y$ has always a right adjoint whenever $h_* \in \Phi(\mathbb{T}), \Phi^{\dashv}h := (-) \cdot h_* \colon \Phi Y \to \Phi X$; that is, for each distributor $\psi : Y \to E$ in $\Phi Y, \Phi^{\dashv}h(\psi) = \psi \cdot h_*$, which is well defined because by hypothesis $h_* \in \Phi(\mathbb{T})$. If h is fully faithful, that is, if $h^* \cdot h_* = (1_X)^*$, then $(\Phi^{\dashv}h \cdot \Phi h)(\varphi) = \varphi \cdot h^* \cdot h_* = \varphi$.

(i) \Rightarrow (ii): If $\Phi^{\dashv}h$ is well-defined, then $y^* \cdot h_*$ belongs to $\Phi(\mathbb{T})$ for every $y \in Y$, hence $h_* \in \Phi(\mathbb{T})$, by 2.1(3), and so $h_* \in \Phi(\mathbb{T})$. Moreover, if $\Phi^{\dashv}h \cdot \Phi h = 1_{\Phi X}$, then in particular $x^* \cdot h^* \cdot h_* = x^*$, for every $x \in X$, which is easily seen to be equivalent to $h^* \cdot h_* = (1_X)^*$.

In V-Dist, given a V-distributor $\varphi \colon (X, a) \longrightarrow (Y, b)$, the functor () $\cdot \varphi$ preserves suprema, and therefore it has a right adjoint $[\varphi, -]$ (since the homsets in V-Dist are complete ordered sets):

$$\mathbf{Dist}(X,Z) \underbrace{\stackrel{[\varphi,-]}{\qquad}}_{()\cdot\varphi} \mathbf{Dist}(Y,Z).$$

For each distributor $\psi \colon X \longrightarrow Z$,

$$\begin{array}{c|c} X \xrightarrow{\psi} Z \\ \varphi \downarrow & \leq \swarrow \\ \varphi \downarrow & \swarrow & [\varphi, \psi] \\ Y \end{array}$$

 $[\varphi, \psi] \colon Y \longrightarrow Z$ is defined by

$$[\varphi, \psi](y, z) = \bigwedge_{x \in X} \hom(\varphi(x, y), \psi(x, z)).$$

- **Definitions 5.4.** (1) Given a V-functor $f: X \to Z$ and a distributor (here called *weight*) $\varphi: X \longrightarrow Y$, a φ -weighted colimit of f (or simply a φ -colimit of f), whenever it exists, is a V-functor $g: Y \to Z$ such that $g_* = [\varphi, f_*]$. One says then that g represents $[\varphi, f_*]$.
 - (2) A V-category Z is called φ -cocomplete if it has a colimit for each weighted diagram with weight $\varphi \colon (X, a) \longrightarrow (Y, b)$; i.e. for each V-functor $f \colon X \to Z$, the φ -colimit of f exists.

(3) Given a class Φ of V-distributors, a V-category Z is called Φ -cocomplete if it is φ -cocomplete for every $\varphi \in \Phi$. When $\Phi = V$ -**Dist**, then Z is said to be cocomplete.

The proof of the following result can be found in [11, 2].

Theorem 5.5. Given a submonad \mathbb{T} of \mathbb{P} , for a V-category X the following assertions are equivalent:

- (i) X is a \mathbb{T} -algebra.
- (ii) X is injective with respect to T-embeddings.
- (iii) X is $\Phi(\mathbb{T})$ -cocomplete.

 $\Phi(\mathbb{T})$ -cocompleteness of a V-category X is guaranteed by the existence of some special weighted colimits, as we explain next. (Here we present very briefly the properties needed. For more information on this topic see [19].)

Lemma 5.6. For a distributor $\varphi \colon X \to Y$ and a V-functor $f \colon X \to Z$, the following assertions are equivalent:

- (i) there exists the φ -colimit of f;
- (ii) there exists the $(\varphi \cdot f^*)$ -colimit of 1_Z ;
- (iii) for each $y \in Y$, there exists the $(y^* \cdot \varphi)$ -colimit of f.

Proof: (i) \Leftrightarrow (ii): It is straightforward to check that

$$[\varphi, f_*] = [\varphi \cdot f^*, (1_Z)_*].$$

(i) \Leftrightarrow (iii): Since $[\varphi, f_*]$ is defined pointwise, it is easily checked that, if g represents $[\varphi, f_*]$, then, for each $y \in Y$, the V-functor $E \xrightarrow{y} Y \xrightarrow{g} Z$ represents $[y^* \cdot \varphi, f_*]$.

Conversely, if, for each $y: E \to Y$, $g_y: E \to Z$ represents $[y^* \cdot \varphi, f_*]$, then the map $g: Y \to Z$ defined by $g(y) = g_y(*)$ is such that $g_* = [\varphi, f_*]$; hence, as stated in Remark 1.3, g is automatically a V-functor.

