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Abstract: We investigate the representation and complete representation classes
for algebras of partial functions with the signature of relative complement and domain
restriction. We provide and prove the correctness of a finite equational axiomatisation
for the class of algebras representable by partial functions. As a corollary, the same
equations axiomatise the algebras representable by injective partial functions. For
complete representations, we show that a representation is meet complete if and
only if it is join complete. Then we show that the class of completely representable
algebras is precisely the class of atomic and representable algebras. As a corollary,
the same properties axiomatise the class of algebras completely representable by
injective partial functions. The universal-existential-universal axiomatisation this
yields for these complete representation classes is the simplest possible, in the sense
that no existential-universal-existential axiomatisation exists.
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1. Introduction
In Jónsson and Tarski’s seminal [19], the authors produced the very general

definition of a Boolean algebra with operators by building upon the foundation
provided by the class of Boolean algebras. This factorisation of concerns
into, firstly, the Boolean order structure, and later, any additional operations
is still conspicuous when one examines the subsequently obtained duality
between Boolean algebras with operators and descriptive general frames that
has proved to be so important in modal logic [5, Chapter 5: Algebras and
General Frames]. And a similar remark can be made for the discrete duality
that exists between, on the one hand, complete and atomic Boolean algebras
with completely additive operators, and on the other hand, Kripke frames.
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Whilst the Boolean framework is applicable to many famous classes of
structures modelling relations—relation algebras and cylindric algebras are
the foremost examples—it is not applicable to algebras modelling partial
functions. This is for the simple reason that collections of partial functions
cannot be relied upon to be closed under unions, only under unions of
‘compatible’ functions. Though the theory of Boolean algebras with operators
has been greatly generalised, weakening the ordered component all the way
down to posets [10, 11, 7], it is not, in fact, a surfeit of order structure that
is the culprit here. Indeed a moment’s reflection reveals that the inclusion
order is not in general enough to reveal whether two functions agree on any
shared domain they may have.

There is growing interest in dualities for algebras modelling partial func-
tions. More specifically, there are by now a number of duality theorems,
proven by researchers working on inverse semigroups, having on one side:
algebras modelling partial injective functions and on the other: certain cate-
gories/groupoids or generalisations thereof [22, 23, 21, 24, 25].∗ Recently, a
similar result has been obtained for a specific signature of not-necessarily-
injective partial functions [31], and there are also the dualities of [3] and
[20] relating to signatures not containing composition. Such classes of al-
gebras arise naturally as inverse semigroups [33], pseudogroups [25], and
skew lattices [28], and within computer science appear in the theory of finite
state transducers [9], computable functions [17], deterministic propositional
dynamic logics [16], and separation logic [15]. The dualities have been ap-
plied to classical areas of algebra including group theory [22, 23, 24], (linear)
representation theory [26], and the theory of C∗-algebras [22, 23, 24].

A natural question is: Can such duality results be organised into a general
framework in the spirit of Boolean algebras with operators? In this paper
we investigate algebras of partial functions in a signature that could be a
candidate to be the equivalent of the Boolean signature in this framework.
The signature is: relative complement and domain restriction. We have chosen
the signature so as to provide us with two things:

• a well-behaved order structure,
• compatibility information.

∗There are also categorical equivalences, for example [12], but they are not our target in this
work.
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To be more specific, relative complement provides relativised Boolean structure
(see Corollary 2.6), and domain restriction can characterise compatibility via
the equation aB b = bB a.

We show that the abstract class of isomorphs of such algebras of partial
functions is axiomatised by a finite number of equations (Theorem 5.8). One
might term this abstract class the class of ‘compatibility algebras’. Our
signature is relatively unusual in that it does not include the composition op-
eration on partial functions. But we envisage a future theory of ‘compatibility
algebras with operators’, in which familiar operators on partial functions,
such as composition, range, and converse may be treated.

For the case of discrete dualities, one can make the following observation.
First note that the duality between complete and atomic Boolean algebras
and sets is a restricted case of a more general adjunction between atomic
Boolean algebras and sets. Then recall that the atomic Boolean algebras are
precisely the completely representable Boolean algebras. (Any meets that
exist become intersections, any joins become unions.) Hence the adjunction
can be viewed in more semantic terms as linking those algebras that are
completely representable as fields of sets with the category of sets.

With this observation in mind, we prepare the ground for a discrete duality
for ‘compatibility algebras with operators’ by identifying the completely
representable algebras of our signature (Theorem 6.16). It turns out that
in this case, again all that is needed is to add the condition ‘atomic’ to
the conditions for representability. Such an outcome is not as automatic as
it may seem, for there exist situations, for unary relations [8], for higher-
order relations [13], and for functions [29], where complete representability is
characterised by more complex properties.

In the sequel to this paper, Difference–restriction algebras of partial func-
tions with operators: discrete duality and completion [6], we carry out one of
these planned continuations of the project. There, we present an adjunction
(restricting to a duality) for the category of completely representable algebras
and complete homomorphisms, then extend to an adjunction/duality for
completely representable algebras equipped with compatibility preserving
completely additive operators.

Structure of paper. In Section 2, we define formally the class of representable
algebras that we wish to axiomatise, list a finite number of valid equations
for these algebras, and begin to deduce some consequences of these equations.
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In Section 3, we deduce further consequences, relating specifically to the
semantic notion of domain inclusion. In Section 4, we deduce some properties
of filters.

In Section 5, we use a representation based on prime filters to prove that
our equations axiomatise both the algebras representable as partial functions
(Theorem 5.8) and also the algebras representable as injective partial functions
(Corollary 5.10).

In Section 6, we define formally the completely representable algebras and
show that they are precisely the atomic representable algebras in both the
partial function (Theorem 6.16) and injective partial function (Corollary 6.18)
cases.

2. Basic definitions and properties
In this section, we start with the necessary definitions relating to algebras

of partial functions, present the set of equations that will eventually become
our first axiomatisation, and derive various consequences of these equations.

Given an algebra A, when we write a ∈ A or say that a is an element of A,
we mean that a is an element of the domain of A. Similarly for the notation
S ⊆ A or saying that S is a subset of A. We follow the convention that algebras
are always nonempty. If S is a subset of the domain of a map θ then θ[S]
denotes the set {θ(s) | s ∈ S}. Given an binary operation • on A and subsets
S1, S2 ⊆ A, we shall use S1 • S2 to denote the set {s1 • s2 | s1 ∈ S1, s2 ∈ S2}.

We begin by making precise what is meant by partial functions and algebras
of partial functions.

Definition 2.1. Let X and Y be sets. A partial function from X to Y is
a subset f of X × Y validating

(x, y) ∈ f and (x, z) ∈ f =⇒ y = z.

If X = Y then f is called simply a partial function on X. Given a partial
function f from X to Y , its domain is the set

dom(f) := {x ∈ X | ∃ y ∈ Y : (x, y) ∈ f}.

Definition 2.2. An algebra of partial functions of the signature {−,B}
is a universal algebra A = (A,−,B) where the elements of the universe A are
partial functions from some (common) set X to some (common) set Y and
the interpretations of the symbols are given as follows:
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• The binary operation − is relative complement:

f − g := {(x, y) ∈ X × Y | (x, y) ∈ f and (x, y) 6∈ g}.
• The binary operation B is domain restriction.† It is the restriction

of the second argument to the domain of the first; that is:

f B g := {(x, y) ∈ X × Y | x ∈ dom(f) and (x, y) ∈ g}.

Note that in algebras of partial functions of the signature {−,B}, the set-
theoretic intersection of two elements f and g can be expressed as f − (f − g).
We use the symbol · for this derived operation.

We also observe that, without loss of generality, we may assume X = Y (a
common stipulation for algebras of partial functions). Indeed, if A is a {−,B}-
algebra of partial functions from X to Y , then it is also a {−,B}-algebra
of partial functions from X ∪ Y to X ∪ Y . In this case, this non-uniquely-
determined single set is called ‘the’ base. However, certain properties may
fail to be preserved by changing the base. For instance, given sets X and X ′,
if f qualifies both as a partial function on X and a partial function on X ′,
while it is true that f is injective as a partial function on X if and only if it
is injective as a partial function on X ′, this is not the case for surjectivity.

