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ABSTRACT: We lay down the foundations for a pointfree theory of Pervin spaces.
A Pervin space is a set equipped with a bounded sublattice of its powerset, and
it is known that these objects characterize those quasi-uniform spaces that are
transitive and totally bounded. The pointfree notion of a Pervin space, which we
call Frith frame, consists of a frame equipped with a generating bounded sublattice.
In this paper we introduce and study the category of Frith frames and show that
the classical dual adjunction between topological spaces and frames extends to a
dual adjunction between Pervin spaces and Frith frames. Unlike what happens for
Pervin spaces, we do not have an equivalence between the categories of transitive
and totally bounded quasi-uniform frames and of Frith frames, but we show that
the latter is a full coreflective subcategory of the former. We also explore the notion
of completeness of Frith frames inherited from quasi-uniform frames, providing a
characterization of those Frith frames that are complete and a description of the
completion of an arbitrary Frith frame.
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1. Introduction

Pervin quasi-uniformities were introduced to answer the question of whether
a given topology is induced by some quasi-uniformity. Pervin [13] showed
that, if 7 is a topology on X, then 7 is the topology induced by the quasi-
uniformity generated by the entourages of the form

Ey = (X xU)U(U°x X),

for U € 7. Abstracting this idea, we may consider on a set X the quasi-
uniformity Er generated by {Ey | U € F}, for an arbitrary family F C
P(X), and the quasi-uniform spaces obtained in this way are known as Pervin
spaces. In [4, Proposition 2.1] it is shown that the quasi-uniform spaces
(X,&;) when 7 is a topology on X are transitive and totally bounded, but
the same argument works for every space (X,Er). Actually, more can be
said: every transitive and totally bounded quasi-uniformity on a set X is
of the form Er for some family F C P(X). To the best of our knowledge,
this result is due to Gehrke, Grigorieff, and Pin in unpublished work (see
also [18]), and at the present date, a proof can be found in the Goubault-
Larrecq’s blog [8]. Another interesting aspect of Pervin spaces is that the
bounded sublattice of P(X) generated by some family F can be recovered
from the quasi-uniform space (X, Ex): it consists of the subsets U C P(X)
such that Ey € Ex (see [7, Theorem 5.1] for a proof). For that reason, Pervin
spaces may be elegantly represented by pairs (X, S), where X is a set and S
is a bounded sublattice of P(X).

The main contribution of this paper is the development of a pointfree theory
of Pervin spaces. The central object of study are the pairs of the form (L, S),
where L is a frame and S is a join-dense bounded sublattice. We name such
pairs of Frith frames. This choice is justified by the fact that the pointfree
version of Pervin’s construction is known as the Frith quasi-uniformity [5]
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on a frame. The correctness of our notion is evidenced by the existence of a
Pervin-Frith dual adjunction extending the classical dual adjunction between
topological spaces and frames (cf. Proposition 4.3). One major difference in
the pointfree setting is the lack of an equivalence between the categories of
Frith frames and of transitive and totally bounded quasi-uniform frames, al-
though Frith frames do form a full coreflective subcategory of transitive and
totally bounded quasi-uniform frames (cf. Theorem 5.12). The picture is dif-
ferent when we restrict to symmetric Frith frames (that is, those Frith frames
(L, S) where S is a Boolean algebra) on the one hand, and to transitive and
totally bounded uniform frames on the other (cf. Corollary 6.2). We show
that every Frith frame admits a symmetrization, which defines a reflection of
Frith frames onto the symmetric ones (cf. Proposition 6.5). Moreover, the
symmetrization of a Frith frame is shown to be, on the one hand, a restriction
of the usual uniform reflection of quasi-uniform frames (cf. Proposition 6.6)
and, on the other hand, a pointfree version of the symmetrization of a Pervin
space (cf. Proposition 3.4 and Theorem 6.8). Finally, we explore the notion
of complete Frith frame, which is naturally inherited from the homonymous
notion for quasi-uniform frames (cf. Proposition 7.2), both from the point
of view of dense extremal epimorphisms and of Cauchy maps. In particular,
we characterize the complete Frith frames as those whose frame component
is coherent (cf. Theorem 7.7).

The paper is organized as follows. Section 2 is a preliminary section, where
we present the background needed and establish the notation used in the
rest of the paper. In Section 3 we give an overview of the theory of Pervin
spaces. While we did not intend to go very deep in our exposition, we tried
to provide enough details to allow the reader to compare the known results
with our pointfree approach. In Section 4 we introduce the category of Frith
frames and discuss some of its general properties. In particular, we show
the existence of a dual adjunction between Pervin spaces and Frith frames
(Section 4.1), we discuss compactness, coherence and zero-dimensionality of
Frith frames (Section 4.2), we show that the category of Frith frames is
complete and cocomplete (Section 4.3), and we characterize some special
morphisms (Sections 4.4 and 4.5). In Section 5 we show how to assign a
transitive and totally bounded quasi-uniform frame to each Frith frame and
show that this assignment defines a full coreflective embedding. In Section 6
we consider the special case of symmetric Frith frames and of (transitive and
totally bounded) uniform frames. In particular, we show that the category of
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symmetric Frith frames is equivalent to the category of transitive and totally
bounded uniform frames, and we show that the symmetric Frith frames form
a full reflective and coreflective subcategory of the category of Frith frames.
Finally, Section 7 is devoted to the characterization of complete Frith frames
and of the completion of a Frith frame. More precisely, in Section 7.1 we
discuss completion using dense extremal epimorphisms, while in Section 7.2
we characterize complete Frith frames using Cauchy maps.

2. Preliminaries

In this section we state the basic results and set up the notation that
will be used in the rest of the paper. The reader is assumed to have basic
knowledge of category theory, as well as some acquaintance with general
topics from pointfree topology. For more on category theory, the reader is
referred to [12]. For further reading on frame theory, including uniform and
quasi-uniform frames, we refer to [16]. Although not strictly needed, some
background on quasi-uniform spaces may also be useful. For this topic, we
refer to [4].

2.1. The category of frames and the Top - Frm dual adjunction.
A frame is a complete lattice (L,\/, A\,0,1) such that for every a € L and
{b;}icr C L the following equality holds:

CL/\\/bi = \/(a/\bl)
el el
The frame distributive law guarantees that, for every element a € L, there is

a greatest element a*, called the pseudocomplement of a, satisfying aAa* = 0.
That is, a* is defined by the following property:

VeeLl xNa=0 < x<a". (1)

When a V a* = 1, we have that a is complemented and a* is the complement
of a. Moreover, if a is complemented then o™ = a.

A frame homomorphism is a map h : L. — M that preserves finite meets
and arbitrary joins (including empty meets and empty joins). A frame homo-
morphism need not preserve the pseudocomplement operation, but whenever
a is complemented, we have that h(a) is complemented, too, and h(a*) =
h(a)*.

We denote by Frm the category of frames and frame homomorphisms.
Because the two finitary distributive laws are duals of each other, every
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frame is a bounded distributive lattice. The category of bounded distributive
lattices and lattice homomorphisms will be denoted by DLat. We will only
consider lattices that are distributive and have empty meets and empty joins
(that is, a top and a bottom element). Therefore we will sometimes omit the
words “bounded” and “distributive” when referring to a lattice. For a frame
L and a subset R C L, we denote as (R)prat the sublattice of L generated
by R. The expression (R)gm denotes the subframe of L generated by R.

It is well-known that in Frm the one-one homomorphisms are precisely the
monomorphisms, while the onto homomorphisms are the extremal epimor-
phisms.” Extremal epimorphisms of frames will be simply called surjections.

A frame homomorphism h : L — M is dense provided h(a) = 0 implies
a = 0. We already observed that frame homomorphisms need not preserve
the pseudocomplement operation. However, we have the following:

Lemma 2.1. Let h : L — M be a dense extremal epimorphism. Then, for
every a € L, we have h(a*) = h(a)*.

Proof: We may compute:
h(a*) =h(\/{z € L |z Na=0})
=h(\/{z € L|h(zAna)=0}) (his dense)
= \/{(z) |z € L, h(z) Ah(a) =0}  (his a frame homomorphism)

= \/{y e M |yAh(a) =0} (his onto)
=h(a)". =

At the base of pointfree topology is the classical adjunction between the
category of topological spaces and (the dual of the) category of frames [10,
16]. For the reader’s convenience, we present it now. We denote by Top
the category of topological spaces and continuous functions. The adjunction
Q : Top S Frm® : pt is defined as follows. If (X, 7), or simply X, is a
topological space, then the topology 7 is a frame, and we set Q(X) := 7. If
f: X — Y is a continuous function, then taking preimages defines a frame
homomorphism Qf := f~1: Q(Y) — Q(X). This is usually called the open
set functor. Conversely, the spectrum functor pt assigns to each frame L its
set of points pt(L), that is, the set of all frame homomorphisms p : L — 2

*In a category C, an epimorphism e is extremal if whenever e = m o g with m a monomorphism
we have that m is an isomorphism.
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where 2 := {0 < 1} denotes the two-element lattice. The topology on pt(L)
is generated by the sets of the form

a:={pept(L)|pla) =1},

for a € L. At the level of morphisms, pt is given by precomposition: for
a frame homomorphism A : L — M and a point ¢ : M — 2, we have
pt(h)(q) := g o h. The adjunction Q2 - pt is idempotent, that is, its fixpoints
in Top are precisely those spaces that are isomorphic to pt(L) for some
frame L, and its fixpoints in Frm® are those frames that are isomorphic to
Q(X) for some space X. Spaces of the form pt(L) are the sober spaces — that
is, those spaces where every irreducible closed set is the closure of a unique
point. Frames of the form Q(X) are the spatial frames — that is, those frames
L such that for a,b € L we have that a £ b implies that there is some frame
morphism h : L — 2 such that h(a) = 1 and h(b) = 0. The adjunction
) - pt restricts to a duality between sober spaces and spatial frames. The
component of the unit of 2 - pt at a frame L is the frame homomorphism
or : L — Q(pt(L)), also called the spatialization map of L, which maps an
element a € L to the open subset @ C pt(L). The component of the counit
of - pt at a space X is the continuous function ¢y : X — pt(2(X)),
also called the sobrification map of X, which sends a point x € X to its
neighborhood map, that is, to the frame homomorphism €(X) — 2 mapping
an open subset U C X to 1 if and only if x € U.

2.2. The congruence frame. Frame surjections may be characterized,
up to isomorphism, via frame congruences: if h : L — M is a surjection,
then its kernel ker(h) := {(x,y) | h(z) = h(y)} is a frame congruence, and
conversely, every frame congruence 6 induces a frame surjection L — L/6.
These two assignments are mutually inverse. Congruences are closed under
arbitrary intersections, and because of this they form a closure system within
the poset of all binary relations on a frame. For a frame L, we say that the
congruence generated by a relation p C L x L is the smallest congruence
containing p, and we denote it by p. The set CL of all frame congruences of
a frame L is naturally ordered by inclusion, which endows CL with a frame
structure given by

ANoi=(6 and 6 =Jo = (WoecL||Joco

el el 1el el 1€l
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for every family of congruences {6;};,c;. There are two types of distinguished
congruences: the so-called open ones, and the so-called closed ones. These
are, respectively, the congruences V, generated by an element of the form
(0,a), and the congruences A, generated by an element of the form (a, 1),
for some a € L. It is not hard to see that

Ve={(z,y)|zVa=yVa} and A, ={(z,y) |z Na=yAa}.

We have the following basic results about open and closed congruences, where
id;, denotes the identity congruence {(a,a) | a € L} on L.

Lemma 2.2. For a frame L, and elements a,b,a; € L (i € I), the following
holds:

o Ag=L XL and Ay =idg;
OVOZidL andVlzLxL;
o Ay VA, = Ay and niel Aaz‘ - A\/iel ai;
© \/iel vai - v\/ie[ a; and va A vb - va/\b-

Open and closed congruences suffice to generate CL, meaning that if we
close the collection {A,, V, | @ € L} under finite meets and the resulting set
under arbitrary joins we get the whole congruence frame CL. In this paper,
some subframes of CL will be particularly relevant, namely those generated
by a set of the form {V, | a € L} U{A; | s € S}, and denoted CsL, for
some subset S C L. We note that the assignment a — V, defines a frame
embedding V : L < CgL. For that reason, we will often treat L as a subframe
of CgL. The following generalizes a well-known property of the congruence
frame:

Proposition 2.3 ([19, Theorem 16.2]). Let L and M be frames and S C
L be a subset. Then, every frame homomorphism h : L — M such that
h(s) is complemented for all s € S may be uniquely extended to a frame

homomorphism h : C¢L — M, so that the following diagram commutes:

In particular, we have the following:
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Corollary 2.4. Let h : L — M be a frame homomorphism, and let S C L
and T C M be subsets such that h[S] CT. Then, h may be uniquely extended
to a frame homomorphism h : CsL — CrM. Moreover, for every a € L and
s € S, the following equalities hold:

E(Va) = Vh(a) and E(AS) = Ah(s)~

Proof: While the first equality holds simply because h is an extension of A,
the second one is a consequence of complemented elements being preserved
by frame homomorphisms. |

2.3. Compact, coherent, and zero-dimensional frames. Let L be a
frame. We say that an element a € L is compact if whenever a < /., a;
there exists a finite subset F° C I such that a < \/,.pa; (or equivalently,
if a = \/;,c; @ then a = \/;,.pa; for some finite subset /' C I). A frame L
is compact it its top element is compact. Notice that a topological space is
compact if and only if its frame of opens is. We denote by K(L) the set
of compact elements of a frame L. Clearly, K(L) is a join-subsemilattice
of L. If we further have that K(L) is a sublattice of L which is join-dense,
then we say that L is coherent. We denote by CohFrm the subcategory of
Frm whose objects are the coherent frames, and morphisms are those frame
homomorphisms that preserve compact elements. Coherent frames will be a
central concept in this paper.

