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Abstract: We prove higher-order fractional Sobolev regularity for fully nonlinear,
uniformly elliptic equations in the presence of unbounded source terms. More pre-
cisely, we show the existence of a universal number 0 < ε < 1, depending only
on ellipticity constants and dimension, such that if u is a viscosity solution of
F (D2u) = f(x) ∈ Lp, then u ∈ W 1+ε,p, with appropriate estimates. Our strat-
egy suggests a sort of fractional feature of fully nonlinear diffusion processes, as
what we actually show is that F (D2u) ∈ Lp =⇒ (−∆)θu ∈ Lp, for a universal
constant 1

2 < θ < 1. We believe our techniques are flexible and can be adapted to
various models and contexts.
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1. Introduction
In this paper we establish higher-order fractional regularity for the Lp-

viscosity solutions of uniformly elliptic equations of the form

F (D2u) = f(x) in B1, (1)

where F : S(d) → R is a (λ,Λ)-elliptic operator, and the source term f ∈
Lp(B1), for p0 < p ≤ ∞; here, p0 ≥ d/2 is the Escauriaza exponent. We
prove new interior estimates in Sobolev spaces W 1+ε,p

loc (B1), for a universal
constant 0 < ε < 1.

The regularity theory for fully nonlinear elliptic equations has played a
prominent role in mathematical analysis since its launch in the early 1980’s

Received January 24, 2022.
This work was partially supported by the Centre for Mathematics of the University of Coimbra
- UIDB/00324/2020, funded by the Portuguese Government through FCT/MCTES. EP is partly
funded by FAPERJ (E-26/200.002/2018), CNPq-Brazil (433623/2018-7, 307500/2017-9) and In-
stituto Serrapilheira (1811-25904).
MS is partially supported by PUC-Rio Arquimedes Fund and by FAPESP grant 2021/04524-0.
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel
Superior – Brasil (CAPES) – Finance Code 001.
ET is grateful to the support of UCF start-up fundings.

1



2 E. A. PIMENTEL, M. S. SANTOS AND E. V. TEIXEIRA

and, while substantial advances have been made by several authors through
the years, fundamental questions remain open until today. The first devel-
opment in the theory is the Krylov-Safonov Harnack inequality [10], which
can be used to produced universal estimates in the Cα spaces, for a universal
parameter α ∈ (0, 1), for solutions of

F (D2u) = 0 in B1.

Through a linearization argument, C1,α-regularity results can be obtained;
see, for instance, [3, 21]. Under convexity assumption upon the operator, the
regularity of the solutions switches to the classical regime. That is, solutions
to F = 0 become C2,α, with estimates; this is the subject of the so-called
Evans-Krylov theory [9].

In [3], Caffarelli examines non-homogeneous fully nonlinear elliptic equa-
tions in the presence of variable coefficients. The findings reported in that
paper cover regularity results in Hölder spaces – C1,α and C2,α estimates.
Caffarelli also launches in that paper a regularity theory in Sobolev spaces,
by establishing estimates in W 2,p, for p > d. An essential assumption in
the W 2,p-regularity theory is a convexity-like condition on the operator. To
be precise, in [3], it is assumed the homogeneous equation driven by the
fixed-coefficients counterpart of the operator to have C1,1-estimates. The
requirement p > d is weakened in [7], by means of an improved Harnack
inequality proven in [8]. Caffarelli’s estimates are then established in W 2,p

for d/2 ≤ p0 < p; the universal constant p0 = p0(λ,Λ, d) is called Escauriaza
exponent and plays a fundamental role in the theory of viscosity solutions
of fully nonlinear equation. See [19] for sharp regularity estimates in such a
regime.

Furthering the regularity theory in Sobolev spaces, local estimates in W 1,q

are the subject of [17]. In that paper, the author considers viscosity solutions
to

F (D2u,Du, u, x) = f in B1

under usual structure conditions on F ; see [5]. By supposing f ∈ Lp(B1),
with p0 < p ≤ d, the author establish estimates in W 1,q

loc (B1) for every q > 1
satisfying

q < p∗ :=
dp

d− p
and d∗ =∞.
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While striking, such estimates are restricted to the level of the gradient of
the solutions. This raises a fundamental question: what’s the optimal degree
of differentiability of solutions under merely uniform ellipticity?

As concerns optimal regularity in Hölder spaces, this question was settled
by the program carried out in [13, 14, 15, 16]. In those papers, the authors
show that C1,α estimates are indeed optimal. In Sobolev spaces, however,
optimality remained largely open.

Our main result amounts to an integral estimate for fractional derivatives
of order 1 + ε, where ε ∈ (0, 1) is a universal number, i.e. depends only on
dimension and ellipticity constants (see the statement of Theorem 1 below).
As a conclusion, one finds that ellipticity enforces a universal control on weak
derivatives of order strictly higher than 1. Our main result reads as follows:

Theorem 1 (Fractional Sobolev Regularity). Let u ∈ C(B1) be a viscosity
solution to (1). Assume F is (λ,Λ)-elliptic and d/2 ≤ p0 < p < ∞. Let
ε ∈ (0, α0), where α0 ∈ (0, 1) is the exponent associated with the Hölder

regularity for F = 0. Then u ∈ W
(1+ε),p
loc (B1). In addition, there exists a

positive constant C = C(d, λ,Λ, ε) such that

‖u‖W (1+ε),p(B1/2) ≤ C
(
‖u‖L∞(B1) + ‖f‖Lp(B1)

)
. (2)

The proof of Theorem 1 draws inspiration from the arguments in [3], lead-
ing to W 2,p-estimates for convex operators. However, because we only im-
pose uniform ellipticity, we cannot touch the graph of the solutions with
paraboloids. The main key novelty of our approach is an alternative geomet-
ric construction that considers C1,α-cones of the form

ϕ(x) := `(x)±M |x− x0|1+α,

where ` : B1 → R is an affine function and M > 0 is the opening of the cone.
We are interested in the sets of points at which one can touch the graph
of the solutions with cones of a certain opening. The idea is to show that
information upon the measure of such sets can be translated into integral
estimates of fractional order.