The collection of all partial functions on some base X is closed under
relative complement and domain restriction, and thus gives an algebra of
partial functions PF(X).

Definition 2.3. An algebra A of the signature {−,B} is representable (by
partial functions) if it is isomorphic to an algebra of partial functions, equiva-
lently, if it is embeddable into PF(X) for some set X. Such an embedding of
A is a representation of A (as an algebra of partial functions).

Just as for algebras of partial functions, for any {−,B}-algebra A, we will
consider the derived operation · defined by

a · b := a− (a− b). (I)

Algebras of partial functions of many other signatures have been investigated,
and the corresponding representation classes axiomatised, often (but not
always) finitely, and often (but not always) with equations. We will not
enumerate all these results here, but for a treatment of some of the most

†This operation has historically been called restrictive multiplication, where multiplication is
the historical term for composition. But we do not wish to emphasise this operation as a form of
composition.
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expressive signatures to have been considered, see [14]. For a relatively
comprehensive guide to this literature, see [30, §3.2].

Focusing on signatures that, like ours, do not contain composition, first
consider the signature {B,t} (incomparable with ours), where t is the
operation known as preferential union or alternatively as override. Here, the
representation class is precisely the right-handed strongly distributive skew
lattices [27], and thus finitely axiomatisable by equations. See [3] for the
definition of right-handed strongly distributive skew lattices, where a duality
theorem for this class is proven. In [18], a finite equational axiomatisation is
given for the signature—also incomparable with ours—of preferential union
and update. The paper [4] gives a finite equational axiomatisation for the
signature {−,t}, which is more expressive than each of the three other
signatures (ours and the two just mentioned).

In Section 5 we shall see (Theorem 5.8) that the class of {−,B}-algebras
that is representable by partial functions is the variety axiomatised by the
following set of equations.

(Ax.1) a− (b− a) = a
(Ax.2) a · b = b · a
(Ax.3) (a− b)− c = (a− c)− b
(Ax.4) (aB c) · (bB c) = (aB b)B c
(Ax.5) (a · b)B a = a · b

We call the {−,B}-algebras satisfying these axioms difference–restriction
algebras.

Algebras of the signature {−} validating axioms (Ax.1) – (Ax.3) are called
subtraction algebras [1]. It is known that these equations axiomatise
the {−}-algebras representable as an algebra of sets equipped with relative
complement (see, for example, [32, Theorem 1 + Example (2)]). Hence (Ax.1)
– (Ax.3) are sound for {−,B}-algebras of partial functions and therefore
for all representable {−,B}-algebras. We also know immediately that any
(isomorphism invariant) property of sets with − is a consequence of (Ax.1) –
(Ax.3). One particular consequence that will be often used in the rest of the
paper without further mention is that the derived operation · provides the
structure of a semilattice with bottom 0 := a− a (independent of choice of
a). Similarly, we will also use the fact that 0 acts as a right identity for −
without further remark. Three further properties that we will find useful are
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the following.

b · (a− b) = 0 (1)

a− (a · b) = a− b (2)

a · (b− c) = (a · b)− c (3)

We also observe that axioms (Ax.4) and (Ax.5) are stated without explicitly
using the operation −. It turns out that many results in this paper do not
depend on the algebraic properties of −, but only on the semilattice operation
· it defines. For that reason, we will use the name restriction semilattice
for algebras over the signature {·,B} whose {·}-reduct is a semilattice and
that satisfy axioms (Ax.4) and (Ax.5). Note that, in general, a restriction
semilattice may not have a bottom element.

In the remainder of this section, we start by verifying that axioms (Ax.4)
and (Ax.5) are also sound for representable {−,B}-algebras, thereby having
that every representable {−,B}-algebra is a restriction semilattice. We will
also derive some algebraic consequences of (Ax.1) – (Ax.5) that will be useful
in the sequel.

Lemma 2.4. Axioms (Ax.4) and (Ax.5) are sound for all {−,B}-algebras
of partial functions and therefore for all representable {−,B}-algebras.

Proof : For (Ax.4), we observe that (x, y) ∈ (a B c) · (b B c) exactly when
x belongs both to the domain of a and to that of b, and (x, y) ∈ c. But
having x ∈ dom(b) amounts to having (x, z) ∈ b for some z, and thus we may
conclude that

dom(a) ∩ dom(b) = dom(aB b).

This leads to the desired equality.
Finally, for (Ax.5), suppose (x, y) ∈ (a · b) B a. Then (x, y) ∈ a and x

is in the domain of a · b. By the later fact, there is some z with (x, z) in
both a and b. But since a is a function z must equal y. Hence (x, y) ∈ a · b.
Conversely, if (x, y) ∈ a · b, then clearly x ∈ dom(a · b) and (x, y) ∈ a, so that
(x, y) ∈ (a · b)B a.

We observe that axioms (Ax.1) – (Ax.4) are valid not only for functions,
but for arbitrary binary relations. However, the validity of (Ax.5) relies on a
being a function.
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Proposition 2.5. In a restriction semilattice, the following hold:

bB a ≤ a (4)

aB (bB c) = (aB b)B c (5)

(aB b)B (a · b) = a · b (6)

aB (b · c) = (aB b) · c (7)

(a ≤ b, c ≤ d)→ aB c ≤ bB d (8)

In a difference–restriction algebra, we also have:

(aB b)− c = aB (b− c) (9)

Proof : First we observe that the following equality holds:

(aB (bB c)) · (bB (bB c)) · (cB (bB c)) = (aB c) · (bB c). (10)

Indeed, by successively using (Ax.4), we can rewrite the left-hand side as

((aBb)B(bBc))·(cB(bBc)) = ((aBb)Bc)B(bBc) = ((aBc)·(bBc))B(bBc),

and by (Ax.2) and (Ax.5), this is precisely (aB c) · (bB c).
In what follows, we will freely use that · is a semilattice operation, that

is, · is idempotent and commutative. We will also use that B is idempotent,
which is a consequence of (Ax.5) and idempotency of the · operation.

(4):: This inequality translates into the equality a · (bB a) = bB a. Taking
a = c in (10), we have:

a · (bB a) = (aB a) · (bB a) = (aB (bB a)) · (bB (bB a)) · (aB (bB a))

= (bB (bB a)) · (aB (bB a))
(Ax.4)

= (bB a)B (bB a) = (bB a).

(5):: By (Ax.4), (aB b)B c equals the left-hand side of (10). We prove that
so does aB (bB c):

(aB(bBc))·(bB(bBc))·(cB(bBc))
(Ax.4)

= (aB(bBc))·((bBc)B(bBc))
(4)
= aB(bBc).

(6):: We first observe that bB (aB b) = aB b. Indeed, we may compute:

bB (aB b)
(5)
= (bB a)B b

(Ax.4)
= (bB b) · (aB b) (4)

= aB b. (11)
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Then we can compute:

(aB b)B (a · b) (Ax.4)
= (aB (a · b)) · (bB (a · b))

(Ax.5)
= (aB ((a · b)B a)) · (bB ((a · b)B b))

(11)
= ((a · b)B a) · ((a · b)B b)

(Ax.5)
= a · b.

(7):: This follows from:

aB (b · c) (Ax.5)
= aB ((b · c)B b) (5)

= (aB (b · c))B b
(Ax.4)

= (aB b) · ((b · c)B b) (Ax.5)
= (aB b) · (b · c) (4)

= (aB b) · c.

(8):: Let a ≤ b and c ≤ d. The desired inequality is a consequence of
combining the inequalities aB c ≤ bB c and bB c ≤ bB d. While the
former is a trivial consequence of (Ax.4) and the fact that aB b = a
implied by (Ax.5), the latter may be derived as follows:

(bB c) · (bB d)
(Ax.5)

= (bB (cB d)) · (bB d)
(5)
= ((bB c)B d) · (bB d)

(Ax.4)
= (bB (bB c))B d

(Ax.5),(5)
= bB (cB d)

(Ax.5)
= bB c.