A typical example of a coherent frame is the ideal completion 1d1(.S) of any
bounded distributive lattice S. Indeed, it is easy to see that the compact
elements of Idl(S) are precisely the principal ideals of S, and these form a
sublattice isomorphic to S, which is clearly join-dense in Id1(S). We will
often see S as a sublattice of Id1(S), by identifying an element s € S with
the principal ideal |s it generates. It turns out that every coherent frame is
the ideal completion of its sublattice of compact elements: the assignment
S +— Id1(S) is part of a functor 1dl(—) : DLat — Frm which is an equivalence
of categories when co-restricted to CohFrm.

Proposition 2.5 ([11, pages 59 and 65]). The category Frm of frames is a
reflective subcategory of the category DLat of bounded distributive lattices.
The reflector 1dl(—) : DLat — Frm sends a lattice S to its ideal completion
Id1(S) and a lattice homomorphism h : S — T to

Idl(h) : 1dL(S) — 1AUT), J — (R[] = Lh[J].
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Moreover, the corestriction of 1dl(—) to CohFrm induces an equivalence
of categories whose inverse K(—) : CohFrm — DLat sends a coherent
frame to its sublattice of compact elements, and a morphism to its suitable
restriction and co-restriction.

Corollary 2.6. Fvery lattice homomorphz’/s\m h:S — L, with L aAfmme,
uniquely extends to a frame homomorphism h : 1d1(S) — L defined by h(J) :=
V rlJ].

By definition of coherent frame homomorphism, it is not hard to ver-
ify that K(—) : CohFrm — DLat is both a right and a left adjoint
of Idl(—) : DLat — CohFrm. By suitably composing the adjunctions
CohFrm < DLat and DLat < Frm, and using the equivalence CohFrm =
DLat, we obtain the following (see [1, Proposition 1] for a direct proof):

Proposition 2.7. The category CohFrm of coherent frames and coherent
frame homomorphisms s a coreflective subcategory of the category Frm of

frames and frame homomorphisms. The coreflector is the restriction and
co-restriction 1dl(—) : Frm — CohFrm of the functor 1d1(—).

Finally, we say that a frame L is zero-dimensional if the sublattice B(L)
of its complemented elements join-generates the frame.

Proposition 2.8. Let L be a frame. Then,

(a) if L is compact, then every complemented element is compact;
(b) if L is zero-dimensional, then every compact element is complemented.

In particular, every compact and zero-dimensional frame is coherent.

Proof: For (a), suppose that L is compact and let a € L be a complemented
element. If a <\/._; a; for some family {a; }icr, then 1 = a*Va < a*V\/, ; a;.
By compactness of L there is a finite subset F' C I satisfying 1 < a*V\/,.p a,
and thus, a = a A1l < aA(a"V\,cpa;) = \,cpai. For (b), suppose that
L is zero-dimensional and let a € L be a compact element. Since a is a
join of complemented elements, by compactness, it is also a finite join of
complemented elements. Therefore, it is complemented as well. |

2.4. Uniform and quasi-uniform frames. We will introduce (quasi-
Juniformities on a frame L using entourages. Entourages on L are nothing
but certain elements of the coproduct L & L, which we describe now. A
description of more general frame coproducts may be found, for instance,
in [16].
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Definition 2.9. Let L be a frame. A C-ideal (or coproduct-ideal) of L is a
subset A C L x L that satisfies the following properties:

(J.1) A is a down-set;

(J.2) if {(ai,b) }icr € A, then (\,c;ai,b) € A;

(J.3) if {(a,bi) }ict € A, then (a,V,.; bi) € A.

We observe that, by taking I = () in (J.2) and (J.3), we obtain that every
C-ideal contains both ({0} x L) and (L x {0}). One can also show that the
set of all C-ideals ordered by inclusion is a frame. More precisely, if {A;}ier
is a family of C-ideals, then the meet A, ; A; is given by the intersection
Mics Ai, and the join \/,.; A; is the C-ideal generated by |J,.; A;. Moreover,
the greatest C-ideal is L x L, and the smallest one is n := ({0} x L)U(L x{0}).
Given (a,b) € L x L, we denote by a®b the smallest C-ideal containing (a, b).
Explicitly, we have a®b = |(a,b)Un. The following properties will be needed
later:

Lemma 2.10. For every a,a’,b,b';a;,b; € L (i € 1), the following equalities
hold:

o(a@b)AN(ddV)=(and)DDAY);

o Vier(ai ®b) = (Vieyai) @b

o Vierla® b)) =ad (Ver bi).

Proposition 2.11. The coproduct L & L is isomorphic to the set of all C-

ideals of L ordered by inclusion. The coproduct maps are injections, and they
are given by

(i:L—=>L&L, a—adl) and (lo:L—>L®L, br—>1Db).

Let L and M be frames. If f; : L — M (i = 1,2) are frame homo-
morphisms, then we denote by f; & fo the unique frame homomorphism
L& L — M & M given by the universal property of coproducts. Explicitly,
for each C-ideal A € L @ L, we have

(f & f)(A) = \/{fi(a) ® £2() | (a,b) € A}. (2)
Any pair of C-ideals A, B € L & L may be composed as follows:
AoB:=\/{a®b|Ic#0: (a,c) € A, (c,b) € B},
and for every set J C L@ L of C-ideals, we have the following relations on L:
b<{a <= Ao (b®b) C (a®a) for some A € 7,
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and
b<ifa <= (bPb)oAC (a®a) for some A € J.

Shall 7 be clear from the context, we may simply write <; instead of <l;-7 .
Given i € {1,2}, we denote

Li(T)={a€L|a=\/{b]|bxia}}.

It is well-known that, if J is a filter basis, then each £;(J) is a subframe
of L.

We can now introduce quasi-uniform frames. We follow the approach in
[14] and [15]. A (Weil) entourage on L is a C-ideal F C L @ L that satisfies

\VAa|(a,0) e E} = 1.

It can be shown that every entourage F is contained in F o E. If the equality
E = E o F holds, then F is said to be transitive. An entourage E is finite if
it contains some finite join \/?:1 a; ® a;, with a; V ---V a,, = 1. Notice that
every finite intersection of transitive and finite entourages is again transitive
and finite. Also notice that, if F is an entourage, then so is £~ := {(b,a) |
(a,b) € E}. An entourage E is symmetric if E = E~L.

Definition 2.12. A quasi-uniformity on L is a subset £ C L & L of en-
tourages on L such that

(QU.1) &€ is a filter,
(QU.2) for every E € &€, there exists some F' € € such that F o F' C F,
(QU.3) L is the frame generated by L£1(E) U Lo(E).

The set £ 1s called a uniformity f it further satisfies
(QU.4)if E €&, then ET' € £.

A (quasi-)uniform frame is a pair (L,E), where L is a frame and &€ is a
(quasi- Juniformity on L.

If & C L& L is a filter (sub)basis of entourages that satisfies (QU.2)
and (QU.3), then we say that £ is a (sub)basis for a quasi-uniformity on L.
In that case, the filter generated by &’ is a quasi-uniformity. If £ consists
of symmetric entourages, then the quasi-uniformity it generates is actually a
uniformity. For every quasi-uniform frame (L, &), the set {ENE™1 | E € £}
is a basis consisting of symmetric entourages, and it generates the coarsest
uniformity € on L that contains £. Finally, a quasi-uniform frame (L, &) is
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transitive if it has a basis of transitive entourages, and totally bounded if it
has a basis of finite entourages.

A (quasi- )uniform homomorphism h : (L,E) — (M, F) is a frame homo-
morphism h : L — M such that for every F € £ we have (h & h)(E) € F.
We denote by QUniFrm the category of quasi-uniform frames and quasi-
uniform homomorphisms, and by UniFrm the category of uniform frames
and uniform frame morphisms. The following proposition is proven in [3], in
which the authors use an alternative definition of quasi-uniform frame. This
definition is shown in [14] to be equivalent to the one we use.

Proposition 2.13 ([3, Corollary 4.7]). Uniform frames form a full reflective
subcategory of quasi-uniform frames. The reflector Symqupipyy, : QUniFrm —
UniFrm maps a quasi-uniform frame (L,E) to (L,&), and a morphism to
itself.

A (quasi-)uniform homomorphism h : (L,£) — (M,F) is an extremal
epimorphism if and only if it is onto and F is the quasi-uniformity gener-
ated by (h @ h)[E]. A (quasi-)uniform frame (M, F) is said to be complete
provided every dense extremal epimorphism (L,&) — (M, F), with (L,€) a
(quasi-)uniform frame, is an isomorphism. A completion of a (quasi-)uniform
frame (L,€) is a complete (quasi-)uniform frame (M, F) together with a
dense extremal epimorphism (M, F) — (L,&). The next two results will be
needed in the sequel.

Proposition 2.14 ([6, Proposition 3.3]). A quasi-uniform frame (L,E) is
complete if and only if so is its uniform reflection (L,E).

Proposition 2.15 ([16, Chapter VII, Proposition 2.2.2]). Let h : (L,E) —
(M, F) be a dense extremal epimorphism of uniform frames. If M is compact,
then h 1s an isomorphism.

Completions of quasi-uniform frames may also be characterized in terms
of the so-called Cauchy maps. These can be thought of as analogues of
Cauchy filters for quasi-uniform spaces. If L and M are semilattices with
top and bottom elements, then a map ¢ : L — M is called a bounded meet
homomorphism provided it preserves the bottom element and all finite meets
(including the empty one).

Definition 2.16. Let (L, &) be a quasi-uniform frame and M be any frame.
A Cauchy map ¢ : (L,E) = M is a function ¢ : L — M such that
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(@) ¢ is a bounded meet homomorphism,
(b) for every a € L, ¢(a) < \/{o(b) | b<ia or b<za},
(c) for every E € £, 1 =\{oé(a) | (a,a) € E}.

Theorem 2.17 ([17, Theorem 6.5]). Let (L,&) be a quasi-uniform frame.
Then (L,&) is complete if and only if each Cauchy map (L,E) — M is a
frame homomorphism.

3. Pervin spaces

In what follows, a Pervin space will be a pair (X,S) such that X is a
set and & C P(X) is a bounded sublattice. A morphism of Pervin spaces
f:(X,8) — (Y,T) is a function f : X — Y such that whenever T" € T
we also have f~}(T) € S. The category of Pervin spaces and corresponding
morphisms will be denoted by Pervin. As mentioned in the introduction,
each Pervin space uniquely determines a transitive and totally bounded quasi-
uniform space, and every such space arises from a Pervin space. Actually,
one can show that there is an equivalence between the categories of Pervin
spaces and of transitive and totally bounded quasi-uniform spaces. However,
since quasi-uniform spaces are not the subject of this paper, but rather its
pointfree counterpart, we will not provide further details on this matter. We
refer the reader to [13, 4, 18] for further reading.

We start by noticing that Top may be seen as a full subcategory of Pervin,
with a topological space (X, 7) being identified with the Pervin space (X, 7).
Conversely, if (X,S) is a Pervin space, then we may consider on X the
topology Qs(X) generated by S 1 It is easily seen that this assignment is
part of a forgetful functor U : Pervin — Top which is right adjoint to the
embedding Top — Pervin. Thus, Top a full coreflective subcategory of
Pervin.

Next, we will characterize the extremal monomorphisms of Pervin spaces.
For that, we first need to describe the epimorphisms.

Lemma 3.1. Lete: (X,8) — (Y, T) be a morphism of Pervin spaces. Then,
e s an eptmorphism if and only if the set map e : X — Y is surjective.

Proof: The argument to show that every surjection is an epimorphism is
analogous to the set-theoretical one. For the converse, let e : (X,S) —

"The reader interested in the connections between Pervin and quasi-uniform spaces may notice
that, if (X, Es) is the quasi-uniform space defined by (X, S), then Qg(X) is precisely the topology
induced by Es.
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(Y, T) be an epimorphism. We consider the two-point Pervin space (Z,U) :=
({0,1},{0,{0,1}}), and we let fi, fo : Y — Z be defined by fi(y) =1 if and
only if y € e[X], and by fo(y) = 1 for all y € Y. Then, f; and f5 induce
morphisms of Pervin spaces (Y,7) — (Z,U) satisfying f; oe = fy 0 e. Since
e is an epimorphism, we must have f; = fo. But this implies e[ X] =Y, that
is, e is a surjection. u

Proposition 3.2. A map m : (X,S8) — (Y, T) of Pervin spaces is an ex-
tremal monomorphism if and only if the set map m : X — 'Y is injective and
every S € S is of the form m™1(T) for some T € T.

