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DIFFERENCE–RESTRICTION ALGEBRAS OF PARTIAL
FUNCTIONS: DISCRETE DUALITY AND COMPLETION

CÉLIA BORLIDO AND BRETT MCLEAN

Abstract: We exhibit an adjunction between a category of abstract algebras of
partial functions and a category of set quotients. The algebras are those atomic
algebras representable as a collection of partial functions closed under relative
complement and domain restriction; the morphisms are the complete homomorphisms.
This generalises the discrete adjunction between the atomic Boolean algebras and the
category of sets. We define the compatible completion of a representable algebra, and
show that the monad induced by our adjunction yields the compatible completion of
any atomic representable algebra. As a corollary, the adjunction restricts to a duality
on the compatibly complete atomic representable algebras, generalising the discrete
duality between complete atomic Boolean algebras and sets. We then extend these
adjunction, duality, and completion results to representable algebras equipped with
arbitrary additional completely additive and compatibility preserving operators.

Keywords: Partial function, complete representation, duality, compatible comple-
tion, completely additive operators.

1. Introduction
The study of algebras of partial functions is an active area of research that

investigates collections of partial functions and their interrelationships from an
algebraic perspective. The partial functions are treated as abstract elements
that may be combined algebraically using various natural operations such as
composition, domain restriction, ‘override’, or ‘update’. In pure mathematics,
algebras of partial functions arise naturally as structures such as inverse
semigroups [41], pseudogroups [31], and skew lattices [32]. In theoretical
computer science, they appear in the theories of finite state transducers [10],
computable functions [21], deterministic propositional dynamic logics [20],
and separation logic [18]. Many different selections of operations have been
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Célia Borlido was partially supported by the Centre for Mathematics of the University of Coimbra

- UIDB/00324/2020, funded by the Portuguese Government through FCT/MCTES.
Brett McLean was partially supported by the European Research Council (ERC) under the

European Union’s Horizon 2020 research and innovation program (grant agreement No. 670624)
and partially supported by the Research Foundation – Flanders (FWO) under the SNSF–FWO
Lead Agency Grant 200021L 196176 (SNSF)/G0E2121N (FWO).

1



2 C. BORLIDO AND B. MCLEAN

considered, each leading to a different class/category of abstract algebras
[38, 11, 40, 39, 6, 19, 20, 17, 3, 22]. (See [34, §3.2] for a guide to this
literature.) Recently, dualities for some of these categories have started to
appear [28, 29, 27, 30, 31, 35, 2, 26], opening the way for these algebras to be
studied via their duals, as has been done successfully for the algebraisations
of classical and many non-classical propositional logics [14, 9, 7, 13].

In [5], we initiated a project to develop a general and modular framework
for producing and understanding dualities for such categories. For this we are
inspired strongly by Jónsson and Tarski’s theory of Boolean algebras with
operators [24] and the duality between them and descriptive general frames
[4, Chapter 5: Algebras and General Frames]. Our central thesis is that in
our case the appropriate base class—the analogue of Boolean algebras—must
be more than just a class of ordered structures but must record additional
compatibility data. This reflects the fact that the union of two partial functions
is not always a function (and this determination can not be made solely from
the inclusion/extension ordering).

In [5], we investigated algebras of partial functions for a signature that
we believe provides the necessary order and compatibility structure. The
signature has two operations, both binary: the standard set-theoretic relative
complement operation and a domain restriction operation. We gave and
proved a finite equational axiomatisation for the class of isomorphs of such
algebras of partial functions [5, Theorem 5.7].

In the present paper we continue our project with an investigation of ‘dis-
crete’ duality—a term used for dualities requiring no topological information
on the duals. A secondary component of our thesis relates specifically to such
dualities. Recall the prototypical discrete duality between complete atomic
Boolean algebras and sets, and that this extends to a duality between com-
plete atomic Boolean algebras with completely additive operators and Kripke
frames. A first observation is that these dualities are just specialisations of
(contravariant) adjunctions, where we drop the completeness requirement
on the algebra side. A second observation is that for Boolean algebras, the
‘atomic’ condition that remains is an intrinsic/first-order characterisation
of the more extrinsic/semantic condition of being completely representable
(arbitrary cardinality joins/meets become unions/intersections, respectively).
Hence we posit the general principle that the correct class to use for a discrete
adjunction is always the class of completely representable algebras.
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Following this reasoning, in [5] we identified the completely representable
algebras of our class. Just as for Boolean algebras, they are exactly the
atomic ones [5, Theorem 6.16]. The main results of the present paper are the
elaboration of a discrete adjunction between this class of atomic representable
algebras and a certain class of set quotients (Theorem 3.9) and the extension
of that theorem to algebras with additional operators (Theorem 5.6). We also
show that, as for Boolean algebras, the monad induced by the adjunction gives
an appropriate form of completion (the compatible completion) of algebras
(Theorem 4.12/Corollary 5.14) and that the adjunction restricts to a duality
on the compatibly complete algebras (Corollary 4.13/Corollary 5.15).

Structure of paper. Section 2 contains preliminaries, including formal defini-
tions of the classes of representable and of completely representable algebras.
We recall the axiomatisations of these two classes as presented in [5].

In Section 3, we present and prove our central result: the adjunction
between the atomic representable algebras and a category of set quotients
(Theorem 3.9).

Section 4 concerns completion. We define the notions of compatibly complete
(Definition 4.3) and of a compatible completion (Definition 4.7), and we prove
that compatible completions are unique up to isomorphism (Proposition 4.11).
We prove that the monad induced by our adjunction yields the compatible
completion on atomic representable algebras (Theorem 4.12), and we conclude
that the adjunction restricts to a duality on the compatibly complete atomic
representable algebras (Corollary 4.13).

Section 5 concerns additional operations. We define the notion of a com-
patibility preserving completely additive operator (Definition 5.1) and extend
the adjunction (Theorem 5.6), completion (Corollary 5.14), and duality
(Corollary 5.15) results of the previous two sections to representable algebras
equipped with such operators.

2. Algebras of functions
Given an algebra A, when we write a ∈ A or say that a is an element of A,

we mean that a is an element of the domain of A. Similarly for the notation
S ⊆ A or saying that S is a subset of A. We follow the convention that
algebras are always nonempty. If S is a subset of the domain of a map θ then
θ[S] denotes the set {θ(s) | s ∈ S}. We use

∑
and

∏
respectively as our

default notations for joins (suprema) and meets (infima).
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We begin by making precise what is meant by partial functions and algebras
of partial functions.

Definition 2.1. Let X and Y be sets. A partial function from X to Y is
a subset f of X × Y validating

(x, y) ∈ f and (x, z) ∈ f =⇒ y = z.

If X = Y then f is called simply a partial function on X. For a partial
function f ⊆ X×Y , if (x, y) belongs to f then we may write y = f(x). Given
such a partial function, its domain is the set

dom(f) := {x ∈ X | ∃ y ∈ Y : (x, y) ∈ f}.

For any binary relation R ⊆ X × Y , we write R−1 for the relation {(y, x) |
(x, y) ∈ R}. Notice that a partial function f ⊆ X × Y is injective if and only
if f−1 is also a partial function. Finally, for any binary relations R ⊆ X × Y
and S ⊆ Y × Z, we denote by S ◦ R (or simply SR) the composition of R
and S:

S ◦R := {(x, z) ∈ X × Z | ∃y ∈ Y : (x, y) ∈ R and (y, z) ∈ S}.

When R and S are partial functions, this is their usual composition.

Definition 2.2. An algebra of partial functions of the signature {−,B}
is a universal algebra A = (A,−,B) where the elements of the universe A are
partial functions from some (common) set X to some (common) set Y and
the interpretations of the symbols are given as follows:

• The binary operation − is relative complement:

f − g := {(x, y) ∈ X × Y | (x, y) ∈ f and (x, y) 6∈ g}.

• The binary operation B is domain restriction.∗ It is the restriction
of the second argument to the domain of the first; that is:

f B g := {(x, y) ∈ X × Y | x ∈ dom(f) and (x, y) ∈ g}.

Note that in algebras of partial functions of the signature {−,B}, the set-
theoretic intersection of two elements f and g can be expressed as f − (f − g).
We use the symbol · for this derived operation.

∗This operation has historically been called restrictive multiplication, where multiplication is
the historical term for composition. But we do not wish to emphasise this operation as a form of
composition.
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We also observe that, without loss of generality, we may assume X = Y (a
common stipulation for algebras of partial functions). Indeed, if A is a {−,B}-
algebra of partial functions from X to Y , then it is also a {−,B}-algebra
of partial functions from X ∪ Y to X ∪ Y . In this case, this non-uniquely-
determined single set is called ‘the’ base. However, certain properties may
not be preserved by changing the base. For instance, while a partial function
is injective as a function on X if and only if it is injective as a function on X ′,
this is not the case for surjectivity.

Definition 2.3. An algebra A of the signature {−,B} is representable (by
partial functions) if it is isomorphic to an algebra of partial functions. An
isomorphism from A to an algebra of partial functions is a representation
of A.