(9):: We have:

(aB b)− c (4)
= (b · (aB b))− c (I)

= (b− (b− (aB b)))− c
(Ax.3)

= (b− c)− (b− (aB b)) = (b− c)− ((b− c)− (aB b))
(I)
= (aB b) · (b− c) (7)

= aB (b · (b− c)) = aB (b− c),
where the unmarked equalities follow from evident properties of sets
with relative complement.

Since, by property (5), the operation B is associative, from here on we may
write aB bB c instead of (aB b)B c or aB (bB c).

For any poset S and a ∈ S, the notation a↓ denotes the set {b ∈ S | b ≤ a}.
It is known that in any subtraction algebra S, for any a ∈ S, the set a↓, with
least element 0, greatest element a, meet given by · and complementation
given by b := a− b is a Boolean algebra [32, page 2154]. We note the following
corollary.
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Corollary 2.6. If h : S→ T is a homomorphism of subtraction algebras then,
for every a ∈ S, the map h induces a homomorphism of Boolean algebras
ha : a↓ → h(a)↓.

We can also prove a sort of converse to each a↓ of a subtraction algebra
being a Boolean algebra.

Proposition 2.7. Suppose that (S, ·) is a meet-semilattice with bottom 0
such that, for every a ∈ S, there is a unary operation a on a↓ such that
(a↓, 0, a, ·, a) is a Boolean algebra. Then setting a − b := a · ba defines a
subtraction algebra structure on S (on which (I) becomes a valid equation).

Proof : First we argue that · is the operation obtained from the term a−(a−b).
Now (a− b) is by definition in a↓, so a− (a− b) = a · (a− b)a = a− ba, which
is the complement of the complement of a · b in a↓, that is, equals a · b. As a
consequence, the validity of (Ax.2), which is formally a statement about −,
is immediate.

For the validity of (Ax.1), the term a − (b − a) is by definition a · b · ab
a

.

We calculate a · b · ab. Now b · ab is by definition less than or equal to b, so

a ·b · ab = a ·b ·b · ab. But b · ab is the complement of a ·b in b↓, so a ·b ·b · ab = 0.
Hence a− (b− a) = 0

a
= a.

For the validity of (Ax.3), we start from the term (a − b) − c. We may
assume b and c are in a↓ since a − b = a · ba = a · a · ba = a − (a · b) and

(a− b)− c = (a− b) · ca = (a− b) · a · ca = (a− b)− (a · c). We write simply

for the complement in a↓, and + for the join. Then (a− b)− c = b− c = b · c
b
.

In any Boolean algebra, the complement operation on the induced Boolean
algebra d↓ is given by e 7→ d · e. So as b is an element of the Boolean algebra

a↓, the complement on b
↓

is given by d 7→ b · d. Hence b · c
b

= b · (b+ c) = b · c.
It is now clear, by commutativity of · and symmetry, that this is equal to
(a− c)− b.

3. The algebra of domains
Throughout this section, let A be a restriction semilattice. Although we do

not have the domain operation in our signature, the signature is expressive
enough that it can express the ‘domain inclusion’ relation. In this section, we
will begin to investigate this implicit domain information.

Definition 3.1. Define the relation �A on A by a �A b ⇐⇒ a ≤ bB a.
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We often drop the subscript A. Notice that, by (4), we have a � b if and
only if a = bB a. When A is an algebra of partial functions it is not hard to
see that, for every f, g ∈ A, we have f � g exactly when dom(f) ⊆ dom(g).

Lemma 3.2. The following statements hold:

(a) � is a preorder on A that contains ≤;
(b) if A has a bottom element 0, then for every a ∈ A, if a � 0, then

a = 0.

Proof : The fact that � is reflexive, that is, that a = aB a for every a ∈ A,
follows from (Ax.5). To prove that � is transitive, let a, b, c ∈ A be such that
a � b and b � c. Then we have

cB a
a�b
= cB bB a

b�c
= bB a

a�b
= a,

and thus a � c. To see that � contains ≤ let a, b ∈ A be such that a ≤ b.
Since, by (8), the operation B is order preserving, we have a = aB a ≤ bB a,
and hence a � b. This proves (a). For (b), we observe that a � 0 means
a ≤ 0B a. But, by (Ax.5), we have 0B a = 0, and thus a = 0.

Observe that every homomorphism of {·,B}-algebras is �-preserving, since
� is defined by an equation.

We denote by ∼A the equivalence relation induced by �A, and for a given
a ∈ A we use [a] to denote the equivalence class of a. The canonical projection
A� A/∼A is denoted by πA. As with �, if A is clear from context, we denote
∼A and πA by ∼ and π, respectively. Given a subset S ⊆ A, we may use S/∼
to denote the forward image π[S] of S under π.

Lemma 3.3. The poset A/∼ of ∼-equivalence classes (with order inherited
from �) is a meet-semilattice with

[a] ∧ [b] = [aB b]. (12)

In particular, we have a↓/∼ = [a]↓.

Proof : The fact that [aB b] is a lower bound of [a], that is, that the inequality
aBb ≤ aBaBb holds, is a consequence of having aBa = a by (Ax.5). In turn,
[aB b] is a lower bound of [b] thanks to (4) and the fact that ≤ is contained
in �, by Lemma 3.2. Suppose that [c] � [a], [b], that is, c = a B c = b B c.
Then we may compute

aB bB c = aB c = c,
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hence [c] � [aB b] and we have (12).
For the second assertion, by Lemma 3.2 it is clear that a↓/∼ ⊆ [a]↓. Con-

versely, let [b] � [a]. By (12), we have [bB a] = [a] ∧ [b] = [b], and by (4) we
have bB a ≤ a. Thus [b] ∈ a↓/∼.

Lemma 3.4. The relations ≤ and � coincide on each downset a↓, for a ∈ A.
In particular, [a]↓ is order isomorphic to a↓. Explicitly, for every [b] � [a],
the element bB a is the unique element of a↓ that is ∼-equivalent to b.

Proof : By Lemma 3.2, we already know that � contains ≤. Conversely, let
x, y ∈ a↓ be such that x � y, that is, y B x = x. Using (Ax.5), we have
x = xB a and y = y B a. Therefore, x · y = (y B a) · (xB a), and by (Ax.4)
it follows that x · y = (y B x) B a. Using the hypothesis that x � y and
xB a = x, we may conclude that x ≤ y as intended.

Thus a↓ is order isomorphic to a↓/∼, which by the second part of Lemma 3.3
equals [a]↓. For the last assertion, we saw in the proof of Lemma 3.3 that
bB a is in a↓ and ∼-equivalent to b, thus we now know it is the unique such
element of a↓.

Corollary 3.5. If a ≤ b and b � a, then a = b. Hence, a < b implies a ≺ b,
where ≺ denotes the strict relation derived from � (that is, a ≺ b if and only
if a � b and a 6∼ b).

Proof : Pick two elements a, b validating a ≤ b and b � a. By Lemma 3.2, we
know a and b are ∼-equivalent, and moreover they are both in the downset b↓.
Thus, by Lemma 3.4, they must be equal.

For the last result of this section we will assume that A is a difference–
restriction algebra.

Corollary 3.6. The poset A/∼ admits a subtraction algebra structure, where
the operation − is given by

[a]− [b] = [a− (bB a)].

Proof : By Lemma 3.4 we know that, for every a ∈ A, the set [a]↓ is a
Boolean algebra isomorphic to a↓ via the assignment [b] 7→ b B a. So by
Proposition 2.7, A/∼ is a subtraction algebra with [a] − [b] equal to the
complement of [a] ∧ [b] = [bB a] in [a]↓ (recall Lemma 3.3). This is indeed
[a− (bB a)], as bB a ∈ a↓ by (4).
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4. Filters
We continue to let A denote a restriction semilattice. Since A is in particular

a semilattice, the notion of a filter of A is well defined.