Indeed, an interesting corollary of our findings sheds light on an impor-
tant issue underlying the regularizing effects in the fully nonlinear setting.
Our reasoning suggests, at least heuristically, that while of second order,
the diffusion process associated with F is no more efficient than α-stable
Lévy process; see [18, 20] for further insights on diffusion efficiency versus
regularity theory.
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The remainder of this paper is organized as follows: Section 2.1 presents
our main assumptions, whereas Section 2.2 gathers a few elementary notions
and previous results. In Section 3, we resort to some geometric-measure
techniques to produce a preliminary level of integrability for the aperture
function. Section 4 refines this integrability using geometric and approxima-
tion methods. Sections 3 and 4 follow the reasonings of [4, Chapter 7] closely.
The proof of Theorem 1 is the subject of Section 5, where we show viscosity
solutions of (1) also verify a fractional diffusion equation.

2. Preliminaries
This section details the main hypotheses under which we work and presents

preliminary facts and results used throughout the paper.

2.1. Main assumptions. In what follows, we put forward the main assump-
tions used in the article. We start with ellipticity condition on the operator
F .

A 1 (Uniform ellipticity). The operator F : S(d) → R is (λ,Λ)-uniformly
elliptic. That is, for every M,N ∈ S(d) with N ≥ 0 we have

λ‖N‖ ≤ F (M)− F (M +N) ≤ Λ‖N‖.

Ellipticity can also be phrased in terms of the extremal Pucci operators.
For M ∈ S(d), we define the Pucci extremal operators P±λ,Λ as

P+
λ,Λ(M) := sup

A∈Aλ,Λ
(−Tr(AM))

and

P−λ,Λ(M) := inf
A∈Aλ,Λ

(−Tr(AM)),

where

Aλ,Λ := {A ∈ S(d) : λI ≤ A ≤ ΛI}
is the class of (λ,Λ)-elliptic matrices. It is important to note that P+

λ,Λ(M) =

−P−λ,Λ(−M). The condition in A1 is equivalent to

P−λ,Λ(N) ≤ F (M +N)− F (M) ≤ P+
λ,Λ(N)

for any M,N ∈ S(d). Our next assumption concerns the integrability condi-
tion imposed on the source term f ; we denote with p0 ≥ d/2 the Escauriaza
exponent.
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A 2 (Integrability of the source term f). We suppose f ∈ Lp(B1), with
p ≥ p0. In addition, there exists a constant C > 0 such that

‖f‖Lp(B1) ≤ C.

Remark 1 (Smallness regime). Our arguments depend on a smallness regime
on the Lp-norm of the source term f ; i.e., we require

‖f‖Lp(B1) ≤ ε,

for some 0 < ε � 1, to be universally determined further. From usual
scaling arguments, it shall be clear that such smallness requirement neither
imposes further constraints on the data of the problem nor affects the resulting
estimates.

2.2. Notations and preliminary results. For r > 0 and x0 ∈ Rd, Br(x0)
denotes the open ball of radius r centered at x0. For simplicity, we denote
Br(0) with Br. Similarly, Qr(x0) will denote the open cube with side r and
center x0, i.e.,

Qr(x0) :=
{
x ∈ Rd : |x− x0|∞ <

r

2

}
,

where |x|∞ := max{|x1|, . . . |xd|}. The space of real symmetric d×d matrices
is denoted with S(d). Lastly, we mention that some constants appearing in
the paper depend only on the dimension d and the ellipticity λ and Λ; we
refer to such a constant as universal.

For completeness, we next include the definition of viscosity solution; see
[5, Definition 2.2].

Definition 1 (Viscosity solution). Let p > p0. We say that u ∈ C(B1) is an
Lp-viscosity sub-solution to

F (D2u,Du, u, x) = 0 in B1 (3)

if for every x0 ∈ B1 and every φ ∈ W 2,p
loc (B1) such that u − φ attains a local

maximum at x0, we have

ess lim inf
x→x0

(
F (D2φ(x), Dφ(x), u(x), x)

)
≤ 0.

We say that u ∈ C(B1) is an Lp-viscosity super-solution to (3) if for every
x0 ∈ B1 and every φ ∈ W 2,p

loc (B1) such that u− φ attains a local minimum at
x0, we have

ess lim sup
x→x0

(
F (D2φ(x), Dφ(x), u(x), x)

)
≥ 0.
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If u ∈ C(B1) is a viscosity sub and a super-solution to (3), we say that u is
a viscosity solution to the equation.

For g ∈ L1
loc(Rd), we define the maximal function of g, denoted with m(g),

as

m(g)(x) := sup
r>0

1

|Qr(x)|

∫
Qr(x)

|g(y)|dy.