Just as for algebras of partial functions, for any {−,B}-algebra A, we will
consider the derived operation · defined by

a · b := a− (a− b).
In [5] it was shown that the class of {−,B}-algebras that is representable by
partial functions is axiomatised by the following set of equations.

(Ax.1) a− (b− a) = a
(Ax.2) a · b = b · a
(Ax.3) (a− b)− c = (a− c)− b
(Ax.4) (aB c) · (bB c) = (aB b)B c
(Ax.5) (a · b)B a = a · b

Theorem 2.4 ([5, Theorem 5.7]). The class of {−,B}-algebras representable
by partial functions is a variety, axiomatised by the finite set of equations
(Ax.1) – (Ax.5).

Algebras satisfying axioms (Ax.1) – (Ax.3) are called subtraction alge-
bras and it is known that in those algebras the · operation gives a semilattice
structure (which we view as a meet-semilattice), and the downsets of the form
a↓ := {x | x ≤ a} are Boolean algebras [39]. In particular, the same holds for
representable {−,B}-algebras.

It has long been known that in a representable algebra the operation B is
associative (see, for example, [43]). Moreover, the inequality aB b ≤ b is valid
(an algebraic proof appears in [5]) and will be often used without further
mention.
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The next two definitions apply to any function between posets P and Q. So
in particular, these definitions apply to homomorphisms of Boolean algebras
and homomorphisms of representable {−,B}-algebras. We denote meets and
joins in P by

∏
and

∑
respectively, and meets and joins in Q by

⋂
and

⋃
respectively.

Definition 2.5. A function h : P → Q is meet complete if, for every
nonempty subset S of P, if

∏
S exists, then so does

⋂
h[S] and

h(
∏

S) =
⋂

h[S].

Definition 2.6. A function h : P → Q is join complete if, for every
subset S of P, if

∑
S exists, then so does

⋃
h[S] and

h(
∑

S) =
⋃

h[S].

Note that S is required to be nonempty in Definition 2.5, but not in
Definition 2.6. For homomorphisms of Boolean algebras, being meet complete
is equivalent to being join complete, and in [5] we showed that the same
is true for homomorphisms of representable {−,B}-algebras (Corollary 6.5
and Corollary 6.6 there). So in these cases we may simply describe such a
homomorphism using the adjective complete.†

Definition 2.7. A complete representation of an algebra of the signature
{−,B} is a representation θ, with base X say, such that θ forms a complete
homomorphism when viewed as an embedding into the algebra of all partial
functions on X. An algebra is completely representable if it has a complete
representation.

Complete representations have been studied previously in the context of
various different forms of representability: by sets [8], by binary or higher-order
relations [15, 16], or by partial functions [33].

Definition 2.8. Let P be a poset with a least element, 0. An atom of P is
a minimal nonzero element of P. We write At(P) for the set of atoms of P.
We say that P is atomic if every nonzero element is greater than or equal to
an atom.

In [5], it was shown that a {−,B}-algebra is completely representable if
and only if it is both representable and atomic.

†In the case of representations of Boolean algebras as fields of sets, the adjectives strong and
regular have also been used.
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Theorem 2.9 ([5, Theorem 6.16]). The class of {−,B}-algebras that are
completely representable by partial functions is axiomatised by the finite set
of equations (Ax.1) – (Ax.5) together with the ∀∃∀ first-order formula stating
that the algebra is atomic.

This theorem justifies our interest in the atomic representable algebras,
and also indicates that complete homomorphism is the appropriate notion of
morphism between these algebras.

This is a good place to define two further terms that we will use later.

Definition 2.10. Let P be a poset. A subset S of P is join dense (in P) if
each p ∈ P is the join

∑
T of some subset T of S. The poset P is atomistic

if At(P) is join dense in P.

Of course, atomic implies atomistic, for any poset. For representable {−,B}-
algebras, the converse is also true [5, Lemma 6.13], generalising the same
statement for Boolean algebras.

3. Discrete adjunction for atomic representable algebras
In this section we exhibit a contravariant adjunction between the atomic

representable algebras, AtRepAlg, and a certain category Setq whose objects
are quotients of sets.

We use � to indicate a (total) surjective function between sets, and we
use ↪→ to indicate an embedding of algebras. The notation ⇀ indicates a
partial function. We may at times use a bracket-free notation for applications
of functors to morphisms, for example, Fh in place of F (h).

Before giving the claimed adjunction, we define the two categories involved.

Definition 3.1. We denote by AtRepAlg the category whose objects are
atomic {−,B}-algebras representable by partial functions, and whose mor-
phisms are complete homomorphisms of {−,B}-algebras.

Definition 3.2. We denote by Setq the category whose objects are set quo-
tients (that is, surjective functions between sets) π : X � X0, and where a
morphism from π : X � X0 to ρ : Y � Y0 is a partial function ϕ : X ⇀ Y
satisfying the following conditions:

(Q.1) ϕ preserves equivalence: if both ϕ(x) and ϕ(x′) are defined, then

π(x) = π(x′) =⇒ ρ(ϕ(x)) = ρ(ϕ(x′)).
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In particular, ϕ induces a partial function ϕ̃ : X0 ⇀ Y0 given by

ϕ̃ := {(π(x), ρ(ϕ(x))) | x ∈ dom(ϕ)}.
(Q.2) ϕ is fibrewise injective: for every (x0, y0) ∈ ϕ̃, the restriction and

co-restriction of ϕ induces an injective partial map

ϕ(x0,y0) : π−1(x0) ⇀ ρ−1(y0),

(Q.3) ϕ is fibrewise surjective: for every (x0, y0) ∈ ϕ̃, the induced partial
map ϕ(x0,y0) is surjective (that is, the image of ϕ(x0,y0) is the whole of

ρ−1(y0)).‡

In what follows, we define two functors F : AtRepAlg → Setq
op and

G : Setq
op → AtRepAlg, which we then show to form an adjunction (Theo-

rem 3.9).
Before defining F , we first recall some notation from [5].

Definition 3.3. Given a representable {−,B}-algebra A, the relation �A on
A is defined by

a �A b ⇐⇒ a ≤ bB a

and is a preorder. We denote by ∼A the equivalence relation induced by �A,
and for a given a ∈ A we use [a] to denote the equivalence class of a.

In the case that A is an actual {−,B}-algebra of partial functions, the
relation �A is the domain inclusion relation f �A g ⇐⇒ dom(f) ⊆ dom(g).§

The next result summarises some facts about �A that were proved in [5]
and will be used later.

Proposition 3.4. The following statements hold for a representable {−,B}-
algebra A.

(a) The relation ≤ is contained in �A, and [0] = {0}.
(b) The poset A/∼A is a meet-semilattice (actually a subtraction algebra)

with meet given by [a] ∧ [b] = [aB b].
(c) The relations ≤ and �A coincide in each downset a↓. Moreover, the

assignment b 7→ [b] provides an isomorphism between the Boolean
algebras a↓ and [a]↓.

‡Note that in the context of partial maps, the conjunction of ‘injective’ and ‘surjective’ is not
‘bijective’ in the sense of a one-to-one correspondence.
§See [37] for axiomatisations for various signatures containing domain inclusion (as a fundamental

relation).
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3.1. The functor F : AtRepAlg→ Setq
op.

We let F : AtRepAlg → Setq
op be defined as follows. Given an atomic

representable algebra A, the set quotient F (A) is the canonical projection
πA : At(A) � At(A)/∼A. This defines F on the objects. By Proposi-
tion 3.4(c), for a Boolean algebra B, the relation ∼B is the identity and thus
the restriction of F to atomic Boolean algebras is simply At( ). For defining
F on the morphisms, we let h : A → B be a complete homomorphism of
atomic representable algebras. By [5, Lemma 6.3], for each a ∈ A, the restric-
tion of h induces a complete homomorphism of (atomic) Boolean algebras
ha : a↓ → h(a)↓. We denote by ϕa : At(h(a)↓) → At(a↓) its discrete dual.
Recall that ϕa is completely determined by the following Galois connection.

∀ a′ ∈ a↓, y ∈ At(h(a)↓) (ϕa(y) ≤ a′ ⇐⇒ y ≤ h(a′)) (1)

In particular, for every a ∈ A, the map h ◦ ϕa is a closure operator.
Then Fh : At(B) ⇀ At(A) has domain B0 =

⋃
a∈A At(h(a)↓), and for

y ∈ At(h(a)↓), we set Fh(y) = ϕa(y). We observe that this is a well-defined
map, that is, if a1, a2 ∈ A are such that y ∈ At(B) is below h(a1) and
h(a2), then ϕa1

(y) = ϕa2
(y). Indeed, since h is a homomorphism, we have

y ≤ h(a1 · a2), and by (1) this yields ϕa2
(y) ≤ a1 · a2. Using again (1) twice,

we have

ϕa2
(y) ≤ ϕa2

(y) ⇐⇒ y ≤ h(ϕa2
(y)) ⇐⇒ ϕa1

(y) ≤ ϕa2
(y).