Proof: Given an extremal monomorphism m : (X,S) — (Y, T), we let Z :=
m[X], and U be the bounded sublattice of P(Z) consisting of the subsets of
the form 7'N m[X] for some T € T, so that we have a Pervin space (Z,U).
Then, the direct image factorization of m : X — Y induces morphisms
of Pervin spaces e : (X,S) - (Z,U) and g : (Z,U) — (Y,T) satisfying
m = goe. By Lemma 3.1, e is an epimorphism and thus, an isomorphism.
In particular, the underlying set-theoretical map of e is a bijection, and since
m = goe, it follows that m is injective. It remains to show that m=(7) = S.
For that, we let n be the inverse of e and we pick S € §. Since n is a morphism
of Pervin spaces, we have that n~[S] = ¢[S] = m[S] belongs to /. Therefore,
there exists T € T such that m[S] = T'Nm|[X]. But since m is injective, this
implies S = m™1(T) as required.

Conversely, suppose that m : (X,S) < (Y,7T) is injective and satisfies
S =m Y(T). Consider a factorization m = g o e, where e : (Z,U) — (Y, T)
is an epimorphism. By Lemma 3.1, e is a surjection, and it is also injective
by injectivity of m. We let n be the set-theoretical inverse of e and we show
that n is a morphism of Pervin spaces. Given S € S, there is, by hypothesis,
an element 7' € T such that S = m~!(T). Then, since g is a morphism of
Pervin spaces, we have that

n~'(S) = (mn)"(T) = g~ (T)
belongs to Y. Thus, n is an isomorphism in Pervin. |
We will say that (Y, T) is a subspace of (X,S) if there exists an extremal
monomorphism (Y, 7) — (X,S). We remark that subspaces of (X,S) are,
up to isomorphism, in a bijection with the subsets of X. We also note that

every extremal monomorphism m : (X,S) < (Y, 7) is regular. To see this,
we consider the two-point Pervin space (Z,U) := ({0,1},{0,{0,1}}). Then,
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m is the equalizer of the morphisms of Pervin spaces f1, fo: (Y, T) — (Z,U)

defined by fi(y) = 1 for every y € Y and by f>(y) = 1 if and only if y € m[X].
Since every epimorphism which is also an extremal monomorphisms is an

isomorphism (cf. [2, Proposition 4.3.7]), we obtain the following:

Corollary 3.3. Isomorphisms in Pervin are the bijections f : (X,S) —
(Y, T) such that f[S] belongs to T, for every S € S.

Proof: By Lemma 3.1 and Proposition 3.2, we know that a morphism of
Pervin spaces f : (X,S8) — (Y,7) is an isomorphism if and only if it is
bijective and satisfies S = (7). Thus, the claim follows from having that,
if f is a bijection, then f[S]C T «<= S C f![T]. m

We finally consider the full subcategory Perving,, of Pervin whose objects
are those Pervin spaces (X, B) such that B a Boolean algebra. In the setting
of Pervin quasi-uniform spaces, this is a relevant subcategory because it
corresponds to the uniform spaces. In our paper, it will play a role when the
pointfree version of this fact is discussed (cf. Section 6, namely Theorem 6.8).

An important property of Perving,, is that of being coreflective in Pervin
as we will see now (see Proposition 5.9 for the pointfree version of this result).
We define a functor Symp,,, : Pervin — Perving,, as follows. For an
object (X,S8), we let Symp,,,(X,S) be the Pervin space (X,S), where S is
the Boolean subalgebra of the powerset P(X) generated by the elements of S.
On morphisms, we simply map a function to itself. Notice that, since a map of
Pervin spaces f : (X,S) — (Y, T) is such that the preimage of a complement
of an element in 7 is the complement of an element in S, this assignment
is well-defined on morphisms. Clearly, Symp,,, is a functor. We show now
that Symyp,,, is right adjoint to the embedding Perving,,, — Pervin.

Proposition 3.4. The category of symmetric Pervin spaces is a full coreflec-
tive subcategory of that of Pervin spaces. More precisely, the functor Symp,,.,
is right adjoint to the embedding Pervingg, — Pervin.

Proof: We first notice that, for every Pervin space (X, S), the identity func-
tion on X induces a morphism of Pervin spaces idxy : (X,S) — (X,S).
Thus, we only need to show that, for every morphism of Pervin spaces
f:(Y,B) = (X,S), with B a Boolean algebra, there is a unique Pervin
map f (Y,B) = (X,S) satisfying f = idx o f. Of course, this holds if and
only if f also induces a morphism of Pervin spaces f : (Y,B) — (X,S). This
is indeed the case because S is generated, as a lattice, by S together with
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the complements in P(X) of the elements of S and, since B is a Boolean
subalgebra of P(Y), it follows that f~'(S¢) = (f~1(5))¢ belongs to B for
every S € S. |

Recall that the Skula topology on a given topological space (X, 7) is the
topology generated by 7 together with the complements of its elements.
Therefore, if (X, S) is a Pervin space, then the topology Q<(X) on X defined
by its symmetrization is precisely the Skula topology on the topological space
(X, Qs(X)) defined by (X,S). For that reason, we will say that Qg(X) is
the Skula topology on X induced by (X,S).

4. Frith frames as a pointfree version of Pervin spaces

4.1. The category of Frith frames and the Pervin - Frith dual ad-
junction. A Frith frame is a pair (L, S) where L is a frame and S C L is
a bounded sublattice such that all elements in L are joins of elements in S.
A morphism h : (L,S) — (M, T) of Frith frames is a frame homomorphism
h : L — M such that whenever s € S we have h(s) € T. We denote the cate-
gory of Frith frames and corresponding morphisms by Frith. By identifying
a frame L with the Frith frame (L, L), we may see Frm as a full reflective
subcategory of Frith. Indeed, we have the following:

Proposition 4.1. The category of frames is a full reflective subcategory of
that of Frith frames. More precisely, the forgetful functor Frith — Frm s
left adjoint to the embedding Frm — Frith.

Proof: Let U : Frith — Frm denote the forgetful functor and F' : Frm —
Frith the embedding identifying a frame L with the Frith frame (L, L). We
only need to observe that for every Frith frame (L,.S) and every frame M,
every frame homomorphism L — M induces a morphism of Frith frames
(L,S) — (M, M), and thus, we have a natural isomorphism Frm(U—, —) =
Frith(—, F'—). |

Next, we will see that Frith frames may indeed be considered the pointfree
analogues of Pervin spaces, by showing that the classical adjunction €2 :
Top S Frm® : pt extends to an adjunction € : Pervin = Frith®® : pt
between the categories of Pervin frames and of Frith frames, so that the
following diagram commutes:
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Top Pervin

ol alle

Frm®’ Frith®?

Let us define the open set functor {2 : Pervin — Frith. Given a Pervin space
(X,S8) we set Q(X,S) := (Qs(X),S), where Qs(X) denotes the topology
on X generated by S (recall Section 3). If f: (X,S) — (Y, 7T) is a morphism
of Pervin spaces then taking preimages under f defines a morphism of Frith
frames Q(f) == f71: (Qr(Y), T) = (Qs(X),S). Tt is easily seen that this
assignment yields a functor 2 : Pervin — Frith°®. In turn, the spectrum
functor pt : Frith® — Pervin is defined on objects by pt(L, S) := (pt(L), S)
for every Frith frame (L, S), where S := {5 | s € S}. Finally, if h: (L, S) —
(M,T) is a morphism of Frith frames, then pt(h) := (— o h) is given by
precomposition with h. The following lemma shows that pt(h) defines a
morphism between the Pervin spaces (pt(M),T) and (pt(L), S).

Lemma 4.2. Let h: (L, S) — (M, T) be a morphism of Frith frames. Then,
for every s € S, the equality (pt(h))~1(3) = h(s) holds. In particular, pt(h)
induces a morphism of Pervin spaces pt(h) : (pt(M),T) — (pt(L),S).

Proof: Let s € S and p: M — 2 be a point. The claim is a consequence of
the following computation:

—

p € (pt(h)7'(3) <= pt(h)(p) €5 <= p(h(s)) =1 <= peh(s). =
We may now prove that the functors just defined form an adjunction.

Proposition 4.3. There is an adjunction Q) : Pervin < Frith® : pt, which
extends the classical adjunction ) : Top = Frm®? : pt.

Proof: By definition of € : Pervin = Frith®® : pt, we only need to show
that the unit and counit of the adjunction €2 : Top <= Frm®’ : pt define,
respectively, a morphism ¢y, : (L, S) — (Qg(pt(L)), S) of Frith frames and a
morphism ¢x : (X,S) — (pt(Qg(X)),éA’) of Pervin spaces.

By definition of ¢y, we have pr(s) =5 € S, for every s € S. So ¢ does
define a morphism of Frith frames. It remains to show that zp;(l(§ ) €S, for

every S € §. That is indeed the case because, for every x € X, we have

zePM(S) = Yx(x)eS — Yx(2)(S)=1 < z€S. =
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4.2. Compact, coherent, and zero-dimensional Frith frames. In this
section we discuss the appropriate notions of compactness, coherence, and
zero-dimensionality for Frith frames. Let L be a frame and S C L. We
say that an element a € L is S-compact if whenever a < \/,_;s; for some
{siticr € S, there exists F' C I finite so that a < \/,_p s;, and we say that L
is S-compact if its top element is S-compact. Clearly, every compact element
of L is also S-compact. If we further assume that S is join-dense in L (which
is the case when (L, S) is a Frith frame), then we also have the converse:

Lemma 4.4. Let L be a frame, S C L be a join-dense subset, and a € L.
Then, a is S-compact if and only if a s compact. In particular, L 1s S-
compact if and only if it is compact.

Proof: Let a be an S-compact element and suppose that a < '\/,_; a; for some
v € I. Since S is join-dense in L, we may write each a; as a join of elements
in S. Thus, since a is S-compact, there exists a finite subset ' C I satisfying
a < Vepai. u

We will say that a Frith frame (L, S) is compact if its frame component L is
compact, and we say that (L, .S) is coherent if S consists of compact elements
of L. We call CohFrith the full subcategory of Frith determined by the
coherent Frith frames. Since S is, by definition of Frith frame, a bounded
sublattice of L, we have that every coherent Frith frame is compact. Also,
every coherent frame L gives rise to a coherent Frith frame (L, K(L)). We
now show that every coherent Frith frame is of this form.

Lemma 4.5. Let (L, S) be a Frith frame. Then, the following are equivalent:

(a) S consists of compact elements;
(b) S is the set of all compact elements of L.

In particular, (L,S) is a coherent Frith frame if and only if L is coherent
and S = K(L).

Proof: The implication (b)) = (a) is trivial. Conversely, suppose that
S C K(L), and let a € K(L). Since (L,S) is a Frith frame, we have that
S is join-dense in L, and thus we may write a = \/,_;s; for some subset
{sitier € S. But compactness of a yields the existence of a finite subset
F C I satisfying a = \/,.p s;. Since S is closed under finite joins, it follows
that a belongs to S. |

A consequence of Lemma 4.5 is that, if (L,S) and (M,T) are coherent
Frith frames, then a frame homomorphism h : L. — M induces a morphism
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between the corresponding Frith frames if and only if it is coherent. Thus,
the categories CohFrm of coherent frames and CohFrith of coherent Frith
frames are isomorphic. In particular, since DLat and CohFrm are equiv-
alent categories, we also have and equivalence DLat = CohFrith. More
generally, we have the following analogue of Proposition 2.5:

Proposition 4.6. There is an adjunction 1dl(—) 4 U, where U : Frith —
DLat is the forgetful functor and 1dl(—) : DLat — Frith is defined by

Id1(S) = (1d1(S5), S)

and
Idi(h: S —T):= (Idl(h) : (Id1(5),S) — (Id(T),T)).

Moreover, the corestriction of 1dl(—) to CohFrith induces an equivalence of
categories whose tnverse is the suitable restriction of U.

Proof: 1t is clear that Idl(—) is a well-defined functor. The fact that Idl(—)
is left adjoint to U follows from the existence of a natural isomorphism
Frith(Idl(—), —) = DLat(—,U—), which is a straightforward consequence
of Proposition 2.5.

Now, again by Proposition 2.5, the functors 1dl(—) : DLat — CohFrm
and K(—) : CohFrm — DLat are mutually inverse, up to natural isomor-
phism. Composing these with the isomorphism CohFrm = CohFrith, we
obtain the equivalence described in the last statement. |

Just like for frames, we also have in this setting that U : CohFrm — DLat

is both a left and a right adjoint of Idl(—) : DLat — CohFrm. Therefore,
we have the following version of Proposition 2.7:

Proposition 4.7. The category CohFrith is a full coreflective subcategory
of Frith. The coreflector is the functor 1dl(—) o U : Frith — CohFrith.

On the other hand, unlike what happens for the frame ideal completion
Idl(—) : Frm — CohFrm, the functor Idl(—) o U : Frith — CohFrm is
idempotent. Indeed, that may be seen as a consequence of having a full
embedding CohFrm — Frm:

Proposition 4.8 ([2, Proposition 3.4.1]). Let F : D — C and G : C — D
be two functors, and suppose that F' is the left adjoint of G. Then, F s full
and faithful if and only if the unit of F 4 G is a natural isomorphism.
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We finally define what is a zero-dimensional Frith frame. First observe that,
if S C B(L) and (L, S) is a Frith frame, then the frame L is zero-dimensional.
Thus, we will say that (L,S) is zero-dimensional provided S consists of
complemented elements, and we have that L is a zero-dimensional frame
if and only if (L, B(L)) is a zero-dimensional Frith frame. Let us analyze
the relationship between compactness, coherence, and zero-dimensionality of
Frith frames. If (L, S) is compact and zero-dimensional then, L is compact
and zero-dimensional, too, and, by Proposition 2.8, we have B(L) = K(L).
Therefore, S consists of compact elements and thus, (L,S) is coherent.
Hence, we have the following analogue of Proposition 2.8:

Lemma 4.9. Let (L,S) be a Frith frame. If (L,S) is compact and zero-
dimenstonal, then it is coherent.

