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Introduction
Having as guideline Lawvere’s point of view that it is worth to regard metric

spaces as categories enriched in the extended real half-line [0,∞]+ (see [17]),
we regard both the formal ball monad and the monad that identifies Cauchy
complete spaces as its algebras – which we call here the Lawvere monad – as
submonads of the presheaf monad on the category Met of [0,∞]+-enriched
categories. This leads us to the study of general presheaf submonads on the
category of V -enriched categories, for a given quantale V .

Here we expand on known general characterisations of presheaf submonads
and their algebras, and introduce a new ingredient – conditions of Beck-
Chevalley type – which allows us to identify properties of functors and natural
transformations, and, most importantly, contribute to a new facet of the
behaviour of presheaf submonads.

In order to do that, after introducing the basic concepts needed to the study
of V -categories in Section 1, Section 2 presents the presheaf monad and a
characterisation of its submonads using admissible classes of V -distributors
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which is based on [2]. Next we introduce the already mentioned Beck-
Chevalley conditions (BC*) which resemble those discussed in [5], with V -
distributors playing the role of V -relations. In particular we show that lax
idempotency of a monad T on V -Cat can be identified via a BC* condition,
and that the presheaf monad satisfies fully BC*. This leads to the use of
BC* to present a new characterisation of presheaf submonads in Section 4.

The remaining sections are devoted to the study of the Eilenberg-Moore
category induced by presheaf submonads. In Section 5, based on [2], we de-
tail the relationship between the algebras, (weighted) cocompleteness, and
injectivity. Next we focus on the algebras and their morphisms, first for the
formal ball monad, and later for a general presheaf submonad. We end by
presenting the relevant example of the presheaf submonad whose algebras are
the so-called Lawvere complete V -categories [3], which, when V = [0,∞]+,
are exactly the Cauchy complete (generalised) metric spaces, while their mor-
phisms are the V -functors which preserve the limits for Cauchy sequences.

Acknowledgement. We are grateful to Dirk Hofmann for useful discussions
concerning the last example.

1. Preliminaries
Our work focus on V -categories (or V -enriched categories, cf. [7, 17, 15])

in the special case of V being a quantale.
Throughout V is a commutative and unital quantale; that is, V is a com-

plete lattice endowed with a symmetric tensor product ⊗, with unit k 6= ⊥,
commuting with joins, so that it has a right adjoint hom; this means that,
for u, v, w ∈ V ,

u⊗ v ≤ w ⇔ v ≤ hom(u,w).

As a category, V is a complete and cocomplete (thin) symmetric monoidal
closed category.

Definition 1.1. A V -category is a pair (X, a) where X is a set and a : X ×
X → V is a map such that:

(R) for each x ∈ X, k ≤ a(x, x);
(T) for each x, x′, x′′ ∈ X, a(x, x′)⊗ a(x′, x′′) ≤ a(x, x′′).

If (X, a), (Y, b) are V -categories, a V -functor f : (X, a) → (Y, b) is a map
f : X → Y such that

(C) for each x, x′ ∈ X, a(x, x′) ≤ b(f(x), f(x′)).
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The category of V -categories and V -functors will be denoted by V -Cat.
Sometimes we will use the notation X(x, y) = a(x, y) for a V -category (X, a)
and x, y ∈ X.

We point out that V has itself a V -categorical structure, given by the right
adjoint to ⊗, hom; indeed, u⊗k ≤ u ⇒ k ≤ hom(u, u), and u⊗hom(u, u′)⊗
hom(u′, u′′) ≤ u′ ⊗ hom(u′, u′′) ≤ u′′ gives that hom(u, u′) ⊗ hom(u′, u′′) ≤
hom(u, u′′). Moreover, for every V -category (X, a), one can define its opposite
V -category Xop = (X, a◦), with a◦(x, x′) = a(x′, x) for all x, x′ ∈ X.

Examples 1.2. (1) For V = 2 = ({0 < 1},∧, 1), a 2-category is an or-
dered set (not necessarily antisymmetric) and a 2-functor is a mono-
tone map. We denote 2-Cat by Ord.

(2) The lattice V = [0,∞] ordered by the “greater or equal” relation
≥ (so that r ∧ s = max{r, s}, and the supremum of S ⊆ [0,∞] is
given by inf S) with tensor ⊗ = + will be denoted by [0,∞]+. A
[0,∞]+-category is a (generalised) metric space and a [0,∞]+-functor
is a non-expansive map (see [17]). We denote [0,∞]+-Cat by Met.
We note that

hom(u, v) = v 	 u := max{v − u, 0},

for all u, v ∈ [0,∞].
If instead of + one considers the tensor product ∧, then [0,∞]∧-Cat

is the category UMet of ultrametric spaces and non-expansive maps.
(3) The complete lattice [0, 1] with the usual “less or equal” relation ≤

is isomorphic to [0,∞] via the map [0, 1] → [0,∞], u 7→ − ln(u)
where − ln(0) = ∞. Under this isomorphism, the operation + on
[0,∞] corresponds to the multiplication ∗ on [0, 1]. Denoting this
quantale by [0, 1]∗, one has [0, 1]∗-Cat isomorphic to the category
Met = [0,∞]+-Cat of (generalised) metric spaces and non-expansive
maps.

Since [0, 1] is a frame, so that finite meets commute with infinite
joins, we can also consider it as a quantale with ⊗ = ∧. The category
[0, 1]∧-Cat is isomorphic to the category UMet.

Another interesting tensor product in [0, 1] is given by the  Lukasiewicz
tensor � where u�v = max(0, u+v−1); here hom(u, v) = min(1, 1−
u+ v). Then [0, 1]�-Cat is the category of bounded-by-1 (generalised)
metric spaces and non-expansive maps.
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(4) We consider now the set

∆ = {ϕ : [0,∞]→ [0, 1] | for all α ∈ [0,∞]: ϕ(α) =
∨
β<α

ϕ(β)},

of distribution functions. With the pointwise order, it is a complete
lattice. For ϕ, ψ ∈ ∆ and α ∈ [0,∞], define ϕ⊗ ψ ∈ ∆ by

(ϕ⊗ ψ)(α) =
∨

β+γ≤α

ϕ(β) ∗ ψ(γ).

Then ⊗ : ∆×∆→ ∆ is associative and commutative, and

κ : [0,∞]→ [0, 1], α 7→

{
0 if α = 0,

1 else

is a unit for ⊗. Finally, ψ ⊗ − : ∆ → ∆ preserves suprema since,
for all u ∈ [0, 1], u ∗ − : [0, 1] → [0, 1] preserves suprema. A ∆-
category is a (generalised) probabilistic metric space and a ∆-functor
is a probabilistic non-expansive map (see [13] and references there).

We will also make use of two additional categories we describe next, the
category V -Rel, of sets and V -relations, and the category V -Dist, of V -
categories and V -distributors.

Objects of V -Rel are sets, while morphisms are V -relations, i.e., if X and
Y are sets, a V -relation r : X−→7 Y is a map r : X × Y → V . Composition
of V -relations is given by relational composition, so that the composite of
r : X−→7 Y and s : Y−→7 Z is given by

(s · r)(x, z) =
∨
y∈Y

r(x, y)⊗ s(y, z),

for every x ∈ X, z ∈ Z. Identities in V -Cat are simply identity relations,
with 1X(x, x′) = k if x = x′ and 1X(x, x′) = ⊥ otherwise. The category
V -Rel has an involution ( )◦, assigning to each V -relation r : X−→7 Y the
V -relation r◦ : Y−→7 X defined by r◦(y, x) = r(x, y), for every x ∈ X, y ∈ Y .

Since every map f : X → Y can be thought as a V -relation through its
graph f◦ : X × Y → V , with f◦(x, y) = k if f(x) = y and f◦(x, y) = ⊥
otherwise, there is an injective on objects and faithful functor Set→ V -Rel.
When no confusion may arise, we use also f to denote the V -relation f◦.
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The category V -Rel is a 2-category, when equipped with the 2-cells given
by the pointwise order; that is, for r, r′ : X−→7 Y , one defines r ≤ r′ if, for
all x ∈ X, y ∈ Y , r(x, y) ≤ r′(x, y). This gives us the possibility of studying
adjointness between V -relations. We note in particular that, if f : X → Y is
a map, then f◦ · f ◦ ≤ 1Y and 1X ≤ f ◦ · f◦, so that f◦ a f ◦.