Similarly, we can prove the inequality ϕa2
(y) ≤ ϕa1

(y), thereby concluding
that Fh is well-defined. As a consequence of h ◦ ϕa being a closure operator
for each a, we have the following.

∀ y ∈ B0 y ≤ (h ◦ Fh)(y) (2)

We now prove that Fh defines a morphism in Setq from πB to πA. Let
y1, y2 ∈ B0 be ∼B-equivalent, that is, y1 = y2 B y1 and y2 = y1 B y2. Since
yi ≤ (h ◦ Fh)(yi), for i = 1, 2, using the fact that B is order preserving in
both coordinates and the fact that h is a homomorphism, we have

y1 = y2 B y1 ≤ h(Fh(y2))B h(Fh(y1)) = h(Fh(y2)B Fh(y1)).

We may apply (1) to obtain

Fh(y1) ≤ Fh(y2)B Fh(y1),

that is, Fh(y1) �A Fh(y2). Likewise, we can show that Fh(y2) �A Fh(y1),
and thus Fh(y1) ∼A Fh(y2). This proves (Q.1).
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Finally, to conclude that Fh defines a morphism in Setq, we only need

to show that for every (y0, x0) ∈ F̃ h, the partial map Fh(y0,x0) : π−1
B (y0) ⇀

π−1
A (x0) is both injective and surjective. (Recall that the subscript (y0, x0)

indicates restricting and co-restricting to the fibres of y0 and x0 respectively;
see Definition 3.2(Q.2).) Injectivity of Fh(y0,x0) is a consequence of Propo-
sition 3.4(c) together with the observation that if y1, y2 ∈ B0 are such that
x := Fh(y1) = Fh(y2), then y1 and y2 have the common upper bound h(x).

To see that Fh(y0,x0) is surjective, take x ∈ π−1
A (x0). As F̃ h is defined on y0,

by the definition of F̃ h from Fh we know Fh is defined on at least one element
y of π−1

B (y0), and that Fh(y) ∼A x. We show that Fh(y0,x0)(y B h(x)) = x.
Using (2) and then applying the fact that h is a homomorphism to Fh(y) ∼A x,
we obtain y ≤ (h ◦ Fh)(y) ∼B h(x), from which we obtain y �B h(x). By
[5, Lemma 6.14(b)], y B h(x) is an atom of B (hence of h(x)↓), which is
∼B-equivalent to y. From y B h(x) ≤ h(x) we obtain ϕx(y B h(x)) ≤ x and
hence Fh(yBh(x)) = x. Since yBh(x) ∼B y we have Fh(y0,x0)(yBh(x)) = x,
as required.

To summarise, we have proved the following.

Proposition 3.5. There is a functor

F : AtRepAlg→ Setq
op

that maps an atomic representable {−,B}-algebra A to the canonical projection
πA : At(A)� At(A)/∼A.

3.2. The functor G : Setq
op → AtRepAlg.

We now define the functor G : Setq
op → AtRepAlg. For a set quotient

π : X � X0, we let G(π) = Aπ be the algebra of partial functions consisting of
all partial functions f : X0 ⇀ X that are a subset of π−1 = {(π(x), x) | x ∈ X}.
Since for every f, g ∈ Aπ, both f − g and g B f are subsets of f , and Aπ is
closed under subsets, f − g and g B f belong to Aπ.

Lemma 3.6. For every quotient π : X � X0, the {−,B}-algebra Aπ is atomic
and representable.

Proof : The algebra Aπ is an actual algebra of partial functions, hence Aπ is,
trivially, representable. The minimal element of Aπ is of course the empty
function. The minimal nonzero elements are then precisely the singletons
{(π(x), x)}, for x ∈ X. Every nonzero element of Aπ includes one of these
singletons, and hence Aπ is atomic.
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Let us define G on morphisms. Given a morphism ϕ from (π : X � X0)
to (ρ : Y � Y0) in Setq (that is, a morphism from ρ to π in Setq

op), we let
Gϕ : Aρ → Aπ assign to each partial function g ∈ Aρ, the partial function
Gϕ(g) : X0 ⇀ X given by

Gϕ(g) = {(π(x), x) ∈ X0 ×X | ∃y ∈ Y : (x, y) ∈ ϕ and (ρ(y), y) ∈ g}.
Using the fact that ϕ is injective on each fibre of π, it is easy to check that
Gϕ(g) is indeed a partial function and thus an element of Aπ. We remark
that since ϕ is a partial function, when (π(x), x) belongs to Gϕ(g) there is in
fact a unique y ∈ Y , namely y = ϕ(x), so that (x, y) ∈ ϕ and (ρ(y), y) ∈ g.
Thus, Gϕ may be alternatively described as

Gϕ(g) = {(π(x), x) | x ∈ dom(ϕ) and (ρ(ϕ(x)), ϕ(x)) ∈ g}. (3)

Lemma 3.7. For every morphism ϕ as above, the function Gϕ defines a
complete homomorphism of {−,B}-algebras.

Proof : The fact that Gϕ preserves − is a trivial consequence of (3). To see
that Gϕ preserves B, it suffices to show that, for every x ∈ dom(ϕ) and
g ∈ Aρ, we have

ρ(ϕ(x)) ∈ dom(g) ⇐⇒ π(x) ∈ dom(Gϕ(g)). (4)

Indeed, given any f, g ∈ Aρ, the two partial-function images Gϕ(g B f)[X0]
and (Gϕ(g)BGϕ(f))[X0] are subsets of ϕ−1(f [Y0]), and for all x ∈ ϕ−1(f [Y0])
(that is, for all x ∈ dom(ϕ) such that (ρ(ϕ(x)), ϕ(x)) ∈ f) we have x ∈
Gϕ(g B f)[X0] ⇐⇒ ρ(ϕ(x)) ∈ dom(g) and x ∈ (Gϕ(g)BGϕ(f))[X0] ⇐⇒
π(x) ∈ dom(Gϕ(g)). Thus the images of the injective partial functions
Gϕ(g B f) and Gϕ(g)BGϕ(f) are equal provided (4) holds.

To prove (4), first suppose that ρ(ϕ(x)) ∈ dom(g). Then there exists
y ∈ Y so that (ρ(ϕ(x)), y) ∈ g ⊆ ρ−1, and since ϕ is fibrewise surjective
by (Q.3), there exists x′ ∈ dom(ϕ) so that π(x′) = π(x) and ϕ(x′) = y. Then
(π(x′), x′) ∈ Gϕ(g), so π(x) = π(x′) belongs to the domain of dom(Gϕ(g)).
Conversely, if π(x) ∈ dom(Gϕ(g)), then there exists some x′ ∈ domϕ such
that π(x) = π(x′) and (ρ(ϕ(x′)), ϕ(x′)) ∈ g. Using (Q.1), we have ρ(ϕ(x′)) =
ρ(ϕ(x)), implying that ρ(ϕ(x)) ∈ dom(g) as required.

Finally, since infima in Aπ and Aρ are given by intersections, by the defini-
tion of Gϕ we easily conclude that Gϕ is a meet-complete, hence complete,
homomorphism.

We have proved the following.
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Proposition 3.8. There is a functor

G : Setq
op → AtRepAlg

that sends a quotient π : X � X0 to the {−,B}-algebra Aπ consisting of all
partial functions included in π−1 = {(π(x), x) | x ∈ X}.

We can now prove that we have the claimed adjunction.

Theorem 3.9. The functors F : AtRepAlg → Setq
op and G : Setq

op →
AtRepAlg form an adjunction. That is

F a G.

Proof : We only need to define natural transformations η : IdAtRepAlg =⇒
G ◦ F and λ : IdSetq =⇒ F ◦G satisfying

Fη ◦ λF = IdF and Gλ ◦ ηG = IdG. (5)

Let us first define η. Notice that, if A is an atomic and representable
algebra, the algebra (G ◦ F )(A) consists of all partial functions contained
in {([x], x) | x ∈ At(A)}. Thus we take for ηA the representation map of [5,
Corollary 6.17], that is,

ηA(a) := {([x], x) | x ∈ At(A) and x ≤ a}.

In order to define λ, we observe that for a set quotient π : X � X0, since
the atoms of G(π) = Aπ are precisely the singletons ax := {(π(x), x)}, for
x ∈ X, we have (ax1

∼Aπ ax2
⇐⇒ π(x1) = π(x2)), and thus (F ◦ G)(π) is

a quotient isomorphic to π. Therefore λπ : X ⇀ (F ◦ G)(π) is simply the
identity (total) function on X (or, strictly speaking, the function that maps
x ∈ X to ax ∈ (F ◦G)(π)).

Finally, checking that η and λ as defined are indeed natural transformations
satisfying (5) amounts to a tedious but routine computation.

4. Compatible completion and discrete duality
In this section we first define the appropriate analogues of completeness and

completion for algebras with compatibility information. Then we show that,
similarly to the contravariant adjunction between atomic Boolean algebras
and sets, the monad induced by F : AtRepAlg a Setq

op :G gives precisely
the ‘completion’ of the algebra. In fact, our contravariant adjunction is a
generalisation of the one between atomic Boolean algebras and sets. Just
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like that adjunction, ours restricts to a duality of the full subcategory of
(compatibly) complete algebras.

