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1. Introduction
Assuming the usual definition, as explained by Elduque in the elementary

account [14] on vector cross products and their connections with the excep-
tional basic classical simple Lie superalgebras, r-fold vector cross products
exist only for d-dimensional vector spaces with: r = 1 and d even; r = 2 and
d = 3 or 7; r = 3 and d = 8; and r = d − 1 for an arbitrary d. The first
proof of this classical result, and an extension of it, goes back to the work [8],
where Brown and Gray presented an algebraic proof. An algebraic-topologic
proof of the same result for real euclidean spaces was given by Eckmann,
who in [13] assumed continuity – a weaker condition – instead of multilinear-
ity. Based on the results in [13], a variation of the latter proof was given by
Whitehead in [26]. In addition, in [15], citing the articles [13] and [26], Gray
established results about vector cross products on manifolds. An elementary
proof of the classical result, although only valid over a field of characteristic
0, was given by Rost in [23]. Later on, Meyberg simplified this proof in [22].
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The mentioned classical result can be seen as a consequence of another
classical result on the classification of Hurwitz algebras (that is, unital com-
position algebras, [3], [17]). The real and complex cases are due to Hurwitz,
who presented the classification in [18]. Jacobson established the classifica-
tion, in [20], over a field F of characteristic different from 2. More concretely,
the generalized Hurwitz Theorem asserts that, over F , if A is a finite dimen-
sional composition algebra with identity, then its dimension is equal to 1,
2, 4 or 8. Furthermore, as Jacobson was interested in the study of the au-
tomorphisms of Hurwitz algebras, he proved that A is isomorphic either to
the base field, a separable quadratic extension of the base field (a quadratic
commutative and associative separable algebra), a generalized quaternion al-
gebra (four dimensional algebra that is associative but not commutative) or
a generalized octonion algebra (or Cayley algebra, eight dimensional algebra
that is alternative but not associative), [20].

Throughout the years, the interest in 2-fold vector cross products has re-
mained alive. In [19], Ikramov studies the complex vector cross product in
C3. Costa, Facas Vicente, Beites, Martins, Serôdio and Tadeu, in [11], use
the vector cross product in R7 to study the orthogonal projection of a point
onto a line. In [10], Catarino and Vitória express the distance between two
skew lines in R7 in terms of the double vector cross product. Antić and
Vrancken, in [1], recall the best possible almost complex structure on S6(1)
that is induced by the vector cross product in R7. In [4], some vector cross
product differential and difference equations are studied by Beites, Nicolás,
Saraiva and Vitória. A generalization of the standard definition of 2-fold vec-
tor cross product is proposed in [21] by Lewintan. In [6], Beites, Nicolás and
Vitória pursue an arithmetic for closed balls in Rn which includes operations
involving the 2-fold vector cross product. Using this product in R3, Beites
and Catarino establish Gelin-Cesàro’s identity for Leonardo quaternions in
[2].

The structure of the present work, divided into three main sections, is as
follows. In section 2, where some background is presented, known defini-
tions, results and notations related to the 2-fold vector cross product, to
the 7-dimensional complex vector space C7, to generalized inverses and to
differential and difference equations are recalled. In section 3, properties
of matrices related to the 2-fold vector cross product in C7, namely on in-
vertibility, nullspace, powers and index, are established. Partially following
the ideas of Agudo for R3 in [12], where he uses the term “vector division”,
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vector cross product equations in C7 are considered in section 4. Moreover,
in C7, vector cross product differential equations and vector cross product
difference equations are studied. Several results presented in the works [4]
– of Beites, Nicolás, Saraiva and Vitória –, [5] – due to Beites, Nicolás and
Vitória –, [16] – whose authors are Gross, Trenkler and Troschke –, [24] – of
Trenkler –, and [25] – by Trenkler and Trenkler – are extended.

2. Preliminaries
Let V be a d-dimensional vector space over a field F of characteristic

different from 2, endowed with a nondegenerate symmetric bilinear form
(·, ·). A bilinear map × : V 2 → V is a 2-fold vector cross product in V if, for
any u, v ∈ V :

(1) (u× v, u) = (u× v, v) = 0,

(2) (u× v, u× v) =

∣∣∣∣ (u, u) (u, v)
(v, u) (v, v)

∣∣∣∣.
Recall that 1. implies the skew-symmetry of the trilinear map (· × ·, ·), and
so the anticommutativity of ×, [14]. In the present article, the 2-fold vector
cross product in the 7-dimensional complex vector space C7, denoted by ×,
is considered.