Objects of V -Dist are V -categories, while morphisms are V -distributors
(also called V -bimodules, or V -profunctors); i.e., if (X, a) and (Y, b) are V -
categories, a V -distributor – or, simply, a distributor – ϕ : (X, a)−→◦ (Y, b) is
a V -relation ϕ : X−→7 Y such that ϕ · a ≤ ϕ and b · ϕ ≤ ϕ (in fact ϕ · a = ϕ
and b · ϕ = ϕ since the other inequalities follow from (R)). Composition of
distributors is again given by relational composition, while the identities are
given by the V -categorical structures, i.e. 1(X,a) = a. Moreover, V -Dist
inherits the 2-categorical structure from V -Rel.

Each V -functor f : (X, a) → (Y, b) induces two distributors,
f∗ : (X, a)−→◦ (Y, b) and f ∗ : (Y, b)−→◦ (X, a), defined by f∗(x, y) = Y (f(x), y)
and f ∗(y, x) = Y (y, f(x)), that is, f∗ = b · f◦ and f ∗ = f ◦ · b. These assign-
ments are functorial, as we explain below.

First we define 2-cells in V -Cat: for f, f ′ : (X, a) → (Y, b) V -functors,
f ≤ f ′ when f ∗ ≤ (f ′)∗ as distributors, so that

f ≤ f ′ ⇔ ∀x ∈ X, y ∈ Y, Y (y, f(x)) ≤ Y (y, f ′(x)).

V -Cat is then a 2-category, and we can define two 2-functors

( )∗ : V -Catco −→ V -Dist and ( )∗ : V -Catop −→ V -Dist
X 7−→ X X 7−→ X
f 7−→ f∗ f 7−→ f ∗

Note that, for any V -functor f : (X, a)→ (Y, b),

f∗ · f ∗ = b · f◦ · f ◦ · b ≤ b · b = b and f ∗ · f∗ = f ◦ · b · b · f◦ ≥ f ◦ · f◦ · a ≥ a;

hence every V -functor induces a pair of adjoint distributors, f∗ a f ∗. A V -
functor f : X → Y is said to be fully faithful if f ∗ · f∗ = a, i.e. X(x, x′) =
Y (f(x), f(x′)) for all x, x′ ∈ X, while it is fully dense if f∗ · f ∗ = b, i.e.
Y (y, y′) =

∨
x∈X Y (y, f(x)) ⊗ Y (f(x), y′), for all y, y′ ∈ Y . A fully faithful

V -functor f : X → Y does not need to be an injective map; it is so in case
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X and Y are separated V -categories (as defined below).

Remark 1.3. In V -Cat adjointness between V -functors

Y >

g
**

f

jj X

can be equivalently expressed as:

f a g ⇔ f∗ = g∗ ⇔ g∗ a f ∗ ⇔ (∀x ∈ X) (∀y ∈ Y )X(x, g(y)) = Y (f(x), y).

In fact the latter condition encodes also V -functoriality of f and g; that is,
if f : X → Y and g : Y → X are maps satisfying the condition

(∀x ∈ X) (∀y ∈ Y ) X(x, g(y)) = Y (f(x), y),

then f and g are V -functors, with f a g.
Furthermore, it is easy to check that, given V -categories X and Y , a map

f : X → Y is a V -functor whenever f∗ is a distributor (or whenever f ∗ is a
distributor).

The order defined on V -Cat is in general not antisymmetric. For V -
functors f, g : X → Y , one says that f ' g if f ≤ g and g ≤ f (or, equiva-
lently, f ∗ = g∗). For elements x, y of a V -category X, one says that x ≤ y if,
considering the V -functors x, y : E = ({∗}, k) → X (where k(∗, ∗) = k) de-
fined by x(∗) = x and y(∗) = y, one has x ≤ y; or, equivalently, X(x, y) ≥ k.
Then, for any V -functors f, g : X → Y , f ≤ g if, and only if, f(x) ≤ g(x) for
every x ∈ X.

Definition 1.4. A V -category Y is said to be separated if, for f, g : X → Y ,
f = g whenever f ' g; equivalently, if, for all x, y ∈ Y , x ' y implies x = y.

The tensor product ⊗ on V induces a tensor product on V -Cat, with
(X, a) ⊗ (Y, b) = (X × Y, a ⊗ b) = X ⊗ Y , where (X ⊗ Y )((x, y), (x′, y′)) =
X(x, x′) ⊗ Y (y, y′). The V -category E is a ⊗-neutral element. With this
tensor product, V -Cat becomes a monoidal closed category. Indeed, for each
V -category X, the functor X⊗ ( ) : V -Cat→ V -Cat has a right adjoint ( )X

defined by Y X = (V -Cat(X, Y ), J , K), with Jf, gK =
∧
x∈X Y (f(x), g(x))

(see [7, 17, 15] for details).
It is interesting to note the following well-known result (see, for instance,

[3, Theorem 2.5]).
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Theorem 1.5. For V -categories X and Y , and a V -relation ϕ : X−→7 Y , the
following conditions are equivalent:

(i) ϕ : X−→◦ Y is a distributor;
(ii) ϕ : Xop ⊗ Y → (V, hom) is a V -functor.

In particular, the V -categorical structure a of (X, a) is a V -distributor
a : (X, a)−→◦ (X, a), and therefore a V -functor a : (X, a)op⊗(X, a)→ (V, hom),
which induces, via the closed monoidal structure of V -Cat, the Yoneda V -
functor yX : (X, a) → (V, hom)(X,a)op. Thanks to the theorem above, V Xop

can be equivalently described as

PX := {ϕ : X−→◦ E |ϕ V -distributor}.

Then the structure ã on PX is given by

ã(ϕ, ψ) = Jϕ, ψK =
∧
x∈X

hom(ϕ(x), ψ(x)),

for every ϕ, ψ : X−→◦ E, where by ϕ(x) we mean ϕ(x, ∗), or, equivalently, we
consider the associated V -functor ϕ : X → V . The Yoneda functor yX : X →
PX assigns to each x ∈ X the distributor x∗ : X−→◦ E, where we identify
again x ∈ X with the V -functor x : E → X assigning x to the (unique)
element of E. Then, for every ϕ ∈ PX and x ∈ X, we have that

JyX(x), ϕK = ϕ(x),

as expected. In particular yX is a fully faithful V -functor, being injective on
objects (i.e. an injective map) when X is a separated V -category. We point
out that (V, hom) is separated, and so is PX for every V -category X.

For more information on V -Cat we refer to [12, Appendix].

2. The presheaf monad and its submonads
The assignment X 7→ PX defines a functor P : V -Cat→ V -Cat: for each

V -functor f : X → Y , Pf : PX → PY assigns to each distributor X ◦
ϕ
// E

the distributor Y ◦
f∗
// X ◦

ϕ
// E . It is easily checked that the Yoneda func-

tors (yX : X → PX)X define a natural transformation y : 1→ P . Moreover,
since, for every V -functor f , the adjunction f∗ a f ∗ yields an adjunction
Pf = ( ) · f ∗ a ( ) · f∗ =: Qf , P yX has a right adjoint, which we denote
by mX : PPX → PX. It is straightforward to check that P = (P,m , y) is a
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2-monad on V -Cat – the so-called presheaf monad –, which, by construc-
tion of mX as the right adjoint to P yX , is lax idempotent (see [11] for details).

Next we present a characterisation of the submonads of P which is partially
in [2]. We recall that, given two monads T = (T, µ, η), T′ = (T ′, µ′, η′) on
a category C, a monad morphism σ : T → T′ is a natural transformation
σ : T → T ′ such that

1
η
//

η′ ��

T

σ
��

TT
σT //

µ
��

T ′T
T ′σ // T ′T ′

µ′
��

T ′ T σ
// T ′

(2.i)

By submonad of P we mean a 2-monad T = (T, µ, η) on V -Cat with a monad
morphism σ : T → P such that σX is an embedding (i.e. both fully faithful
and injective on objects) for every V -category X.