4.3. Limits and colimits. In this section we show that the category of Frith
frames has all (co)products and (co)equalizers, and provide their description.
In particular, it follows that Frith is a complete and cocomplete category.

We start by computing the products and the equalizers. By Proposition 4.6,
the forgetful functor U : Frith — DLat is a right adjoint. Since right
adjoints preserve limits, we automatically know how to compute the lattice
component of every existing limit in Frith.

Let {(L;,S;)}ier be a family of Frith frames. As just mentioned, if the
product [[,.;(L;,S;) exists in the category of Frith frames, then it is of the
form (L, [[,c;Si), for some frame L. Moreover, each of the product maps
mi o (L, [, Si) = (L, S;) is such that its restriction to [[,.; S; is the i-th
projection to S;. Note that we may see [[..;S; as a sublattice of [[..; L.
The natural candidate for L is then the subframe of [, ; L; generated by
[Lc; Si- Since each (L;, S;) is a Frith frame, this is the whole frame [[,_; L,
and 7; defined on [[,.; L; is simply the i-th projection to L;. We show that
this is indeed the product of the family {(L;, S;) }ier:

Proposition 4.10. Let {(L;, S;) }ier be a family of Frith frames. Then, the
product [ [,c;(Li, S;) in the category of Frith frames is ([ [;c; Li, [ Lic; Si), and
the product map m; : ([ Lic; Li, [ Lic; Si) = (Li, Si) is the i-th projection.

Proof: Let {h; : (M,T) — (L;,S;)}icr be a collection of morphisms of Frith
frames, and h : M — [[;.; Li be the unique frame homomorphism such that
mioh = h;, for every ¢ € I, and whose existence is guaranteed by the universal
property of products in Frm. We only need to check that this is a map of
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Frith frames. Indeed, for every t € T and i € I, we have h;(t) € S; and so,
the tuple h(t) = (hi(t))icr belongs to [[,c; Si- n

We now let hy,hy : (L,S) — (M,T) be a pair of morphisms of Frith
frames. Following a similar reasoning, we know that, if the equalizer of
hy and hy exists, then it is of the form e : (K, Sp,—p,) — (L,S), where
Shi=h, = {s € S| hi(s) = ha(s)} is the equalizer of hy, hy in DLat, and e
restricted to Sjp,—p, is the inclusion map. Thus, we take for K the subframe
of L generated by Sp,—p,, for e the inclusion map, and we show that the
morphism of Frith frames e : (K, Sp,=p,) — (L,S) satisfies the universal
property of equalizers in Frith.

Proposition 4.11. Given two morphisms hy,hy : (L,S) = (M, T) in the
category of Frith frames, let Sy,—p, denote the sublattice {s € S | hi(s) =
ho(s)} of S, and K be the subframe of L generated by Sp,—p,. Then, the
equalizer of hy and he is the subframe inclusion e : (K, Sp,=p,) <= (L, 5).

Proof: Since Sp,—p, is, by definition, join-dense in K, we have hjoe = hpoe.
Ife': (L', S") — (L, S) is a morphism of Frith frames satisfying hjoe’ = hyoe/,
then we must have €'[S"] C Sj,,—p,, and since L’ is generated, as a frame, by
S’ we also have €'[L] C K. Therefore, the co-restriction of ¢’ to K is the
unique morphism u : (L', S") — (K, Sp,=,) such that ¢/ = e owu. _

In order to compute coproducts and coequalizers in Frith, we follow a
similar strategy. By Proposition 4.1, the forgetful functor Frith — Frm is
a left adjoint. Thus, it preserves existing colimits.

Let {(L;, S;) }ier be a family of Frith frames. If its coproduct exists, then it
has to be a Frith frame of the form (6D, .; L;, S), for some join-dense sublat-
tice S of @,.; Li, and the coproduct maps must be given by the coproduct
injections ¢; : (L;, S;) = (D,c; Li, S) in Frm. In particular, S must contain
the sublattice ¢;[S;], for every i € I. We have the following:

Proposition 4.12. Let {(L;, S;)}icr be a family of Frith frames, and {; :
Li — D,c; Li}ier be the coproduct injections in Frm. The coproduct @, ;(L;, S;)
of Frith frames in Frith is (@, ; Li, S), where S is the sublattice of the co-

product @, ; L; generated by |J; 1;[Si]. Moreover, the i-th coproduct map is
the morphism of Frith frames v; : (L;, S;) = (B,.; Li, S) defined by ¢;.

Proof: We first note that (,.; L;, S) is a Frith frame. Indeed, this is because
D, Li is generated, as a frame, by |, ; t:[L;], and each ¢;[L;] is generated,

i€l
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as a frame, by ¢;[S;]. Suppose that we have a collection of maps of Frith
frames h; : (L;,S;)) — (M,T). We let h : €@,.;Li — M be the unique
frame homomorphism such that h o«; = h;, for every i € I, as given by
the universal property of coproducts in Frm. It suffices to show that h
defines a morphism of Frith frames h : (D,.; Li, S) — (M,T). But this is
a straightforward consequence of having h o (;[S;] = h;[S;] C T, for every
1€ L. |

Finally, it remains to compute the coequalizers in Frith. Given a pair
of parallel morphisms hy,hy : (L,S) — (M,T), we let ¢ : M — K be
the coequalizer in Frm of the frame homomorphisms h; and hy. Explic-
itly, K is the quotient of M by the congruence generated by the subframe
{(h1(a), he(a)) | a € L} of M x M. Once again, we know that, if the coequal-
izer of hy, ho in Frith exists, then it is the morphism ¢ : (M,T) - (K, R)
induced by ¢, for a suitable sublattice R of K. It is easy to see that, if we take
R = q[T], then (K, R) is a Frith frame and ¢ is a morphism of Frith frames
that satisfies the universal property of coequalizers in Frith. Therefore, we
have the following:

Proposition 4.13. Let hy, hy : (L, S) — (M, T) be two morphisms of Frith
frames. Then, their coequalizer is q : (M, T) — (K, R), where ¢ : M — K 1is
the coequalizer of the frame homomorphisms hi, hs in Frm and R = ¢[T].

As a consequence of Propositions 4.10, 4.11, 4.12, and 4.13, we have:

Corollary 4.14. The category Frith is complete and cocomplete.

4.4. Special morphisms. This section is devoted to the study of some spe-
cial morphisms in the category of Frith frames. More precisely, we will start
by characterizing the monomorphisms, the extremal epimorphisms, and the
isomorphisms. In the setting of frames, extremal epimorphisms are relevant
because they are the pointfree notion of subspace embedding. We will show
a Pervin-Frith analogue of this. We will also see that, unlike what happens
for frames, not every extremal epimorphism is regular.
The proof of the first result is analogous to the usual proof for posets.

Lemma 4.15. A morphism m : (L,S) — (M,T) of Frith frames is a
monomorphism if and only if the map m : L — M is injective.
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Proposition 4.16. A morphism e : (L,S) — (M,T) of Frith frames is an
extremal epimorphism if and only if it satisfies e[S] = T. In particular, all
extremal epimorphisms are surjective.

Proof: Let e : (L,S) — (M,T) be a morphism satisfying e[S] = T and
m : (K,R) < (M,T) be a monomorphism such that e = m o g for some
other morphism ¢ : (L, S) — (K, R). In particular, we have

T = e[S] = mo g[S] C m[R].

Since M is generated by T, it follows that m : K — M is surjective and
thus, a frame isomorphism. Let f : M — K be its inverse. We claim that f

induces a morphism of Frith frames f : (M,T) — (K, R). Indeed, that is a
consequence of having

fIT] = foelS) = glS) € R.

Clearly, as morphisms of Frith frames, m and f are also mutually inverse.
Therefore, m is an isomorphism. For the converse, suppose that e : (L, S) —
(M, T) is an extremal epimorphism. Then, (e[L],e[S]) is a Frith frame to
which e corestricts and, by Lemma 4.15, we have a monomorphism m :
(e[L],e[S]) < (M, T). Thus, m has to be an isomorphism, and so the map
e satisfies e[S] = T. Finally, since T generates M, the map e is a frame
surjection. n

We will say that (M, T) is a quotient of (L,S) if there is an extremal
epimorphism e : (L,S) — (M,T). Notice that quotients of (L,S) are, up
to isomorphism, in a one-one correspondence with the congruences on L.
The characterization of Proposition 4.16, together with that of the extremal
monomorphisms in Pervin made in Proposition 3.2, allows us to conclude
that the extremal epimorphisms in Frith are indeed the pointfree version of
embeddings of Pervin spaces. We will say that a Pervin space is T provided
so is the topological space it defines.

Corollary 4.17. Let (X,S) and (Y, T) be Pervin spaces. If m : (X,S) —
(Y, T) is an extremal monomorphism in Pervin then Q(m) : (Qr(Y),T) —

(Qs(X),S) is an extremal epimorphism in Frith. The converse holds pro-
vided (X, S) is Th.

Proof: By Propositions 3.2 and 4.16, the only non-trivial part is to show that
if 2(m) is an extremal epimorphism then m is injective. Let z1,29 € X be
two distinct points. Since (X,S) is Tj, there exists some U € Qg(X) such
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that 1 € U and x5 ¢ U. By Proposition 4.16, there exists some V € Q7(Y)
such that Q(m)(V) = m~(V) = U. But then, m(z;) € V and m(zy) ¢ V
and thus, m(z1) # m(x2) as we intended to show. m

Since every morphism which is both a monomorphism and an extremal
epimorphism is an isomorphism (cf. [2, Proposition 4.3.7]), we may also
conclude the following:

Corollary 4.18. Let h : (L,S) — (M,T) be a morphism of Frith frames.
Then, h is an isomorphism if and only if h is one-one and satisfies h[S] = T.

We finish this section by exploring the relationship between extremal and
regular epimorphisms. Recall that every regular epimorphism is extremal
(cf. [2, Proposition 4.3.3]). In order to state the conditions under which the
converse holds, we will need the following notion of Frith congruence:

Definition 4.19. A Frith congruence on a Frith frame (L,S) is a frame
congruence on L generated by a relation p C S x S.

Lemma 4.20. Let (L,S) be a Frith frame. Then, a congruence on L is a
Frith congruence if and only if it is generated by its restriction to S x S.

Proof: The backwards direction of the implication is trivial. For the converse,
suppose that 6 is a Frith congruence. Let p C S x S be such that p = 6.
We have that 6N (S x .S) C 0 and since closure operators are monotone and
idempotent this implies # N (S x S) C . For the reverse inclusion, since
extends p we have p C 0N (S x S), and since closures are monotone we have
d=pCoNn(SxS9). m

In the example below we show that not every congruence on L is a Frith
congruence.

Example 4.21. Let L be the frame whose underlying poset is the ordinal
w+ 2, and let S be the sublattice L\{w} of L. Since w = \/{n | n € w}
is the join of elements in S, the pair (L,S) is a Frith frame. Then, the
open congruence A, is not a Frith congruence. Indeed, since A, = {(x,y) €
LxL|zAhw=yAw}={(r,y) € LXL|x=yorzy > w} does not
identify any two distinct elements of .5, if it were a Frith congruence and thus
generated by its restriction to S x S, then it had to be the identity. But that
is not the case as it contains, for instance, the element (w,w + 1).

In fact, we have the following:
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Proposition 4.22. Let (L, S) be a Frith frame and 0 C Lx L be a congruence
on L. Then, 6 is a Frith congruence if and only if it belongs to CgL.

Proof: Note that the congruence generated by a relation p C L x L is \/{V,A
Ay | (a,b) € p}. Thus, by definition of Frith congruence, it suffices to observe
that the fact that V preserves arbitrary joins and S' is join-dense in L implies
that CgL is generated by the set {V,, As|s € S}. |

We may now characterize those extremal epimorphisms that are regular.

Proposition 4.23. Let q : (L,S) - (M, T) be an extremal epimorphism of
Frith frames. Then, q is a regular epimorphism if and only if ker(q) is a
Frith congruence.

Proof: Suppose that ¢ : (L,S) — (M,T) is a regular epimorphism, let us
say that ¢ is the coequalizer of hy,hy : (K,R) — (L,S). It follows from
Proposition 4.13 that ker(q) is the congruence generated by the subframe
{(h1(a), h2(a)) | a € K} of L x L. Since R is join dense in K, this subframe
is generated by {(h1(r),h2(r)) | » € R} and thus, ker(q) is generated by
{(h1(r),ha(r)) | » € R}. Since hy and hy are morphisms of Frith frames,
the set {(h1(r), h2(r)) | r € R} is a relation on S. Thus, ker(q) is a Frith
congruence.