Equip the 7-dimensional complex vector space C7 with the standard Her-
mitian inner product 〈·, ·〉 : C7 × C7 → C defined by

〈x, y〉 =
7∑
t=1

xtyt,

for all x =
[
x1 . . . x7

]T
, y =

[
y1 . . . y7

]T ∈ C7. It satisfies, respec-
tively, linearity in the first coordinate, positive definiteness and hermitian
(or conjugate) symmetry:

〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉, (2.1)

〈x, y〉 = 〈y, x〉, (2.2)

〈x, x〉 ≥ 0 and 〈x, x〉 = 0⇔ x = 0. (2.3)

Recall that (2.2) implies that 〈x, x〉 ∈ R. Recall also that (2.1) and (2.2)
imply conjugate linearity in the second coordinate, that is,

〈x, αy + βz〉 = α〈x, y〉+ β〈x, z〉. (2.4)
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When considering the 2-fold vector cross product in the 7-dimensional com-
plex vector space C7, observe that the nondegenerate symmetric bilinear form
(·, ·) referred in the first definition is defined by

(x, y) = 〈x, y〉,

for all x =
[
x1 . . . x7

]T
, y =

[
y1 . . . y7

]T ∈ C7.
Throughout the work, Cm×n denotes the set of all m×n complex matrices.

When n = 1, Cm×1 is identified with Cm. When m = n = 1, C1×1 is identified
with C.

Let B ∈ Cm×n. A matrix B(1) ∈ Cn×m is a generalized inverse of B if
BB(1)B = B. See [7] for more details on generalized inverses, also known as
(1)-inverses or g-inverses, where the subsequent result appears.

Theorem 2.1 ([7]). Let B ∈ Cm×n, b ∈ Cm. Then, the equation Bx = b is
consistent if and only if, for some B(1), BB(1)b = b.

Let A ∈ Cn×n.
The index Ind(A) of A is the smallest l ∈ N0 such that R(Al) = R(Al+1)

or, equivalently, N(Al) = N(Al+1), where C and N stand for the column
space (or range) and the nullspace, [9]. Alternatively, but equivalently, it
can also be defined as the smallest l ∈ N0 such that Cn = R(Al)⊕N(Al).

Let Ind(A) = l. The Drazin inverse of A is the unique matrix AD ∈ Cn×n

which satisfies

AAD = ADA, ADAAD = AD, Al+1AD = Al.

When Ind(A) ∈ {0, 1}, AD is sometimes called the group-inverse of A and
the last equality assumes the form AADA = A. There are several methods
for computing AD, as described in [9] and references therein, some of which
require all eigenvalues to be well determined.

Let A,B ∈ Cn×n and t0 ∈ R. Let f = f(t) be a Cn-valued function of the
real variable t. Throughout the work, x = x(t) stands for an unknown Cn-

valued function of the real variable t and ẋ =
dx

dt
denotes the corresponding

derivative vector of x.
A vector x0 ∈ Cn is a consistent initial vector for the differential equation

Aẋ+Bx = f (2.5)

if the initial value problem

Aẋ+Bx = f, x(t0) = x0, (2.6)
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possesses at least one solution. In this case, x(t0) = x0 is said to be a
consistent initial condition. Further, (2.5) is called tractable if (2.6) has a
unique solution for each consistent initial vector x0, [9].

Theorem 2.2. [9] Let A,B ∈ Cn×n. The homogeneous differential equation
Aẋ+Bx = 0 is tractable if and only if (λA+B)−1 exists for some λ ∈ C.

Let A,B ∈ Cn×n. Let f (k) = f (k)(t) ∈ Cn be the k-th term of a sequence of
vectors, k = 0, 1, 2, .... Throughout the work, x(k) = x(k)(t) ∈ Cn stands for
the k-th term of an unknown sequence of vectors, k = 0, 1, 2, . . . We assume
that x(0) = x0 is given.

A vector x0 ∈ Cn is a consistent initial vector for the difference equation

Ax(k+1) = Bx(k) + f (k) (2.7)

if the initial value problem

Ax(k+1) = Bx(k) + f (k), k = 1, 2, . . . , x(0) = x0, (2.8)

has a solution for x(k). In this case, x(0) = x0 is said to be a consistent initial
condition. Furthermore, (2.7) is called tractable if (2.8) has a unique solution
for each consistent initial vector x0, [9].

Theorem 2.3. [9] Let A,B ∈ Cn×n. The homogeneous difference equation
Ax(k+1) = Bx(k) is tractable if and only if (λA+B)−1 exists for some λ ∈ C.