Definition 2.1. Given a class Φ of V -distributors, for every V -category X
let

ΦX = {ϕ : X−→◦ E |ϕ ∈ Φ}
have the V -category structure inherited from the one of PX. We say that Φ
is admissible if, for every V -functor f : X → Y and V -distributors ϕ : Z−→◦ Y
and ψ : X−→◦ Z in Φ,

(1) f ∗ ∈ Φ;
(2) ψ · f ∗ ∈ Φ and f ∗ · ϕ ∈ Φ;
(3) ϕ ∈ Φ ⇔ (∀y ∈ Y ) y∗ · ϕ ∈ Φ;
(4) for every V -distributor γ : PX−→◦ E, if the restriction of γ to ΦX

belongs to Φ, then γ · (yX)∗ ∈ Φ.

Lemma 2.2. Every admissible class Φ of V -distributors induces a submonad
Φ = (Φ,mΦ, yΦ) of P.

Proof : For each V -category X, equip ΦX with the initial structure induced
by the inclusion σX : ΦX → PX, that is, for every ϕ, ψ ∈ ΦX, ΦX(ϕ, ψ) =
PX(ϕ, ψ). For each V -functor f : X → Y and ϕ ∈ ΦX, by condition (2),
ϕ · f ∗ ∈ Φ, and so Pf (co)restricts to Φf : ΦX → ΦY .

Condition (1) guarantees that yX : X → PX corestricts to yΦ
X : X → ΦX.

Finally, condition (4) guarantees that mX : PPX → PX also (co)restricts
to mΦ

X : ΦΦX → ΦX: with γ : ΦX−→◦ E, also γ̃ := γ · (σX)∗ : PX−→◦ E
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belongs to Φ by (2), and then, since γ is the restriction of γ̃ to ΦX, by (4)
mX(γ̃) = γ · (σX)∗ · (yX)∗ = γ · (σX)∗ · (σX)∗ · (yΦ

X)∗ = γ · (yΦ
X)∗ ∈ Φ.

By construction, (σX)X is a natural transformation, each σX is an embed-
ding, and σ makes diagrams (2.i) commute.

Theorem 2.3. For a 2-monad T = (T, µ, η) on V -Cat, the following asser-
tions are equivalent:

(i) T is isomorphic to Φ, for some admissible class of V -distributors Φ.
(ii) T is a submonad of P.

Proof : (i) ⇒ (ii) follows from the lemma above.

(ii) ⇒ (i): Let σ : T → P be a monad morphism, with σX an embedding
for every V -category X, which, for simplicity, we assume to be an inclusion.
First we show that

Φ = {ϕ : X−→◦ Y | ∀y ∈ Y y∗ · ϕ ∈ TX} (2.ii)

is admissible. In the sequel f : X → Y is a V -functor.

(1) For each x ∈ X, x∗ · f ∗ = f(x)∗ ∈ TY , and so f ∗ ∈ Φ.

(2) If ψ : X−→◦ Z is a V -distributor in Φ, and z ∈ Z, since z∗ · ψ ∈ TX,
Tf(z∗ · ψ) = z∗ · ψ · f ∗ ∈ TY , and therefore ψ · f ∗ ∈ Φ by definition of Φ.
Now, if ϕ : Z−→◦ Y ∈ Φ, then, for each x ∈ X, x∗ · f ∗ · ϕ = f(x)∗ · ϕ ∈ TZ
because ϕ ∈ Φ, and so f ∗ · ϕ ∈ Φ.

(3) follows from the definition of Φ.

(4) If the restriction of γ : PX−→◦ E to TX, i.e., γ · (σX)∗, belongs to Φ,
then µX(γ · (σX)∗) = γ · (σX)∗ · (ηX)∗ = γ · (yX)∗ belongs to TX.

We point out that, with P, also T is lax idempotent. This assertion is shown
at the end of next section, making use of the Beck-Chevalley conditions we
study next. (We note that the arguments of [6, Prop. 16.2], which states
conditions under which a submonad of a lax idempotent monad is still lax
idempotent, cannot be used directly here.)



10 MARIA MANUEL CLEMENTINO AND CARLOS FITAS

3. The presheaf monad and Beck-Chevalley conditions
In this section our aim is to show that P verifies some interesting conditions

of Beck-Chevalley type, that resemble the BC conditions studied in [5]. We
recall from [5] that a commutative square in Set

W
l //

g
��

Z

h
��

X
f
// Y

is said to be a BC-square if the following diagram commutes in Rel

W �l◦ // Z

X

_g◦

OO

�

f◦

// Y,

_ h◦

OO

where, given a map t : A → B, t◦ : A−→7 B denotes the relation defined by
t and t◦ : B−→7 A its opposite. Since t◦ a t◦ in Rel, this is in fact a kind
of Beck-Chevalley condition. A Set-endofunctor T is said to satisfy BC if
it preserves BC-squares, while a natural transformation α : T → T ′ between
two Set-endofunctors satisfies BC if, for each map f : X → Y , its naturality
square

TX
αX //

Tf
��

T ′X

T ′f
��

TY αY

// T ′Y

is a BC-square.
In our situation, for endofunctors and natural transformations in V -Cat,

the role of Rel is played by V -Dist.

Definition 3.1. A commutative square in V -Cat

(W,d)
l //

g
��

(Z, c)

h
��

(X, a)
f
// (Y, b)
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is said to be a BC*-square if the following diagram commutes in V -Dist

(W,d) ◦
l∗ // (Z, c)

(X, a)

◦g∗
OO

◦
f∗

// (Y, b)

◦ h∗
OO

(3.i)

(or, equivalently, h∗ · f∗ ≤ l∗ · g∗).

Remarks 3.2. (1) For a V -functor f : (X, a)→ (Y, b), to be fully faithful
is equivalent to

(X, a)
1 //

1
��

(X, a)

f
��

(X, a)
f
// (Y, b)

being a BC*-square (exactly in parallel with the characterisation of
monomorphisms via BC-squares).

(2) We point out that, contrarily to the case of BC-squares, in BC*-
squares the horizontal and the vertical arrows play different roles;
that is, the fact that diagram (3.i) is a BC*-square is not equivalent
to

(W,d)
g
//

l
��

(X, a)

f
��

(Z, c)
h
// (Y, b)

being a BC*-square; it is indeed equivalent to its dual

(W,d◦)
g
//

l
��

(X, a◦)

f
��

(Z, c◦)
h
// (Y, b◦)

being a BC*-square.

Definitions 3.3. (1) A functor T : V -Cat → V -Cat satisfies BC* if it
preserves BC*-squares.
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(2) Given two endofunctors T, T ′ on V -Cat, a natural transformation
α : T → T ′ satisfies BC* if the naturality diagram

TX
αX //

Tf
��

T ′X

T ′f
��

TY αY

// T ′Y

is a BC*-square for every morphism f in V -Cat.
(3) A 2-monad T = (T, µ, η) on V -Cat is said to satisfy fully BC* if T ,

µ, and η satisfy BC*.

Remark 3.4. In the case of Set and Rel, since the condition of being a
BC-square is equivalent, under the Axiom of Choice (AC), to being a weak
pullback, a Set-monad T satisfies fully BC if, and only if, it is weakly carte-
sian (again, under (AC)). This, together with the fact that there are relevant
Set-monads – like for instance the ultrafilter monad – whose functor and mul-
tiplication satisfy BC but the unit does not, led the authors of [5] to name
such monads as BC-monads. This is the reason why we use fully BC* instead
of BC* to identify these V -Cat-monads.

As a side remark we recall that, still in the Set-context, a partial BC-
condition was studied by Manes in [18]: for a Set-monad T = (T, µ, η) to
be taut requires that T , µ, η satisfy BC for commutative squares where f is
monic.

Our first use of BC* is the following characterisation of lax idempotency
for a 2-monad T on V -Cat.

Proposition 3.5. Let T = (T, µ, η) be a 2-monad on V -Cat.

(1) The following assertions are equivalent:
(i) T is lax idempotent.
(ii) For each V -category X, the diagram

TX
TηX //

ηTX
��

TTX

µX
��

TTX µX

// TX

(3.ii)

is a BC*-square.
(2) If T is lax idempotent, then µ satisfies BC*.
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Proof : (1) (i) ⇒ (ii): The monad T is lax idempotent if, and only if, for
every V -category X, TηX a µX , or, equivalently, µX a ηTX . These two
conditions are equivalent to (TηX)∗ = (µX)∗ and (µX)∗ = (ηTX)∗. Hence
(µX)∗(µX)∗ = (TηX)∗(ηTX)∗ as claimed.