We recall that the maximal operator satisfies

|{x ∈ Rd : m(g)(x) ≥ t}| ≤ C

t
‖g‖L1(Rd), ∀ t > 0. (4)

Two important structures in our analysis are the convex envelope of a
function and the associated contact set.

Definition 2. Let Ω ⊂ Rd be an open set and v ∈ C(Ω). The convex envelope
of v in Ω is defined by

Γ(v)(x) := sup
L
{L(x) |L ≤ v in Ω, L is affine}.

The contact set of v is given by

{x ∈ Ω | v(x) = Γ(v)(x)}.
Because our results rely solely on the ellipticity of the operator F , our

strategy focuses on the C1,α-geometry of solutions. Consequently, we are
interested in a contact set related to functions of class C1,α for specific values
of α ∈ (0, 1). We proceed with the definition of C1,α-cone for α ∈ (0, 1].

Definition 3 (C1,α-cone of opening M and vertex x0). We say that ψ is a
convex C1,α-cone of opening M and vertex x0 if

ψ(x) = L(x) +
M

2
|x− x0|1+α,

where M is a positive constant, and L(x) is an affine function. Similarly, ψ
is a concave C1,α-cone of opening M and vertex x0 if

ψ(x) = L(x)− M

2
|x− x0|1+α,

where M is a positive constant, and L(x) is an affine function.

The sets collecting the points that can be touched by a C1,α-cone of certain
opening play a pivotal role in our analysis since their measure yields infor-
mation on the integrability of the solutions, as we shall explore later. Our
next definition rigorously introduces those sets.
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Definition 4. Let O ⊂ Ω be an open subset, 0 < τ0 <
diam(O)

5 , and M > 0.
We define

GM(u,O) = GM(O)

as the set of all points z ∈ O for which there exists a concave C1,α-cone ψ of
opening M and vertex x0 such that

(1) u(z) = ψ(z);
(2) u(x) > ψ(x) for all x ∈ Bτ0(z).

We also define:

GM(u,O) = GM(O)

as the set of all points z ∈ O for which there exists a convex C1,α-cone ψ of
opening M and vertex x0 such that

(1) u(z) = ψ(z);
(2) u(x) < ψ(x) for all x ∈ Bτ0(z).

Finally

GM(O) = GM(O) ∩GM(O).

Next, we note a monotonicity property related to the sets GM . Let M1 >
M2 and take x1 ∈ GM2

(u,O). By definition, there exists a concave C1,α-cone
of the form

ψ(x) = L(x)− M2

2
|x− x1|1+α,

where L is an affine function, such that ψ(x1) = u(x1) and ψ(x) < u(x), for
all x ∈ Bdiam(O)

10
(x1). Hence,

u(x) > L(x)− M2

2
|x− x1|1+α > L(x)− M1

2
|x− x1|1+α = ψ̃(x),

for all x ∈ Bdiam(O)
10

(x1). Notice that,

u(x1) = ψ(x1) = ψ̃(x1).

We conclude that x1 ∈ GM1
(u,O); thus

GM2
(u,O) ⊂ GM1

(u,O).

Similarly, we have

GM2
(u,O) ⊂ GM1

(u,O).

Therefore,

GM2
(u,O) ⊂ GM1

(u,O).
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The following definition accounts for a family of sets collecting points where
a C1,α-cone cannot touch the graph of the solutions.

Definition 5. Let O ⊂ Ω be an open subset, 0 < τ0 <
diam(O)

5 and M > 0.
We define

AM(u,O) = AM(O) = O\GM(u,O).

Similarly

AM(u,O) = AM(O) = O\GM(u,O).

Finally

AM(u,O) = AM(O) = O\GM(u,O).

Now, we define the C1,α-aperture function. This structure is directly related
to the integrability of the solutions to (1).

Definition 6 (C1,α-aperture function). Let B b B1. For x ∈ B we define

θ(x) := θ1+α(u,B)(x) = inf {M | x ∈ GM(u,B)} ∈ [0,∞].

Our paper aims to understand how the aperture function encodes informa-
tion on the integrability of fractional derivatives of solutions to (1).

In the sequel, we recall the primary ingredients of the theories unlocking
this connection. We start with an auxiliary lemma.

Lemma 1. For Ω ⊂ Rd, let g : Ω → R be a nonnegative and measurable
function. Define µg : R+

0 → R+
0 as

µg(t) := |{x ∈ Ω | g(x) > t}|, t > 0.

Let η > 0 and M > 1 be constants. Then for 0 < p <∞,

g ∈ Lp(Ω)⇐⇒
∑
k≥1

Mpkµg(ηM
k) = S <∞

and

C−1S ≤ ‖g‖pLp(Ω) ≤ C(|Ω|+ S),

where C > 0 is a constant depending only on η, M and p.

The function µg, defined in Lemma 1, is known as the distribution function
of g. Next, we recall a corollary of the Calderón-Zygmund decomposition.
See [4, Lemma 4.2]. Let Q1 be the unit cube and split it into 2d cubes of half
side. Then, split each of these 2d cubes and iterate the process. The cubes
obtained in this way are called dyadic cubes.
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If Q is a dyadic cube different from Q1, we say that Q̃ is the predecessor
of Q if the latter is one of the 2d cubes obtained by dividing Q̃.