Corollary 5.7. Given a submonad \mathbb{T} of \mathbb{P} , a V-category X is a \mathbb{T} -algebra if, and only if, $[\varphi, (1_X)_*]$ has a colimit for every $\varphi \in TX$.

Remark 5.8. Given $\varphi \colon X \longrightarrow E$ in TX, in the diagram

20

$$[\varphi, a](*, x) = \bigwedge_{x' \in X} \hom(\varphi(x', *), a(x', x)) = TX(\varphi, x^*).$$

Therefore, if $\alpha: TX \to X$ is a T-algebra structure, then

$$[\varphi, a](*, x) = TX(\varphi, x^*) = X(\alpha(\varphi), x),$$

that is, $[\varphi, a] = \alpha(\varphi)_*$; this means that α assigns to each distributor $\varphi \colon X \longrightarrow E$ the representative of $[\varphi, (1_X)_*]$.

Hence, we may describe the category of T-algebras as follows.

- **Theorem 5.9.** (1) A map $\alpha: TX \to X$ is a \mathbb{T} -algebra structure if, and only if, for each distributor $\varphi: X \longrightarrow E$ in TX, $\alpha(\varphi)_* = [\varphi, (1_X)_*]$.
 - (2) If X and Y are \mathbb{T} -algebras, then a V-functor $f: X \to Y$ is a \mathbb{T} homomorphism if, and only if, f preserves φ -weighted colimits for
 any $\varphi \in TX$, i.e., if $x \in X$ represents $[\varphi, (1_X)_*]$, then f(x) represents $[\varphi \cdot f^*, (1_Y)_*]$.

6. On algebras for submonads of \mathbb{P} : the special case of the formal ball monad

From now on we will study more in detail $(V-\mathbf{Cat})^{\mathbb{T}}$ for special submonads \mathbb{T} of \mathbb{P} . In our first example, the formal ball monad \mathbb{B} , we will need to consider the (co)restriction of \mathbb{B} and \mathbb{P} to $V-\mathbf{Cat}_{sep}$. We point out that the characterisations of \mathbb{T} -algebras of Theorem 5.5 remain valid for these (co)restrictions.

The space of formal balls is an important tool in the study of (quasi-)metric spaces. Given a metric space (X, d) its space of formal balls is simply the collection of all pairs (x, r), where $x \in X$ and $r \in [0, \infty[$. This space can itself be equipped with a (quasi-)metric. Moreover this construction can naturally be made into a monad on the category of (quasi-)metric spaces (cf. [10, 16] and references there).

This monad can readily be generalised to V-categories, using a V-categorical structure in place of the (quasi-)metric. We will start by considering an extended version of the formal ball monad, the *extended formal ball monad* \mathbb{B}_{\bullet} , which we define below.

Definitions 6.1. The extended formal ball monad $\mathbb{B}_{\bullet} = (B_{\bullet}, \eta, \mu)$ is given by the following:

- a functor $B_{\bullet}: V$ -Cat $\to V$ -Cat which maps each V-category X to $B_{\bullet}X$ with underlying set $X \times V$ and

$$B_{\bullet}X((x,r),(y,s)) = \hom(r,X(x,y)\otimes s)$$

and every V-functor $f: X \to Y$ to the V-functor $B_{\bullet}f: B_{\bullet}X \to B_{\bullet}Y$ with $B_{\bullet}f(x,r) = (f(x),r);$

- natural transformations $\eta: 1 \to B_{\bullet}$ and $\mu: B_{\bullet}B_{\bullet} \to B_{\bullet}$ with $\eta_X(x) = (x,k)$ and $\mu_X((x,r),s) = (x,r \otimes s)$, for every V-category $X, x \in X$, $r, s \in V$.

The formal ball monad \mathbb{B} is the submonad of \mathbb{B}_{\bullet} obtained when we only consider balls with radius different from \perp .

Remark 6.2. Note that $\mathbb{B}_{\bullet}X$ is not separated if X has more than one element (for any $x, y \in X$, $(x, \bot) \simeq (y, \bot)$), while, as shown in 6.13, for X separated, separation of $\mathbb{B}X$ depends on an extra property of the quantale V.

Using Corollaries 4.2 and 3.8, it is easy to check that

Proposition 6.3. There is a pointwise fully faithful monad morphism $\sigma: \mathbb{B}_{\bullet} \to \mathbb{P}$. In particular, \mathbb{B}_{\bullet} is lax-idempotent.