In order to define analogues of completeness and completion in the pres-
ence of compatibility information, we first need to formalise this idea of
compatibility.

Definition 4.1. Let P be a poset. A binary relation C on P is a compati-
bility relation if it is reflexive, symmetric, and downward closed in P×P.
We say that two elements a1, a2 ∈ P are compatible if a1Ca2.

One can show that ‘reflexive, symmetric, and downward closed’ is an
axiomatisation of a rather general conception of compatibility in the following
sense.

Proposition 4.2. Let (P,≤, C) be a poset equipped with a binary relation C.
Then (P,≤, C) is isomorphic to a poset (P ′,⊆, C ′) of partial functions ordered
by inclusion and equipped with the relation ‘agree on the intersection of their
domains’ if and only if C is reflexive, symmetric, and downward closed.¶

Proof : It is clearly necessary that C be reflexive, symmetric, and downward
closed. Showing these conditions are sufficient can be proved with the map
sending each p ∈ P to the partial function

θ(p) := {({p′}, p′) | p′ ≤ p} ∪ {({p′, q}, p′) | p′ ≤ p and p′ /C q}.
These are indeed partial functions: a pair of type ({p′, q}, p′) cannot also be
of type ({p′}, p′), for p′ = q contradicts p′ /C q; so we only need check that
θ(p) never contains both the pairs ({p′, q}, p′) and ({p′, q}, q), for p′ 6= q. But
containing both would imply p′ ≤ p and q ≤ p, which by reflexivity and
downward closure of C contradicts p′ /C q.

That θ is injective is ensured by pairs of the first type, for if p1 6= p2 then
without loss of generality p1 6≤ p2, so that ({p2}, p2) is in θ(p2) but not θ(p1).
It is clear that p1 ≤ p2 implies θ(p1) ⊆ θ(p2).

Lastly, we show that p1 /C p2 if and only if θ(p1) /C
′
θ(p2). Suppose p1 /C p2.

Then in particular p1 6= p2. But by the supposition (and symmetry of the C
relation) ({p1, p2}, p1) ∈ θ(p1) and ({p1, p2}, p2) ∈ θ(p2). So θ(p1) and θ(p2)

disagree at the point {p1, p2}. Conversely, suppose θ(p1) /C
′
θ(p2). Then the

disagreement can only be at points of cardinality two. That is, for some p′1, p
′
2

¶The relation C ′ was introduced in [42] for semigroups of partial transformations, where it was
called semi-compatibility.
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we have ({p′1, p′2}, p′1) ∈ θ(p1) and ({p′1, p′2}, p′2) ∈ θ(p2). But that implies
p′1 /C p′2, which by downward-closure of compatibility gives p1 /C p2.

Definition 4.3. A poset P equipped with a compatibility relation is said to
be compatibly complete provided it has joins of all subsets of pairwise-
compatible elements. We say P is meet complete if it has meets of all
nonempty subsets.

Definition 4.4. When speaking about compatibility for representable {−,B}-
algebras, we mean the relation that makes two elements compatible precisely
when

a1 B a2 = a2 B a1.

It is clear that for an actual {−,B}-algebra of partial functions, two elements
are compatible exactly when they agree on their shared domain. This is the
easiest way to see that Definition 4.4 does indeed define a compatibility
relation.

Note that in the case that all pairs of elements are compatible, compatibly
complete is equivalent to complete. Boolean algebras provide examples of
representable {−,B}-algebras where every pair is compatible, if − is the
Boolean complement and we use B as the meet symbol. In the same way,
generalised Boolean algebras provide a more general class of examples.‖ Thus
‘compatibly complete’ is a coherent generalisation of ‘complete’ from situations
where there is no compatibility information, to those where there is.

In a poset equipped with a compatibility relation, if a subset S has an upper
bound u, then by reflexivity and downward closure of compatibility, S is
pairwise compatible. Thus compatibly complete =⇒ bounded complete. For
a similar reason, compatibly complete =⇒ directed complete. So ‘compatibly
complete’ subsumes these two preexisting order-theoretic concepts.

From now on, we focus exclusively on our specific case of interest: repre-
sentable {−,B}-algebras.

Lemma 4.5. Let A be a representable {−,B}-algebra. If A is compatibly
complete, then it is meet complete. The converse is false.

Proof : Suppose A is compatibly complete, and take a nonempty subset S of
A. Let Sl denote the set of lower bounds for S. Since S is nonempty, we have

‖A generalised Boolean algebra is a ‘Boolean algebra without a top’, that is, a distributive
lattice with a bottom and a relative complement operation, −, validating a ∧ (b − a) = ⊥ and
a ∨ (b− a) = a ∨ b.
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an s ∈ S. Then s is an upper bound for Sl, and so Sl is pairwise compatible.
Then by the supposition, Sl has a join. It is then straightforward to show
that this join is the meet of S.

The three-element {−,B}-algebra consisting of the partial functions ∅,
{(1, 1)}, and {(2, 2)} provides a counterexample for the converse statement.

Lemma 4.6. Let A be a representable {−,B}-algebra. Then A is meet
complete if and only if for every a ∈ A the Boolean algebra a↓ is complete.

Proof : The forward direction holds simply because for every nonempty subset
S ⊆ a↓ we have

∏
a↓ S =

∏
A S, and for the empty subset we have

∏
a↓ ∅ = a.

For the converse, given a nonempty subset S ⊆ A, fix a ∈ S. Then
∏

A S =∏
a↓{a · s | s ∈ S}.
Next we define what a compatible completion of a representable {−,B}-

algebra is. We are guided by completions of Boolean algebras. Just as for
Boolean algebras, completions will be unique up to isomorphism (Proposi-
tion 4.11).

Definition 4.7. A compatible completion of a representable {−,B}-
algebra A is an embedding ι : A ↪→ C of {−,B}-algebras such that C is
representable and compatibly complete and ι[A] is join dense in C.

The next lemma tells us in particular that compatible completions are
complete homomorphisms.

Lemma 4.8. Let ι : A ↪→ B be an embedding of representable {−,B}-algebras.
If ι[A] is join dense in B then ι is complete.

Proof : Suppose the join of S ⊆ A exists. Then the restriction ι : (
∑
S)↓ →

ι(
∑
S)↓ is an embedding of Boolean algebras with join dense image, so

just apply the corresponding known result for Boolean algebras, yielding
ι(
∑
S) =

∑
ι(
∑
S)↓ ι[S] =

∑
B ι[S].

The following technical results will be used, in particular, for the proof that
compatible completions are unique up to unique isomorphism. Given an n-ary
operation Ω on A and subsets S1, . . . , Sn ⊆ A, we shall use Ω(S1, . . . , Sn) to
denote the set {Ω(s1, . . . , sn) | s1 ∈ S1, . . . , sn ∈ Sn}, and if one of the sets is
a singleton {a}, we may simply write a.

Lemma 4.9. Let A be a compatibly complete and representable {−,B}-algebra
and S, T ⊆ A two subsets of pairwise-compatible elements.
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(a) The set S B T consists of pairwise-compatible elements, and∑
S B

∑
T =

∑
(S B T ).

(b) Suppose S is nonempty. Then for every a ∈ A we have∏
(a− S) = a−

∑
S.

Proof : For (a): the fact that S B T is a set whose elements are pairwise
compatible follows from a repeated use of the equality aB bB c = bB aB c,
which is a consequence of (Ax.4). Fix an arbitrary element a ∈ A be arbitrary
and, for the sake of readability, define s0 :=

∑
S and t0 :=

∑
T . We prove

the asserted equation in two steps: first we show that aB t0 =
∑

(aB T ) and
then that s0 B a =

∑
(S B a). From there we have∑

S B
∑

T = s0 B t0 =
∑

(s0 B T ) =
∑
t∈T

(s0 B t)

=
∑
t∈T

∑
(S B t) =

∑
t∈T

∑
s∈S

sB t =
∑

S B T

as required. (The last equality is a true property of suprema for any doubly
indexed set, when all the suprema exist.)

For aB t0 =
∑

(aB T ), Proposition 3.4(c) states that for any c ∈ A, the
map b 7→ [b] provides an order isomorphism (c↓,≤) to ([c]↓,�). So given that
t0 is an upper bound for both sides of aB t0 =

∑
(aB T ), and a is an upper

bound for both sides of s0 B a =
∑

(S B a), it is actually sufficient to show
that [aB t0] = [

∑
(aB T )] and that [s0 B a] = [

∑
(S B a)].