Lemma 2 (Calderón-Zygmund decomposition). Let A ⊂ B ⊂ Q1 be mea-
surable sets and take 0 < δ < 1 such that

(a) |A| ≤ δ;

(b) if Q is a dyadic cube such that |A ∩Q| > δ|Q|, then Q̃ ⊂ B, where Q̃
is the predecessor of Q.

Then

|A| ≤ δ|B|.

Now, we can state a connection between the distribution function µθ and
the measure of the sets AM . In fact,

µθ(t) ≤ |At(u,B1/2)|;
therefore, we study the summability of∑

k≤1

Mpk|AMk(u,B1/2)|

and the mechanism transmitting information from θ to u.
In what follows, we define the fractional Sobolev spaces. We refer to [6,

Chapter 2] for further details.

Definition 7 (Fractional Sobolev spaces). Let s ∈ (0, 1). For any p ∈
[1,+∞) we define W s,p(Ω) as

W s,p(Ω) :=

{
u ∈ Lp(Ω) :

|u(x)− u(y)|
|x− y|

n
p+s

∈ LP (Ω× Ω)

}
.

We equip W s,p(Ω) with a norm denoted with ‖ · ‖W s,p(Ω) and given by

‖u‖W s,p(Ω) :=

(∫
Ω

|u|pdx+

∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|d+sp
dxdy

) 1
p

.

Moreover, we denote with [u]W s,p(Ω) the Gagliardo seminorm of u, defined as

[u]W s,p(Ω) :=

(∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|d+sp
dxdy

) 1
p

.

Sobolev spaces involving weak derivatives of higher fractional order are
defined next.
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Definition 8 (Higher fractional order Sobolev spaces). If s > 1, we write
s = m+ γ, where m is an integer and γ ∈ (0, 1). We define

W s,p(Ω) := {u ∈ Wm,p(Ω) | Dαu ∈ W γ,p(Ω), for any α s.t. |α| = m}.
In this case, W s,p(Ω) is equipped with the following norm:

‖u‖W s,p(Ω) :=

‖u‖pWm,p(Ω) +
∑
|α|=m

‖Dαu‖pW γ,p(Ω)

 1
p

.

When p = 2, we write W s,2(Ω) =: Hs(Ω). The space W s,p
0 (Ω) consists of

all functions u ∈ W s,p(Rd) such that u = 0 in Rd \ Ω. In addition, W−s,p(Ω)
denotes the dual space of W s,p(Ω).

Next, the facts we recall concern the Fourier transform and its relationship
with the fractional Laplacian operator. For simplicity, we operate in the
context of the Schwartz space, denoted with S; we refer the reader to [6,
Chapter 3]. Standard density arguments allow us to switch from S to L2(Rd),
as suitable. In what follows we recall the definition of the fractional Laplacian
and the Fourier transform, to which we resort in our argument.

For s ∈ (0, 1) and v ∈ S, we define the fractional Laplacian operator as

(−∆)sv(x) := −1

2
C(d, s)

∫
Rd

v(x+ y) + v(x− y)− 2v(x)

|y|d+2s
dy.

The Fourier transform of u is defined by

Fv(ζ) :=
1

(2π)d/2

∫
Rd
e−iζ·xv(x)dx.

The interaction between the Fourier transform and the fractional Laplacian
operator is the subject of the upcoming proposition.

Proposition 1. Let s ∈ (0, 1) and let (−∆)s : S → L2(Rd) be the fractional
Laplacian operator. Then, for any u ∈ S,

(−∆)su = F−1(|x|2s(Fu)) for all x ∈ Rd.

For a proof of this fact, we refer the reader to [6, Proposition 3.3]. We
continue with the definition of a related functional space.

Definition 9. For s ∈ R we define

H̄s(Rd) =

{
u ∈ L2(Rd) |

∫
Rd

(1 + |x|2s)|Fu(x)|2dx <∞
}
.
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Proposition 2. Let s ∈ (0, 1). The fractional Sobolev space Hs(Rd) coincides
with H̄s(Rd). In particular, for any u ∈ Hs(Rd)

[u]2Hs(Rd) = 2C(n, s)−1

∫
Rd
|x|2s|Fu(x)|2dx.

For the proof of Proposition 2, we mention [6, Proposition 3.4]. The next
result concerns local regularity for the fractional Laplacian equation of order
s. See [2, Theorem 1.4] for details.

Proposition 3. Let u ∈ W s,2
0 (Ω̄) be the unique weak solution to{

(−∆)su = f in Ω

u = 0 in Rd \ Ω.
(5)

where Ω ⊂ Rd is an arbitrary bounded open set and s ∈ (0, 1). If f ∈ Lp(Ω)
with 1 < p < ∞, then u ∈ W 2s,p

loc (Ω). In addition, for every Ω0 b Ω there
exists C > 0 such that

‖u‖W 2s,p(Ω0) ≤ C
(
‖u‖L∞(Ω) + ‖f‖Lp(Ω)

)
,

where C = C(d, diam(Ω), dist(Ω0, ∂Ω)).

3. Geometric-Measure Tools
This section discusses an Lδ-estimate for the aperture function, introduced

in Definition 6. This first level of integrability stems from the uniform ellip-
ticity of F and the integrability of f ; see A1 and A2. We refine such estimate
further in the argument, where geometric techniques build upon the regu-
larity available for F = 0 in C1,β-spaces. To be more precise, following
proposition holds true:

Proposition 4 (Lδ-estimate for the aperture function). Let u ∈ C(B1) be a
normalized viscosity solution to (1). Suppose A1 and A2 are in force. Then
the C1,α-aperture function, θ1+α = θ, defined in Definition 6, is in Lδ(B1),
for some universal 0 < δ � 1. In additional, there exists a universal constant
C > 0 such that ∫

B1/2

|θ(x)|δdx ≤ C.