Proof: First of all let us check that η satisfies BC*, i.e., for any V-functor $f: X \to Y$,

$$X \xrightarrow{(\eta_X)_*} B_{\bullet} X$$

$$f^* \stackrel{\uparrow}{\downarrow} \ge \stackrel{\downarrow}{\downarrow} (B_{\bullet} f)^*$$

$$Y \xrightarrow{\circ}_{(\eta_Y)_*} B_{\bullet} Y$$

For $y \in Y$, $(x, r) \in B_{\bullet}X$,

$$((B_{\bullet}f)^*(\eta_Y)_*)(y,(x,r)) = B_{\bullet}Y((y,k),(f(x),r)) = Y(y,f(x)) \otimes r$$
$$\leq \bigvee_{z \in X} Y(y,f(z)) \otimes X(z,x) \otimes r$$
$$= \bigvee_{z \in X} Y(y,f(z)) \otimes B_{\bullet}X((z,k),(x,r))$$
$$= ((\eta_X)_*f^*)(y,(x,r)).$$

Then, by Corollary 4.2, for each V-category X, σ_X is defined as in the proof of Theorem 4.1, i.e. for each $(x, r) \in B_{\bullet}X$,

$$\sigma_X(x,r) = B_{\bullet}X((-,k),(x,r)) \colon X \to V;$$

more precisely, for each $y \in X$, $\sigma_X(x,r)(y) = X(y,x) \otimes r$. Moreover, σ_X is fully faithful: for each $(x,r), (y,s) \in B_{\bullet}X$,

$$B_{\bullet}X((x,r),(y,s)) = \hom(r, X(x,y) \otimes s) \ge \hom(X(x,x) \otimes r, X(x,y) \otimes s)$$
$$\ge \bigwedge_{z \in X} \hom(X(z,x) \otimes r, X(z,y) \otimes s) = PX(\sigma(x,r), \sigma(y,s)).$$

It is clear that $\sigma: \mathbb{B}_{\bullet} \to \mathbb{P}$ is not pointwise monic; indeed, if $r = \bot$, then $\sigma_X(x, \bot): X \to E$ is the distributor that is constantly \bot , for any $x \in X$. Still it is interesting to identify the \mathbb{B}_{\bullet} -algebras via the existence of special weighted colimits.

Proposition 6.4. For a V-category X, the following conditions are equivalent:

(i) X has a \mathbb{B}_{\bullet} -algebra structure $\alpha \colon B_{\bullet}X \to X$;

(ii) $(\forall x \in X, r \in V) (\exists x \oplus r \in X) (\forall y \in X) X(x \oplus r, y) = \hom(r, X(x, y));$

(iii) for all $(x, r) \in B_{\bullet}X$, every diagram of the sort

$$\begin{array}{c} X \xrightarrow{(1_X)_*} X \\ \sigma_X(x,r) \downarrow & \leq \checkmark \\ \sigma_X(x,r), (1_X)_* \end{bmatrix} \\ E \end{array}$$

has a (weighted) colimit.

Proof: (i) \Rightarrow (ii): The adjunction $\alpha \dashv \eta_X$ gives, via Remark 1.3,

$$X(\alpha(x,r),y) = B_{\bullet}X((x,r),(y,k)) = \hom(r,X(x,y)).$$

For $x \oplus r := \alpha(x, r)$, condition (ii) follows.

(ii) \Rightarrow (iii): The calculus of the distributor $[\sigma_X(x,r), (1_X)_*]$ shows that it is represented by $x \oplus r$:

$$[\sigma_X(x,r), (1_X)_*](*,y) = \hom(r, X(x,y)).$$

(iii) \Rightarrow (i) For each $(x, r) \in B_{\bullet}X$, let $x \oplus r$ represent $[\sigma_X(x, r), (1_X)_*]$. In case r = k, we choose $x \oplus k = x$ to represent the corresponding distributor (any $x' \simeq x$ would fit here but x is the right choice for our purpose). Then $\alpha \colon B_{\bullet}X \to X$ defined by $\alpha(x, r) = x \oplus r$ is, by construction, left adjoint to η_X , and $\alpha \cdot \eta_X = 1_X$.

The V-categories X satisfying (iii), and therefore satisfying the above (equivalent) conditions, are called *tensored*. This notion was originally introduced in the article [1] by Borceux and Kelly for general V-categories (for our special V-categories we suggest to consult [19]).

Note that, thanks to condition (ii), we get the following characterisation of tensored categories.

Corollary 6.5. A V-category X is tensored if, and only if, for every $x \in X$,

$$X \xrightarrow[x\oplus -]{X(x,-)} V$$

is an adjunction in V-Cat.

We now shift our attention to the formal ball monad \mathbb{B} . The characterisation of \mathbb{B}_{\bullet} -algebras given by the Proposition 6.4 may be adapted to obtain a characterisation of \mathbb{B} -algebras. Indeed, the only difference is that a \mathbb{B} -algebra structure $BX \to X$ does not include the existence of $x \oplus \bot$ for $x \in X$, which, when it exists, is the top element with respect to the order in X. Moreover, the characterisation of \mathbb{B} -algebras given in [10, Proposition 3.4] can readily be generalised to V-**Cat** as follows.

Proposition 6.6. For a V-functor α : $BX \to X$ the following conditions are equivalent.

- (i) α is a \mathbb{B} -algebra structure.
- (ii) For every $x \in X$, $r, s \in V \setminus \{\bot\}$, $\alpha(x, k) = x$ and $\alpha(x, r \otimes s) = \alpha(\alpha(x, r), s)$.
- (iii) For every $x \in X$, $r \in V \setminus \{\bot\}$, $\alpha(x,k) = x$ and $X(x,\alpha(x,r)) \ge r$.
- (iv) For every $x \in X$, $\alpha(x,k) = x$.