Conversely, suppose that ker(q) is a Frith congruence, and let K be the
subframe of L x L generated by R := ker(q) N (S x S). Clearly, the pair
(K, R) is a Frith frame, and the two projection maps K — L induce mor-
phisms of Frith frames m,m @ (K, R) — (L,S). We claim that ¢ is the
coequalizer of m; and m. By Proposition 4.13 and using the fact that ¢
is an extremal epimorphism, it suffices to show that ker(q) = p, where
p:={(m(z,y), m(x,y)) | (x,y) € K}. We observe that p = K and, since R
generates K as a frame, it follows that p and R generate the same congruence
on L. Finally, since ker(q) is a Frith congruence, by Lemma 4.20, we may
then conclude that

ker(q) = ker(q) N (S x S) = R =p,
as required. n

A Frith quotient of (L,S) is then a Frith frame (M, T) for which there is
a regular epimorphism ¢ : (L, S) — (M, T). By Propositions 4.22 and 4.23,
there is a bijection between Frith quotients of (L, S), up to isomorphism, and
the congruences of CgL. We finally show that an analogue of Corollary 4.17
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does not hold with respect to regular morphisms, even if we restrict to sober
spaces.

Example 4.24. Consider the set X := w + 1, equipped with the lattice S C
P(X) consisting of the downsets of X. Since the topology Qs(X) on X
has as open subsets the elements of S together with w, we have Q(X,S) =
(w+2, (w+2)\{w}). Welet (Y, T) be the Pervin subspace of (X, S) defined by
the subset Y :=w C X and we let m : (Y, T) — (X,S) be the corresponding
subspace embedding. Then,

ker(Q(m)) = {(U1, Us) | Ur, Us € Qs(X), m Y (Uy) = m ™ (Us)}
={(z,y) |z,yEw+2, xAw=yAw}=A,

is the congruence described in Example 4.21, which is not a Frith congruence.
Therefore, by Proposition 4.23, 2(m) is not a regular epimorphism. Finally,
we argue that the topological space (X, Qgs(X)) defined by (X,S) is sober.
For a subset Q C X, we let pg : w+2 — 2 be the unique function satisfying
pél(l) = Q. Clearly, if pg is a point of w+2, that is, a frame homomorphism,
then () must be an upset. Also, it is not hard to verify that, among the upsets
of w+2, all but {w, w1} give rise to a point (py, .41y is not a point because
w = V,e,n). Therefore, the points of w + 2 may be identified with the
elements of w + 1, via the correspondence py, — n and py, 91 + w. Under
this correspondence the open subsets of pt(w 4+ 2) are precisely the downsets
of w+ 1, that is, (X, Qs(X)) is isomorphic to the space pt(w + 2) and thus,
it is sober.

4.5. Frith quotients and the 7T axiom for Pervin spaces. Recall that
a topological space X is Tp if for every x € X there exists an open subset
U C X containing x such that U\{z} is open. In the classical topological
setting, every subspace of X induces, via 2, a quotient of Q(X), and we
have that X is Tp if and only if different subspaces of X induce different
quotients of Q(X). For Pervin spaces, this may be translated as follows:
by Corollary 4.17, every subspace of a Pervin space (X,S) induces, via €2, a
quotient of (2s(X),S), and we have that different subspaces of (X,S) induce
different quotients on (2s(X),S) if and only if the topology Qs(X) on X
is T'p. In this section we will state and prove a version of this result where
quotient is replaced by Frith quotient. Actually, we will show a version of
the following:
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Proposition 4.25 ([16, Chapter I, Section 1]). Let X be a topological space.
The following are equivalent:
(a) The space X is Tp.
(b) Different subspaces of X induce different quotients of Q(X).
(¢) For no x € X does the subspace inclusion X\{x} — X induce an
isomorphism Q(X\{z}) = Q(X).
(d) The Skula topology on X is discrete.

We have seen in the previous section that, unlike what happens for frames,
the extremal epimorphisms in Frith do not coincide with the regular ones
(cf. Proposition 4.23), and Example 4.24 shows that, in general, the functor
(2 does not map subspaces of a Pervin space (X,S) to Frith quotients of
(Qs(X),S). There is however a natural way to assign to each subspace of
(X, S) a Frith quotient on (2s(X),S): given a subset Y C X, we consider the
Frith quotient defined by the Frith congruence 6y generated by ker(€2(m)) N
(Sx8)={(51,5) eSxS|SNY =55nY} where m: (Y, T) = (X,S)
is the subspace embedding determined by Y. Note that, since ker(€2(m)) is
a frame congruence on Qs(X), we have fy N (S x S) = ker(Q(m))N (S x S).
The following property will be useful later:

Lemma 4.26. Let (X,S) be a Pervin space and v € X. If Ox and Ox\ (5
are distinct, then there are Sy, S2 € S such that {z} = 51\S5s.

Proof: Clearly, 0 is the identity relation on Qs(X). Therefore, since 0x\ ()
is, by definition, a Frith congruence, there exists some (Si, S2) € 0x\ (3 N (S X
S) such that Sy # S, say S1 € Ss without loss of generality. By definition
of Ox\(sy, we have S1\{z} = So\{z}. Thus, since Sy € S5, it follows that
{z} = S1\S: as required. m

We say that a Pervin space (X,S) is Pervin-Tp if for every € X there is
some S € S that contains x and such that S\{z} € S. We first show that
in a Pervin-Tp space (X,S) any two different subspaces of (X,S) induce
different Frith quotients on (2s(X),S).

Lemma 4.27. If (X,S) is a Pervin-Tp space, then different subspaces of
(X,S) induce different Frith quotients on (Q2s(X),S).

Proof: Let (X,S) be a Pervin-Tp space, and let Y, Z C X be two distinct
subsets of X. We need to show that 0y # 6,. Without loss of generality, we
may assume that there exists some x € Y\ Z. Since (X, S) is Pervin-Tp, we
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can take S € § such that z € S and S\{z} € S. Then, as x belongs to Y’
but not to Z, we have

SNY # (S\{z})nY and SNZ=(S\{z})NZ

Finally, using that (S, S\{z}) € SxS and 0y N (S xS) = {(S1,5:) € Sx S|
S1NY = SyNY}, we may conclude that (S, S\{z}) € 0;\0y. Thus, 0y # 0,
as required. m

We have now all the ingredients to show the main result of this section.

Proposition 4.28. Let (X,S) be a Pervin space. The following are equiva-
lent.

(a) The space (X,S) is Pervin-Tp.

(b) Different subspaces of (X, S) induce different Frith quotients of (2s(X),S).
(c) For no x € X do we have that Ox\(,y is trivial.

(d) The Skula topology on X induced by (X,S) is discrete.

Proof: The fact that (a) implies (b) is the content of Lemma 4.27, that (b)
implies (¢) is trivial, and that (c¢) implies (d) follows easily from Lemma 4.26.
It remains to show that (d) implies (a). Let € X. Since the Skula topology
on X induced by (X, S) is, by definition, generated by the elements of S and
their complements, there exist S, 59 € S such that {x} = S1\S2. In turn,
this implies that S; is the disjoint union of {x} and S; N S,. Therefore, S is
such that x € Sy and S1\{z} = S1 NSy belongs to S. This shows that (X, S)
is Pervin-T'p as intended. [

5. Frith frames as quasi-uniform frames

In this section we show that the category of Frith frames may be seen as a
coreflective full subcategory of the category of transitive and totally bounded
quasi-uniform frames.

If K is a frame and r € K, then we denote

E =rael)v(ler).

Note that the set (r & 1)U (1 @ r*) is already a C-ideal, thus it equals E,. It
is shown in [9, Proposition 5.2] that E, o E,. = E,., and in [9, Proposition 5.3]
that E, is an entourage if and only if r is complemented. Moreover, if r is
complemented, then {r,7*} is a cover of K and, since (r&r)V (r*&r*) C E,,
it follows that E, is a finite entourage.
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For a subset R C K of complemented elements, we denote R* := {r* |
r € R}, and we let g be the filter generated by {E, | r € R}. We start by
establishing an important property of the relations <1; and <1y for the filter
Er.

Lemma 5.1. Let K be a frame and R C K be a subset of complemented
elements. For every x,a € K,

(a) if x<iya, then there exists some r € (R)prat such that v <r < a,
(b) if x<2a, then there exists some r € (R*)prLat such that v <r < a,

Proof: We will only prove (a), as the proof of (b) is similar. By definition,
if £<9;a, then there are some r,...,7, € R such that (_, E,,) o (z® x) C
(a ® a). We let [n] denote the set {1,...,n}, and for every P C [n] we set
rp = N;epri and Tp 1= /\Z.¢P r¥. Since each r; is complemented, we have
1= N@ivry)=\/{rpATp | P C[n]}.
i=1

Therefore,
v=\/{reATp Az | PC ]} <\/{rp| P Cn],7p Az #0}.

Thus, it suffices to show that the element \/{rp | P C [n], Tp Az # 0}, which
belongs to the sublattice of K generated by R, is smaller than or equal to a.
We let P C [n] satisfy Tp A @ # 0. Then, we have (rp,Tp A x) € (., E,
and (Fp Ax,x) € (x @ x). Since Tp Az # 0, it follows that (rp,x) belongs to
(Ni—; Er,) o(x®x) which, by hypothesis, is contained in (a®a). In particular,
it follows that rp < a, as required. |

The following is a slight variation of [9, Theorem 5.5] and the proof in
there may be easily adapted. For the sake of self-containment, we will use
the previous lemma to provide an alternative proof.

Theorem 5.2. Let K be a frame and R C K be a subset of complemented
elements. Then, the filter Eg generated by the set of entourages {E, | r € R}
is such that L1(Er) = (R)pem and Lo(ER) = (RYmem. In particular, if K
15 generated by R U R*, then g is a transitive and totally bounded quasi-
uniformity on K.

Proof: We first show that £1(Er) C (R)pem. We fix an element a € £1(Er),
and for each z € K satisfying x<ja, we let r, € (R)prat be such that
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x <r, <a, as given by Lemma 5.1(a). Then, we have
a= \/{:E € K|z<qa} < \/{rw |z € K, x<ja} < a.

Thus, a = \/{r; | * € K, z<1a} is a frame combination of elements of R.
Conversely, since g is a filter and hence, £1(ER) is a frame, it suffices to show
that R C £,(Eg). But that is a consequence of the inclusion E, o (r & r) C
(r @ r) which holds for every complemented element r € K. m

Let L be a frame. Then, for each a € L, the congruence V, is complemented
in CL, and CL is generated, as a frame, by these congruences together with
their complements. Thus, by Theorem 5.2, the set { Ev, | a € L} is a subbasis
for a transitive and totally bounded quasi-uniformity £, on CL. This is called
the Frith quasi-uniformity, and it is the pointfree counterpart of the Pervin
quasi-uniformity, in the sense that, for every frame L, the frame £(€y) is
isomorphic to L. More generally, for every Frith frame (L, .S), the set { Ev, |
s € S} is a subbasis for a transitive and totally bounded quasi-uniformity Eg
on CsL. We will now see that the assignment (L, S) — (CsL, Es) extends to a
full embedding £ : Frith — QUniFrmy, . 11,4, where QUniFrmy,, ¢ ot 1a
denotes the full subcategory of QUniFrm consisting of those quasi-uniform
frames that are transitive and totally bounded.

Before proceeding, we show a couple of technical results concerning C-ideals
of the form FE,.

Lemma 5.3. Let h : K1 — K5 be a frame homomorphism. Then, for every
r € Ki, we have (h @ h)(E,) C Ejy. The converse inclusion holds if r is
complemented.

Proof: Given r € Ky, we may compute:

(he h)(E,) 2 \/{h(z) @ h(y) |z <7 ory <7} = (h(r) & 1) V (1B h(r"))
C (h(r)® 1)V (A ®h(r)) = By,
where the only inclusion follows from the inequality h(r*) < h(r)* (recall (1)).

Now, if r is complemented, we have h(r*) = h(r)*, and the above inclusion
becomes an equality. |

Lemma 5.4. Let K be a frame and r,rq,...,r, € K be complemented ele-
ments. If (i_y E;, C E,, then 1 is a lattice combination of the elements of

{7“1,...,7"71}.



A POINTFREE THEORY OF PERVIN SPACES 31

Proof: As before, we use [n] to denote the set {1,...,n} and, for every P C
[n] we let rp:= \;cpri and Tp := /\;;pr}. Since, for every P C [n], we have
(rp,7p) € ey Ey,, it follows from the hypothesis that (rp,7p) € E,, that
is, 7p < r or Tp < r*. Thus, by (1), for every P C [n], we have

rp <71 or rp A1 =0. (3)

On the other hand, since each r; is complemented, we have

n

r=rANEvr)=rA\/{rpATp | PC 0]} =\/{rArp ATp| P C[n]}.
i=1

Using (3), we may then conclude that r = \/{rp | P C [n], r ATp # 0}, that

is, r is a lattice combination of the elements of {ry,... r,}. n

Let us now define the functor F on the morphisms. If h: (L, S) — (M,T)
is a morphism of Frith frames then, by Corollary 2.4, h uniquely extends to
a frame homomorphism h : CsL — CrM. The fact that h defines a quasi-
uniform homomorphism h : (CsL,&s) — (CrM, Er) is a consequence of the
following more general result:

Proposition 5.5. Let K, N be two frames, and R C K and U C N be
sublattices of complemented elements. Let also g : K — N be a frame homo-
morphism. Then,

(a) g[R] C U if and only if (9 ® g)[€r] € Eu;
(b) U C g[R] if and only if Ey is contained in the filter generated by (g ®

9)|Er].