3. Properties

Let a =
[
a1 a2 a3 a4 a5 a6 a7

]T ∈ C7. Consider the linear mapping

a× : C7 → C7

x 7→ a×(x) = a× x.
For each a ∈ C7, there exists a unique matrix Sa ∈ C7×7 such that

a× x = Sax, (3.1)

where

Sa =



0 −a3 a2 −a5 a4 −a7 a6

a3 0 −a1 −a6 a7 a4 −a5

−a2 a1 0 a7 a6 −a5 −a4

a5 a6 −a7 0 −a1 −a2 a3

−a4 −a7 −a6 a1 0 a3 a2

a7 −a4 a5 a2 −a3 0 −a1

−a6 a5 a4 −a3 −a2 a1 0


. (3.2)
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In the following result, some properties related to the matrices defined in
(3.1)-(3.2) are established.

Proposition 3.1. Let a, b, c ∈ C7. Let α, β ∈ C. Then:

(1) Sαa+βbc = αSac+ βSbc;
(2) Sa = Sa;
(3) Sa = −STa ;
(4) S∗a = −Sa,

where ·∗ stands for the conjugate transpose of a matrix;
(5) Sab = −Sba;
(6) Saa = 0;

(7) Saa = 2i



Im(a2a3) + Im(a4a5) + Im(a6a7)
−Im(a1a3) + Im(a4a6)− Im(a5a7)

Im(a1a2)− Im(a4a7)− Im(a5a6)
−Im(a1a5)− Im(a2a6) + Im(a3a7)

Im(a1a4) + Im(a2a7) + Im(a3a6)
−Im(a1a7) + Im(a2a4)− Im(a3a5)

Im(a1a6)− Im(a2a5)− Im(a3a4)


;

(8) Sab = Sab;
(9) Sa is singular;

(10) S2
a = aaT − 〈a, a〉I7;

(11) S3
a = −〈a, a〉Sa;

(12) the eigenvalues of Sa are 0,
√
|〈a, a〉|ei θ2 and

√
|〈a, a〉|ei( θ2+π), with θ

an argument of −〈a, a〉;
(13) the nullspace of Sa, where a 6= 0, is N(Sa) = {αa : α ∈ C}.

Proof : Properties 1. and 5. are direct consequences of, respectively, the
bilinearity and the anticommutativity of × in C7.

From (3.2) it is straightforward to prove 2. and 3.
Concerning 4., invoking 2. and 3. leads to S∗a = (Sa)

T = (Sa)
T = −Sa.

Taking b = a in 5. leads to 6.
By property 5., Saa + Saa = 0 which, by 2., is equivalent to Saa + Saa =

0⇔ Saa+ Saa = 0. The last equality means that each entry of Saa is either
zero or a purely imaginary complex number. Concretely, from (3.2), Saa is
the matrix
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

a2a3 − a3a2 + a4a5 − a5a4 + a6a7 − a7a6

−a1a3 + a3a1 + a4a6 − a6a4 − a5a7 + a7a5

a1a2 − a2a1 − a4a7 + a7a4 − a5a6 + a6a5

−a1a5 + a5a1 − a2a6 + a6a2 + a3a7 − a7a3

a1a4 − a4a1 + a2a7 − a7a2 + a3a6 − a6a3

−a1a7 + a7a1 + a2a4 − a4a2 − a3a5 + a5a3

a1a6 − a6a1 − a2a5 + a5a2 − a3a4 + a4a3



=



2iIm(a2a3) + 2iIm(a4a5) + 2iIm(a6a7)
−2iIm(a1a3) + 2iIm(a4a6)− 2iIm(a5a7)

2iIm(a1a2)− 2iIm(a4a7)− 2iIm(a5a6)
−2iIm(a1a5)− 2iIm(a2a6) + 2iIm(a3a7)

2iIm(a1a4) + 2iIm(a2a7) + 2iIm(a3a6)
−2iIm(a1a7) + 2iIm(a2a4)− 2iIm(a3a5)

2iIm(a1a6)− 2iIm(a2a5)− 2iIm(a3a4)


,

from where 7. follows.
Applying 2. allows to arrive at 8. since Sab = Sa b.
As far as 9., on the one hand, if a = 0 then Sa = 0, a singular matrix. On

the other hand, if a 6= 0 then, from 6., Saa = 0. If Sa were invertible then
a = 0, a contradiction.

As S2
a = [sij]7×7 with

sij =


−

7∑
t=1,
t6=i

a2
t if i = j

aiaj if i 6= j

,

aaT = [dij]7×7 with

dij =

{
a2
i if i = j

aiaj if i 6= j
,

and

〈a, a〉 =
7∑
t=1

a2
t ,

then 10. follows.
Taking into account 10., S3

a = aaTSa − 〈a, a〉Sa. By 3. and 6., aaTSa =
a(STa a)T = −a(Saa)T = 0. Hence, 11. follows.
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Regarding 12., the characteristic equation of Sa is

det(Sa − λI7) = 0 ⇔ −λ(λ2 + 〈a, a〉)3 = 0

⇔ λ = 0 ∨ λ2 = −〈a, a〉
⇔ λ = 0 ∨ λ =

√
|〈a, a〉|ei

θ
2 ∨ λ =

√
|〈a, a〉|ei(

θ
2+π),

with θ an argument of −〈a, a〉.
Let a ∈ C7\{0}. The inclusion ⊇ in 13. follows from property 6. since,

for all γ ∈ C, Sa(γa) = γSaa = 0. By the proof of 12., the eigenvalue 0 has
algebraic multiplicity 1. As 0 6= a ∈ N(Sa), the geometric multiplicity of 0
is 1. Hence, dim N(Sa) = dim {αa : α ∈ C} = 1, and 13. is obtained.