Proof: By definition of \mathbb{B} -algebra, (i) \Leftrightarrow (ii), while (i) \Leftrightarrow (iv) follows from Theorem 5.1, since \mathbb{B} is lax-idempotent. (iii) \Rightarrow (iv) is obvious, and so it remains to prove that, if α is a \mathbb{B} -algebra structure, then $X(x, \alpha(x, r)) \geq r$, for $r \neq \bot$. But

 $X(x, \alpha(x, r)) \ge r \iff k \le \hom(r, X(x, \alpha(x, r)) = X(\alpha(x, r), \alpha(x, r)),$ because $\alpha(x, -) \dashv X(x, -)$ by Corollary 6.5.

Since we know that, if X has a \mathbb{B} -algebra structure α , then $\alpha(x, r) = x \oplus r$, we may state the conditions above as follows.

Corollary 6.7. If $BX \xrightarrow{\oplus} X$ is a \mathbb{B} -algebra structure, then, for $x \in X$, $r, s \in V \setminus \{\bot\}$:

(1) $x \oplus k = x;$ (2) $x \oplus (r \otimes s) = (x \oplus r) \oplus s;$ (3) $X(x, x \oplus r) \ge r.$

Lemma 6.8. Let X and Y be V-categories equipped with \mathbb{B} -algebra structures $BX \xrightarrow{-\oplus -} X$ and $BY \xrightarrow{-\oplus -} Y$. Then a map $f : X \to Y$ is a V-functor if and only if

f is monotone and $f(x) \oplus r \leq f(x \oplus r)$,

for all $(x,r) \in BX$.

Proof: Assume that f is a V-functor. Then it is, in particular, monotone, and, from Theorem 5.1 we know that $f(x) \oplus r \leq f(x \oplus r)$.

Conversely, assume that f is monotone and that $f(x) \oplus r \leq f(x \oplus r)$, for all $(x, r) \in BX$. Let $x, x' \in X$. Then $x \oplus X(x, x') \leq x'$ since $(x \oplus -) \dashv X(x, -)$ by Corollary 6.5, and then

$$f(x) \oplus X(x, x') \le f(x \oplus X(x, x'))$$
 (by hypothesis)
$$\le f(x')$$
 (by monotonicity of f).

Now, using the adjunction $f(x) \oplus - \dashv Y(f(x), -))$, we conclude that

$$X(x, x') \le Y(f(x), f(x')).$$

The following results are now immediate:

Corollary 6.9. (1) Let $(X, \oplus), (Y, \oplus)$ be \mathbb{B} -algebras. Then a map $f: X \to Y$ is a \mathbb{B} -algebra morphism if and only if, for all $(x, r) \in BX$,

f is monotone and $f(x \oplus r) = f(x) \oplus r$.

(2) Let $(X, \oplus), (Y, \oplus)$ be \mathbb{B} -algebras. Then a V-functor $f: X \to Y$ is a \mathbb{B} -algebra morphism if and only if, for all $(x, r) \in BX$,

$$f(x \oplus r) \le f(x) \oplus r.$$

Example 6.10. If $X \subseteq [0, \infty]$, with the V-category structure inherited from hom, then

(1) X is a \mathbb{B}_{\bullet} -algebra if, and only if, X = [a, b] for some $a, b \in [0, \infty]$.

(2) X is a \mathbb{B} -algebra if, and only if, X =]a, b] or X = [a, b] for some $a, b \in [0, \infty]$.

Let X be a \mathbb{B}_{\bullet} -algebra. From Proposition 6.4 one has

$$(\forall x \in X, r \in [0, \infty])(\exists x \oplus r \in X)(\forall y \in X) \ y \ominus (x \oplus r) = (y \ominus x) \ominus r = y \ominus (x+r).$$

This implies that, if $y \in X$, then $y > x \otimes r \Leftrightarrow y > x + r$. Therefore, if $x + r \in X$, then $x \oplus r = x + r$, and, moreover, X is an interval: given $x, y, z \in [0, \infty]$ with x < y < z and $x, z \in X$, then, with $r = y - x \in [0, \infty]$, x + r = y must belong to X:

$$z \ominus (x \oplus r) = z - (x + r) = z - y > 0 \implies z \ominus (x \oplus r) = z - (x \oplus r) = z - y$$
$$\Leftrightarrow y = x \oplus r \in X.$$

In addition, X must have bottom element (that is a maximum with respect to the classical order of the real half-line): for any $x \in X$ and $b = \sup X$, $x \oplus (b - x) = \sup\{z \in X; z \leq b\} = b \in X$. For $r = \infty$ and any $x \in X$, $x \oplus \infty$ must be the top element of X, so X = [a, b] for $a, b \in [0, \infty]$.