Proof: We start by proving (a). Suppose that g[R] C U and let r € R.
Since r is complemented, by Lemma 5.3, we have (g ® g)(E,) = E,(), which
belongs to &. Conversely, given r € R, we have Ey,) = (¢ ® g)(E\) € &
and so, there exist uy,...,u, € U such that FEy,) 2 E, N---NE, . By
Lemma 5.4, and since U is a sublattice of N, it follows that g(r) € U.

For proving (b), we first assume that U C g¢[R]. Then, given u € U,
there exists some r € R such that g(r) = w and, for such an r, we have
E, = Eyy = (9© g)(E,). Thus, & is contained in the filter generated by
(9@ g)[ERr]. Conversely, if &y is contained in the filter generated by (g®g)[Er]
then, for every u € U, there are some r1,...,7, € R satisfying

E,2(g®g)(E,)N---N(g®g)(Er,).
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Then, by Lemma 5.3 we have
Eu 2 By N0 Eggryy,

and by Lemma 5.4, u is a lattice combination of the elements of {g(r1), ..., g(r,)}
and thus, it belongs to g[R] as required. |

As a consequence, we have an embedding £ : Frith — QUniFrmy,, ¢ 14
defined by E(L,S) = (CsL, £s) and E(h) = h. In fact, Proposition 5.5 also
implies that £ is full.

Proposition 5.6. There is a full embedding E : Frith — QUniFrmy,, ¢ ;o q-

Our next goal is to show that the embedding £ : Frith — QUniFrm,,, ¢t 1a
is a coreflection (cf. Theorem 5.12). We will need the following technical re-
sult:

Lemma 5.7. Let K be a frame, and Ry, Ry C K be subsets of complemented
elements. Then, Er, = Eg, if and only if (R1)prat = (R2)DLat-

Proof: For i = 1,2, we let R denote the lattice generated by R;. We first
argue that &g, = &g/, which implies that g, = &g, whenever R; and Ry
generate the same sublattice of K. Since R; C R}, we clearly have &g, C &/
For the reverse inclusion, it suffices to observe that for every r,v’ € R;, the
entourage F,. N E,/ is contained both in F,,» and in E,, . Let us prove the
converse implication. We suppose that £, = Er, and we let » € Ry. Then,
E, € &g, and so, there are some 71, ...,r, € Ry such that £, O E, N---NE, .
By Lemma 5.4, this yields r € (Rs)prat and thus, (R1)prat € (Ro)DLat- By
symmetry, we have (R;)prat = (R2)DLat as required. ]

We now show that every transitive and totally bounded quasi-uniformity
E on a frame K is of the form & for a suitable bounded sublattice R of K.
We introduce the following notation:

Definition 5.8. Given a transitive and totally bounded quasi-uniform frame
(K, &), we will denote by R ¢g) the set of all complemented elements of K
such that E, € £.

The proof of the next result is inspired by the proof of an unpublished
result for Pervin spaces, which is due to Gehrke, Grigorieff, and Pin.

Proposition 5.9. Let (K, E) be a transitive and totally bounded quasi-uniform
frame. Then, R g is a sublattice of K satisfying & = g -
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Proof: Let (K,&) be a transitive and totally bounded quasi-uniform frame.
By Lemma 5.7, we have that R ¢) is a sublattice of K, and by definition
of Rk, ¢), we also have Eg . ., € €. Since € is a transitive quasi-uniformity, in
order to show the converse inclusion, it suffices to show that &g, ., contains
every transitive entourage of £.

Let us fix a transitive entourage E € £. Since & is totally bounded, there
exists a finite cover C' of K such that \/ .,z ®  C E. Moreover, since £
is transitive, we may assume without loss of generality that C is a partition.
Indeed, suppose otherwise, say x A y # 0 for some distinct x,y € C. Then,
since (z,x), (y,y) € E implies, by (J.1), that (z,x Ay),(x Ay,y) € E, by
transitivity of F, we have that (x,y) belongs to E, and by (J.3), it follows
that (z,z Vy) € E. Similarly, we can show that (z V y,x) € E. Using again
transitivity of E, we may conclude that (x Vy,z Vy) belongs to E. Now, for
each z € C, let us denote

roi=\/{y €| (w,y) ¢ E}. (4)

Since C'is a partition of M, each r, is complemented with complement given
by

T = \/{z eC|(x,2) € E} (5)

We now show the following equality:

E=(|E.|zeC} (6)

Let (a,b) € K x K be such that a and b are both non-zero, or else, (a,b)
belongs to both sides of (6). Suppose that (a,b) € E, let z € C, and assume
that a £ r,. To show that (a,b) € E,,, we need to show that b < r¥. Since
7, is complemented, by (1), having a £ r, is equivalent to having a A r: # 0.
Therefore, by (5), there exists some z € C such that aAz # 0 and (z,2) € F.
On the other hand, again by (1), b < r* if and only if b A7, = 0 and, by (4),
bAr, =0 if and only if (z,y) € E for every y € C satisfying b Ay # 0.
So, we let y € C be such that b Ay # 0. Since (z,2), (a,b), and (y,y)
belong to £ and E is a downset, we have that (z,a A 2), (a A z,b A y), and
(b Ay,y) also belong to E. By transitivity of E, and since a A z,b Ay # 0,
it follows that (z,y) € E. This shows that b < 7% as required. Conversely,
suppose that (a,b) belongs to E,_, for every z € C. Since C' is a partition
of K, we have a = \/[{a Az |z € C} and b = \/{bAy |y € C}. Therefore,
by (J.2) and (J.3), in order to show that (a,b) € E, it suffices to show that
(a Nz, bANy) € E for every x,y € C satisfying a Ax # 0 and b Ay # 0.
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Since x < 7%, if a A x # 0 then we also have a A r} # 0, that is, a £ 7.
Since (a,b) € E,_, this implies b < r¥, that is, b A r, = 0. Finally, by (4), if
bAr, =0, then (x,y) € E whenever b Ay # 0. Since E is a downset, we
have (a A z,b A y) € E and this finishes the proof of (6).

Finally, (6) implies, on the one hand, that each r, belongs to R ¢ (be-
cause 1, is complemented, £ € £ and E = (), E,, C E,,) and, on the
other hand, that F € gR(K,S) (because E = ﬂxec E, and each r, belongs to

Rk.)). Therefore, & = &g, ., as required. |
In particular, using Theorem 5.2, we have the following:

Corollary 5.10. Fvery frame admitting a transitive and totally bounded
quast-uniformaity is zero-dimensional.

Proposition 5.11. Given a transitive and totally bounded quasi-uniform
frame (K,E), we let L be the subframe of K generated by Rk ¢) and we
let e : L — K be the corresponding embedding, so that we have a Frith frame
(L, S), where S is such that e[S] = R ¢y. Then, the embedding e extends to
a dense extremal epimorphism 7y, ) : (CsL,Es) — (K, &) of quasi-uniform
frames.

Proof : Since the elements of e[S] = Rk ¢) are complemented in K, by Propo-
sition 2.3, the embedding e : L — K uniquely extends to a frame homo-
morphism g ¢ : CsL — K. Moreover, vk ¢g) is surjective: since frame
homomorphisms preserve complemented elements, we have R(x g)U R?K, £) =
Yk, &) [{ Vs, Astses| and, by Theorem 5.2 and Proposition 5.9, it follows that

K = <R(K’5) U R?K’5)>Frm = V(K,E) [CSL]

Since, by Lemma 5.3, we have (yx,¢) @ Yk, ¢))(Ev,) = B or(s) = Eegs) for
every s € 5, and by Proposition 5.9, & = &g, .,, we may conclude that (k. ¢)
induces a quasi-uniform homomorphism 7k, ¢) : (CsL,Es) — (M, &), which
is an extremal epimorphism. It remains to show that (x ¢) is dense. Let
51,52 € S be such that v (Vs AA,,) = 0, or equivalently, e(s;) Ae(sg)* =
0. Since e(s2) € R(x,¢) is complemented, by (1), it follows that e(s;) < e(ss).
Since e is an embedding, we have s; < s9 and we obtain Vi, A A, = 0 as
required. |

Finally, we may use Proposition 5.11 to show that

E : Frith — QUniFrmtrans,tot bd
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is a coreflection.

Theorem 5.12. The category of Frith frames is coreflective in the category
of transitive and totally bounded quasi-uniform frames.

Proof: For a transitive and totally bounded quasi-uniform frame (K, €), we
let ke : (CsL,Es) — (K, E) be the dense extremal epimorphism of Propo-
sition 5.11, and e : L — K denote the embedding of L into K. To show
that £ : Frith — QUniFrmy,, ,1,q 1S a coreflection, it suffices to show
that, for every Frith frame (M,T) and every quasi-uniform homomorphism
h : (CrM,Er) — (K,E), there exists a unique morphism of Frith frames
g: (M, T)— (L,S) such that the following diagram commutes:

(CrM, Er)

Eg ::g/,/ 5

(CS’L; 55) P (K7 8)

NK,E)

If such a morphism g exists then, in particular, we must have g ¢)0g(V,) =
h(V,) for every a € M. Since g and 7k ¢) are extensions of g and e, respec-
tively, this amounts to having e o g(a) = h(V,) for every a € M. Since by
Proposition 5.5(a), we have h[T] C R(x ¢y and thus, h[M] C (Rx.¢))Frm =
e[L] and e is an embedding, there is a unique morphism of Frith frames
g: (M, T)— (L,95) satistying e o g(a) = h(V,) for every a € M. Finally, to
see that g makes the above diagram commute, it suffices to observe that, for
every t € T, the following equalities hold:

_ (%) * *
Vi) © G(A) = Yke)(Dyy) = (e0g(t))" = h(Vy)" = h(Ay),
where the equality marked by (*) holds because g(t) belongs to S. u

Note that, unlike what happens in the point-set framework, where we have
an equivalence between Pervin spaces and transitive and totally bounded
quasi-uniform spaces (see [18]), the categories of Frith frames and of tran-
sitive and totally bounded quasi-uniform frames are not equivalent. This is
because, in general, the dense extremal epimorphism v ¢) : (CsL,Es) —
(K, &) from Proposition 5.11 is not an isomorphism. Intuitively, the rea-
son behind this phenomenon is that there are several ways in which L :=
(R(k,¢))Frm may be extended so that every element of S := Rk ¢) becomes
complemented, and CgL is just one of them that may not reflect how the
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complements in K of the elements of R ¢y behave. Accordingly, if (K, &)
is such that the elements of S = Rk ¢) are already complemented in L, then
Y(k,¢) is an isomorphism. As we shall see in the next section, this happens if
£ is a uniformity (cf. Proposition 6.1) and so, the category of transitive and
totally bounded uniform frames may be nicely represented by a suitable full
subcategory of Frith frames (cf. Corollary 6.2). A similar conclusion may
be taken if we restrict to those transitive and totally bounded quasi-uniform
frames that are complete (cf. Corollary 7.3): if (K, £) is complete, then vk ¢
has to be an isomorphism.

6. Symmetric Frith frames and uniform frames

We say that a Frith frame (L, B) is symmetric if B is a Boolean algebra,
and we let Frithgy,, denote the full subcategory of Frith whose objects are
the symmetric Frith frames. The relevance of symmetric Frith frames lies
in the fact that they exactly capture those transitive and totally bounded
quasi-uniform frames that are actually uniform.

Proposition 6.1. Let (K, &) be a transitive and totally bounded quasi-uniform
Jrame. Then, £ is a uniformity if and only if Rk ¢ is a Boolean algebra. In
particular, for every Frith frame (L, S), we have that (L, S) is symmetric if
and only if (CsL,Es) is a uniform frame.

Proof: The first claim is a straightforward consequence of Proposition 5.9 and
of the equality £ ! = E,., which holds whenever r is complemented. For the
second statement, we only need to observe that, by Proposition 5.9, we have
Es = ERe,y e,y and thus, by Lemma 5.7, we have Rz g) = {Vs | s € 5}
which, by Lemma 2.2, is a lattice isomorphic to S. Therefore, by the first
claim, (CsL, Eg) is a uniform frame if and only if S is a Boolean algebra. =

In the following, we let UniFrmy;ans totba denote the full subcategory of
QUniFrm formed by the transitive and totally bounded uniform frames.

Corollary 6.2. The coreflection E : Frith — QUniFrmy,, (ot1q Testricts
and co-restricts to an isomorphism E' : Frithg,, — UniFrmy g totbd-

Proof: By Proposition 6.1, the functor E restricts and co-restricts to a func-
tor £’ : Frithg,,, — UniFrmy,.,g totba. Let (K, E) be a transitive and totally
bounded uniform frame. By Proposition 6.1, Rk ¢) is a Boolean algebra and
so, by Theorem 5.2 and Proposition 5.9, K is generated, as a frame, by
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Rk ). Therefore, the pair (K, R(x¢)) is a symmetric Frith frame. More-
over, by Propositions 5.5(a) and 5.9, if h : (K,€) — (M,F) is a homo-
morphism of transitive and totally bounded uniform frames, then h induces
a morphism of (symmetric) Frith frames h : (K, Rixe) — (M, Rarr))-
Hence, the assignment (K,&) — (K, Rxg¢)) yields a well-defined functor
v UniFrmyans tot b — Frithgy,. Finally, one can easily show that E’ and
~" are mutually inverse. ]

We will now show that the category Frithgy, is both reflective and core-
flective in Frith. Let us start by coreflectivity.