Definition 4.1. A subset F of a meet-semilattice S is a filter if

(i) F is nonempty,
(ii) F is upward closed,

(iii) a, b ∈ F =⇒ a ∧ b ∈ F .

We use Filt(S) to denote the set of all filters of S.

We now concentrate on Filt(A). First observe that there is a natural
embedding of sets

ι : A ↪→ Filt(A), a 7→ a↑.

For this reason, we will often treat A as a subset of Filt(A). The operations ·
and B on A may naturally be extended to operations ·F and BF on Filt(A) as
follows. Given F,G ∈ Filt(A) we set

F ·F G := 〈F ·G〉Filt and F BF G := 〈F BG〉Filt,

where 〈 〉Filt denotes the well-defined operation ‘filter generated by. . . ’. We
observe now that ·F and BF are indeed extensions of · and B, respectively.
Indeed, while it is easily seen that a↑ ·F b↑ = (a · b)↑, the equality a↑ BF b

↑ =
(aB b)↑ follows from (8). Explicitly, ·F and BF are given as follows.

Lemma 4.2. For every F,G ∈ Filt(A), the following equalities hold:

F ·F G = (F ·G)↑ and F BF G = (F BG)↑.

Proof : It is clear that F ·F G and F BF G contain (F · G)↑ and (F B G)↑,
respectively. Thus it suffices to show that (F ·G)↑ and (F BG)↑ are filters.
Since F and G are filters with respect to the semilattice operation induced
by ·, it is a standard result that (F ·G)↑ is precisely the filter generated by
F ∪G. Let us see that (F BG)↑ is also a filter.

(i) As F and G are nonempty, F BG is nonempty, and therefore (F BG)↑

is nonempty too.
(ii) The set (F BG)↑ is upward closed by definition.
(iii) Suppose x, y ∈ (F B G)↑. So there are a, b ∈ F and c, d ∈ G with

x ≥ a B c and y ≥ b B d. As F and G are filters, we know a · b ∈ F
and c · d ∈ G. By (8), we find that (a · b)B (c · d) ≤ (aB c) · (bB d).
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It follows that the element (a · b)B (c · d) of F BG is smaller than or
equal to x · y. Hence x · y ∈ (F BG)↑.

As observed in the proof of Lemma 4.2, the set F ·FG is the filter generated
by F ∪G. Therefore ·F is a semilattice operation on Filt(A) whose induced
order ≤≤ is reverse inclusion, that is,

F ≤≤G ⇐⇒ F ⊇ G. (13)

In particular, Filt(A) has bottom element A, the full filter.
We will now see that (Filt(A), ·F,BF) is again a restriction semilattice, and

thus all the results of Section 3 (except Corollary 3.6) also hold for the filter
algebra of a restriction semilattice.

Proposition 4.3. The operations ·F and BF endow Filt(A) with a restriction
semilattice structure.

Proof : We already observed that (Filt(A), ·F) is a semilattice. It remains to
prove that (Ax.4) and (Ax.5) hold. We note that, if • is a binary operation
on A that is order preserving on both coordinates, then for every S1, S2 ⊆ A,
we have (S↑1 • S

↑
2)↑ = (S1 • S2)

↑. Both · and B are order preserving on both
coordinates: for · this is a simple consequence of the definition of ≤ in terms
of ·, and for B this follows from (8). Thus the noted equality holds for both ·
and B, and this observation will be freely used in the rest of the proof.

Let F,G,H ∈ Filt(A).

(Ax.4):: We need to show that (F BF H) ·F (G BF H) = (F BF G) BF H.
The inclusion ⊇ follows easily from Lemma 4.2 and (Ax.4) for the
algebra A. Conversely, let a ∈ F , b ∈ G and c, c′ ∈ H. Then,

(aB c) · (bB c′)
(8)

≥ (aB (c · c′)) · (bB (c · c′)) (Ax.4)
= (aB b)B (c · c′).

Since H is a filter, we have c · c′ ∈ H and thus, (a B c) · (b B c′) ∈
((F BG)BH)↑ = (F BF G)BF H.

(Ax.5):: The goal is to show that (F ·F G) BF F = F ·F G. Again, the
inclusion ⊇ is a straightforward consequence of Lemma 4.2 and (Ax.5)
for A. Conversely, given a, a′ ∈ F and b ∈ G, we have

(a · b)B a′
(8)

≥ ((a · a′) · b)B (a · a′) (Ax.5)
= (a · a′) · b.

Since F is a filter, we may then conclude that (a · b)B a′ belongs to
(F ·G)↑ = F ·F G, as required.
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We will denote by �� the relation �Filt(A) obtained by applying Defini-
tion 3.1 to the restriction semilattice (Filt(A), ·F,BF). Using Lemma 4.2,
equivalence (13), and the fact that every filter is upward closed, we have

F ��G ⇐⇒ F ⊇ GB F, (14)

for every F,G ∈ Filt(A). Note that, since �� =�Filt(A) is defined by a
{·F,BF}-equation, the relation �� on Filt(A) is an extension of the relation
� on A. By Lemma 3.2(a), the relation �� is a preorder on Filt(A) that
contains ⊇. We denote by ≈ the equivalence relation induced by ��, and by

ρ : Filt(A)→ Filt(A)/≈
the canonical projection. The ≈-equivalence class of a filter F ∈ Filt(A) is
denoted JF K. By Lemma 3.3, the poset Filt(A)/≈, with order inherited from
��, also admits a meet-semilattice structure, with the meet of two filters
F,G given by

JF K ∧ JGK = JF BF GK. (15)

We finish this section by showing that �� admits a description in terms of
the projection π : A� A/∼.

Proposition 4.4. For every filter F ⊆ A, the subset π[F ]↑ ⊆ A/∼ is a filter
of A/∼, and conversely, every filter of A/∼ is of the form π[F ]↑ for some
filter F ⊆ A. Moreover, for every F,G ∈ Filt(A), we have

F ��G ⇐⇒ π[G]↑ ⊆ π[F ]↑. (16)

In particular, the quotients

ρ : Filt(A)� Filt(A)/≈ and π[ ]↑ : Filt(A)� Filt(A/∼)

are isomorphic.

Proof : First we show that π[F ]↑ = (F/∼)↑ is a filter.

(i) As F is nonempty, F/∼, and therefore (F/∼)↑, is nonempty.
(ii) The set (F/∼)↑ is upward closed by definition.
(iii) Suppose [a], [b] ∈ (F/∼)↑, say [a0] � [a] and [b0] � [b] for a0, b0 ∈ F .

Then as F is a filter, we have a0 · b0 ∈ F . Using (6) and Lemma 3.3,
we have

[a0 · b0] � [a0 B b0] = [a0] ∧ [b0],

and thus [a0] ∧ [b0] belongs to (F/∼)↑, yielding that so does [a] ∧ [b],
as desired.
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Conversely, let G ⊆ A/∼ be a filter. Define the relation ≡ on π−1(G) by
a ≡ b ⇐⇒ ∃d ∈ π−1(G) : d B a = d B b. Then ≡ is clearly reflexive
and symmetric. It is also transitive, because given d1, d2 ∈ π−1(G) such
that d1 B a = d1 B b and d2 B b = d2 B c, we have d1 B d2 ∈ π−1(G) and
d1 B d2 B a = d1 B d2 B c (proven using the law d1 B d2 B x = d2 B d1 B x,
which is an evident consequence of (Ax.4)). Take any equivalence class E
of (π−1(G),≡)—as π−1(G) is nonempty, there exists at least one choice. We
claim that E is a filter. It is nonempty by definition. Let us see that it
is upward closed. Given a ∈ E and b ∈ A such that a ≤ b, since π−1(G)
is upward closed (as π is order preserving), we have that b ∈ π−1(G). To
conclude that b belongs to E, we only need to show that a and b are ≡-
equivalent. That is indeed the case because, successively using (Ax.5) and
the inequality a ≤ b (as well as idempotency and commutativity of ·), we may
compute

aB a = a = a · b = (a · b)B b = aB b.