Conversely, if X =]a, b], for $x \in X$ and $r \in [0, \infty[$, define $x \oplus r = x + r$ if $x + r \in X$ and $x \oplus r = b$ elsewhere. It is easy to check that condition (ii) of Proposition 6.4 is satisfied for $r \neq \infty$.

Analogously, if X = [a, b], for $x \in X$ and $r \in [0, \infty]$, we define $x \oplus r$ as before in case $r \neq \infty$ and $x \oplus \infty = a$.

As we will see, (co)restricting \mathbb{B} to V-**Cat**_{sep} will allows us to obtain some interesting results. Unfortunately X being separated does not entail BX being so. Because of this we will need to restrict our attention to the *cancellative* quantales which we define and characterize next.

Definition 6.11. A quantale V is said to be *cancellative* if

$$\forall r, s \in V, r \neq \bot : r = s \otimes r \implies s = k.$$
(6.i)

Remark 6.12. We point out that this notion of cancellative quantale does not coincide with the notion of cancellable ccd quantale introduced in [4]. On the one hand cancellative quantales are quite special, since, for instance, when V is a locale, and so with $\otimes = \wedge$ is a quantale, V is not cancellative since condition (6.i) would mean, for $r \neq \bot$, $r = s \wedge r \Rightarrow s = \top$. On the other hand, $[0,1]_{\odot}$, that is [0,1] with the usual order and having as tensor product the Łukasiewicz sum, is cancellative but not cancellable. In addition we remark that every *value quantale* [16] is cancellative.

26

Proposition 6.13. Let V be an integral quantale. The following assertions are equivalent:

- (i) BV is separated;
- (ii) V is cancellative;
- (iii) If X is separated then BX is separated.

Proof: (i) \Rightarrow (ii): Let $r, s \in V, r \neq \bot$ and $r = s \otimes r$. Note that

 $BV((k,r),(s,r)) = \hom(r,\hom(k,s)\otimes r) = \hom(r,s\otimes r) = \hom(r,r) = k$ and

$$BV((s,r),(k,r)) = \hom(r,\hom(s,k) \otimes r) = \hom(r,\hom(s,k) \otimes s \otimes r)$$
$$= \hom(s \otimes r, s \otimes r) = k.$$

Therefore, since BV is separated, (s, r) = (k, r) and it follows that s = k.

(ii)
$$\Rightarrow$$
 (iii): If $(x, r) \simeq (y, s)$ in BX , then
 $BX((x, r), (y, s)) = k \Leftrightarrow r \leq X(x, y) \otimes s$, and
 $BX((y, s), (x, r)) = k \Leftrightarrow s \leq X(y, x) \otimes r$.

Therefore $r \leq s$ and $s \leq r$, that is r = s. Moreover, since $r \leq X(x, y) \otimes r \leq r$ we have that X(x, y) = k. Analogously, X(y, x) = k and we conclude that x = y.

(iii) \Rightarrow (i): Since V is separated it follows immediately from (iii) that BV is separated.

We can now show that \mathbb{B} is a submonad of \mathbb{P} in the adequate setting. From now on we will be working with a cancellative and integral quantale V, and \mathbb{B} will be the (co)restriction of the formal ball monad to V-Cat_{sep}.

Proposition 6.14. Let V be a cancellative and integral quantale. Then \mathbb{B} is a submonad of \mathbb{P} in V-Cat_{sep}.

Proof: Thanks to Proposition 6.3, all that remains is to show that σ_X is injective on objects, for any V-category X. Let $\sigma(x, r) = \sigma(y, s)$, or, equivalently, $X(-, x) \otimes r = X(-, y) \otimes s$. Then, in particular,

$$r = X(x, x) \otimes r = X(x, y) \otimes s \leq s = X(y, y) \otimes s = X(y, x) \otimes r \leq r$$

Therefore r = s and X(y, x) = X(x, y) = k. We conclude that (x, r) = (y, s).

Thanks to Theorem 5.5 B-algebras are characterized via an injectivity property with respect to special embeddings. We end this section studying in more detail these embeddings. Since we are working in V-**Cat**_{sep}, a *B*-embedding $h: X \to Y$, being fully faithful, is injective on objects. Therefore, for simplicity, we may think of it as an inclusion. With $Bh_{\sharp}: BY \to BX$ the right adjoint and left inverse of $Bh: BX \to BY$, we denote $Bh_{\sharp}(y,r)$ by (y_r, r_y) .