By Lemmas 4.5 and 4.6, the poset t↓0 is a complete Boolean algebra, and so
[t0]
↓ is as well. The meets/joins in [t0]

↓ are written in ∧/∨ notation; in [t0]
↓

we have that [b]∧ [c] = [bB c] is valid (Proposition 3.4(b)). Being careful that
all terms rest in [t0]

↓, we compute

[aB t0] = [aB t0] ∧ [
∑

T ] = [aB t0] ∧
∨
t∈T

[t]

=
∨
t∈T

([aB t0] ∧ [t]) =
∨
t∈T

[aB t] = [
∑

(aB T )],

with the central distributive equality being a valid property of any Boolean
algebra (provided the join on the left side exists) [25].
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Proving the equality s0 B a =
∑

(S B a) is very similar. In [a]↓ we have

[
∑

(S B a)] =
∨
s∈S

[sB a],

and then in [s0]
↓ we compute∨

s∈S

[sB a] =
∨
s∈S

([s] ∧ [aB s0]) = (
∨
s∈S

[s]) ∧ [aB s0] = [s0] ∧ [aB s0] = [s0 B a].

For (b): we first observe that in the complete Boolean algebra a↓, we have∏
(a− S) =

∏
(a− a · S) = a−

∑
(a · S),

where a ·S denotes the set {a · s | s ∈ S}, and the first equality holds because
a− (a · b) = a− b is a valid equation in any representable algebra. In turn, in

the complete Boolean algebra s↓0, we may compute∑
(a · S) =

∑
(a · s0 · S) = a · s0 ·

∑
S = a ·

∑
S.

Thus again by the validity of a− (a ·b) = a−b the desired equality follows.

Lemma 4.10. Let ι : A ↪→ B and ι′ : A ↪→ C be complete embeddings of
representable {−,B}-algebras, and suppose that ι[A] is join dense in B, and
that C is compatibly complete. Then θ : b 7→

∑
{ι′(a) | ι(a) ≤ b} is a well-

defined complete embedding of {−,B}-algebras from B to C, and ι′ = θ ◦ ι.

Proof : First we check θ is well-defined. The set {ι(a) | ι(a) ≤ b} is pairwise
compatible, as it is bounded above. Hence, by injectivity of ι, the set
{a | ι(a) ≤ b} is pairwise compatible, and so {ι′(a) | ι(a) ≤ b} is too. By
compatible completeness of C, the value

∑
{ι′(a) | ι(a) ≤ b} exists. It is clear

that θ is order preserving and that θ ◦ ι = ι′.
Next we show that θ is join complete, as a map between posets. For

simplicity, we treat A as a subset of B. Suppose S ⊆ B and that
∑
S ∈ B

exists. Then since C is compatibly complete and θ(
∑
S) is an upper bound for

θ[S], the join
∑
θ[S] exists, and θ(

∑
S) ≥

∑
θ[S]. For the reverse inequality,

let a ∈ A be bounded above by
∑
S. Then a = a ·

∑⋃
s∈S{a1 ∈ A | a1 ≤

s} =
∑⋃

s∈S{a · a1 ∈ A | a1 ≤ s}. So the latter join exists not only in B
but also in A, since a ∈ A. Hence ι′(a) =

∑⋃
s∈S{ι′(a) · ι′(a1) ∈ A | a1 ≤ s},

as ι′ is a complete homomorphism. Thus
∑
θ[S] ≥ ι′(a). As θ(

∑
S) is by

definition the join of these ι′(a), we are done.



18 C. BORLIDO AND B. MCLEAN

Now we show that θ preserves −. Since θ is order preserving, it is clear that
θ(b1 · b2) ≤ θ(b1) · θ(b2). As b1 is the join of {b1 · b2, b1 − b2}, and θ preserves
joins, we deduce that θ(b1) ≤ θ(b1) · θ(b2) + θ(b1 − b2). Thus, in the Boolean
algebra θ(b1)↓, we have θ(b1)−θ(b2) = θ(b1)−θ(b1) ·θ(b2) ≤ θ(b1−b2). For the
reverse inequality, suppose a ∈ A with a ≤ b1− b2. Then using Lemma 4.9(b)
we have

θ(b1)− θ(b2) = θ(b1)−
∑
a2∈A
a2≤b2

ι′(a2) =
∏
a2∈A
a2≤b2

(θ(b1)− ι′(a2))

≥
∏
a2∈A
a2≤b2

(ι′(a)− ι′(a2)) =
∏
a2∈A
a2≤b2

ι′(a− a2).

But when a ≤ b1 − b2 and a2 ≤ b2, we know a − a2 = a (by an elementary
property of sets/partial functions). Hence θ(b1)− θ(b2) ≥ ι′(a). As θ(b1 − b2)
is by definition the join of these ι′(a), we are finished.

Let us show that θ preserves B. We now treat A as a subset of both B
and C, conflating A with its images under ι and ι′. For b1, b2 ∈ B define
A1 = {a1 ∈ A | a1 ≤ b1} and A2 = {a2 ∈ A | a2 ≤ b2}. We calculate

θ(b1)B θ(b2) =
∑
C

A1 B
∑
C

A2 by the definition of θ

=
∑
C

(A1 B A2) by Lemma 4.9(a)

= θ(
∑
B

(A1 B A2)) as θ is join complete

= θ(
∑
B

A1 B
∑
B

A2) by Lemma 4.9(a)

= θ(b1 B b2) by density of A in B.

It remains to show that θ is injective. We claim that since θ is a homomor-
phism, injectivity of θ amounts to having θ−1(0) = {0}. Suppose θ−1(0) = {0}.
Then given a, b ∈ A we have θ(a) = θ(b) =⇒ θ(a− b) = 0 = θ(b− a), and
hence a− b = 0 = b− a. By an elementary property of sets/partial functions,
this implies a = b, proving the claim. Now to show θ−1(0) = {0}, let b ∈ B
satisfy θ(b) = 0. By the definition of θ, this means that ι′(a) = 0 whenever
ι(a) ≤ b. But since ι′ is injective, if ι′(a) = 0 then a = 0 and so, ι(a) = 0.
Since ι[A] is join dense in B, we may conclude that b = 0, as required.
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Now we can show that compatible completions are unique up to unique
isomorphism.

Proposition 4.11. If ι : A ↪→ C and ι′ : A ↪→ C′ are compatible completions
of the representable {−,B}-algebra A then there is a unique isomorphism
θ : C→ C′ satisfying the condition θ ◦ ι = ι′.

Proof : For uniqueness, suppose we have an isomorphism θ : C→ C′ satisfying
θ ◦ ι = ι′. As ι′[A] is both join dense in C′ and a subset of θ[C], by applying
Lemma 4.8 to θ we see that θ is complete. Then as each c ∈ C is equal to∑
{ι(a) | a ∈ A and ι(a) ≤ c}, our θ must be given by θ : c 7→

∑
{ι′(a) | a ∈

A and ι(a) ≤ c}.
For existence, we argue that θ : c 7→

∑
{ι′(a) | a ∈ A and ι(a) ≤ c} indeed

works. As compatible completions are complete homomorphisms, we can
apply Lemma 4.10 to ι and ι′. Hence θ is a well-defined complete embedding
of {−,B}-algebras. By symmetry, there is a complete embedding θ′ : C′ ↪→ C
with θ′ ◦ ι′ = ι. Then θ′ ◦ θ is complete and fixes ι[A]. So by join density of
ι[A], the homomorphism θ′ ◦ θ is the identity on C. Similarly, θ ◦ θ′ is the
identity on C′. Thus θ is an isomorphism.

Hence if an algebra has a compatible completion then that compatible com-
pletion is ‘unique’, for which reason we may refer to a compatible completion
as the compatible completion. We may also, as is common, refer to C itself as
the compatible completion of A, when ι : A ↪→ C is a compatible completion.

Next, we show how to explicitly construct the completion of any atomic
representable algebra, by showing that the monad on atomic representable
algebras induced by the adjunction of Theorem 3.9 gives precisely the com-
patible completion of the algebra. As a corollary, we obtain a duality for
compatibly complete atomic representable algebras. Recall from Section 3.1
that, for every atomic representable algebra A, we use πA to denote the
canonical projection At(A)� At(A)/∼A (see also Definition 3.3).

Theorem 4.12. For every atomic representable {−,B}-algebra A, the homo-
morphism

ηA : A→ (G ◦ F )(A) = {f : At(A)/∼A ⇀ At(A) | f ⊆ π−1
A }

a 7→ {([x], x) | x ∈ At(A) and x ≤ a}

is the compatible completion of A.
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Proof : For injectivity, suppose ηA(a) = ηA(b). Then as A is atomic, it is
atomistic. (Recall Definition 2.10 and the following remark.) So we have

a =
∑
{x ∈ At(A) | x ≤ a} =

∑
{x ∈ At(A) | x ≤ b} = b.

For compatible completeness of (G ◦ F )(A), let S be a pairwise-compatible
subset of (G ◦ F )(A). Then as (G ◦ F )(A) is an algebra of partial functions,
all pairs of elements of S agree on their shared domains. That is,

⋃
S is a

partial function. Given that f ⊆ π−1
A for each f ∈ S, we have

⋃
S ⊆ π−1

A . So⋃
S ∈ (G ◦ F )(A) and is the least upper bound of S.
For join density of ηA[A], it suffices to note the join density of ηA[At(A)].

As a consequence we have the following corollaries.

Corollary 4.13. There is a duality between CAtRepAlg and Setq, where
CAtRepAlg is the full subcategory of AtRepAlg consisting of the compati-
bly complete algebras.