Proposition 6.3. The category Frithgy,, is a full coreflective subcategory of
Frith.

Proof: Let (L, S) be a Frith frame. We consider the subset C' C S consisting
of those elements having a complement in S, and we let N be the subframe
of L generated by C'. Observe that C'is a Boolean subalgebra of NV, so that we
have a symmetric Frith frame b(L, S) := (N, C). Moreover, the embedding
N — L defines a homomorphism of Frith frames e gy : b(L,S) — (L, S).
To complete the proof, we only need to show that, for every symmetric Frith
frame (M, B) and for every morphism h : (M, B) — (L, S) there is a unique
morphism £ : (M, B) — b(L, S) making the following diagram commute:

(M, B)

-

-~ -
ho h
,

,

,

b(L,S) —— (L,95)

&(L,9)

That is, we need to show that h co-restricts to a morphism of Frith frames
h : (M,B) — b(L,S). This is indeed the case because, since frame homo-
morphisms preserve pairs of complemented elements, h[B] C S, and B is a

Boolean algebra, every element of h[B] is complemented in S, that is, we
have h|B] C C. m

Combining Theorem 5.12, Corollary 6.2, and Proposition 6.3, we also have
the following:

Corollary 6.4. The category UniFrmy s totbd @S coreflective in the category
QUniFrmtrans, tot bd
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Let us now prove reflexivity. Given a Frith frame (L, S), we let S denote the
sublattice of CgL generated by the elements of the form V together with their
complements. As complemented elements of a frame are closed under finite
meets and finite joins, the lattice S is a Boolean algebra. Moreover, since L
is generated by S, we have that CsL is generated by S and so (CsL,S) is a
Frith frame. We may then define a functor Symy,;, : Frith — Frithg, as
follows. For a Frith frame (L, S) we set Symy,;;, (L, S) := (CsL, S); and for a
morphism of Frith frames h : (L, S) — (M, T) we set Symy,,,,(h) := h, where
h is the unique extension of h to a frame homomorphism % : CgL — CrM
(recall Corollary 2.4). In particular, we have h(V,) = V) and h(A,) =
Aps) for every s € S and thus, h : (CsL,S) — (CrM,T) is a morphism
of Frith frames and Symyp,,, is a well-defined functor. We shall refer to
Symyp,, (L, S) as the symmetrization of (L, S).

Proposition 6.5. The full subcategory of symmetric Frith frames is reflective
in Frith.

Proof: We first observe that if (L, .S) is a Frith frame, then it embeds in its
symmetrization via V : L < CgL. Let (M, B) be a symmetric Frith frame,
and h : (L,S) — (M, B) be a morphism in Frith. We need to show that

there is a unique morphism h : (CsL,S) — (M, B) making the following
diagram commute:

(L, S) —— (CsL,S)
;

N

(M, B)

Since h[S] C B consists of complemented elements of M, by Proposition 2.3,
there is a unique frame map h CsL — M making the above triangle com-
mute. Hence, we only need to show that ﬁ[g] C B. This is indeed the case
because, for every s € S, we have h(V,) = h(s) and h(A,) = h(s)*, and B is
closed under taking complements. ]

We now argue that Symy,,;, is a restriction of the usual reflection of
QUniFrm onto UniFrm.

Proposition 6.6. The following diagram commutes:
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Symy,iy,

Frith Frithgy,,

B r

QUniFrm ——— UniFrm

SmeUniFrm

Proof: Let (L,S) be a Frith frame. By definition, we have
EOSymFrith(La S) - (CSLa g§> and SmeUniFrmoE(La S) - (CSL7 8_5)7

where & is the uniformity generated by {Ev,, Ey' | s € S}. Since Eg' =
Ea_, by definition of S and by Lemma 5.7, &< and Es are both the (quasi-
Juniformity generated by {Ev , Ea, | s € S}. Commutativity at the level of
morphisms is trivial. u

Finally, we will see that Symp., is the pointfree analogue of Symp,.,
discussed in Section 3.

Proposition 6.7. There is an isomorphism o) : Sympg., o pt(L,S) =
pt o Symy,1, (L, S) for every Frith frame (L, S).

Proof: Let us define oz, gy : pt(L) — pt(CsL) by p — p, where for every point
p € pt(L) the map p is the unique morphism such that po V = p, as given
by Proposition 2.3. Since L is a subframe of CgL and thus, every point of
CsL restricts to a point of L, this assignment is a bijection. Let us show that
a(r,s) defines an isomorphism of Pervin spaces a( g) : Symp,,, o pt(L, S) —
pt o Symy, (L, S). By Corollary 3.3, we need to show that the preimages
of the elements of the lattice component of pt o Symy,,;, (L, S) are exactly
the elements of the lattice component of Sympyp,,, o pt(L, S). Noting that the
former lattice is generated by the elements of the form @s and 33 and the
latter by those of the form s and (5)¢ (s € S), that is a consequence of having

aas)(vs) =35 and a(L{S)(AS) = (9)°,
for every s € S. |

Theorem 6.8. The following diagram commutes up to natural isomorphism.

YMpith

S
Frith®® ——— Frithyy,

ptl lpt

Pervin Perving,,

YMpe,y
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Proof: We show that the family of isomorphisms {c . ¢y | (L, S) is a Frith frame}
defined in Proposition 6.7 induces a natural transformation Symp,,,opt =

pt o Symyp,,. Suppose that h : (M,T) — (L,S) is a morphism of Frith
frames, that is, h is a morphism (L, S) — (M, T) in Frith°®. Then, natural-

ity of @ amounts to commutativity of the following square:

Y(L,S)

pt(L) pt(CsL)
(=)oh l l (=)oh
pt(M) pt(CrM)

Q(M,T)

Let p € pt(L). Since, by definition, a(yr(p o k) is the unique point of
pt(Cr M) extending p o h, it suffices to show that a(z g)(p) o h extends p o h.
That is indeed the case because, for every a € M, we have the following:

o1.5)(D) 0 (V) = a(1.5) (D) (Vi) 2 po ha),

where the equality () follows from having that, by definition, a(z, g)(p) is the
unique extension of p to a point of CgL. |

7. Completion of a Frith frame

As mentioned in Section 2, complete (quasi-)uniform frames may be equiv-
alently characterized via dense extremal epimorphisms or via Cauchy maps.
Since the category of Frith frames fully embeds into the category of quasi-
uniform frames, there is a natural notion of completion of a Frith frame. In
this section we explore it, both from the point of view of dense extremal
epimorphisms and of Cauchy maps. As the reader will notice, in this re-
stricted subcategory of quasi-uniform frames, the concepts involved become
surprisingly simple.

7.1. Dense extremal epimorphisms. We say that a symmetric Frith
frame (L, B) is complete if every dense extremal epimorphism (M,C) —
(L, B) with (M,C') symmetric is an isomorphism. More generally, a Frith
frame (L, S) is complete provided its symmetric reflection Symyp, (L, S) is
complete. As the reader may expect, completeness of a Frith frame (L, S) is
equivalent to completeness of the associated quasi-uniform frame (CsL, Eg)
(cf. Proposition 7.2). A completion of (L, S) is a complete Frith frame (M, T)
together with a dense extremal epimorphism (M, T) — (L, .5).
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Given a Frith frame (L, S), by Corollary 2.6, there is a unique frame homo-
morphism Idl(S) — L extending the embedding S < L. Clearly, this frame
homomorphism induces a dense extremal epimorphism of Frith frames

cr.s) : dI(S), S) - (L, S), J—\/J

An immediate consequence of the definition of completeness is the following:

Lemma 7.1. If (L,5) is complete, then ¢y @ (1d1(S),S5) — (CsL,S) is
an 1somorphism.

Proof: This is simply because, by definition, (L, S) is complete if and only if
50 is Symyp,y, (L, ) = (CsL, S) and ¢ (¢, 5) is a dense extremal epimorphism.
u

In particular, if (L, S) is complete, then its symmetric reflection Symg,;1, (L, S)
is coherent. In turn, since Symy.,(L, S) is a zero-dimensional Frith frame,
by Lemma 4.9, being coherent is equivalent to being compact, and since L is a

subframe of CgL, we have K(CsL)NL C K(L). Now notice that K(CsL) = S
by coherence of Symgp.,(L,S) and Lemma 4.5, and thus S C K(CgL).
Therefore, S C K(CgL) N L and this implies that S C K(L). This means
that (L, S) is coherent, too. We have just proved the following:

(L, S) complete = Symp,,(L,S) compact

(7)

From this, we may already show that our notion of completeness is consistent
with usual completeness for (quasi-)uniform frames:

Proposition 7.2. Let (L,S) be a Frith frame. Then, (L,S) is complete if
and only if (CsL,Es) is complete.

<= Symyp,, (L, S) coherent = (L, S) coherent.

Proof: We first observe that it suffices to consider the case where (L, S) is
symmetric. Indeed, by definition, (L, S) is complete if and only if Symp,;;, (L, S) =
(CsL,S) is complete. On the other hand, by Proposition 2.14, (CsL,Es) is
complete if and only if (CsL,&s) is complete and, by Proposition 6.6, we
have (CsL,Es) = Symquuipm © E(L,S) = E o Symyp;, (L, S) = (CsL,Eg).
Therefore, the claim holds if and only if, for every Frith frame (L, S), com-
pleteness of Sympg,, (L, S) = (CsL, S) and of EoSymp,, (L, S) = (CsL, Es)
are equivalent notions.

Now, we let (L, B) be a symmetric Frith frame. Suppose that (L, B) is
complete and let h: (M,E) - (L,Ep) be a dense extremal epimorphism for
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some uniform frame (M, ). Since (L, B) is complete, by (7), L is compact.
Therefore, by Proposition 2.15, h is an isomorphism. Conversely, suppose
that (L,Ep) is complete. By Proposition 5.5, every dense extremal epimor-
phism h : (M,C) — (L, B) of symmetric Frith frames induces an extremal
epimorphism h : (M, Ec) — (L,ER), which is clearly dense. Since (L, Ep) is
complete, h is one-one and, by Corollary 4.18, it is an isomorphism. Thus,
(L, B) is complete as required. |

Before proceeding, we remark that a consequence of Proposition 7.2 is that
the categories CFrith of complete Frith frames and CQUniFrmy,, 11,4 Of
complete transitive and totally bounded quasi-uniform frames are equivalent.

Corollary 7.3. The coreflection E : Frith — QUnikFrmy,, ¢ (ot1q TeStricts
and co-restricts to an equivalence of categories " : CFrith — CQUniFrmy,, o ba-

Proof: By Proposition 7.2, the functor £ : Frith — QUniFrmy,, ot 14 T€-
stricts and co-restricts to a functor £” : CFrith — CQUniFrmy,,, iotbd-
Since CFrith and CQUniFrmy,, . .14 are, respectively, full subcategories
of Frith and of QUniFrmy,,, (o4, by Proposition 5.6, £” is a full em-
bedding. Finally, let (K,E) be a transitive and totally bounded quasi-
uniform frame. If (K, ) is complete, then the dense extremal epimorphism
Yk : (CsL,Es) — (K, E) of Proposition 5.11 has to be an isomorphism and,
again by Proposition 7.2, (L, S) is complete. Therefore, (K,&) = E"(L,S)
and E” is an equivalence of categories. |

Our next goal is to show that all the statements in (7) are in fact equiv-
alent. Since by Proposition 4.6 coherent Frith frames are those of the form
(Id1(S), ), for some lattice S, we only need to prove that (Idl(.5), S) is always
a complete Frith frame. We will need the following lemma.

Lemma 7.4. If (L,B) and (M,C) are symmetric Frith frames, then any
dense extremal epimorphism h : (L, B) — (M, C) restricts and co-restricts
to a Boolean algebra isomorphism h' : B — C.

Proof: Suppose that (L, B) and (M, C) are symmetric Frith frames, and let
h:(L,B)— (M,C) be a dense extremal epimorphism. By Proposition 4.16,
we have h|B] = C. So, we only need to show that the restriction of h to B
is injective. Let by, by € B and suppose that h(b;) < h(by). This implies that
h(b1) A h(b2)* = 0 and, since frame morphisms preserve complemented pairs,
we have h(b; A b5) = 0. By density, we may then conclude that by A b5 = 0
and, since by is complemented, this implies b; < bs. |
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Let Tr.5) 1 Symp;,(Id1(S),S) — Sympy, (L, S) denote the symmetric
reflection of ¢(r g, that is, ¢g) @ (CsIdl(S),S) — (CsL,S) is defined by
E(L,S)(vs) =V, and E(L,S)(As) = A, forse S,

Proposition 7.5. Let (L, S), (M, C) be Frith frames with (M, C) symmetric
and let h: (M,C) — (CsL, S) be a dense extremal epimorphism. Then, there

exists a unique morphism g : (Csldl(S),S) — (M, C) making the following
diagram commute:

(CoIdI(S),5) -~ (M, C)
T
(L.

(CSL7§)

Moreover, g is a dense extremal eptmorphism.