(ii) ⇒ (i): From (µX)∗(µX)∗ = (TηX)∗(ηTX)∗ it follows that

(µX)∗ = (µX)∗(µX)∗(µX)∗ = (µX · TηX)∗(ηTX)∗ = (ηTX)∗,

that is, µX a ηTX .

(2) BC* for µ follows directly from lax idempotency of T, since

TTX
(µX)∗
◦ // TX

=

TTX
(ηTX)∗

◦ // TX

TTY

(TTf)∗ ◦
OO

(µY )∗
◦ // TY

(Tf)∗◦
OO

TTY

(TTf)∗ ◦
OO

(ηTY )∗
◦ // TY

(Tf)∗◦
OO

and the latter diagram commutes trivially.

Remark 3.6. Thanks to Remarks 3.2 we know that, if we invert the role
of ηTX and TηX in (3.ii), we get a characterisation of oplax idempotent 2-
monad: T is oplax idempotent if, and only if, the diagram

TX
ηTX //

TηX
��

TTX

µX
��

TTX µX

// TX

is a BC*-square.

Theorem 3.7. The presheaf monad P = (P,m , y) satisfies fully BC*.

Proof : (1) P satisfies BC* : Given a BC*-square

(W,d)
l //

g
��

(Z, c)

h
��

(X, a)
f
// (Y, b)
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in V -Cat, we want to show that

PW ◦
(Pl)∗ // PZ

PX

≥◦(Pg)∗
OO

◦
(Pf)∗

// PY.

◦ (Ph)∗
OO (3.iii)

For each ϕ ∈ PX and ψ ∈ PZ, we have

(Ph)∗(Pf)∗(ϕ, ψ) = (Ph)◦ · b̃ · Pf(ϕ, ψ)

= b̃(Pf(ϕ), Ph(ψ))

=
∧
y∈Y

hom(ϕ · f ∗(y), ψ · h∗(y))

≤
∧
x∈X

hom(ϕ · f ∗ · f∗(x), ψ · h∗ · f∗(x))

≤
∧
x∈X

hom(ϕ(x), ψ · l∗ · g∗(x)) (ϕ ≤ ϕ · f ∗ · f∗, (3.iii) is BC*)

= ã(ϕ, ψ · l∗ · g∗)
≤ ã(ϕ, ψ · l∗ · g∗)⊗ c̃(ψ · l∗ · l∗, ψ) (because ψ · l∗ · l∗ ≤ ψ)

= ã(ϕ, Pg(ψ · l∗)⊗ c̃(Pl(ψ · l∗), ψ)

≤
∨

γ∈PW

ã(ϕ, Pg(γ))⊗ c̃(Pl(γ), ψ)

= (Pl)∗(Pg)∗(ϕ, ψ).

(2) µ satisfies BC* : For each V -functor f : X → Y , from the naturality of
y it follows that the following diagram

PPX ◦
(yPX)∗

// PX

PPY

◦(PPf)∗
OO

◦
(yPY )∗

// PY

◦ (Pf)∗
OO

commutes. Lax idempotency of P means in particular that mX a yPX , or,
equivalently, (mX)∗ = (yPX)∗, and therefore the commutativity of this dia-
gram shows BC* for m .
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(3) y satisfies BC* : Once again, for each V -functor f : (X, a)→ (Y, b), we
want to show that the diagram

X ◦
(yX)∗

// PX

Y

◦f∗
OO

◦
(yY )∗

// PY

◦ (Pf)∗
OO

commutes. Let y ∈ Y and ϕ : X−→◦ E belong to PX. Then

((Pf)∗(yY )∗)(y, ϕ) = ((Pf)◦ · b̃ · yY )(y, ϕ) = b̃(yY (y), Pf(ϕ)) = Pf(ϕ)(y)

=
∨
x∈X

b(y, f(x))⊗ ϕ(x) =
∨
x∈X

b(y, f(x))⊗ ã(yX(x), ϕ)

= (ã · yX · f ◦ · b)(y, ϕ) = (yX)∗ · f ∗(y, ϕ),

as claimed.

Corollary 3.8. Let T = (T, µ, η) on V -Cat be a 2-monad on V -Cat, and
σ : T → P be a monad morphism, pointwise fully faithful. Then T is lax
idempotent.

Proof : We know that P is lax idempotent, and so, for every V -category X,
(mX)∗ = (yPX)∗. Consider diagram (2.i). The commutativity of the diagram
on the right gives that (µX)∗ = (σX)∗(σX)∗(µX)∗ = (σX)∗(mX)∗(PσX)∗(σTX)∗;
using the equality above, and preservation of fully faithful V -functors by P
– which follows from BC* – we obtain:

(µX)∗ = (σX)∗(yPX)∗(PσX)∗(σTX)∗ = (σX)∗(ηPX)∗(σPX)∗(PσX)∗(σTX)∗ =

= (ηTX)∗ · (σTX)∗(PσX)∗(PσX)∗(σTX)∗ = (ηTX)∗.

4. Presheaf submonads and Beck-Chevalley conditions
In this section, for a general 2-monad T = (T, µ, η) on V -Cat, we relate its

BC* properties with the existence of a (sub)monad morphism T → P. We
remark that a necessary condition for T to be a submonad of P is that TX
is separated for every V -category X, since PX is separated and separated
V -categories are stable under monomorphisms.

Theorem 4.1. For a 2-monad T = (T, µ, η) on V -Cat with TX separated
for every V -category X, the following assertions are equivalent:
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(i) T is a submonad of P.
(ii) T is lax idempotent and satisfies BC*, and both ηX and QηX · yTX are

fully faithful, for each V -category X.
(iii) T is lax idempotent, µ and η satisfy BC*, and both ηX and QηX · yTX

are fully faithful, for each V -category X.
(iv) T is lax idempotent, η satisfies BC*, and both ηX and QηX · yTX are

fully faithful, for each V -category X.

Proof : (i) ⇒ (ii): By (i) there exists a monad morphism σ : T→ P with σX
an embedding for every V -category X. By Corollary 3.8, with P, also T is lax
idempotent. Moreover, from σX · ηX = yX , with yX , also ηX is fully faithful.
(In fact this is valid for any monad with a monad morphism into P.)

To show that T satisfies BC* we use the characterisation of Theorem 2.3;
that is, we know that there is an admissible class Φ of distributors so that T =
Φ. Then BC* for T follows directly from the fact that Φf is a (co)restriction
of Pf , for every V -functor f .

BC* for η follows from BC* for y and full faithfulness of σ since, for any
commutative diagram in V -Cat

· //

��

· f
//

��

·

��
·

1
// ·

2

g
// ·

with 1 2 satisfying BC*, and f and g fully faithful, also 1 satisfies BC*.
Thanks to Proposition 3.5, BC* for µ follows directly from lax idempo-

tency of T.

The implications (ii) ⇒ (iii) ⇒ (iv) are obvious.

(iv) ⇒ (i): For each V -category (X, a), we denote by â the V -category
structure on TX, and define the V -functor

( TX
σX // PX ) = ( TX

yTX
// PTX

QηX // PX );

that is, σX(x) = ( X
ηX // TX �̂a // TX �x

◦
// E ) = â(ηX( ), x). As a composite

of fully faithful V -functors, σX is fully faithful; moreover, it is an embedding
because, by hypothesis, TX and PX are separated V -categories.
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To show that σ = (σX)X : T → P is a natural transformation, that is, for
each V -functor f : X → Y , the outer diagram

TX
yTX
//

Tf
��

PTX
QηX //

PTf
��

PX

Pf
��

TY

1

yTY

// PTY

2

QηY

// PY

commutes, we only need to observe that 1 is commutative and BC* for η
implies that 2 is commutative.

It remains to show σ is a monad morphism: for each V -category (X, a)
and x ∈ X,

(σX · ηX)(x) = â(ηX( ), ηX(x)) = a(−, x) = x∗ = yX(x),

and so σ · η = y . To check that, for every V -category (X, a), the following
diagram commutes

TTX
σTX //

µ
��

PTX
PσX // PPX

mX
��

TX σX
// PX,

let X ∈ TTX. We have

mX · PσX · σTX(X) =

= ( X
yX
// PX �̃a // PX �σ

◦
X // TX

ηTX // TTX �̂̂a // TTX �X
◦
// E )

= ( X
ηX // TX �̂a // TX

ηTX // TTX �̂̂a // TTX �X
◦
// E ),

since σ◦X · ã · yX(x, x) = ã(yX(x), σX(x)) = σX(x)(x) = â · ηX(x, x), and

σX · µX(x) = ( X
ηX // TX �̂a // TX �µ

◦
X // TTX �X

◦
// E ).