Proposition 4 is analogous to Lin’s integral estimates, introduced in the
linear setting in [11]. See [3, 4] for its fully nonlinear counterpart; for a
more recent account of this result, see [1, 12]. The proof of Proposition
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4 is standard and follows along the same lines as in [4, Chapter 7]. The
important modification, from the technical viewpoint, concerns the use of
C1,α-cones instead of paraboloids, as in [4]. Though we omit the proof, we
recall some of its ingredients for further reference.

Lemma 3. Let u ∈ C(B6
√
d) be a viscosity solution to (1) in B6

√
d. Suppose

A1 and A2 are in force. Suppose further that Ω is a bounded domain such
that B6

√
d ⊂ Ω. Then

|GM(u,Ω) ∩Q1| ≥ 1− σ,

where 0 < σ < 1 and M > 1 are universal constants.

For the proof of Lemma 3 we refer the reader to [4, Lemma 7.5]. We close
this section with a decay rate for the measure of the sets At(u,Ω)∩Q1. The
conclusion of the next lemma is equivalent to the statement of Proposition
4. We state it next for convenience, as we resort to its formulation as a
characterization of δ-integrability for θ.

Lemma 4. Let u ∈ C(B6
√
d) be a viscosity solution to (1) in B6

√
d. Suppose

A1 and A2 are in force and Ω is a bounded domain such that B6
√
d ⊂ Ω.

Extend f by zero outside B6
√
d. Then

|At(u,Ω) ∩Q1| ≤ c2t
−µ, ∀ t > 0, (6)

where c2 and µ are positive universal constants.

The information in Proposition 4, or Lemma 4, is sub-optimal. This is be-
cause it does not consider the implications of ellipticity to the regularity of the
solutions. In fact, by noticing that uniform ellipticity implies C1,α-estimates
for the homogeneous problem governed by F , we manage to improve the
decay rate in (6).

The next section produces an approximation lemma relating the solutions
to (1) with viscosity solutions to F = 0. The regularity theory available for
the latter refines the decay rate for |AMk(u,B6

√
d)∩Q1|, ultimately improving

the integrability of the aperture function θ.

4. Higher integrability of the aperture function
In what follows, we refine the decay rate of the measure of specific sets,

leading to improved integrability of the aperture function. The core of this
section is the following proposition.
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Proposition 5 (Improved integrability of θ). Let u ∈ C(B1) be a normalized
viscosity solution to (1). Suppose A1-A2 are in force. Suppose further that
‖f‖Lp(B1) < ε, for some ε > 0 to be determined. Then θ ∈ Lp(B1) and there
exists a universal constant C > 0 such that

‖θ‖Lp(B1/2) ≤ C.

In establishing Proposition 5, the key ingredient is an approximation lemma
importing information from the solutions to F = 0.

Lemma 5 (Approximation Lemma). Let u ∈ C(B8
√
d) be a normalized vis-

cosity solution to (1) in B8
√
d. Suppose that A1-A2 are in force. Given δ > 0,

there exists 0 < ε < δ such that, if ‖f‖Lp(B8
√
d)
≤ ε, one can find a function

h ∈ C1,α0

loc (B7
√
d) satisfying

‖u− h‖L∞
loc(B7

√
d)
≤ δ,

where α0 = α0(d, λ,Λ) ∈ (0, 1) accounts for the regularity available for F = 0.
In addition, there exists a universal constant C = C(d, λ,Λ, α0) such that

‖h‖C1,α0(B13
√
d/2) ≤ C ‖h‖L∞(B20

√
d/3) .

Proof : We argue as in [19], by supposing, seeking a contradiction, that the
statement of the proposition is false. In this case, there exists a number δ0 >
0, a sequence of (λ,Λ)-elliptic operators (Fn)n∈N and sequences of functions
(un)n∈N and (fn)n∈N, satisfying

Fn(D
2un) = fn in B8

√
d (7)

and

‖fn‖Lp(B8
√
d)
≤ 1

n
,

with

‖un − h‖L∞(B6
√
d)
> δ0, (8)

for all h ∈ C1,α0

loc (B7
√
d).

From the regularity available for (7), the family (un)n∈N is equibounded
in some Hölder space Cβ, for some β ∈ (0, 1) unknown, though universal.
Therefore, there exists a convergent subsequence, still denoted with (un)n∈N,

and u∞ ∈ C
β
2

loc(B7
√
d), such that un → u∞ locally uniformly.
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In addition, by already classical arguments, there exists a (λ,Λ)-elliptic
operator F∞ such that Fn → F∞. At this point, standard stability results [5,
Theorem 3.8] imply that u∞ solves

F∞(D2u∞) = 0 in B7
√
d.

Since F is a (λ,Λ)-uniformly elliptic operator, we have u∞ ∈ C1,α0

loc (B7
√
d). By

taking h ≡ u∞, we get a contradiction with (8), and the proof is complete.

In the remainder of this section, we suppose the source term satisfies the
smallness regime prescribed in Lemma 5. That is,

‖f‖Lp(B8
√
d)
≤ ε,

for 0 < ε� 1 as in the statement of Lemma 5, though yet to be determined.