Lemma 6.15. Let $h: X \to Y$ be a *B*-embedding. Then:

$$(1) (\forall y \in Y) (\forall x \in X) (\forall r \in V) BY((x,r), (y,r)) = BY((x,r), (y_r, r_y));$$

$$(2) (\forall y \in Y): k_y = Y(y_k, y);$$

$$(3) (\forall y \in Y) (\forall x \in X): Y(x, y) = Y(x, y_k) \otimes Y(y_k, y).$$

Proof: (1) From $Bh_{\sharp} \cdot Bh = 1_{BX}$ and $Bh \cdot Bh_{\sharp} \leq 1_{BY}$ one gets, for any $(y, r) \in BY$, $(y, r) \leq (y_r, r_y)$, i.e. $BY((y, r), (y_r, r_y)) = \hom(r_y, Y(y_r, y) \otimes r) = k$. Therefore, for all $x \in X, y \in Y, r \in V$,

$$BY((x,r), (y,r)) \leq BX((x,r), (y_r, r_y)) = BY((x,r), (y_r, r_y))$$

= $BY((x,r), (y_r, r_y)) \otimes BY((y_r, r_y), (y,r))$
 $\leq BY((x,r), (y,r)),$

that is

$$BY((x, r), (y, r)) = BY((x, r), (y_r, r_y)).$$

(2) Let $y \in Y$. Then

$$Y(y_k, y) = BY((y_k, k), (y, k)) = BY((y_k, k), (y_k, k_y)) = k_y$$

(3) Let $y \in Y$ and $x \in X$. Then

$$Y(x,y) = BY((x,k),(y,k)) = BY((x,k),(y_k,k_y))$$
$$= Y(x,y_k) \otimes k_y = Y(x,y_k) \otimes Y(y_k,y).$$

Proposition 6.16. Let X and Y be V-categories. A V-functor $h: X \to Y$ is a B-embedding if and only if h is fully faithful and

$$(\forall y \in Y) \ (\exists ! z \in X) \ (\forall x \in X) \quad Y(x, y) = Y(x, z) \otimes Y(z, y).$$
(6.ii)

Proof: If h is a B-embedding, then it is fully faithful by Proposition 5.3 and, for each $y \in Y$, $z = y_k \in X$ fulfils the required condition. To show that such z is unique, assume that $z, z' \in X$ verify the equality of condition (6.ii). Then

$$Y(z,y) = Y(z,z') \otimes Y(z',y) \le Y(z',y) = Y(z',z) \otimes Y(z,y) \le Y(z,y),$$

and therefore, because V is cancellative, Y(z', z) = k; analogously one proves that Y(z, z') = k, and so z = z' because Y is separated.

To prove the converse, for each $y \in Y$ we denote by \overline{y} the only $z \in X$ satisfying (6.ii), and define

$$Bh_{\sharp}(y,r) = (\overline{y}, Y(\overline{y}, y) \otimes r).$$

When $x \in X$, it is immediate that $\overline{x} = x$, and so $Bh_{\sharp} \cdot Bh = 1_{BX}$. Using Remark 1.3, to prove that Bh_{\sharp} is a V-functor and $Bh \dashv Bh_{\sharp}$ it is enough to show that

$$BX((x,r), Bh_{\sharp}(y,s)) = BY(Bh(x,r), (y,s)),$$

for every $x \in X, y \in Y, r, s \in V$. By definition of Bh_{\sharp} this means

$$BX((x,r),(\overline{y},Y(\overline{y},y)\otimes s))=BY((x,r),(y,s)),$$

that is,

$$\hom(r, Y(x, \overline{y}) \otimes Y(\overline{y}, y) \otimes s) = \hom(r, Y(x, y) \otimes s),$$

which follows directly from (6.ii).

Corollary 6.17. In Met, if $X \subseteq [0, \infty]$, then its inclusion $h: X \to [0, \infty]$ is a *B*-embedding if, and only if, X is a closed interval.

Proof: If $X = [x_0, x_1]$, with $x_0, x_1 \in [0, \infty]$, $x_0 \leq x_1$, then it is easy to check that, defining $\overline{y} = x_0$ if $y \leq x_0$, $\overline{y} = y$ if $y \in X$, and $\overline{y} = x_1$ if $y \geq x_1$, for every $y \in [0, \infty]$, condition (6.ii) is fulfilled.

We divide the proof of the converse in two cases:

(1) If X is not an interval, i.e. if there exists $x, x' \in X, y \in [0, \infty] \setminus X$ with x < y < x', then either $\overline{y} < y$, and then

$$0 = y \ominus x' \neq (y \ominus x') + (y \ominus \overline{y}) = y - \overline{y},$$

or $\overline{y} > y$, and then

$$y - x = y \ominus x \neq (\overline{y} \ominus x) + (y \ominus \overline{y}) = \overline{y} - x.$$

(2) If $X = [x_0, x_1]$ and $y > x_1$, then there exists $x \in X$ with $\overline{y} < x < y$, and so

$$y - x = y \ominus x \neq (\overline{y} \ominus x) + (y \ominus \overline{y}) = y - \overline{y}.$$

An analogous argument works for $X = [x_0, x_1]$.

7. On algebras for submonads of \mathbb{P} and their morphisms

In the following $\mathbb{T} = (T, \mu, \eta)$ is a submonad of the presheaf monad $\mathbb{P} = (P, m, y)$ in V-**Cat**_{sep} For simplicity we will assume that the injective and fully faithful components of the monad morphism $\sigma : T \to P$ are inclusions. Theorem 5.1 gives immediately that:

Proposition 7.1. Let (X, a) be a V-category and $\alpha : TX \to X$ be a V-functor. The following are equivalent:

(1) (X, α) is a \mathbb{T} -algebra; (2) $\forall x \in X : \alpha(x^*) = x$.