Finally, if a, b ∈ E, then taking d ∈ π−1(G) such that dB a = dB b, we know
π(dB a) ∈ G, so dB a ∈ π−1(G). Then as dB (dB a) = dB a and a ∈ E, we
have dB a ∈ E. Then since dB a = dB b ≤ a, b, the upward-closed set E is
closed under meets. Hence E is a filter. Then, given [d] ∈ G, if we choose
some a ∈ E we have d B a ∈ E and π(d B a) � [d], so [d] ∈ π[E]↑. Hence
π[E]↑ = G.

Finally, we prove (16). First assume that F �� G. Take an arbitrary
a ∈ G. As F is nonempty, we can choose some b ∈ F . As F ��G, we have
aBb ∈ GBF ⊆ F . So [aBb] ∈ π[F ]. Since [aBb] � [a], we obtain [a] ∈ π[F ]↑.
As a ∈ G was arbitrary, we deduce π[G] ⊆ π[F ]↑. Thus π[G]↑ ⊆ π[F ]↑.

Conversely, suppose we have π[G]↑ ⊆ π[F ]↑, and pick any a ∈ G and b ∈ F ,
so that a B b ∈ G B F . Since [a] and [b] both belong to π[F ]↑, so does
[a] ∧ [b] = [aB b]. Hence there exists c ∈ F such that c � aB b. In turn, by
reflexivity of ��, the element cB b also belongs to F , and furthermore we
have c B b � c � a B b. Thus c B b � a B b in b↓, and by Lemma 3.4 this
implies cB b ≤ aB b, which yields aB b ∈ F as required.

5. Representability
In this section, we finally show that equations (Ax.1) – (Ax.5) axiomatise

the representable {−,B}-algebras, by describing a generic representation, by
partial functions, of any such algebra.
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Recall that a filter F ⊆ S of a meet semilattice S is maximal if it is
proper (not the whole of S) and is maximal amongst all proper filters of S,
with respect to inclusion. We use Filtmax(S) to denote the set of all maximal
filters of S.

Lemma 5.1. Let A be a restriction semilattice. Then for every maximal
filter µ ⊆ A and for every filter F ⊆ A, the following are equivalent:

(a) µBF F is maximal,
(b) µ�� F ,
(c) µ ≈ µBF F .

Proof : To show that µBFF is maximal precisely when µ��F , we first assume
µBF F (that is, (µB F )↑) is maximal. We want to show that (F B µ)↑ = µ.
Because, by (4), µ ⊆ (F B µ)↑, and because µ is maximal, it suffices to show
that the filter (F B µ)↑ is proper. Suppose not: then there is a ∈ F and
b ∈ µ such that aB b = 0. By Lemma 3.3, we obtain 0 ∼ aB b ∼ bB a. So
by Lemma 3.2(b), we have 0 = b B a ∈ µ B F , contradicting properness of
(µBF )↑. Conversely, we have µ��F if and only if F Bµ ⊆ µ, which implies
µ B F B µ ⊆ µ B µ. Since µ is closed under ·, by (Ax.5) and (8), we have
µBµ ⊆ µ. So if 0 belonged to µBF , it would also belong to µ, contradicting
the properness of µ. (The law 0 B a = 0 follows also from (Ax.5).) Thus
(µB F )↑ is proper, and since it contains µ, maximal. Finally, (b) and (c) are
equivalent because, by (15), we have

µ�� F ⇐⇒ JµK = JµK ∧ JF K ⇐⇒ JµK = JµBF F K ⇐⇒ µ ≈ µBF F.

Proposition 5.2. Let A be a restriction semilattice, and let θ be the map
given by

aθ := {(ξ, µ) ∈ Filtmax(A)× Filtmax(A) | ξ ≈ µ and a ∈ µ}.

Then θ is a homomorphism of restriction semilattices.

Proof : Since (maximal) filters containing a belong to the downset {F ∈
Filt(A) | F ≤≤ a↑} = {F ∈ Filt(A) | F ⊇ a↑} (recall (13)), the fact that
each aθ is a partial function on Filtmax(A) is an immediate consequence of
Lemma 3.4 applied to the restriction semilattice Filt(A).

For showing that θ represents both operations correctly, we pick two ≈-
equivalent maximal filters ξ, µ ∈ Filtmax(A).
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For · we have the following:

(ξ, µ) ∈ aθ ∩ bθ ⇐⇒ a ∈ µ and b ∈ µ
⇐⇒ a · b ∈ µ (because µ is a filter)

⇐⇒ (ξ, µ) ∈ (a · b)θ.

For B suppose (ξ, µ) ∈ (aB b)θ. Then aB b ∈ µ, so b ∈ µ, by (4). Hence
(ξ, µ) ∈ bθ. To show that (ξ, µ) ∈ aθ B bθ, it remains to show that ξ is in the
domain of the partial function aθ. That is, we must find a maximal filter ν
with a ∈ ν and ν ≈ ξ. We claim that (µ B {a})↑ (equal to µ BF a

↑) is the
required ν. We noted that b ∈ µ; hence bBa ∈ µB {a}, and hence (µB {a})↑
contains a, by (4). By Lemma 5.1, we have that (µB{a})↑ is a maximal filter
≈-equivalent to µ, hence to ξ, provided µ��a↑. That is, provided a↑Bµ ⊆ µ
(recall (14)). Since, µ is upward closed and, by (8), B is order-preserving in
the first coordinate, it suffices to show that a B c ∈ µ for every c ∈ µ. Fix
c ∈ µ. Since aB b ∈ µ and µ is closed under ·, we have (aB b) · c ∈ µ. Since

(aB b) · c (7)
= aB (b · c)

(8)

≤ aB c,

it follows that aB c ∈ µ as required.
Conversely, suppose (ξ, µ) ∈ aθ B bθ, that is, b ∈ µ and there exists a

maximal filter ν such that ν ≈ ξ and a ∈ ν. In particular, since ν ≈ ξ ≈ µ
and a ∈ ν, by Proposition 4.4, we have [a] ∈ (µ/∼)↑. On the other hand, since
µ is maximal, if it does not contain aB b, then it contains some c satisfying
(aB b) · c = 0, and since b, c ∈ µ, we have [b · c] ∈ µ/∼. Thus, the filter (µ/∼)↑

contains the element [a]∧ [b · c]. But using (12) and (7) in this order, we may
compute

[a] ∧ [b · c] = [aB (b · c)] = [(aB b) · c] = [0].

By Lemma 3.2(b), this contradicts properness of µ.

Notice that, as shown by the next example, the map θ of Proposition 5.2 is
not, in general, a representation of A, as it may fail to be injective.

Example 5.3. Let X = {x, y, z}, and for a subset S ⊆ X denote by IdS the
identity partial function on X with domain S. We let A be the {·,B}-algebra
of partial functions with universe {Id∅, Id{x}, Id{x,y}, Id{x,z}} (note that the
operations · and B coincide on A). Then the unique maximal filter of A
is {Id{x}, Id{x,y}, Id{x,z}}, and thus there is no maximal filter separating the
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elements Id{x,y} and Id{x,z}. In particular, the map from Proposition 5.2 is
not a representation of A by partial functions.

The rest of this section is devoted to showing that, if we replace ‘restriction
semilattice’ by ‘difference–restriction algebra’ in the statement of Proposi-
tion 5.2, the map θ becomes a representation of A by partial functions. For
that, we will use some properties of maximal filters of subtraction algebras,
and hence, of difference–restriction algebras.

We now let S be a subtraction algebra. We noted in Section 2 that for
every a ∈ S we have a Boolean algebra a↓. This will allow us to identify
maximal filters of S with those of a↓. We recall that maximal filters of
Boolean algebras are also known as ultrafilters, and they are characterised as
those filters F such that for every element b of the Boolean algebra concerned,
b ∈ F ⇐⇒ b /∈ F , where b denotes the complement of b.