Lemma 6. Let u ∈ C(B8
√
d) be a normalized viscosity solution to (1) in B8

√
d.

Let Ω ⊂ R be a bounded domain such that B8
√
d ⊂ Ω and h ∈ C1,α0

loc (B7
√
d) be

the function from Lemma 5. There exists a function h̃ ∈ C2(Ω) satisfying

‖u− h̃‖L∞(Ω) ≤ 1

and
‖h̃‖C1,α0(B6

√
d)
≤ C‖h‖C1,α0(B25

√
d/4),

where C > 0 is a universal constant.

Proof : Set
Ω1 := {x ∈ Rd : dist(x,Ω) < 1}.

Extend u continuously to Ω1. Also, extend h outside B̄13
√
d/2 continuously,

such that h = u in Ω1\B20
√
d/3 and ‖u − h‖L∞(Ω1) = ‖u − h‖L∞(B13

√
d/2)

. Let

(ηn)n∈N be a sequence of standard mollifiers and define

hn := h ∗ ηn in Ω1,n,

where
Ω1,n := {x ∈ Ω1 : dist(x, ∂Ω1 < 1/n)}.

It is clear that ‖h−hn‖L∞
loc(Ω1) → 0 as n→∞. In particular, for n̄ sufficiently

large we have

‖h− hn̄‖L∞(Ω) ≤
1

2
.

Therefore,

‖u− hn̄‖L∞(Ω) ≤ ‖u− h‖L∞(Ω) + ‖h− hn̄‖L∞(Ω) ≤ δ + 1/2 ≤ 1,
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provided the approximation regime encoded by δ in Lemma 5 is such that
δ ≤ 1/2. Define B6

√
d,n̄ as

B6
√
d,n̄ :=

{
x ∈ Rd : dist(x,B6

√
d) <

1

n̄

}
,

and consider h|B6
√
d,n̄

, which we still denote with h, for ease of notation. Thus
for x ∈ B6

√
d we obtain

|hn̄(x)| ≤
∫
B6

√
d,n̄

|h(y)ηn(x− y)|dy ≤ sup
B6

√
d,n̄

|h(z)| ≤ ‖h‖C1,α0(B25
√
d/4);

hence, we have
sup
B6

√
d

|hn̄(x)| ≤ ‖h‖C1,α0(B25
√
d/4).

Because
Dhn = Dh ∗ ηn,

we similarly conclude that

sup
B6

√
d

|Dhn̄(x)| ≤ ‖h‖C1,α0(B25
√
d/4).

Finally notice that for x, z ∈ B6
√
d

|Dhn(x)−Dhn(z)| ≤
∫
B6

√
d,n̄

|Dh(x− y)−Dhn(z − y)|ηn(y)dy

≤ sup
y∈B6

√
d,n̄

|Dh(x− y)−Dhn(z − y)|

≤ C|x− z|α0.

By combining the former inequalities and setting h̃ := h2n̄ one completes the
proof.

In what follows, the former lemma builds upon measure-theoretic tech-
niques to refine the Lδ-estimate available for θ.

Lemma 7. Let u ∈ C(B8
√
d) be a normalized viscosity solution to (1) in

B8
√
d. Suppose that A1-A2 are in force, with ‖f‖Ld(Ω) < ε. Suppose further

that
−|x|1+α ≤ u(x) ≤ |x|1+α in Ω\B6

√
d,

for some α ∈ (0, 1), fixed. Then

|GM(u,Ω) ∩Q1| ≥ 1− ρ, (9)
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for some ρ ∈ (0, 1), where M > 1 in a universal constant.

Proof : Fix 0 < δ < 1, yet to be determined. Let h̃ be the C2
loc(Ω) function

whose existence follows from Lemma 6. Since

‖u− h̃‖L∞(Ω) ≤ 1,

it follows that

−1− |x|1+α ≤ h̃(x) ≤ 1 + |x|1+α in Ω\B6
√
d.

Therefore, there exists 1 < N = N(d, C) such that

Q1 ⊂ GN(h,Ω). (10)

Define

w(x) =
min(1, ε)

2δ
(u− h̃)(x).

Notice that w solves

F̃ (D2v, x)− f̃(x) = 0,

where

F̃ (M,x) :=
min(1, ε)

2δ
F

(
2δ

min(1, ε)
M +D2h̃

)
,

and

f̃(x) :=
min(1, ε)

(2δ)
f(x).

As a consequence of the former inequality, we have

‖f̃‖Ld ≤
min(1, ε)

(2δ)
‖f‖Ld ≤ ε.

Hence, w is entitled to the conclusions of Lemma 3 in Ω. Because of Lemma
4, we obtain

|At(w,Ω) ∩Q1| ≤ t−µ, for all t > 0.

It follows that

|As(u− h,Ω) ∩Q1| ≤ cs−µδµ for all s > 0.

By choosing δ small enough we get

|GN(u− h,Ω) ∩Q1| ≥ 1− δµ ≥ 1− ρ.
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The proof of Lemma 7 sets the proximity-regime encoded by δ > 0. As
a by-product, it sets the smallness condition on the Lp-norm of the source
term f , encoded by ε > 0 in the statement of Lemma 5. In the remainder of
this section, these constants remain fixed.