Hence the commutativity of the diagram follows from the equality ̂̂a · ηTX ·
â · ηX = µ◦X · â · ηX we show next. Indeed,̂̂a · ηTX · â · ηX = (ηTX)∗(ηX)∗ = (ηTX · ηX)∗ = (TηX · ηX)∗ = (TηX)∗(ηX)∗

= µ∗X(ηX)∗ = µ◦X · â · ηX .
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The proof of the theorem allows us to conclude immediately the following
result.

Corollary 4.2. Given a 2-monad T = (T, µ, η) on V -Cat such that η satis-
fies BC*, there is a monad morphism T → P if, and only if, η is pointwise
fully faithful.

5. On algebras for submonads of P: a survey
In the remainder of this paper we will study, given a submonad T of P,

the category (V -Cat)T of (Eilenberg-Moore) T-algebras. Here we collect
some known results which will be useful in the following sections. We will
denote by Φ(T) the admissible class of distributors that induces the monad
T (defined in (2.ii)).

The following result, which is valid for any lax idempotent monad T, asserts
that, for any V -category, to be a T-algebra is a property (see, for instance,
[9] and [6]).

Theorem 5.1. Let T be lax idempotent monad on V -Cat.

(1) For a V -category X, the following assertions are equivalent:
(i) α : TX → X is a T-algebra structure on X;
(ii) there is a V -functor α : TX → X with α a ηX and α · ηX = 1X;
(iii) there is a V -functor α : TX → X such that α · ηX = 1X;
(iv) α : TX → X is a split epimorphism in V -Cat.

(2) If (X,α) and (Y, β) are T-algebra structures, then every V -functor
f : X → Y satisfies β · Tf ≤ f · α.

Next we formulate characterisations of T-algebras that can be found in
[11, 2], using injectivity with respect to certain embeddings, and using the
existence of certain weighted colimits, notions that we recall very briefly in
the sequel.

Definition 5.2. [8] A V -functor f : X → Y is a T -embedding if Tf is a left
adjoint right inverse; that is, there exists a V -functor Tf] such that Tf a Tf]
and Tf] · Tf = 1TX .

For each submonad T of P, the class Φ(T) allows us to identify easily the
T -embeddings.

Proposition 5.3. For a V -functor h : X → Y , the following assertions are
equivalent:
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(i) h is a T -embedding;
(ii) h is fully faithful and h∗ belongs to Φ(T).

In particular, P -embeddings are exactly the fully faithful V -functors.

Proof : (ii)⇒ (i): Let h be fully faithful with h∗ ∈ Φ(T). As in the case of the
presheaf monad, Φh : ΦX → ΦY has always a right adjoint whenever h∗ ∈
Φ(T), Φah := (−) ·h∗ : ΦY → ΦX; that is, for each distributor ψ : Y−→◦ E in
ΦY , Φah(ψ) = ψ ·h∗, which is well defined because by hypothesis h∗ ∈ Φ(T).
If h is fully faithful, that is, if h∗ ·h∗ = (1X)∗, then (Φah·Φh)(ϕ) = ϕ·h∗ ·h∗ =
ϕ.

(i)⇒ (ii): If Φah is well-defined, then y∗·h∗ belongs to Φ(T) for every y ∈ Y ,
hence h∗ ∈ Φ(T), by 2.1(3), and so h∗ ∈ Φ(T). Moreover, if Φah ·Φh = 1ΦX ,
then in particular x∗ · h∗ · h∗ = x∗, for every x ∈ X, which is easily seen to
be equivalent to h∗ · h∗ = (1X)∗.

In V -Dist, given a V -distributor ϕ : (X, a)−→◦ (Y, b), the functor ( ) · ϕ
preserves suprema, and therefore it has a right adjoint [ϕ,−] (since the hom-
sets in V -Dist are complete ordered sets):

Dist(X,Z) >

[ϕ,−]
**

( )·ϕ
jj Dist(Y, Z).

For each distributor ψ : X−→◦ Z,

X ◦
ψ
//

◦ϕ
��

Z

Y

≤
◦
[ϕ,ψ]

>>

[ϕ, ψ] : Y−→◦ Z is defined by

[ϕ, ψ](y, z) =
∧
x∈X

hom(ϕ(x, y), ψ(x, z)).

Definitions 5.4. (1) Given a V -functor f : X → Z and a distributor
(here called weight) ϕ : X−→◦ Y , a ϕ-weighted colimit of f (or simply
a ϕ-colimit of f), whenever it exists, is a V -functor g : Y → Z such
that g∗ = [ϕ, f∗]. One says then that g represents [ϕ, f∗].

(2) A V -category Z is called ϕ-cocomplete if it has a colimit for each
weighted diagram with weight ϕ : (X, a)−→◦ (Y, b); i.e. for each V -
functor f : X → Z, the ϕ-colimit of f exists.
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(3) Given a class Φ of V -distributors, a V -category Z is called Φ-cocomplete
if it is ϕ-cocomplete for every ϕ ∈ Φ. When Φ = V -Dist, then Z is
said to be cocomplete.

The proof of the following result can be found in [11, 2].

Theorem 5.5. Given a submonad T of P, for a V -category X the following
assertions are equivalent:

(i) X is a T-algebra.
(ii) X is injective with respect to T -embeddings.
(iii) X is Φ(T)-cocomplete.

Φ(T)-cocompleteness of a V -category X is guaranteed by the existence of
some special weighted colimits, as we explain next. (Here we present very
briefly the properties needed. For more information on this topic see [19].)

Lemma 5.6. For a distributor ϕ : X → Y and a V -functor f : X → Z, the
following assertions are equivalent:

(i) there exists the ϕ-colimit of f ;
(ii) there exists the (ϕ · f ∗)-colimit of 1Z;
(iii) for each y ∈ Y , there exists the (y∗ · ϕ)-colimit of f .

Proof : (i) ⇔ (ii): It is straightforward to check that

[ϕ, f∗] = [ϕ · f ∗, (1Z)∗].

(i) ⇔ (iii): Since [ϕ, f∗] is defined pointwise, it is easily checked that, if

g represents [ϕ, f∗], then, for each y ∈ Y , the V -functor E
y
// Y

g
// Z

represents [y∗ · ϕ, f∗].
Conversely, if, for each y : E → Y , gy : E → Z represents [y∗ · ϕ, f∗], then

the map g : Y → Z defined by g(y) = gy(∗) is such that g∗ = [ϕ, f∗]; hence,
as stated in Remark 1.3, g is automatically a V -functor.

Corollary 5.7. Given a submonad T of P, a V -category X is a T-algebra if,
and only if, [ϕ, (1X)∗] has a colimit for every ϕ ∈ TX.

Remark 5.8. Given ϕ : X−→◦ E in TX, in the diagram

X ◦a //

◦ϕ
��

X

Y

≤
◦
[ϕ,a]

>>
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[ϕ, a](∗, x) =
∧
x′∈X

hom(ϕ(x′, ∗), a(x′, x)) = TX(ϕ, x∗).

Therefore, if α : TX → X is a T-algebra structure, then

[ϕ, a](∗, x) = TX(ϕ, x∗) = X(α(ϕ), x),

that is, [ϕ, a] = α(ϕ)∗; this means that α assigns to each distributor ϕ : X−→◦ E
the representative of [ϕ, (1X)∗].

Hence, we may describe the category of T-algebras as follows.

Theorem 5.9. (1) A map α : TX → X is a T-algebra structure if, and
only if, for each distributor ϕ : X−→◦ E in TX, α(ϕ)∗ = [ϕ, (1X)∗].

(2) If X and Y are T-algebras, then a V -functor f : X → Y is a T-
homomorphism if, and only if, f preserves ϕ-weighted colimits for
any ϕ ∈ TX, i.e., if x ∈ X represents [ϕ, (1X)∗], then f(x) represents
[ϕ · f ∗, (1Y )∗].