Proposition 5.4. For every a ∈ S, there is a bijection between ultrafilters
of the Boolean algebra a↓ and maximal filters of S containing a.

More precisely: if µ ⊆ S is a maximal filter containing a, then µ ∩ a↓ is
an ultrafilter of a↓, conversely if ν is an ultrafilter of a↓, then ν↑ (with the
upward closure taken in S) is a maximal filter of S, and these constructions
are mutually inverse.

Proof : Suppose µ ⊆ S is a maximal filter, and let a ∈ µ. It is easy to verify
that µ ∩ a↓ is a proper filter of a↓. It is also easy to verify that any filter F
of a↓ yields a filter F ↑ of S and that (µ ∩ a↓)↑ ⊆ µ. Hence any filter F of a↓

properly extending µ ∩ a↓ satisfies µ ( F ↑ = S, and hence F = a↓ (since F
is upward closed in a↓). That is, µ ∩ a↓ is an ultrafilter of a↓.

Conversely, let ν ⊆ a↓ be an ultrafilter. It is straightforward to check that
ν↑ is a proper filter of S, so we only need to show it is maximal. Let F ⊆ S
be a filter properly containing ν↑ and let b belong to F but not ν↑. We know
both a · b and a− b are in a↓ and are complements in this Boolean algebra.
Hence either a · b or a− b is in the ultrafilter ν, and hence in ν↑. But ν↑ is an
upward-closed set that does not contain b, so it cannot contain a · b, and thus
we have a− b ∈ ν↑ ⊆ F . Using (1), this yields b · (a− b) = 0 ∈ F , so F = A.
Hence ν↑ is a maximal filter.

Finally, we check that the two constructions are inverse to each other. If
µ ⊆ S is a maximal filter and a ∈ µ, then we have an inclusion of maximal
filters (µ ∩ a↓)↑ ⊆ µ and thus an equality. On the other hand, if ν ⊆ a↓ is an
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ultrafilter, it is clear that ν = ν↑ ∩ a↓—this is the case for any upward-closed
subset ν of a↓.

Corollary 5.5. Let F ⊆ S be a filter. Then the following are equivalent.

(a) F is maximal.
(b) For all a ∈ F and b ∈ S, precisely one of a · b and a− b belongs to F .
(c) For some a ∈ F , for all b ∈ S, precisely one of a · b and a− b belongs

to F .

Proof : Since F is nonempty, it is clear that (b) implies (c), while (a) implying
(b) is an immediate consequence of Proposition 5.4. Suppose a ∈ F witnesses
the truth of (c). Then by this hypothesis, ν := F ∩ a↓ is an ultrafilter of
a↓. Therefore, by Proposition 5.4, ν↑ is a maximal filter of S, and clearly
ν↑ ⊆ F . Since F is proper (because, by hypothesis and that a− 0 ∈ F , we
know 0 = a · 0 does not belong to F ), we conclude that F = ν↑, and hence F
is maximal.

Corollary 5.6. Let F ⊆ S be a proper filter. Then there exists a maximal
filter µ with F ⊆ µ.

Proof : Take an element a ∈ F . It is straightforward to check that F ∩ a↓ is
a filter of the Boolean algebra a↓. Let ν be an ultrafilter of a↓ that extends
F ∩ a↓. Then, by Proposition 5.4, the set ν↑ is the required µ.

Proposition 5.7. Let A be a difference–restriction algebra, and let θ be the
map given by

aθ := {(ξ, µ) ∈ Filtmax(A)× Filtmax(A) | ξ ≈ µ and a ∈ µ}.
Then θ is a representation of the {−,B}-algebra A by partial functions.

Proof : By Proposition 5.2, we already known that θ is a map to partial
functions on Filtmax(A) and preserves the B operation. Let ξ, µ ∈ Filtmax(A)
be ≈-equivalent and a, b ∈ A. Then

(ξ, µ) ∈ aθ − bθ ⇐⇒ a ∈ µ and b /∈ µ
⇐⇒ a− b ∈ µ (by Corollary 5.5)

⇐⇒ (ξ, µ) ∈ (a− b)θ.
Therefore θ is a homomorphism of {−,B}-algebras.

Finally, we show that θ is injective. Since θ is a homomorphism, we have
aθ = bθ if and only if (a− b)θ = ∅ = (b− a)θ. In turn, by Corollary 5.6 this
holds exactly when a− b = 0 = b− a, which implies a = b.
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Theorem 5.8. The class of {−,B}-algebras representable by partial functions
is a variety, axiomatised by the finite set of equations (Ax.1) – (Ax.5).

Proof : As we saw in Section 2 all representable algebras validate the ax-
ioms. By Proposition 5.7, every {−,B}-algebra validating the axioms is
representable.

We finish this section with an alternative representation of any representable
{−,B}-algebra, using only injective partial functions. This representation is
built from the representation exhibited in Proposition 5.7.

Corollary 5.9. Let A be difference–restriction algebra, and let η be the map
given by

aη := {(JµK, µ) ∈ (Filtmax(A)/≈)× Filtmax(A) | a ∈ µ}.
Then η is a representation of A by injective partial functions.

Proof : This is a simple consequence of Proposition 5.7 together with the
observation that, for all maximal filters ξ, µ ⊆ A and a ∈ A, we have

(ξ, µ) ∈ aθ ⇐⇒ (JξK, µ) ∈ aη.

Corollary 5.10. The class of {−,B}-algebras representable by injective par-
tial functions is a variety, axiomatised by the finite set of equations (Ax.1) –
(Ax.5).

6. Complete representability
In this section we discuss complete representations of {−,B}-algebras

and investigate the axiomatisability of the class of completely representable
algebras.

The next two definitions may apply to any function from a poset P to
a poset Q. So in particular, these definitions apply to representations of
Boolean algebras as fields of sets and to representations of subtraction algebras
or difference–restriction algebras as algebras of partial functions, where a
representation of a Boolean algebra is viewed as an embedding into a full
powerset algebra P(X), and a representation of a subtraction algebra or
difference–restriction algebra is viewed as an embedding into the algebra of
all partial functions PF(X) on some set X. Since these are the only cases
we are concerned with in this section, and since existing meets/joins in both
P(X) and PF(X) are given by intersections/unions, we will represent meets
and joins in P by

∏
and

∑
respectively and meets and joins in Q by

⋂
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and
⋃

respectively, using subscripts if it is necessary to be more precise about
which poset we are in.

Definition 6.1. A function h : P → Q is meet complete if, for every
nonempty subset S of P, if

∏
S exists, then so does

⋂
h[S] and

h(
∏

S) =
⋂

h[S].

Definition 6.2. A function h : P → Q is join complete if, for every
subset S of P, if

∑
S exists, then so does

⋃
h[S] and

h(
∑

S) =
⋃

h[S].

Note that S is required to be nonempty in Definition 6.1, but not in
Definition 6.2. Despite the asymmetry, this is the natural choice if we wish
to formulate a definition of meet complete for partial function algebras.
Since the set PF(X) has a top element with respect to inclusion if and
only if X is a singleton, requiring preservation of tops would prevent any
(cardinality greater than 2) partial function algebra with a top from being
meet completely representable, including all finite ones and all completely
representable Boolean algebras (interpreted as {B,−}-algebras of identity
functions). Thus this would obstruct both meet complete representability
being an infinitary specialisation of representability and partial function
algebras being generalisations of set algebras.

On the other hand, if a representation of a Boolean algebra as a field of sets
preserves the existing nonempty meets, then it also preserves the top element
(in a Boolean algebra, we have 1 = a ∨ ¬a for every a, and both ∨ and ¬ are
preserved by Boolean algebra homomorphisms). Thus for any algebra with a
Boolean reduct our definition is not in conflict with the more usual definition.