Proof : Clearly G maps every set quotient π to a compatibly complete algebra.
Thus, G co-restricts to a functor Setq

op → CAtRepAlg. Moreover, as
observed in the proof of Theorem 3.9, the functor F ◦G is naturally isomorphic
to the identity functor on Setq. To conclude that CAtRepAlg and Setq are
dually equivalent, it only remains to argue that η restricted to CAtRepAlg
provides a natural isomorphism from IdCAtRepAlg to G ◦ F . It suffices to
show that ηA is an isomorphism (algebraically speaking) for every compatibly
complete A (given that isomorphisms, and hence their inverses, are complete
homomorphisms). For this we just note that if A is compatibly complete then
the identity map A ↪→ A is a compatible completion of A, and then apply
Theorem 4.12 and Proposition 4.11.

Corollary 4.14. The category CAtRepAlg is a reflective subcategory of
AtRepAlg.

Proof : We saw in the proof of Corollary 4.13 that the restriction of G ◦ F to
CAtRepAlg is naturally isomorphic to the identity. It is a direct consequence
that G ◦ F , viewed as a functor AtRepAlg→ CAtRepAlg, is left adjoint
to the inclusion CAtRepAlg→ AtRepAlg.

We have now achieved all our main objectives for this section. However,
in order to better situate these results, it is worth being precise about
which category our definition of compatible completion inhabits. Thus we
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will specify that Definition 4.7 defines a compatible completion in RepAlg,
where RepAlg is the category of representable {−,B}-algebras with {−,B}-
homomorphisms. So Proposition 4.11 says that compatible completions in
this category are unique, and Theorem 4.12 shows how to construct them
for atomic algebras. If now we replace RepAlg with the category RepAlg∞
of representable {−,B}-algebras with complete {−,B}-homomorphisms, we
obtain the following definition.

Definition 4.15. A compatible completion in RepAlg∞ of a repre-
sentable {−,B}-algebra A is a complete embedding ι : A ↪→ C of {−,B}-
algebras such that C is representable and compatibly complete and ι[A] is join
dense in C.

Given Lemma 4.8 and the fact that isomorphisms are complete homo-
morphisms, we can also claim that Proposition 4.11 says that compatible
completions in RepAlg∞ are unique, and that Theorem 4.12 shows how to
construct them for atomic algebras.

For Boolean algebras, several equivalent definition of completions are possi-
ble [1]. The same is partially true for compatible completions in RepAlg∞.

Proposition 4.16. Let ι : A ↪→ C be a complete embedding of representable
{−,B}-algebras. Consider the following statements about ι.

(a) C is compatibly complete, and the image of A is join dense in C.
(b) C is the ‘smallest’ extension of A that is compatibly complete. That

is, C is compatibly complete, and for every other complete embedding
κ : A ↪→ B into a compatibly complete and representable {−,B}-
algebra B, there exists a complete embedding κ̂ : C ↪→ B making the
following diagram commute.

A C

B

ι

κ κ̂

(c) C is the ‘largest’ extension of A in which the image of A is join dense.
That is, ι[A] is join dense in C, and for every other complete embedding
κ : A ↪→ B into a representable {−,B}-algebra B in which the image
of A is join dense, there exists a complete embedding κ̂ : B ↪→ C making
the following diagram commute.
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A B

C

κ

ι κ̂

Then (a) =⇒ (b), and (a) =⇒ (c), and if A has a completion then all three
conditions are equivalent.

Proof : For (a) =⇒ (b), apply Lemma 4.10 to ι and κ, using join density of
ι[A] in C. For (a) =⇒ (c), apply Lemma 4.10 to κ and ι, using compatible
completeness of C.

For the last part, suppose A has a completion κ : A ↪→ B. If (b) holds for
C, then it can be applied to κ : A ↪→ B. Then κ̂ is surjective, since now κ[A]
is join dense in B and κ̂ is complete. Hence the embedding κ̂ is in fact an
isomorphism, and so (a) holds.

Similarly, if (c) holds for C, then apply it to κ : A ↪→ B to obtain κ̂ : B ↪→ C.
Then as the image of A is also join dense in B we similarly have ι̂ : C ↪→ B
commuting with the embedding of A. Both compositions κ̂ ◦ ι̂ and ι̂ ◦ κ̂ are
complete homomorphisms fixing the embedded copies of A (which are join
dense), hence both compositions are the identity. So κ̂ is an isomorphism and
(a) holds.

In light of Proposition 4.16, it would be interesting to know which algebras
in RepAlg∞ (beyond the atomic ones) have compatible completions and how
to construct those completions. We leave this as an open problem.

Problem 4.17. Which representable {−,B}-algebras have a compatible com-
pletion in RepAlg∞? Describe a general method to construct these comple-
tions.

A set of implications similar to those in Proposition 4.16 is not possible for
compatible completions in RepAlg, as the following example shows.

Example 4.18. We will show that (a) 6=⇒ (b) in Proposition 4.16, if we
drop the assumption of completeness of the homomorphisms. Let 2 := {0, 1},
and let F be the {−,B}-algebra consisting of the following partial functions
N⇀ 2:

• those with finite domain,
• those such that the inverse image of 0 is a cofinite set.
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It is straightforward to check that F is closed under − and B, so is indeed
a {−,B}-algebra of partial functions. This algebra F is atomic, and its
compatible completion F′ consists of all partial functions N⇀ 2. Let {∅, Id}
be the cardinality 2 {−,B}-algebra of both partial endofunctions on some
singleton set, and let G = F′ × {∅, Id}. Then G is also compatibly complete
(and evidently representable by partial functions). Define κ : F ↪→ G by
κ : f 7→ (f, ∅) for f with finite domain and κ : f 7→ (f, Id) otherwise.

There does not exist a homomorphism κ̂ : F′ → G such that ι ◦ κ̂ = κ. For
suppose otherwise, and consider the constant functions 1: N→ 2 belonging to
F′ and 0: N→ 2 belonging to both F and F′. Now

κ̂(1) · (0, Id) = κ̂(1) · κ(0) = κ̂(1) · κ̂(0) = κ̂(1 · 0) = κ̂(∅) = κ(∅) = (∅, ∅),

and hence the second component of κ̂(1) must be ∅. However

κ̂(1)B (0, Id) = κ̂(1)Bκ(0) = κ̂(1)B κ̂(0) = κ̂(1B0) = κ̂(0) = κ(0) = (0, Id),

indicating that the second component of κ̂(1) is Id—a contradiction.

Note that the issue in Example 4.18 cannot be overcome by restricting to
the full subcategory of algebras having joins for all finite pairwise-compatible
sets, as F already satisfies this finite compatible completeness condition.

5. Discrete duality for compatibly complete algebras with
operators

In this section we extend the adjunction, completion, and duality results of
the previous two sections to results allowing the algebras to be equipped with
arbitrary additional completely additive operators respecting the compatibility
structure. Unless specified otherwise, let A be an atomic representable {−,B}-
algebra.

First we introduce the class of operations we are interested in.

Definition 5.1. Let Ω be an n-ary operation on A. Then Ω is compati-
bility preserving if whenever ai, a

′
i are compatible, for all i, we have that

Ω(a1, . . . , an) and Ω(a′1, . . . , a
′
n) are compatible.

The operation Ω is completely additive if whenever the supremum
∑
S

exists, for S ⊆ A, we have

Ω(a1, . . . , ai−1,
∑

S, ai+1, . . . , an) =
∑

Ω(a1, . . . , ai−1, S, ai+1, . . . , an) (6)

for any i and any a1, . . . , ai−1, ai+1, . . . , an ∈ A.
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It is worth being aware that in the literature on algebras ‘with operators’,
the term ‘operator’ is not merely a synonym for ‘operation’ but means finitely
additive operation, that is, (6) holds for all finite (possibly empty) S.

The operations we will treat are those that are both compatibility preserving
and completely additive. Hence the algebraic categories we consider in this
section take the following form, for a functional signature σ (disjoint from
{−,B}).

Definition 5.2. The category AtRepAlg(σ) has

• objects: algebras of the signature {−,B} ∪ σ whose {−,B}-reduct is
atomic and representable, and such that the symbols of σ are interpreted
as compatibility preserving completely additive operations,
• morphisms: complete homomorphisms of ({−,B} ∪ σ)-algebras.

For reference, we will briefly list concrete operations Ω on partial functions
according to whether or not they are compatibility preserving and completely
additive—by which we mean the completely representable {−,B,Ω}-algebras
are a (necessarily full) subcategory of AtRepAlg({Ω}).∗∗ Verifying that
such inclusions hold is a simple matter, achieved by checking the operation is
compatibility preserving and completely additive for actual algebras of partial
functions in which any joins are given by unions.

We can list the following compatibility preserving and completely additive
operations from the literature: composition (usually denoted ;), the unary D
(domain), R (range), and F (fixset) operations (the identity function restricted,
respectively, to the domain, range, and fixed points of the argument [17]), the
constant 1 (identity), and the binary C (range restriction). Intersection is of
course already expressible in our base signature.