6. On algebras for submonads of P: the special case of
the formal ball monad

From now on we will study more in detail (V -Cat)T for special submonads
T of P. In our first example, the formal ball monad B, we will need to
consider the (co)restriction of B and P to V -Catsep. We point out that
the characterisations of T-algebras of Theorem 5.5 remain valid for these
(co)restrictions.

The space of formal balls is an important tool in the study of (quasi-)metric
spaces. Given a metric space (X, d) its space of formal balls is simply the
collection of all pairs (x, r), where x ∈ X and r ∈ [0,∞[. This space can itself
be equipped with a (quasi-)metric. Moreover this construction can naturally
be made into a monad on the category of (quasi-)metric spaces (cf. [10, 16]
and references there).

This monad can readily be generalised to V -categories, using a V -categorical
structure in place of the (quasi-)metric. We will start by considering an ex-
tended version of the formal ball monad, the extended formal ball monad B•,
which we define below.

Definitions 6.1. The extended formal ball monad B• = (B•, η, µ) is given
by the following:
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– a functor B• : V -Cat → V -Cat which maps each V -category X to
B•X with underlying set X × V and

B•X((x, r), (y, s)) = hom(r,X(x, y)⊗ s)
and every V -functor f : X → Y to the V -functor B•f : B•X → B•Y
with B•f(x, r) = (f(x), r);

– natural transformations η : 1→ B• and µ : B•B• → B• with ηX(x) =
(x, k) and µX((x, r), s) = (x, r ⊗ s), for every V -category X, x ∈ X,
r, s ∈ V .

The formal ball monad B is the submonad of B• obtained when we only
consider balls with radius different from ⊥.

Remark 6.2. Note that B•X is not separated ifX has more than one element
(for any x, y ∈ X, (x,⊥) ' (y,⊥)), while, as shown in 6.13, for X separated,
separation of BX depends on an extra property of the quantale V .

Using Corollaries 4.2 and 3.8, it is easy to check that

Proposition 6.3. There is a pointwise fully faithful monad morphism
σ : B• → P. In particular, B• is lax-idempotent.

Proof : First of all let us check that η satisfies BC*, i.e., for any V -functor
f : X → Y ,

X ◦
(ηX)∗// B•X

Y

≥◦f∗

OO

◦
(ηY )∗

// B•Y

◦ (B•f)∗
OO

For y ∈ Y , (x, r) ∈ B•X,

((B•f)∗(ηY )∗)(y, (x, r)) = B•Y ((y, k), (f(x), r)) = Y (y, f(x))⊗ r

≤
∨
z∈X

Y (y, f(z))⊗X(z, x)⊗ r

=
∨
z∈X

Y (y, f(z))⊗B•X((z, k), (x, r))

= ((ηX)∗f
∗)(y, (x, r)).

Then, by Corollary 4.2, for each V -category X, σX is defined as in the
proof of Theorem 4.1, i.e. for each (x, r) ∈ B•X,

σX(x, r) = B•X((−, k), (x, r)) : X → V ;
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more precisely, for each y ∈ X, σX(x, r)(y) = X(y, x)⊗ r.
Moreover, σX is fully faithful: for each (x, r), (y, s) ∈ B•X,

B•X((x, r), (y, s)) = hom(r,X(x, y)⊗ s) ≥ hom(X(x, x)⊗ r,X(x, y)⊗ s)

≥
∧
z∈X

hom(X(z, x)⊗ r,X(z, y)⊗ s) = PX(σ(x, r), σ(y, s)).

It is clear that σ : B• → P is not pointwise monic; indeed, if r = ⊥, then
σX(x,⊥) : X−→◦ E is the distributor that is constantly ⊥, for any x ∈ X.
Still it is interesting to identify the B•-algebras via the existence of special
weighted colimits.

Proposition 6.4. For a V -category X, the following conditions are equiva-
lent:

(i) X has a B•-algebra structure α : B•X → X;
(ii) (∀x ∈ X, r ∈ V ) (∃x⊕r ∈ X) (∀y ∈ X) X(x⊕r, y) = hom(r,X(x, y));
(iii) for all (x, r) ∈ B•X, every diagram of the sort

X ◦
(1X)∗ //

◦σX(x,r)
��

X

E

≤
◦
[σX(x,r),(1X)∗]

>>

has a (weighted) colimit.

Proof : (i) ⇒ (ii): The adjunction α a ηX gives, via Remark 1.3,

X(α(x, r), y) = B•X((x, r), (y, k)) = hom(r,X(x, y)).

For x⊕ r := α(x, r), condition (ii) follows.

(ii) ⇒ (iii): The calculus of the distributor [σX(x, r), (1X)∗] shows that it
is represented by x⊕ r:

[σX(x, r), (1X)∗](∗, y) = hom(r,X(x, y)).

(iii) ⇒ (i) For each (x, r) ∈ B•X, let x ⊕ r represent [σX(x, r), (1X)∗]. In
case r = k, we choose x ⊕ k = x to represent the corresponding distributor
(any x′ ' x would fit here but x is the right choice for our purpose). Then
α : B•X → X defined by α(x, r) = x ⊕ r is, by construction, left adjoint to
ηX , and α · ηX = 1X .
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The V -categories X satisfying (iii), and therefore satisfying the above
(equivalent) conditions, are called tensored. This notion was originally intro-
duced in the article [1] by Borceux and Kelly for general V -categories (for
our special V -categories we suggest to consult [19]).

Note that, thanks to condition (ii), we get the following characterisation
of tensored categories.

Corollary 6.5. A V -category X is tensored if, and only if, for every x ∈ X,

X >

X(x,−)
**

x⊕−
jj V

is an adjunction in V -Cat.

We now shift our attention to the formal ball monad B. The characterisa-
tion of B•-algebras given by the Proposition 6.4 may be adapted to obtain a
characterisation of B-algebras. Indeed, the only difference is that a B-algebra
structure BX → X does not include the existence of x⊕⊥ for x ∈ X, which,
when it exists, is the top element with respect to the order in X. Moreover,
the characterisation of B-algebras given in [10, Proposition 3.4] can readily
be generalised to V -Cat as follows.

Proposition 6.6. For a V -functor α : BX → X the following conditions are
equivalent.

(i) α is a B-algebra structure.
(ii) For every x ∈ X, r, s ∈ V \ {⊥}, α(x, k) = x and α(x, r ⊗ s) =

α(α(x, r), s).
(iii) For every x ∈ X, r ∈ V \ {⊥}, α(x, k) = x and X(x, α(x, r)) ≥ r.
(iv) For every x ∈ X, α(x, k) = x.

Proof : By definition of B-algebra, (i) ⇔ (ii), while (i) ⇔ (iv) follows from
Theorem 5.1, since B is lax-idempotent. (iii) ⇒ (iv) is obvious, and so it
remains to prove that, if α is a B-algebra structure, then X(x, α(x, r)) ≥ r,
for r 6= ⊥. But

X(x, α(x, r)) ≥ r ⇔ k ≤ hom(r,X(x, α(x, r)) = X(α(x, r), α(x, r)),

because α(x,−) a X(x,−) by Corollary 6.5.

Since we know that, if X has a B-algebra structure α, then α(x, r) = x⊕r,
we may state the conditions above as follows.
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Corollary 6.7. If BX
−⊕− // X is a B-algebra structure, then, for x ∈ X,

r, s ∈ V \ {⊥}:
(1) x⊕ k = x;
(2) x⊕ (r ⊗ s) = (x⊕ r)⊕ s;
(3) X(x, x⊕ r) ≥ r.

Lemma 6.8. Let X and Y be V -categories equipped with B-algebra structures

BX
−⊕− // X and BY

−⊕− // Y . Then a map f : X → Y is a V -functor if
and only if

f is monotone and f(x)⊕ r ≤ f(x⊕ r),
for all (x, r) ∈ BX.

Proof : Assume that f is a V -functor. Then it is, in particular, monotone,
and, from Theorem 5.1 we know that f(x)⊕ r ≤ f(x⊕ r).

Conversely, assume that f is monotone and that f(x)⊕r ≤ f(x⊕r), for all
(x, r) ∈ BX. Let x, x′ ∈ X. Then x⊕X(x, x′) ≤ x′ since (x⊕−) a X(x,−)
by Corollary 6.5, and then

f(x)⊕X(x, x′) ≤ f(x⊕X(x, x′)) (by hypothesis)

≤ f(x′) (by monotonicity of f).