The clearest way to understand the underlying cause of the join–meet
asymmetry is to realise that, for our purposes, the concepts that join and meet
are providing formalisations of are ‘abstract union’ and ‘abstract intersection’.
Since the empty intersection does not (in an absolute sense) exist, the meet
of the empty set will never have relevance for us.

A Boolean algebra can be represented using a meet-complete representation
if and only if it can be represented using a join-complete representation, for
the simple reason that any meet-complete homomorphism is join-complete,
and vice versa. So in this case we may simply describe such a homomorphism
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using the adjective complete.‡ We will now see that the same remarks apply
to subtraction algebras, and hence to difference–restriction algebras.

We now start to follow a part of [29] very closely—the end of Section 2 and
beginning of Section 3 there. The upcoming several proofs (up to Lemma 6.13)
are trivial adaptations of the proofs found in that paper, but it is worth
including them here, since they are all rather short. Note that although, in
view of the subject of this paper, we choose to state some of these results
in terms of representations of {−,B}-algebras by partial functions, the B
operation plays no role—the results hold more generally for representations
of {−}-algebras by sets.

Lemma 6.3. Let A and B be subtraction algebras and h : A→ B a homo-
morphism. For each a ∈ A, let ha : a↓ → h(a)↓ denote the homomorphism of
Boolean algebras induced by h (recall Corollary 2.6). If h is meet complete or
join complete, then ha is complete.

Proof : We will show that if h is meet (respectively, join) complete then
each ha is meet (respectively, join) complete. Since meet complete and join
complete are equivalent notions for Boolean algebras, it follows in both cases
that ha is complete, as required.

Suppose h is meet complete. If S is a nonempty subset of a↓, then all
lower bounds for S in A are also in a↓. Hence if

∏
a↓ S exists then it equals∏

A S, and so
⋂

B h[S] exists and equals h(
∏

a↓ S). This equality also tells
us that

⋂
B h[S] ∈ h(a)↓. Hence h(

∏
a↓ S) =

⋂
B h[S] =

⋂
h(a)↓ h[S]. So ha is

complete.
Suppose that h is join complete, S ⊆ a↓, and

∑
a↓ S exists. If c ∈ A and c is

an upper bound for S, then c ≥ c · a ≥
∑

a↓ S. Hence
∑

a↓ S =
∑

A S, giving
the existence of

⋃
B h[S] and the equality h(

∑
a↓ S) = h(

∑
A S) =

⋃
B h[S].

This equality also tells us that
⋃

B h[S] ∈ h(a)↓. Hence h(
∑

a↓ S) =
⋃

B h[S] =⋃
h(a)↓ h[S]. So ha is complete.

Corollary 6.4. Let A be an algebra of the signature {−,B}. Any represen-
tation θ of A by partial functions restricts to a representation of a↓ as a field
of sets over θ(a), which is complete if θ is meet complete or join complete.

‡In the case of representations of Boolean algebras as fields of sets, other adjectives have been
used. Dana Scott suggested strong, which was subsequently used by Roger Lyndon; John Harding
uses regular.
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Corollary 6.5. Let A and B be subtraction algebras and h : A → B be a
homomorphism. If h is meet complete, then it is join complete.

Proof : Suppose that h is meet complete. Let S be a subset of A and suppose
that

∑
A S exists. Let a =

∑
A S. Then ha is complete and so

h(
∑
A

S) = h(
∑
a↓

S) =
⋃
h(a)↓

h[S] =
⋃
B

h[S].

Corollary 6.6. Let A and B be subtraction algebras and h : A → B be a
homomorphism. If h is join complete, then it is meet complete.

Proof : Suppose that h is join complete. Let S be a nonempty subset of A
and suppose that

∏
A S exists. As S is nonempty, we can find s ∈ S. We let

S · s denote the set {s′ · s | s′ ∈ S}. Then hs is complete and

h(
∏
A

S) = h(
∏
A

(S·s)) = h(
∏
s↓

(S·s)) =
⋂
h(s)↓

h[S·s] =
⋂
B

h[S·s] =
⋂
B

h[S].

We have established that there is but one notion of complete homomorphism
for representable {−,B}-algebras. Hence there is but one notion of com-
plete representation for {−,B}-algebras. If a {−,B}-algebra has a complete
representation we say it is completely representable.

We now move on and consider the property of being atomic, both for algebras
and for representations. We will see that the completely representable algebras
are precisely the algebras that are representable and atomic.

Definition 6.7. Let P be a poset with a least element, 0. An atom of P is
a minimal nonzero element of P. We write At(P) for the set of atoms of P.
We say that P is atomic if every nonzero element is greater than or equal to
an atom.

We note that representations of {−,B}-algebras necessarily represent the
partial order by set inclusion: this may be seen as a consequence of Corol-
lary 6.4. The following definition is meaningful for any notion of representation
where this is the case.

Definition 6.8. Let P be a poset with a least element and let θ be a represen-
tation of P. Then θ is atomic if x ∈ θ(a) for some a ∈ P implies x ∈ θ(b)
for some atom b of P.

We will need the following theorem.
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Theorem 6.9 (Hirsch and Hodkinson [13, Theorem 5]). Let B be a Boolean
algebra. A representation of B as a field of sets is atomic if and only if it is
complete.

Proposition 6.10. Let A be an algebra of the signature {−,B} and θ be a
representation of A by partial functions. Then θ is atomic if and only if it is
complete.

Proof : Suppose that θ is atomic, S is a nonempty subset of A and
∏
S exists.

It is always true that θ(
∏
S) ⊆

⋂
θ[S], regardless of whether or not θ is

atomic. For the reverse inclusion, we have

(x, y) ∈
⋂
θ[S]

=⇒ (x, y) ∈ θ(s) for all s ∈ S
=⇒ (x, y) ∈ θ(a) for some atom a such that (∀s ∈ S) a ≤ s
=⇒ (x, y) ∈ θ(a) for some atom a such that a ≤

∏
S

=⇒ (x, y) ∈ θ(
∏
S).

The third line follows from the second because, choosing an s0 ∈ S we have
(x, y) ∈ θ(s0), hence some atom a with (x, y) ∈ θ(a), and thus (x, y) ∈ θ(a · s)
for any s ∈ S. So for all s ∈ S, the element a · s is nonzero, so equals a, by
atomicity of a, giving a ≤ s.

Conversely, suppose that θ is complete. Let (x, y) be a pair contained in
θ(a) for some a ∈ A. By Corollary 6.4, the map θ restricts to a complete
representation of a↓ as a field of sets. Hence, by Theorem 6.9, (x, y) ∈ θ(b)
for some atom b of the Boolean algebra a↓. Since an atom of a↓ is clearly an
atom of A, the representation θ is atomic.

Corollary 6.11. Let A be an algebra of the signature {−,B}. If A is com-
pletely representable by partial functions then A is atomic.

Proof : Let a be a nonzero element of A. Let θ be any complete representation
of A. Then ∅ = θ(0) 6= θ(a), so there exists (x, y) ∈ θ(a). By Proposition 6.10,
the map θ is atomic, so (x, y) ∈ θ(b) for some atom b in A. Then (x, y) ∈ θ(a·b),
so a · b > 0, from which we may conclude that the atom b satisfies b ≤ a.

For Boolean algebras, the algebra being atomic is necessary and sufficient
for complete representability [2]. On the other hand, there exist scenarios in
which being atomic is necessary but not sufficient for complete representability,
for example for the signature of composition, intersection, and antidomain,
for representation by partial functions ([29, Proposition 4.6]). Do we have
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sufficiency in our case? The answer is yes. But before we prove this we need
a couple more lemmas.

Definition 6.12. A poset P is atomistic if its atoms are join dense in P.
That is to say that every element of P is the join of the atoms less than or
equal to it.

Clearly any atomistic poset is atomic. For subtraction algebras, and in
particular for {−,B}-algebras representable by partial functions, the converse
is also true.

Lemma 6.13. Let A be a subtraction algebra. If A is atomic, then it is
atomistic.