Lemma 8. Let u ∈ C(B8
√
d) be a normalized viscosity solution to (1) in

B8
√
d. Suppose that A1-A2 are in force, with ‖f‖Ld(Ω) < ε. If

G1(u,Ω) ∩Q3 6= ∅, (11)

then

|GM(u,Ω) ∩Q1| ≥ 1− p,
with M and ρ as in Lemma 7.

Proof : Let x1 ∈ G1(u,Ω) ∩ Q3. Hence, there exists an affine function L(x),
such that

−1

2
|x− x1|1+α ≤ u(x)− L(x) ≤ 1

2
|x− x1|1+α in Ω.

Define

v(x) =
u(x)− L(x)

c(d)
,

where c(d) is a constant depending only on d, large enough as to guarantee
|v(x)| ≤ 1 and

|v(x)| ≤ |x|1+α in Ω\B6
√
d.

In addition, v solves

F̃ (D2u)− f̃(x) = 0,

where

F̃ (M) :=
1

c(d)
F (c(d)M),

and

f̃(x) :=
1

c(d)
f(x).

Lemma 7 yields

|GM(v,Ω) ∩Q1| ≥ 1− ρ,
therefore

|Gc(d)M(u,Ω) ∩Q1| ≥ 1− ρ
and the Lemma is proven.
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The following result resorts once again to the Calderón-Zygmund decom-
position.

Lemma 9. Let u ∈ C(B8
√
d) be a normalized viscosity solution to (1) in

B8
√
d. Suppose that A1-A2 are in force, with ‖f‖Ld(Ω) < ε. Extend f by zero

outside B8
√
d and set

A := AMk+1(u,B8
√
d) ∩Q1,

B :=
{
AMk(u,B8

√
d) ∩Q1

}
∪
{
x ∈ Q1 : m(fd)(x) ≥ cd3M

kd
}
,

for k ∈ N. Then

|A| ≤ ρ|B|,
where M > 1 is a universal constant and c3 > 0 depends only on d, λ, Λ and
ρ.

Proof : We start by noticing that |u| ≤ 1 ≤ |x|1+α in B8
√
d\B6

√
d. Hence

Lemma 7 applied with Ω = B8
√
d, implies

|GMk+1(u,B8
√
d) ∩Q1| ≥ |GMk(u,B8

√
d) ∩Q1| ≥ 1− ρ.

It leads to |A| ≤ ρ.
The remainder of the proof relies on the Calderón-Zygmund decomposition,

as stated in Lemma 2. Hence, we need to show that if Q = Q1/2i(x0) is a
dyadic cube Q1 such that

|AMk+1(u,B8
√
d) ∩Q| = |A ∩Q| > ρ|Q|, (12)

we have Q̃ ⊂ B. We suppose otherwise and produce a contradiction. Suppose
that Q̃ 6⊂ B and let x1 be such that

x1 ∈ Q̃ ∩GMk(u,B8
√
d) (13)

and

m(fd)(x1) ≤
(
c3M

k
)d
. (14)

Consider as before the transformation

x = x0 +
1

2i
y, x ∈ B8

√
d, (15)

and define

v(y) =
22i

Mk
u

(
x0 +

1

2i
y

)
.
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Finally, let Ω̃ be the image of B8
√
d under the transformation (15). We need

to verify that v satisfies the hypothesis of Lemma 8. Note that v solves

F̃ (D2u)− f̃(x) = 0 in Ω̃,

where

F̃ (N) :=
1

Mk
F
(
MkN

)
and

f̃(x) :=
1

Mk
f

(
x0 +

1

2i
x

)
.

Since B8
√
d ⊂ Ω̃, the function v satisfies the equation in B8

√
d, in the vis-

cosity sense. Furthermore |x1 − x0|∞ ≤ 3/2i+1 implies that B8
√
d/2i(x0) ⊂

Q19
√
d/2i(x1). Hence

‖f̃‖dB8
√
d

=
2id

Mkd

∫
B8

√
d/2i(x0)

|f(x)|ddx

≤ c(d)

Mkd

1

|Q19
√
d/2i|

∫
Q19

√
d/2i(x1)

|f(x)|ddx

≤ c(d)cd3
≤ ε,

for c3 small enough.
Now, by (13) there exists a convex and a concave C1,α-cones of opening

Mk, ψ1 and ψ2 respectively, such that ψ1 touches u from above at x1 and ψ2

touches u from below at x1. Define

ψ̃1(y) := ψ1

(
x0 +

1

2i
y

)
and

ψ̃2(y) := ψ2

(
x0 +

1

2i
y

)
.

It is easy to see that ψ̃1 (resp. ψ̃2) touches v from above (respectively from
below) in a point y1 such that x1 = x0 + 1

2iy1. Therefore G1(v, Ω̃) 6= ∅. By
Lemma 8 we obtain

|GM(v, Ω̃) ∩Q1| ≥ 1− ρ = (1− ρ)|Q1|.
Hence

|GMk+1(u,B8
√
d) ∩Q| ≥ (1− ρ)|Q|,
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which implies

|AMk+1(u,B8
√
d) ∩Q| ≤ ρ|Q|.

This fact produces a contradiction with (12) and finishes the proof.

Next, we detail the proof of Proposition 5.

Proof of Proposition 5: Let M be as in Lemma 9 and take ρ such that

ρMp =
1

2
.

For k ≥ 0, define

αk := |AMk(u,B8
√
d) ∩Q1|

and

βk :=
∣∣∣ {x ∈ Q1 | m(fd)(x) ≥

(
c3M

k
)d} ∣∣∣.