Now, using the adjunction f(x)⊕− a Y (f(x),−)), we conclude that

X(x, x′) ≤ Y (f(x), f(x′)).

The following results are now immediate:

Corollary 6.9. (1) Let (X,⊕), (Y,⊕) be B-algebras. Then a map
f : X → Y is a B-algebra morphism if and only if, for all (x, r) ∈ BX,

f is monotone and f(x⊕ r) = f(x)⊕ r.
(2) Let (X,⊕), (Y,⊕) be B-algebras. Then a V -functor f : X → Y is a

B-algebra morphism if and only if, for all (x, r) ∈ BX,

f(x⊕ r) ≤ f(x)⊕ r.

Example 6.10. If X ⊆ [0,∞], with the V -category structure inherited from
hom, then

(1) X is a B•-algebra if, and only if, X = [a, b] for some a, b ∈ [0,∞].
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(2) X is a B-algebra if, and only if, X = ]a, b] or X = [a, b] for some
a, b ∈ [0,∞].

Let X be a B•-algebra. From Proposition 6.4 one has

(∀x ∈ X, r ∈ [0,∞])(∃x⊕r ∈ X)(∀y ∈ X) y	(x⊕r) = (y	x)	r = y	(x+r).

This implies that, if y ∈ X, then y > x ⊗ r ⇔ y > x + r. Therefore,
if x + r ∈ X, then x ⊕ r = x + r, and, moreover, X is an interval: given
x, y, z ∈ [0,∞] with x < y < z and x, z ∈ X, then, with r = y − x ∈ [0,∞],
x+ r = y must belong to X:

z 	 (x⊕ r) = z − (x+ r) = z − y > 0 ⇒ z 	 (x⊕ r) = z − (x⊕ r) = z − y
⇔ y = x⊕ r ∈ X.

In addition, X must have bottom element (that is a maximum with respect
to the classical order of the real half-line): for any x ∈ X and b = supX,
x ⊕ (b − x) = sup{z ∈ X ; z ≤ b} = b ∈ X. For r = ∞ and any x ∈ X,
x⊕∞ must be the top element of X, so X = [a, b] for a, b ∈ [0,∞].

Conversely, if X =]a, b], for x ∈ X and r ∈ [0,∞[, define x⊕ r = x + r if
x+ r ∈ X and x⊕ r = b elsewhere. It is easy to check that condition (ii) of
Proposition 6.4 is satisfied for r 6=∞.

Analogously, if X = [a, b], for x ∈ X and r ∈ [0,∞], we define x ⊕ r as
before in case r 6=∞ and x⊕∞ = a.

As we will see, (co)restricting B to V -Catsep will allows us to obtain some
interesting results. Unfortunately X being separated does not entail BX
being so. Because of this we will need to restrict our attention to the can-
cellative quantales which we define and characterize next.

Definition 6.11. A quantale V is said to be cancellative if

∀r, s ∈ V, r 6= ⊥ : r = s⊗ r ⇒ s = k. (6.i)

Remark 6.12. We point out that this notion of cancellative quantale does
not coincide with the notion of cancellable ccd quantale introduced in [4].
On the one hand cancellative quantales are quite special, since, for instance,
when V is a locale, and so with ⊗ = ∧ is a quantale, V is not cancellative
since condition (6.i) would mean, for r 6= ⊥, r = s ∧ r ⇒ s = >. On the
other hand, [0, 1]�, that is [0, 1] with the usual order and having as tensor
product the  Lukasiewicz sum, is cancellative but not cancellable. In addition
we remark that every value quantale [16] is cancellative.
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Proposition 6.13. Let V be an integral quantale. The following assertions
are equivalent:

(i) BV is separated;
(ii) V is cancellative;
(iii) If X is separated then BX is separated.

Proof : (i) ⇒ (ii): Let r, s ∈ V, r 6= ⊥ and r = s⊗ r. Note that

BV ((k, r), (s, r)) = hom(r, hom(k, s)⊗ r) = hom(r, s⊗ r) = hom(r, r) = k

and

BV ((s, r), (k, r)) = hom(r, hom(s, k)⊗ r) = hom(r, hom(s, k)⊗ s⊗ r)
= hom(s⊗ r, s⊗ r) = k.

Therefore, since BV is separated, (s, r) = (k, r) and it follows that s = k.

(ii) ⇒ (iii): If (x, r) ' (y, s) in BX, then

BX((x, r), (y, s)) = k ⇔ r ≤ X(x, y)⊗ s, and

BX((y, s), (x, r)) = k ⇔ s ≤ X(y, x)⊗ r.
Therefore r ≤ s and s ≤ r, that is r = s. Moreover, since r ≤ X(x, y)⊗r ≤ r
we have that X(x, y) = k. Analogously, X(y, x) = k and we conclude that
x = y.

(iii) ⇒ (i): Since V is separated it follows immediately from (iii) that BV
is separated.

We can now show that B is a submonad of P in the adequate setting. From
now on we will be working with a cancellative and integral quantale V , and
B will be the (co)restriction of the formal ball monad to V -Catsep.

Proposition 6.14. Let V be a cancellative and integral quantale. Then B is
a submonad of P in V -Catsep.

Proof : Thanks to Proposition 6.3, all that remains is to show that σX is injec-
tive on objects, for any V -category X. Let σ(x, r) = σ(y, s), or, equivalently,
X(−, x)⊗ r = X(−, y)⊗ s. Then, in particular,

r = X(x, x)⊗ r = X(x, y)⊗ s ≤ s = X(y, y)⊗ s = X(y, x)⊗ r ≤ r.

Therefore r = s and X(y, x) = X(x, y) = k. We conclude that (x, r) =
(y, s).
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Thanks to Theorem 5.5 B-algebras are characterized via an injectivity prop-
erty with respect to special embeddings. We end this section studying in more
detail these embeddings. Since we are working in V -Catsep, a B-embedding
h : X → Y , being fully faithful, is injective on objects. Therefore, for sim-
plicity, we may think of it as an inclusion. With Bh] : BY → BX the right
adjoint and left inverse of Bh : BX → BY , we denote Bh](y, r) by (yr, ry).

Lemma 6.15. Let h : X → Y be a B-embedding. Then:

(1) (∀y ∈ Y ) (∀x ∈ X) (∀r ∈ V ) BY ((x, r), (y, r)) = BY ((x, r), (yr, ry));
(2) (∀ y ∈ Y ) : ky = Y (yk, y);
(3) (∀ y ∈ Y ) (∀x ∈ X) : Y (x, y) = Y (x, yk)⊗ Y (yk, y).

Proof : (1) From Bh] ·Bh = 1BX and Bh·Bh] ≤ 1BY one gets, for any (y, r) ∈
BY , (y, r) ≤ (yr, ry), i.e. BY ((y, r), (yr, ry)) = hom(ry, Y (yr, y) ⊗ r) = k.
Therefore, for all x ∈ X, y ∈ Y , r ∈ V ,

BY ((x, r), (y, r)) ≤ BX((x, r), (yr, ry)) = BY ((x, r), (yr, ry))

= BY ((x, r), (yr, ry))⊗BY ((yr, ry), (y, r))

≤ BY ((x, r), (y, r)),

that is

BY ((x, r), (y, r)) = BY ((x, r), (yr, ry)).

(2) Let y ∈ Y . Then

Y (yk, y) = BY ((yk, k), (y, k)) = BY ((yk, k), (yk, ky)) = ky.

(3) Let y ∈ Y and x ∈ X. Then

Y (x, y) = BY ((x, k), (y, k)) = BY ((x, k), (yk, ky))

= Y (x, yk)⊗ ky = Y (x, yk)⊗ Y (yk, y).

Proposition 6.16. Let X and Y be V -categories. A V -functor h : X → Y
is a B-embedding if and only if h is fully faithful and

(∀y ∈ Y ) (∃!z ∈ X) (∀x ∈ X) Y (x, y) = Y (x, z)⊗ Y (z, y). (6.ii)

Proof : If h is a B-embedding, then it is fully faithful by Proposition 5.3 and,
for each y ∈ Y , z = yk ∈ X fulfils the required condition. To show that
such z is unique, assume that z, z′ ∈ X verify the equality of condition (6.ii).
Then

Y (z, y) = Y (z, z′)⊗ Y (z′, y) ≤ Y (z′, y) = Y (z′, z)⊗ Y (z, y) ≤ Y (z, y),
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and therefore, because V is cancellative, Y (z′, z) = k; analogously one proves
that Y (z, z′) = k, and so z = z′ because Y is separated.