The signature obtained by adding composition to {−,B} has been studied by
Schein and the representation class axiomatised under the name of difference
semigroups [39]. The signature obtained by adding composition, domain, and
identity is term equivalent to {;, ·,A}, for which the representation class is
axiomatised in [20] and the completely representable algebras axiomatised
in [33]. Adding range to this last signature we obtain {;, ·,A,R}, and the
representation class is axiomatised in [17]. Axiomatising the completely
representable algebras for {;, ·,A,R} is currently an open problem.

∗∗Note this is not the same as the more subtle matter of whether ‘representable + {−,B}-reduct
is completely representable =⇒ subcategory’ (see, for example, the case of composition in [33]).
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Operations that fail to be compatibility preserving and completely additive
usually do so because they are not even order-preserving. We can list:
antidomain (identity function restricted to complement of domain) and its
range analogue antirange, similar negative versions ofB andC, which we might
call antidomain restriction and antirange restriction (antidomain restriction
is called minus in [3]), override (also known as preferential union) and update
(see [3]), maximal iterate (see [23]) and opposite (converse restricted to points
with a unique preimage [36]). Converse is an operation that is completely
additive but fails to be compatibility preserving. An interesting future project
would be to extend the results of this section in a way that encompasses some
of these operations, in particular the several that are either order-preserving
or order-reversing in each coordinate. (An analogous extension of the theory
of Boolean algebras with operators can be found in [12].)

Starting with a compatibility preserving and completely additive n-ary
operation Ω, we can define an (n+ 1)-ary relation RΩ on the atoms of A by

RΩx1. . .xn+1 ⇐⇒ Ω(x1, . . . , xn) ≥ xn+1. (7)

Next we introduce a class of relations on set quotients, which will turn
out to be precisely the relations obtained from operations in the way just
described.

Definition 5.3. Take sets X,X0, and a surjection π : X � X0, and let R
be an (n+ 1)-ary relation on X. The compatibility relation C ⊆ X ×X
is given by xCy if and only if π(x) = π(y) =⇒ x = y. Then R has the
compatibility property (with respect to π) if given x1Cx

′
1, . . . , xnCx

′
n and

Rx1. . .xn+1 and Rx′1. . .x
′
n+1, we have xn+1Cx

′
n+1.

Observe that, in the case where π is the canonical projection πA : At(A)�
At(A)/∼A for some atomic representable algebra A, the compatibility relation
C coincides with the compatibility relation introduced in Definition 4.4
(restricted to atoms).

Given an R satisfying the compatibility property, we can define an n-ary
operation ΩR on the dual Aπ of π : X � X0 by conflating elements of Aπ

with their image, and then setting

ΩR(X1, . . . , Xn) = R(X1, . . . , Xn, ), (8)

where R(X1, . . . , Xn, ) :=
⋃
x1∈X1,...,xn∈Xn

{xn+1 ∈ X | Rx1. . .xn+1}. Notice
that a subset X ′ ⊆ X defines a partial function of Aπ exactly when it
contains at most one element of each fibre of π, that is, when xCx′ for
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every x, x′ ∈ X ′. So suppose that xn+1, x
′
n+1 ∈ ΩR(X1, . . . , Xn). Then there

exist x1 ∈ X1, . . . , xn ∈ Xn with Rx1. . .xn+1, and x′1 ∈ X1, . . . , x
′
n ∈ Xn

with Rx′1. . .x
′
n+1. Since X1, . . . , Xn are images of partial sections, we have

x1Cx
′
1, . . . , xnCx

′
n. Then by the hypothesis that R has the compatibility

property, if xn+1 and x′n+1 lie in the same fibre they are equal. Therefore, ΩR

is indeed a well-defined operation on Aπ.
Finally, we define conditions that morphisms of set quotients are required

to satisfy, when those set quotients are equipped with additional relations.

Definition 5.4. Take a partial function ϕ : X ⇀ Y and (n+ 1)-ary relations
RX and RY on X and Y . Then ϕ satisfies the reverse forth condition
if whenever RXx1. . .xn+1 and ϕ(x1), . . . , ϕ(xn) are defined, then ϕ(xn+1) is
defined and RYϕ(x1). . .ϕ(xn+1). The partial map ϕ satisfies the back condi-
tion if whenever ϕ(xn+1) is defined and RY y1. . .ynϕ(xn+1), then there exist
x1, . . . , xn ∈ dom(ϕ) such that ϕ(x1) = y1, . . . , ϕ(xn) = yn and RXx1. . .xn+1.

We are now ready to extend the adjunction F : AtRepAlg a Setq
op :G

to algebras with operators. We fix a functional signature σ (disjoint from
{−,B}). We have already defined AtRepAlg(σ).

Definition 5.5. The category Setq(σ) has

• objects: the objects of Setq equipped with, for each Ω ∈ σ, an (n+ 1)-
ary relation RΩ that has the compatibility property, where n is the arity
of Ω,
• morphisms: morphisms of Setq that satisfy the reverse forth condition

and the back condition with respect to RΩ, for every Ω ∈ σ.

We are required to note at this point that both the reverse forth condition
and the back condition are preserved by composition of partial maps (and
are also satisfied by identity maps); hence Setq(σ) is indeed a category.

Theorem 5.6. There is an adjunction F ′ : AtRepAlg(σ) a Setq(σ)op :G′

that extends the adjunction F a G of Section 3 in the sense that the appro-
priate reducts of F ′(A) and G′(π : X � X0) equal F (A) and G(π : X � X0),
respectively.

The proof of this theorem takes up most of the remainder of the paper. The
reader is likely to have understood by now how to form F ′ and G′. For F ′:
given an atomic representable {−,B}-algebra A equipped with compatibility
preserving completely additive operators indexed by σ, take F (A) and equip
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it with, for each operation Ω on A, the relation RΩ defined according to
(7). For G′: given a set quotient π : X � X0 equipped with relations, take
G(π : X � X0) and equip it with, for each relation R, the operation ΩR

defined according to (8). The proof consists therefore of establishing the
following facts.

(1) The F ′ we wish to define is well-defined on objects. That is, the defined
relations RΩ have the compatibility property (Lemma 5.7).

(2) F ′ is well-defined on morphisms. That is, for a morphism h in
AtRepAlg that preserves additional operations, the partial map Fh
satisfies the reverse forth and the back conditions with respect to each
pair of relations (Lemma 5.8).

(3) G′ is well-defined on objects: each defined ΩR is a compatibility
preserving and completely additive operation (Lemma 5.9).

(4) G′ is well-defined on morphisms: given a morphism H in Setq, the
defined operations are preserved by Gϕ (Lemma 5.10).

(5) The unit and counit used in Theorem 3.9 are still permitted families
of morphisms. That is, for each algebra A, the map ηA preserves the
additional operations, and for each set quotient π, the map λπ satisfies
the reverse forth condition and the back condition (Lemma 5.11).

Lemma 5.7. If an operation Ω is compatibility preserving, then RΩ has the
compatibility property.

Proof : Take x1Cx
′
1, . . . , xnCx

′
n and RΩx1 . . . xn+1 and RΩx

′
1 . . . x

′
n+1. Then

xi, x
′
i ∈ A are compatible, for each i. So since Ω is compatibility preserving,

Ω(x1, . . . , xn) and Ω(x′1, . . . , x
′
n) are compatible. We have, by the hypotheses

and the definition of RΩ, that Ω(x1, . . . , xn) ≥ xn+1 and Ω(x′1, . . . , x
′
n) ≥ x′n+1.

Hence xn+1 and x′n+1 are compatible elements of A. Now C is just the
restriction of compatibility to pairs of atoms, hence xn+1Cx

′
n+1, as required.

Lemma 5.8. Let h : A → B be a complete homomorphism of atomic rep-
resentable {−,B}-algebras, and let ΩA and ΩB be compatibility preserving
completely additive n-ary operations on A and B respectively. If h validates

h(ΩA(a1, . . . , an)) = ΩB(h(a1), . . . , h(an)),

then Fh satisfies the reverse forth and the back conditions with respect to RΩB

and RΩA.

Proof : We write RA for RΩA, and we write RB for RΩB. For the reverse
forth condition, suppose RBy1 . . . yn+1 holds and that Fh(y1), . . . , Fh(yn) are
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defined. Denote Fh(y1), . . . , Fh(yn) by x1, . . . , xn respectively. By the def-
inition of Fh, we have h(xi) ≥ yi for each i. Then h(ΩA(x1, . . . , xn)) =
ΩB(h(x1), . . . , h(xn)) ≥ ΩB(y1, . . . , yn), as ΩB is order preserving, since
it is completely additive. But ΩB(y1, . . . , yn) ≥ yn+1 by the hypothesis
RBy1 . . . yn+1 and the definition of RB. Since h(ΩA(x1, . . . , xn)) ≥ yn+1, we
have that Fh is defined at yn+1 and ΩA(x1, . . . , xn) ≥ Fh(yn+1). By the
definition of RA, the relation RAx1. . .xnFh(yn+1) holds, and the reverse forth
condition is established.