Proof : Suppose A is atomic and let a ∈ A. We know the algebra a↓ is a
Boolean algebra and clearly it is atomic. It is well-known that atomic Boolean
algebras are atomistic. So we have

a =
∑
a↓

At(a↓) =
∑
A

At(a↓) =
∑
A

{x ∈ At(A) | x ≤ a}.

The second equality holds because any upper bound c ∈ A for At(a↓) is above
an upper bound in a↓, for example c · a. Hence the least upper bound in a↓ is
least in A also.

The last lemma concerns properties of the atoms of representable {−,B}-
algebras.

Lemma 6.14. Let A be a representable algebra of the signature {−,B}. Then

(a) if x ∈ At(A), then [x] ∈ At(A/∼);
(b) for every a ∈ A and x ∈ At(A), either xB a = 0 or xB a is an atom.

And moreover, xB a is an atom if and only if x � a (and if and only
if x ∼ xB a).

Proof :

(a) Let a ∈ A be such that [a] ≺ [x]. Then aB x < x. (We cannot have
aB x = x, else, by Lemma 3.3, [x] � [a].) But then as x is an atom,
aB x = 0. Hence [a] = [aB x] = [0]. As [a] was an arbitrary element
below [x], we conclude that [x] is an atom.

(b) Suppose x B a 6= 0 and let b ∈ A be such that 0 ≤ b < x B a. By
Corollary 3.5, we have 0 � b ≺ xB a and, by Lemma 3.3, xB a � x.
But by part (a), [x] is an atom, and thus, 0 ∼ b and xB a ∼ x. This
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yields b = 0, and so, xBa is an atom, and x � a. Finally, by Lemma 3.3
we have x � a if and only if x ∼ xB a.

Proposition 6.15. Let A be an atomic difference–restriction algebra. Let θ
be the map given by

aθ := {(x, y) ∈ At(A)× At(A) | x ∼ y and y ≤ a}.
Then θ is a complete representation of A by partial functions.

Proof : First we show that the relation aθ is a partial function. That is, we
argue that if x ∼ y ∼ z for atoms x, y, z, with y, z ≤ a, then y = z. But this
is a consequence of Lemma 3.4.

Next we show that θ represents each operation correctly. We pick a, b ∈ A
and two ∼-equivalent atoms x, y ∈ At(A) .

Showing that (a− b)θ = aθ − bθ amounts to showing that

y ≤ a− b ⇐⇒ (y ≤ a and y 6≤ b).

By (3), if y ≤ a − b then y ≤ a. Suppose that we also have y ≤ b. Then,
y ≤ b · (a− b) which, by (1), yields y = 0, a contradiction. This shows the
forward implication. Conversely, since y ∈ At(a↓) and a − b and a · b are
complements in the Boolean algebra a↓, it follows that y ≤ a− b (because we
are assuming y 6≤ b). Thus, we conclude that θ represents − correctly.

For B, first suppose that (x, y) ∈ (aB b)θ. By (4), we have (x, y) ∈ bθ. We
show that (x, y B a) ∈ aθ, and thus x ∈ dom(aθ), yielding (x, y) ∈ aθ B bθ.
By (4), we have y B a ≤ a. Thus we only need to show that x ∼ y B a. By
Lemma 3.3, we have aB b � a, and since, by Lemma 3.2, � includes ≤, we
have y � aB b. Thus, y � a and, again by Lemma 3.3, we have y ∼ y B a.
Since x ∼ y by hypothesis, we conclude (x, y B a) ∈ aθ as claimed.

Conversely, suppose (x, y) ∈ aθ B bθ, that is, x ∈ dom(aθ) and y ≤ b. Since
y is an atom of the Boolean algebra b↓, we have y ≤ aB b or y ≤ b− (aB b).
We suppose that y ≤ b− (aB b) and we let z ∈ At(a↓) be ∼-equivalent to x.
Using that ≤ is included in �, we have y � b − (a B b) and z � a. Since
x ∼ y ∼ z, it follows by Lemma 3.3 that x � aB (b− (aB b)). Now, using
Lemma 3.3 and Corollary 3.6 in this order, we may compute:

[aB (b− (aB b))] = [a] ∧ [b− (aB b)]] = [a] ∧ ([b]− [a]).

Again by Corollary 3.6, we known that A/∼ is a subtraction algebra. Thus,
by (1), we have that [a]∧ ([b]− [a]) = [0], and by Lemma 3.2(b) it follows that
x = 0, which is a contradiction. Therefore, we have y ≤ (aB b) as intended.
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Next, we note that θ is injective. If aθ = bθ then a and b are greater than
or equal to the same set of atoms. Since A is atomistic (Lemma 6.13), a and
b are each the supremum of this set of atoms, hence are equal.

Finally, we show that θ is complete. By Proposition 6.10, we know θ being
complete is equivalent to it being atomic, and θ is clearly atomic: for every
a ∈ A and (x, y) ∈ aθ, y is an atom of A such that (x, y) ∈ yθ.

Theorem 6.16. The class of {−,B}-algebras that are completely repre-
sentable by partial functions is axiomatised by the finite set of equations
(Ax.1) – (Ax.5) together with the ∀∃∀ first-order formula stating that the
algebra is atomic.

Proof : By definition, the completely representable algebras are representable,
and by Corollary 6.11 they are atomic. Proposition 6.15 tells us the converse—
that any representable and atomic algebra is completely representable. Hence
the completely representable algebras are precisely those that are both repre-
sentable and atomic. By Theorem 5.8, equations (Ax.1) – (Ax.5) axiomatise
representability. So with the addition of the formula stating the algebra
is atomic, an axiomatisation of the completely representable algebras is
obtained.

As before, we can use the representation of Proposition 6.15 to get a
complete representation by injective partial functions.

Corollary 6.17. Let A be an atomic difference–restriction algebra. Let η be
the map given by

aη := {([x], x) ∈ (At(A)/∼)× At(A) | x ≤ a}.

Then η is a complete representation of A by injective partial functions.

Proof : This follows from Proposition 6.15 together with the observation that
for every x, y ∈ At(A) and a ∈ A, we have

([y], x) ∈ aη ⇐⇒ (y, x) ∈ aθ.

Corollary 6.18. The class of {−,B}-algebras that are completely repre-
sentable by injective partial functions is axiomatised by the finite set of
equations (Ax.1) – (Ax.5) together with the ∀∃∀ first-order formula stating
that the algebra is atomic.
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The axiomatisation of Theorem 6.16 and Corollary 6.18 uses the minimum
possible degree of quantifier alternation, for it is not possible to axiomatise
these classes using any ∃∀∃ first-order theory, finite or otherwise.

Proposition 6.19. The class of {−,B}-algebras that are completely repre-
sentable by partial functions and the class of {−,B}-algebras that are com-
pletely representable by injective partial functions are not axiomatisable by
any ∃∀∃ first-order theory.

Proof : Any Boolean algebra B = (B, 0, 1,∧, ) can interpret an algebra
B{−,B} of the signature {−,B} by setting a− b := a ∧ b and aB b := a ∧ b,
and it is easy to check that B equipped with these two operations satisfies
axioms (Ax.1)–(Ax.5). Moreover, since the derived operation · is given by

a · b (I)
= a− (a− b) = a ∧ (a ∧ b) = a ∧ (a ∨ b) = a ∧ b,

the orderings on B and B{−,B} coincide, and in particular B{−,B} is atomic
if and only if B is. On the other hand, there exist Boolean algebras B and
B′ with B atomic and B′ not, such that B and B′ satisfy the same ∃∀∃
first-order theory—see [29, Proposition 3.7] for a proof of this fact. Hence
B{−,B} and B′{−,B} also have the same ∃∀∃ first-order theory as one another,

since their basic operations are defined by terms in the Boolean signature.
Thus, by Theorem 6.16/Corollary 6.18, B{−,B} and B′{−,B} witness that any

∃∀∃ first-order theory cannot have all and only the completely representable
algebras as its models.
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