By Lemma 9 we obtain αk+1 ≤ ρ(αk + βk). Hence

αk ≤ ρk +
k−1∑
i=0

ρk−iβi. (16)

Since fd ∈ Lp/d(B8
√
d), we have that m(fd) ∈ Lp/d(B8

√
d) and

‖m(fd)‖Lp/d(B8
√
d)
≤ c‖f‖dLp(B8

√
d)
≤ C.

Therefore, by Lemma 1 we obtain∑
k≥0

(
Md
)pk
d |x ∈ Q1 | m(fd)(x) ≥ cd3M

dk| ≤ C.

The former inequality implies∑
k≥0

Mpkβk ≤ C. (17)

Since B1/2 ⊂ Q1, the distribution function of θ is bounded from above as
follows:

µθ(t) ≤ |At(u,B1/2)| ≤ |At(u,B8
√
d) ∩Q1|.
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Hence ∑
k≥1

Mpkαk ≤
∑
k≥1

(ρMp)k +
∑
k≥1

k−1∑
i=0

ρk−iMpkβi

=
∑
k≥1

2−k +
∑
k≥1

k−1∑
i=0

ρk−iMp(k−i)Mpiβi

=
∑
k≥1

2−k +
∑
k≥1

k−1∑
i=0

2−(k−i)Mpiβi

=
∑
k≥1

2−k +

(∑
i≥0

Mpiβi

)(∑
j≥1

2−j

)
≤ C.

Applying Lemma 1 once again we conclude that ‖θ‖Lp(B1/2) ≤ C and the
proof is complete.

5. Fractional diffusion and a proof of Theorem 1
In this section, we detail the proof of Theorem 1.

Proof of Theorem 1: We start by noticing that if the graph of u is touched
at a point x0 by a C1,α-cone, we may assume x0 is the vertex of the cone.
Let ψ be a C1,α-cone of opening ±M and vertex x0. We have:

∆1+α
h ψ(x0) := ψ(x0+h)+ψ(x0−h)−2ψ(x0)

|h|1+α

= ±M.

Also, notice that touching u strictly in B 1
10

(x0) from above at x0 by a

convex C1,α-cone ψ of opening M and vertex x0 gives for all 0 < h < 1
10

∆1+α
h u(x0) := u(x0+h)+u(x0−h)−2u(x0)

|h|1+α

< ψ(x0+h)+ψ(x0−h)−2ψ(x0)
|h|1+α

≤ θ(u,B1/2)(x0).

Similarly, touching u strictly in B 1
10

(x0) from below at x0 by a concave C1,α-

cone ψ of opening M and vertex x0 gives, for all 0 < h < 1
10 :

−θ(u,B1/2)(x0) < ∆1+α
h u(x0).
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Hence, by hypothesis,

‖∆1+α
h u‖Lp(B1/2) ≤ C,

uniformly for all 0 < h < 1
10 , for 0 < α < α0. At this point, we set ϕ := uχB1/2

in Rd. Then we have that ϕ ∈ L∞(Rd). Next, for

1 < σ < 1 + α,

we define the singular integral operator:

Iσ/2(v)(x0) :=

∫
Rd

v(x0 + y) + v(x0 − y)− 2v(y)

|y|d+σ
dy.

Notice that, up to constants, Iσ/2(v) ∼ ∆σ/2(v). For x0 ∈ B1/2 we estimate

Iσ/2(ϕ)(x0) =

∫
Rd

ϕ(x0 + y) + ϕ(x0 − y)− 2ϕ(y)

|y|d+σ
dy

=

∫
B1/10

u(x0 + y) + u(x0 − y)− 2u(y)

|y|d+σ
dy

+

∫
B1\B1/10

u(x0 + y) + u(x0 − y)− 2u(y)

|y|d+σ
dy

≤ θ(u,B1/2)(x0)

∫
B1/10

dy

|y|d−µ
+ C‖u‖L∞(B1)

=
C

µ10d
·
(
θ(u,B1/2) + ‖u‖L∞(B1)

)
where µ := 1 + α− σ, and C is a universal constant. Hence, we have proven
that

(−∆)σ/2ϕ ∈ Lp(B1/2).

By setting g := (−∆)σ/2ϕ in B1/2 we conclude that ϕ satisfies{
(−∆)σ/2ϕ = g in B1/2

ϕ = 0 in Rd \B1/2.

Now, we aim at showing that ϕ ∈ W σ/2,2(Rd). Extend g by zero outside
B1/2. It is clear that g ∈ L2(Rd). Hence F(g) ∈ L2(Rd). In addition, since

ϕ ∈ L2(Rd), F(ϕ) ∈ L2(Rd) as well. By Proposition 1 (applied to functions
in L2(Rd))

F(g)(x) = (|x|)σF(ϕ).
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Furthermore, we have that

(1 + |x|σ)F(ϕ) = F(ϕ) + F(g).

It follows that (1 + |x|σ)F(ϕ) ∈ L2(Rd). In particular,∫
Rd

(1 + |x|σ)|F(ϕ)(x)|2dx <∞.

Hence, by Proposition 2, we conclude that ϕ ∈ W σ/2,2(Rd). Finally, by
Theorem 5, we obtain that ϕ ∈ W σ,p

loc (B1/2). Therefore

u ∈ W σ,p
loc (B1/2),

with universal estimates, which ends the proof.
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