Proof: Since S is join-dense in Cgldl(S), frame homomorphisms preserve
complemented elements, and C' is closed under taking complements, if g
exists, then its underlying frame homomorphism is the unique extension of
a lattice homomorphism ¢’ : S — C such that h o ¢'(s) = V, for every
s € S. We first argue that the morphism ¢’ exists. Since h is a dense ex-
tremal epimorphism, by Lemma 7.4, it restricts and co-restricts to a lattice
isomorphism A’ : C — S. Let ¢’ be the restriction to S of the inverse of /.
Clearly, ¢ satisfies hog'(s) = V, for every s € S. The desired extension of ¢’
exists, too: we may first extend ¢’ to a frame homomorphism Idl(S) — M,
by Corollary 2.6, and then to a frame homomorphism g : CsIdl(S) — M, by
Proposition 2.3.

It remains to show that g is a dense extremal epimorphism. Observe that
g suitably restricted and co-restricted is the inverse of b’ : C' — S. Therefore
g[S] = C and g is an extremal epimorphism. Finally, since CsIdl(S) is
generated, as a frame, by S, g is dense provided V,, N A,, = 0 for every
s1, 89 € S satistying g(Vs, NA,,) = 0, and this also follows from having that
g restricts and co-restricts to a lattice isomorphism S — C. ]

Corollary 7.6. If (L,S) is a Frith frame, then (1d1(S), S) is complete and,
therefore, c(r.sy : (1d1(S), S) — (L, S) is a completion of (L, S).

Proof: By definition, (Id1(S), S) is complete if and only if so is Symy,;,;, (Id1(S), 5)

(CsId1(S), S). Let h: (M,C) — (CsId1(S),S) be a dense extremal epimor-
phism, with (M, C') symmetric. Then, Proposition 7.5 applied to h gives the
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existence of a dense extremal epimorphism ¢ : (CsIdl(S),S) — (M, C) satis-
fying h o g = Caai(s),s)- Since, Crai(s),s) is the identity function, h is one-one,
thus an isomorphism. Thus, Symp;.,(Id1(S), S) = (Cs1d1(S), S) is complete
as required. n

We may now state following pointfree analogue of [18, Theorem 4.1}, which
is a straightforward consequence of (7) and of Corollary 7.6.

Theorem 7.7. For a Frith frame (L, S) the following are equivalent.
(a) The Frith frame (L, S) is complete.

(b) The Frith frame (L, S) is coherent.

(¢) The Frith frame Symyp., (L, S) is coherent.

(d) The Frith frame Symgp., (L, S) is compact.

We finish this section by showing that completions are unique, up to iso-
morphism.

Proposition 7.8. Let (L,S) be a Frith frame. Then, for every morphism
h: (M, T)— (L,S) with (M, T) complete, there exists a unique morphism
h: (M, T)— (Id1(S),S) such that the following diagram commutes:

L) aas).s)
X ¢(L,S)
(L,5)

Moreover, if h is dense (respectively, an extremal epimorphism) then T is
also dense (respectively, an extremal epimorphism,).

Proof: Since T is join-dense in M, if such a homomorphism h exists, then it
is completely determined by its restriction to T'. In particular, B is unique
because we must have h(t) = cig) o h(t) = h(t), for every t € T, that
is, h must be an extension of the restriction and co-restriction A’ : T —>AS

of h. By Corollary 2.6, h' uniquely extends to a frame homomorphism A :
IdI(T") — IdI(S). Since, by Theorem 7.7, (M, T) is coherent and thus, by

Proposition 4.6, M = 1d1(7T'), it follows that 1 is the required homomorphism.
Now, suppose that h is dense. Since T is join-dense in M, h is dense

provided, for every t € T', we have t = 0 whenever h(t) = 0. This is indeed
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the case because ?L(t) = h(t) for every t € T. Finally, by the same reason,

~

we also have that h is an extremal epimorphism if so is A. ]

Corollary 7.9. FEach Frith frame has a unique, up to isomorphism, comple-
tion.

Proof: By Corollary 7.6 we already know that every Frith frame (L, S) has
a completion ¢ g : (IdI(S),S) — (L,S). Let ¢ : (M,T) — (L,S) be
another completion of (L, S). Since ¢ is a dense extremal epimorphism, by
Proposition 7.8, there exists a dense extremal epimorphism ¢ : (M,T) —
(Id1(S), S) satisfying ¢z 5) o ¢ = c. Since (M,T') is complete, ¢ has to be an
isomorphism and so, the two completions of (L, .S) are isomorphic. |

7.2. Cauchy maps. In this section we will show an analogue of The-
orem 2.17. We start by proving some properties of a Cauchy map ¢ :
(L,£) — M, in the case where & = &g, for some Boolean subalgebra
B C L, that is, (L,B) is a symmetric Frith frame (recall Theorem 5.2)
and E(L, B) = (L,&p).

Lemma 7.10. Let (L, B) be a symmetric Frith frame, M be a frame, and
¢:(L,Eg) = M be a Cauchy map. Then, the following statements hold:

o @ restricts to a lattice homomorphism with domain B,
o for every a € L, the equality ¢(a) = \/{o(b) | b€ B, b < a} holds,
o for every b € B, ¢(b) V ¢(b)* = 1.

Proof: Let ¢ : (L,Eg) — M be a Cauchy map, that is, ¢ satisfies condi-
tions (a), (b), and (c) of Definition 2.16. We start by observing that, for
every b € B we have ¢(b*) = ¢(b)*. Indeed, since (a,a) € Ej if and only
if a < bora < b and, by (a), ¢ is order-preserving, by (c), we have
1 = ¢(b) vV o(b*). Since, by (a), ¢(b) Ap(b*) = p(bAL*) = ¢(0) = 0, it follows
that ¢(b) is complemented with complement ¢(b*), that is, ¢(b*) = ¢(b)*.
In particular, we also have 1 = ¢(b) V ¢(b)*, which proves the third state-
ment. Now, we let b;,bo € B. By (a), the first statement holds provided
d(by V by) < &(b1) V ¢(bs). Since each ¢(b;) is complemented, by (1), this
is equivalent to the equality ¢(by V ba) A ¢(b1)* A ¢(b2)* = 0, which follows
from (a) together with the equality ¢(bf) = ¢(b;)* already proved. Finally,
let us show that the second statement is valid. We fix some a € L. Since
B is a Boolean algebra, by Lemma 5.1, for every x € L satisfying x<lya or
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x<laa, there is some b, € B such that x < b, < a. Then, using (b) and the
fact that ¢ is order-preserving, we may derive that

o(a) < \/{gb(x) |z € L, x<ja or x<lsa} < \/{qb(bm) |z € L, x<ja or x<za}
<\/{o(b) [be B, b<a} <¢(a). =

It is then natural to consider the following definition of Cauchy map.

Definition 7.11. Let (L, S) be a Frith frame and M any frame. A Cauchy
map ¢ : (L,S) — M is a function ¢ : L — M such that

(C.1) ¢ restricts to a lattice homomorphism with domain S,
(C.2) for every a € L, the equality ¢p(a) = \[{o(s) | s € S, s < a} holds,
(C.3) for every s € S, ¢(s) V ¢(s)" = 1.

By Lemma 7.10, we have that in the case where (L, B) is a symmetric Frith
frame, if ¢ : (L,Ep) — M is a Cauchy map in the sense of Definition 2.16,
then ¢ : (L, B) — M is a Cauchy map in the sense of Definition 7.11. We
will now show that the converse is also true, so that our definition of Cauchy
map agrees with the classical one for transitive and totally bounded uniform
frames (recall Corollary 6.2).

Proposition 7.12. Let (L, B) be a symmetric Frith frame, M a frame, and
¢ : L — M a function. Then, ¢ defines a Cauchy map ¢ : (L,Ep) — M if
and only if it defines a Cauchy map ¢ : (L, B) — M.

Proof: The forward implication is the content of Lemma 7.10. Conversely,
let ¢ : (L, B) — M be a Cauchy map, where (L, B) is a symmetric Frith
frame. We first argue that ¢ is a bounded meet homomorphism. Since ¢|p
is a lattice homomorphism, we have ¢(0) = 0 and ¢(1) = 1. Let ay, a9 € L.
Then, we may compute

dlar Nag) ' Z\/{o(d) | b€ B, b<ar Aas}
<C:1) \/{¢(b1) AN ¢(b2) ‘ b1,bg - B, bl S a, b2 S CLQ}
= (\V/{o(b1) [ b € B, by < ar}) A (\[{o(b2) | b2 € B, by < a})

(C.2)

= ¢(a1) A ¢(az).

Thus, ¢ also preserves binary meets and we have (a). Now, using (C.2), in
order to show (b), it suffices to observe that, for every b € B, we have b<ia
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whenever b < a. Indeed, that is a consequence of the inclusion Ej o (b @
b) C (a @ a) for every b < a. It remains to show (c¢). Let E € Ep, say
E D N, Ep, for some by,...,b, € B. Using (C.1) and the fact that each b

is complemented, we have

L=o( A\ V) = N\(6bi) v o(07)) = \[{6(bp A bp) | P C [n]},
i=1 i=1
where [n] := {1,...,n} and, for P C [n], we denote bp := \,.pb; and bp :=
Nigp ;. Since, for every P C [n], we have (bp Abp,bp ANbp) € N, By, C E,
it then follows that

1=\/{o(bp Abp) | P C [n]} <\/{6(z) | (x,2) € E},

which proves (c). m

In what follows, we fix a Frith frame (L, S) and a frame M. Recall from the
previous section that, for every Frith frame (L, .S), there is a dense extremal
epimorphism ¢ : 1dl(S) — L defined by ¢(J) = \/ J. Since this is a frame
homomorphism, it has a right adjoint ¢, : L < IdI(S) which is determined
by the Galois connection

Vae L, Jeldl(S), c¢J)<a <= JCcla).

In particular, for every a € L, we have
ci(a) = \/{J €1d(S) | \/ J < a}. (8)

Lemma 7.13. For every a € L, we have c,(a) = laN S. In particular, the
map ¢ 1s a right inverse of ¢y, that s, co ¢, = id.

Proof: Let s € S. By (8), we have that s € c.(a) if and only if there
are Ji,...,J, € 1dl(9), and s; € J; (for i = 1,...,n) such that \/ J; < a
and s < 51V --- Vs, Clearly, this holds if and only if s < a and thus,
we have c¢,(a) = JanN S. Since S is join-dense in L, it then follows that

cocy(a) =c(lanS)=\({anSs) =a. _

We now consider the function A : L — Cgldl(S) obtained by composing the
injections ¢, : L < Id1(S) and V : Idl(S) — CsIdl(.S). Explicitly, A sends the
element a € L to the congruence V ,~s. Notice that A defines a Cauchy map
A (L, S) — CgIdl(S). Indeed, since c,(s) = {sN S for every s € S and V is
a frame homomorphism, we have that A restricts to a lattice homomorphism
with domain S, that is, (C.1) holds. Moreover, since Ja N S is the ideal
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generated by |J{JsNS | s € S, s <a}, we have (C.2). Finally, by definition,
each A\(s) = V, is complemented in Cgldl(S), and so, we have (C.3).

Theorem 7.14. For every Cauchy map ¢ : (L,S) — M, there exists a frame
homomorphism g : CsIdl(S) — M such that the following diagram commutes:

L— 2 cdas)

-

M

Proof: Since Cgldl(S) is generated, as a frame, by the set of congruences
{Vs, As | s € S} and frame homomorphisms preserve pairs of complemented
elements, if g exists, then it is completely determined by its restriction to
{Vs | s € S}, which must satisfy g(Vs) = g o A(s) = ¢(s), for every s € S.
By (C.1), ¢ restricts to a lattice homomorphism ¢|g : S — - M and, by Corol-

lary 2.6, ¢|s uniquely extends to frame homomorphism ¢|g : IdI(S) — M.
Since, by (C.3), each ¢(s), with s € S, is complemented in M, we may then
use Proposition 2.3 to derive the existence of a unique frame homomorphism
g : Csldl(S) — M satistying g(Vs) = ¢(s), for every s € S. To see that g
makes the diagram commute, we may use (C.2) for A and for ¢ and the fact
that ¢ is a frame homomorphism to compute

goMa)=g(\/{A(s)|s€S, s<a})=\/{goA(s) |s€S, s<a}
= \/{¢(s) | s € S, s < a} = ¢(a),

for every a € L. |

Theorem 7.15. A Frith frame (L, S) is complete if and only if every Cauchy
map (L, S) — M is a frame homomorphism.

Proof: 1f (L, S) is complete, then c is an isomorphism and thus, ¢,, hence A,
is a frame homomorphism. Since by Theorem 7.14 every Cauchy map factors
through A via a frame homomorphism, it follows that every Cauchy map is
itself a frame homomorphism.

Conversely, if every Cauchy map is a frame homomorphism then A is a
frame homomorphism. In particular, A induces a morphism of Frith frames

A (L, S) = (CsIdI(S), S). On the other hand, by Corollary 7.6 and by defini-

tion of complete Frith frame, we have that (CsIdl(.S), S) = Symp,, (IdL(S), S)
is complete. Therefore, (L, .S) is complete provided the symmetric reflection
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(CsL,S) — (CsId1(S), S) of A is a dense extremal epimorphism. That is

the case because, for every s € S, we have \(V,) = V, and A(A,) = A,. =
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