To prove the converse, for each y ∈ Y we denote by y the only z ∈ X
satisfying (6.ii), and define

Bh](y, r) = (y, Y (y, y)⊗ r).
When x ∈ X, it is immediate that x = x, and so Bh] · Bh = 1BX . Using
Remark 1.3, to prove that Bh] is a V -functor and Bh a Bh] it is enough to
show that

BX((x, r), Bh](y, s)) = BY (Bh(x, r), (y, s)),

for every x ∈ X, y ∈ Y , r, s ∈ V . By definition of Bh] this means

BX((x, r), (y, Y (y, y)⊗ s)) = BY ((x, r), (y, s)),

that is,
hom(r, Y (x, y)⊗ Y (y, y)⊗ s) = hom(r, Y (x, y)⊗ s),

which follows directly from (6.ii).

Corollary 6.17. In Met, if X ⊆ [0,∞], then its inclusion h : X → [0,∞]
is a B-embedding if, and only if, X is a closed interval.

Proof : If X = [x0, x1], with x0, x1 ∈ [0,∞], x0 ≤ x1, then it is easy to check
that, defining y = x0 if y ≤ x0, y = y if y ∈ X, and y = x1 if y ≥ x1, for
every y ∈ [0,∞], condition (6.ii) is fulfilled.

We divide the proof of the converse in two cases:
(1) If X is not an interval, i.e. if there exists x, x′ ∈ X, y ∈ [0,∞] \X with

x < y < x′, then either y < y, and then

0 = y 	 x′ 6= (y 	 x′) + (y 	 y) = y − y,
or y > y, and then

y − x = y 	 x 6= (y 	 x) + (y 	 y) = y − x.

(2) If X = [x0, x1[ and y > x1, then there exists x ∈ X with y < x < y,
and so

y − x = y 	 x 6= (y 	 x) + (y 	 y) = y − y.
An analogous argument works for X =]x0, x1].
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7. On algebras for submonads of P and their morphisms
In the following T = (T, µ, η) is a submonad of the presheaf monad P =

(P,m , y) in V -Catsep For simplicity we will assume that the injective and
fully faithful components of the monad morphism σ : T → P are inclusions.
Theorem 5.1 gives immediately that:

Proposition 7.1. Let (X, a) be a V -category and α : TX → X be a V -
functor. The following are equivalent:

(1) (X,α) is a T-algebra;
(2) ∀x ∈ X : α(x∗) = x.

We would like to identify the T-algebras directly, as we did for B• or B
in Proposition 6.4. First of all, we point out that a T-algebra structure
α : TX → X must satisfy, for every ϕ ∈ TX and x ∈ X,

X(α(ϕ), x) = TX(ϕ, x∗),

and so, in particular,

α(ϕ) ≤ x ⇔ ϕ ≤ x∗;

hence α must assign to each ϕ ∈ TX an xϕ ∈ X so that

xϕ = min{x ∈ X ; ϕ ≤ x∗}.

Moreover, for such map α : TX → X, α is a V -functor if, and only if,

(∀ϕ, ρ ∈ TX) TX(ϕ, ρ) ≤ X(xϕ, xρ) = TX(X(−, xϕ), X(−, xρ))

⇔ (∀ϕ, ρ ∈ TX) TX(ϕ, ρ) ≤
∧
x∈X

hom(X(x, xϕ), X(x, xρ))

⇔ (∀x ∈ X) (∀ϕ, ρ ∈ TX) X(x, xϕ)⊗ TX(ϕ, ρ) ≤ X(x, xρ).

Proposition 7.2. A V -category X is a T-algebra if, and only if:

(1) for all ϕ ∈ TX there exists min{x ∈ X ; ϕ ≤ x∗};
(2) for all ϕ, ρ ∈ TX and for all x ∈ X, X(x, xϕ)⊗TX(ϕ, ρ) ≤ X(x, xρ).

We remark that condition (2) can be equivalently stated as:

(2’) for each ρ ∈ TX, the distributor ρ1 =
∨

ϕ∈TX

X(−, xϕ) ⊗ TX(ϕ, ρ)

satisfies xρ1 = xρ,
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which is the condition corresponding to condition (2) of Corollary 6.7.

Finally, as for the formal ball monad, Theorem 5.1 gives the following
characterisation of T-algebra morphisms.

Corollary 7.3. Let (X,α), (Y, β) be T-algebras. Then a V -functor f : X →
Y is a T-algebra morphism if and only if

(∀ϕ ∈ TX) β(ϕ · f ∗) ≥ f(α(ϕ)).

Example 7.4. The Lawvere monad. Among the examples presented in
[2] there is a special submonad of P which is inspired by the crucial remark
of Lawvere in [17] that Cauchy completeness for metric spaces is a kind of
cocompleteness for V -categories. Indeed, the submonad L of P induced by

Φ = {ϕ : X−→◦ Y ; ϕ is a right adjoint V -distributor}

has as L-algebras the Lawvere complete V -categories. These were studied
also in [3], and in [14] under the name L-complete V -categories. When
V = [0,∞]+, using the usual order in [0,∞], for distributors ϕ : X−→◦ E,
ψ : E−→◦ X to be adjoint

X >
◦
ϕ

++
E

◦
ψ

kk

means that

(∀x, x′ ∈ X) X(x, x′) ≤ ϕ(x) + ψ(x′),

0 ≥ inf
x∈X

(ψ(x) + ϕ(x)).

This means in particular that

(∀n ∈ N) (∃xn ∈ X) ψ(xn) + ϕ(xn) ≤
1

n
,

and, moreover,

X(xn, xm) ≤ ϕ(xn) + ψ(xm) ≤ 1

n
+

1

m
.

This defines a Cauchy sequence (xn)n, so that

(∀ε > 0) (∃p ∈ N) (∀n,m ∈ N)n ≥ p ∧m ≥ p ⇒ X(xn, xm)+X(xm, xn) < ε.



32 MARIA MANUEL CLEMENTINO AND CARLOS FITAS

Hence, any such pair induces a (equivalence class of) Cauchy sequence(s)
(xn)n, and a representative for

X ◦
(1X)∗ //

◦ϕ
��

X

E

≤
◦
[ϕ,(1X)∗]

>>

is nothing but a limit point for (xn)n. Conversely, it is easily checked that
every Cauchy sequence (xn)n in X gives rise to a pair of adjoint distributors

ϕ = lim
n
X(−, xn) and ψ = lim

n
X(xn,−).

We point out that the L-embeddings, i.e. the fully faithful and fully dense
V -functors f : X → Y do not coincide with the L-dense ones (so that f∗
is a right adjoint). For instance, assuming for simplicity that V is integral,
a V -functor y : E → X (y ∈ X) is fully dense if and only if y ' x for all
x ∈ X, while it is an L-embedding if and only if y ≤ x for all x ∈ X. Indeed,
y : E → X is L-dense if, and only if,

– there is a distributor ϕ : X−→◦ E, i.e.

(∀x, x′ ∈ X) X(x, x′)⊗ ϕ(x′) ≤ ϕ(x), (7.i)

such that
– k ≥ ϕ · y∗ , which is trivially true, and a ≤ y∗ · ϕ, i.e.

(∀x, x′ ∈ X) X(x, x′) ≤ ϕ(x)⊗X(y, x′). (7.ii)

Since (7.i) follows from (7.ii),

y is L-dense ⇔ (∀x, x′ ∈ X) X(x, x′) ≤ ϕ(x)⊗X(y, x′).

In particular, when x = x′, this gives k ≤ ϕ(x) ⊗ X(y, x), and so we can
conclude that, for all x ∈ X, y ≤ x and ϕ(x) = k. The converse is also true;
that is

y is L-dense ⇔ (∀x ∈ X) y ≤ x.

Still, it was shown in [14] that injectivity with respect to fully dense and
fully faithful V -functors (called L-dense in [14]) characterizes also the L-
algebras.
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