We would like to identify the T-algebras directly, as we did for \mathbb{B}_{\bullet} or \mathbb{B} in Proposition 6.4. First of all, we point out that a T-algebra structure $\alpha: TX \to X$ must satisfy, for every $\varphi \in TX$ and $x \in X$,

$$X(\alpha(\varphi), x) = TX(\varphi, x^*),$$

and so, in particular,

$$\alpha(\varphi) \le x \iff \varphi \le x^*;$$

hence α must assign to each $\varphi \in TX$ an $x_{\varphi} \in X$ so that

$$x_{\varphi} = \min\{x \in X \, ; \, \varphi \le x^*\}$$

Moreover, for such map $\alpha \colon TX \to X$, α is a V-functor if, and only if,

$$\begin{aligned} (\forall \varphi, \rho \in TX) \ TX(\varphi, \rho) &\leq X(x_{\varphi}, x_{\rho}) = TX(X(-, x_{\varphi}), X(-, x_{\rho})) \\ \Leftrightarrow (\forall \varphi, \rho \in TX) \ TX(\varphi, \rho) &\leq \bigwedge_{x \in X} \hom(X(x, x_{\varphi}), X(x, x_{\rho})) \\ \Leftrightarrow (\forall x \in X) \ (\forall \varphi, \rho \in TX) \ X(x, x_{\varphi}) \otimes TX(\varphi, \rho) &\leq X(x, x_{\rho}). \end{aligned}$$

Proposition 7.2. A V-category X is a \mathbb{T} -algebra if, and only if:

(1) for all
$$\varphi \in TX$$
 there exists $\min\{x \in X; \varphi \leq x^*\};$
(2) for all $\varphi, \rho \in TX$ and for all $x \in X, X(x, x_{\varphi}) \otimes TX(\varphi, \rho) \leq X(x, x_{\rho}).$

We remark that condition (2) can be equivalently stated as:

(2') for each $\rho \in TX$, the distributor $\rho_1 = \bigvee_{\varphi \in TX} X(-, x_{\varphi}) \otimes TX(\varphi, \rho)$ satisfies $x_{\rho_1} = x_{\rho}$, which is the condition corresponding to condition (2) of Corollary 6.7.

Finally, as for the formal ball monad, Theorem 5.1 gives the following characterisation of T-algebra morphisms.

Corollary 7.3. Let $(X, \alpha), (Y, \beta)$ be \mathbb{T} -algebras. Then a V-functor $f : X \to Y$ is a \mathbb{T} -algebra morphism if and only if

$$(\forall \varphi \in TX) \ \beta(\varphi \cdot f^*) \ge f(\alpha(\varphi)).$$

Example 7.4. The Lawvere monad. Among the examples presented in [2] there is a special submonad of \mathbb{P} which is inspired by the crucial remark of Lawvere in [17] that Cauchy completeness for metric spaces is a kind of cocompleteness for V-categories. Indeed, the submonad \mathbb{L} of \mathbb{P} induced by

 $\Phi = \{ \varphi \colon X \longrightarrow Y ; \varphi \text{ is a right adjoint } V \text{-distributor} \}$

has as \mathbb{L} -algebras the Lawvere complete V-categories. These were studied also in [3], and in [14] under the name L-complete V-categories. When $V = [0, \infty]_+$, using the usual order in $[0, \infty]$, for distributors $\varphi \colon X \longrightarrow E$, $\psi \colon E \longrightarrow X$ to be adjoint

means that

$$(\forall x, x' \in X) \ X(x, x') \le \varphi(x) + \psi(x'), \\ 0 \ge \inf_{x \in X} (\psi(x) + \varphi(x)).$$

This means in particular that

$$(\forall n \in \mathbb{N}) \ (\exists x_n \in X) \ \psi(x_n) + \varphi(x_n) \le \frac{1}{n},$$

and, moreover,

$$X(x_n, x_m) \le \varphi(x_n) + \psi(x_m) \le \frac{1}{n} + \frac{1}{m}.$$

This defines a Cauchy sequence $(x_n)_n$, so that

 $(\forall \varepsilon > 0) (\exists p \in \mathbb{N}) (\forall n, m \in \mathbb{N}) n \ge p \land m \ge p \Rightarrow X(x_n, x_m) + X(x_m, x_n) < \varepsilon.$

Hence, any such pair induces a (equivalence class of) Cauchy sequence(s) $(x_n)_n$, and a representative for

is nothing but a limit point for $(x_n)_n$. Conversely, it is easily checked that every Cauchy sequence $(x_n)_n$ in X gives rise to a pair of adjoint distributors

$$\varphi = \lim_{n} X(-, x_n) \text{ and } \psi = \lim_{n} X(x_n, -).$$

We point out that the L-embeddings, i.e. the fully faithful and fully dense V-functors $f: X \to Y$ do not coincide with the L-dense ones (so that f_* is a right adjoint). For instance, assuming for simplicity that V is integral, a V-functor $y: E \to X$ ($y \in X$) is fully dense if and only if $y \simeq x$ for all $x \in X$, while it is an L-embedding if and only if $y \leq x$ for all $x \in X$. Indeed, $y: E \to X$ is L-dense if, and only if,