For the back condition, suppose that Fh(yn+1) is defined and that the
relation RAx1. . .xnFh(yn+1) holds. Write xn+1 for Fh(yn+1). Then by the
definition of RA, the inequality ΩA(x1, . . . , xn) ≥ xn+1 holds. Hence

ΩB(h(x1), . . . , h(xn)) = h(ΩA(x1, . . . , xn)) ≥ h(xn+1) ≥ yn+1.

As B is atomic, it is atomistic. Hence by iterative application of the complete
additivity of ΩB to each argument, we find

∑
{ΩB(y1, . . . , yn) | y1, . . . , yn ∈ At(B) : y1 ≤ h(x1), . . . , yn ≤ h(xn)} ≥ yn+1.

Since yn+1 is an atom, there are therefore some y1, . . . , yn ∈ At(B) with
yi ≤ h(xi) for each i, such that ΩB(y1, . . . , yn) ≥ yn+1. Then by the definitions,
Fh(yi) = xi for each i, and RBy1. . .yn+1 holds; hence the back condition is
established.

Lemma 5.9. If a relation R has the compatibility property, then ΩR is
compatibility preserving and completely additive.

Proof : To see that ΩR is compatibility preserving, let Xi, X
′
i ∈ Aπ be compati-

ble, for each i. Since ΩR(X1∪X ′1, . . . , Xn∪X ′n) is (the image of) a well-defined
partial section, of which ΩR(X1, . . . , Xn) and ΩR(X ′1, . . . , X

′
n) are restrictions,

ΩR(X1, . . . , Xn) and ΩR(X ′1, . . . , X
′
n) are compatible.

To see that ΩR is completely additive, let X1, . . . , Xn ∈ Aπ and i ∈
{1, . . . , n}, and suppose S is a subset of Aπ whose join

∑
S exists. So
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S =

⋃
S. It is clear from the definition of ΩR that

ΩR(X1, . . . , Xi−1,
⋃
S, Xi+1, . . . , Xn) =

⋃
xi∈

⋃
S

ΩR(X1, . . . , Xi−1, xi, Xi+1, . . . , Xn)

=
⋃
T∈S

⋃
xi∈T

ΩR(X1, . . . , Xi−1, xi, Xi+1, . . . , Xn)

=
⋃
T∈S

ΩR(X1, . . . , Xi−1, T,Xi+1, . . . , Xn)

and hence provides a supremum for {
⋃
T∈S ΩR(X1, . . . , Xi−1, T,Xi+1, . . . , Xn) |

T ∈ S}, as required.

Lemma 5.10. Let ϕ : X ⇀ Y define a morphism in Setq from (π : X � X0)
to (ρ : Y � Y0), and let RX and RY be (n + 1)-ary relations on X and Y
respectively, both having the compatibility property. If ϕ satisfies the reverse
forth and the back conditions with respect to RX and RY , then the n-ary
operations ΩRX and ΩRY validate

Gϕ(ΩRY (Y1, . . . , Yn)) = ΩRX(Gϕ(Y1), . . . , Gϕ(Yn)).

Proof : Recall that we are identifying elements of G(π) and G(ρ)—partial
sections—with their images, and note that according to this view, Gϕ is given
by ϕ−1 (inverse image). Let Y1, . . . , Yn ∈ G(ρ).

First we show that

ϕ−1(ΩRY (Y1, . . . , Yn)) ⊆ ΩRX(ϕ−1(Y1), . . . , ϕ
−1(Yn)),

and later the reverse inclusion. So let xn+1 be an arbitrary element of
ϕ−1(ΩRY (Y1, . . . , Yn)). That is, ϕ is defined on xn+1, with value yn+1 say, and
there are some y1 ∈ Y1, . . . , yn ∈ Yn such that Ry1. . .yn+1. So by the back
condition, there exist x1, . . . , xn ∈ dom(ϕ) such that ϕ(x1) = y1, . . . , ϕ(xn) =
yn and RXx1. . .xn+1. Then xi ∈ ϕ−1(Yi) for each i ≤ n. Hence by the
definition of ΩRX , we have xn+1 ∈ ΩRX(ϕ−1(Y1), . . . , ϕ

−1(Yn)), as required.
Now we show that

ϕ−1(ΩRY (Y1, . . . , Yn)) ⊇ ΩRX(ϕ−1(Y1), . . . , ϕ
−1(Yn)).

Let xn+1 be an arbitrary element of ΩRX(ϕ−1(Y1), . . . , ϕ
−1(Yn)), so there

exist x1 ∈ ϕ−1(Y1), . . . , xn ∈ ϕ−1(Yn) with RXx1. . .xn+1. (So in particular
ϕ(x1), . . . , ϕ(xn) are defined.) Then by the reverse forth condition, ϕ(xn+1)
is defined and RYϕ(x1). . .ϕ(xn+1). Since ϕ(xi) ∈ Yi, for i ≤ n, we then have
ϕ(xn+1) ∈ ΩRY (Y1, . . . , Yn). Hence xn+1 ∈ ϕ−1(ΩRY (Y1, . . . , Yn)).
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Lemma 5.11. Let A be an atomic representable {−,B}-algebra and Ω be a
compatibility preserving completely additive n-ary operation on A. Then the
map ηA used in Theorem 3.9 validates

ηA(Ω(a1, . . . , an)) = ΩRΩ
(ηA(a1), . . . , ηA(an)).

Let π : X � X0 be a set quotient, and R be an (n+ 1)-ary relation on X
with the compatibility property. The map λπ used in Theorem 3.9 satisfies the
reverse forth condition and the back condition with respect to R and RΩR.

Proof : For the first part, we unwrap the definition of the right-hand side of
the equality. Identifying partial functions with their images, we have

ΩRΩ
(ηA(a1), . . . , ηA(an)) = RΩ(At(a↓1), . . . ,At(a↓n), ),

and by the definition of RΩ, this set consists of all xn+1 ∈ At(A) for which

there are xi ∈ At(a↓i ), i = 1, . . . , n, such that Ω(x1, . . . , xn) ≥ xn+1. Since Ω
is completely additive and A is atomistic, such atoms xn+1 are precisely those
in the downset Ω(a1, . . . , an)

↓. Thus

ΩRΩ
(ηA(a1), . . . , ηA(an)) = At(Ω(a1, . . . , an)

↓),

which is precisely the definition of the left-hand side ηA(Ω(a1, . . . , an)), so we
are done.

For the reverse forth and back conditions, since we saw in the proof of
Theorem 3.9 that π and (F ◦G)(π) are isomorphic via the correspondence
x 7→ {x}, it suffices to show that every relation R ⊆ Xn+1 coincides with RΩR

under this identification. And indeed, by definition, we have

RΩR{x1} . . . {xn+1} ⇐⇒ ΩR({x1}, . . . , {xn}) ⊇ {xn+1}
⇐⇒ Rx1 . . . xn+1.

This completes the proof that F ′ a G′, and hence the proof of Theorem 5.6.
It is now straightforward to extend the completeness and duality results of

the previous section.

Definition 5.12. Let A be an algebra in AtRepAlg(σ). A compatible
completion of A is an embedding ι : A ↪→ C of ({−,B} ∪ σ)-algebras such
that C is in AtRepAlg(σ) and compatibly complete, and ι[A] is join dense
in C.

Corollary 5.13. Let A be an algebra in AtRepAlg(σ). If ι : A ↪→ C and
ι′ : A ↪→ C′ are compatible completions of A then there is a unique isomorphism
θ : C→ C′ satisfying the condition θ ◦ ι = ι′.
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Proof : Use the isomorphism θ from Proposition 4.11. The fact that ι[A] is
join dense in C and the complete additivity of the additional operations ensure
those additional operations are preserved by θ.

Corollary 5.14. For every algebra A in AtRepAlg(σ), the embedding
ηA : A ↪→ (G′ ◦ F ′)(A) is the compatible completion of A.

Corollary 5.15. There is a duality between CAtRepAlg(σ) and Setq(σ)op,
where CAtRepAlg(σ) is the full subcategory of AtRepAlg(σ) consisting of
the compatibly complete algebras.

Proof : Given Corollary 4.13, we only need to check that the families of
functions ηA and λπ are still isomorphisms in the expanded categories, for
which it only remains to show that the functions η−1

A and λ−1
π are valid

morphisms in the expanded categories.
We know ηA is a bijection and preserves additional operations, and it is

an elementary algebraic fact that this implies its inverse η−1
A preserves those

same additional operations. Thus η−1
A is a morphism.

For λ−1
π , we must check that the reverse forth condition and the back

condition are satisfied with respect to additional relations. But we saw in the
proof of Lemma 5.11 that λπ, and therefore λ−1

π , preserves and reflects each
additional relation. As λ−1

π is a bijection, it is then evident that the reverse
forth and back conditions are respected.

Corollary 5.16. The category CAtRepAlg(σ) is a reflective subcategory of
AtRepAlg(σ).
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1962 (1962), no. 6 (31), 19–27 (Russian).
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