- there is a distributor $\varphi \colon X \longrightarrow E$, i.e.

$$(\forall x, x' \in X) \ X(x, x') \otimes \varphi(x') \le \varphi(x),$$
 (7.i)

such that

 $-k \ge \varphi \cdot y_*$, which is trivially true, and $a \le y_* \cdot \varphi$, i.e.

$$(\forall x, x' \in X) \ X(x, x') \le \varphi(x) \otimes X(y, x').$$
 (7.ii)

Since (7.i) follows from (7.ii),

$$y \text{ is } \mathbb{L}\text{-dense} \iff (\forall x, x' \in X) \ X(x, x') \leq \varphi(x) \otimes X(y, x').$$

In particular, when x = x', this gives $k \leq \varphi(x) \otimes X(y, x)$, and so we can conclude that, for all $x \in X$, $y \leq x$ and $\varphi(x) = k$. The converse is also true; that is

 $y \text{ is } \mathbb{L}\text{-dense} \iff (\forall x \in X) \ y \leq x.$

Still, it was shown in [14] that injectivity with respect to fully dense and fully faithful V-functors (called L-dense in [14]) characterizes also the \mathbb{L} -algebras.

References

- F. Borceux, G.M. Kelly, A notion of limit for enriched categories. Bull. Austral. Math. Soc. 12 (1975), 49–72.
- [2] M.M. Clementino, D. Hofmann, Relative injectivity as cocompleteness for a class of distributors. *Theory Appl. Categ.* 21 (2008), 210–230.
- [3] M.M. Clementino, D. Hofmann, Lawvere completeness in topology. Appl. Categ. Structures 17 (2009), 175–210.
- [4] M.M. Clementino, D. Hofmann, The rise and fall of V-functors. Fuzzy Sets and Systems 321 (2017), 29–49.
- [5] M.M. Clementino, D. Hofmann, G. Janelidze, The monads of classical algebra are seldom weakly cartesian. J. Homotopy Relat. Struct. 9 (2014), 175–197.
- [6] M.M. Clementino, I. López Franco, Lax orthogonal factorisations in ordered structures. *Theory Appl. Categ.* 35, (2020), 1379–1423.
- [7] S. Eilenberg and G. Max Kelly. Closed categories. In Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965), pages 421–562. Springer, New York, 1966.
- [8] M. Escardó, Properly injective spaces and function spaces. Topology Appl. 89 (1998), 75–120.
- [9] M. Escardó, R. Flagg, Semantic domains, injective spaces and monads. *Electr. Notes in Theor. Comp. Science* 20, electronic paper 15 (1999).
- [10] J. Goubault-Larrecq, Formal ball monads. Topology Appl. 263 (2019), 372–391.
- [11] D. Hofmann, Injective spaces via adjunction. J. Pure Appl. Algebra 215 (2011), 283–302.
- [12] D. Hofmann, P. Nora, Hausdorff coalgebras. Appl. Categ. Structures 28 (2020), 773–806.
- [13] D. Hofmann, C.D. Reis, Probabilistic metric spaces as enriched categories, Fuzzy Sets and Systems 210 (2013), 1–21.
- [14] D. Hofmann, W. Tholen, Lawvere completion and separation via closure, Appl. Categ. Structures 18 (2010), 259–287.
- [15] G. M. Kelly. Basic concepts of enriched category theory, volume 64 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1982. Republished in: Reprints in Theory and Applications of Categories. No. 10 (2005), 1–136.
- [16] M. Kostanek, P. Waszkiewicz, The formal ball model for Q-categories. Math. Structures Comput. Sci. 21 (2011), 41–64.
- [17] F.W. Lawvere, Metric spaces, generalized logic, and closed categories. Rend. Semin. Mat. Fis. Milano, 43 (1973), 135–166. Republished in: Reprints in Theory and Applications of Categories, No. 1 (2002), 1–37.
- [18] E. Manes, Taut monads and T0-spaces. *Theoret. Comput. Sci.* **275** (2002), 79–109.
- [19] I. Stubbe, Categorical structures enriched in a quantaloid: categories, distributors and functors. Theory Appl. Categ. 14 (2005), 1–45.

MARIA MANUEL CLEMENTINO

UNIVERSITY OF COIMBRA, CMUC, DEPARTMENT OF MATHEMATICS, 3001-501 COIMBRA, PORTUGAL *E-mail address*: mmc@mat.uc.pt

CARLOS FITAS

UNIVERSITY OF COIMBRA, CMUC, DEPARTMENT OF MATHEMATICS, 3001-501 COIMBRA, PORTUGAL *E-mail address*: cmafitas@gmail.com