The subsequent results concern powers and traces of the matrices defined
in (3.1)-(3.2).

Lemma 3.2. Let a ∈ C7 such that 〈a, a〉 6= 0. For m ∈ N,

S2m
a = (−1)m+1〈a, a〉m−1aaT + (−1)m〈a, a〉mI7 (3.3)

and

S2m+1
a = (−1)m〈a, a〉mSa. (3.4)

Proof : The proof goes by induction on m.
For (3.3), by 10. in Proposition 3.1, the base case holds. Also from 10. in

Proposition 3.1 and the induction hypothesis, we have

S2(m+1)
a = S2m

a S2
a

= [(−1)m+1〈a, a〉m−1aaT + (−1)m〈a, a〉mI7](aa
T − 〈a, a〉I7)

= (−1)m+1〈a, a〉maaT − (−1)m+1〈a, a〉maaT

+(−1)m〈a, a〉maaT − (−1)m〈a, a〉m+1I7

= (−1)m+2〈a, a〉maaT + (−1)m+1〈a, a〉m+1I7,

and the induction step holds too.
For (3.4), by 11. in Proposition 3.1, it is straighforward to see that the

base case holds. As for the induction step, by 10. in Proposition 3.1 and the
induction hypothesis, we obtain

S2m+3
a = S2m+1

a S2
a

= (−1)m〈a, a〉mSa(aaT − 〈a, a〉I7)

= (−1)m〈a, a〉m(Saa)aT + (−1)m+1〈a, a〉m+1Sa.
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From here, taking into account 6. in Proposition 3.1, the second part of the
result follows.

Theorem 3.3. Let a ∈ C7 such that 〈a, a〉 6= 0. For m ∈ N, tr(S2m+1
a ) = 0

and
tr(S2m

a ) = 6(−1)m〈a, a〉m. (3.5)

Proof : From (3.4) in Lemma 3.2, it is clear that

tr(S2m+1
a ) = (−1)m〈a, a〉mtr(Sa) = 0.

From (3.3) in Lemma 3.2, taking into account aaT written for the proof of
10. in Proposition 3.1,

tr(S2m
a ) = (−1)m+1〈a, a〉m−1tr(aaT ) + (−1)m〈a, a〉mtr(I7)

= −(−1)m〈a, a〉m + 7(−1)m〈a, a〉m,
and the expression for the trace of S2m

a in (3.5) is obtained.

The following results are devoted to generalized inverses, invertibility and
inverses of matrices related to the matrices defined in (3.1)-(3.2).

Theorem 3.4. Let a ∈ C7 such that 〈a, a〉 6= 0. A generalized inverse of Sa
is

S(1)
a = −〈a, a〉−1Sa. (3.6)

Proof : With 〈a, a〉 6= 0, 11. in Proposition 3.1 leads to (3.6) since

Sa
(
−〈a, a〉−1Sa

)
Sa = −〈a, a〉−1S3

a = Sa.

Proposition 3.5. Let a, b ∈ C7 and γ ∈ C. The matrix γSa+Sb is singular.

Proof : As Sa and Sb are skew-symmetric matrices, then, for any γ ∈ C,
γSa + Sb is also skew-symmetric of odd order. Hence, det(γSa + Sb) = 0.

Lemma 3.6. Let a ∈ C7 and α ∈ C. The matrix Sa + αI7 is non-singular if
and only if α 6= 0 and α is not a square root of −〈a, a〉.
Proof : A straightforward calculation of det(Sa+αI7) leads to α(α2 +〈a, a〉)3.
In the stated conditions, det(Sa + αI7) = 0 if and only if α = 0 or α2 =
−〈a, a〉.
Theorem 3.7. Let a ∈ C7. Let α ∈ C\{0} such that α is not a square root
of −〈a, a〉. Then

(Sa + αI7)
−1 = −(α2 + 〈a, a〉)−1(Sa − αI7 − α−1aaT ). (3.7)
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Proof : From Lemma 3.6, Sa + αI7 is invertible. Invoking properties 6. and
10. of Proposition 3.1, we get

(Sa + αI7)(−(α2 + 〈a, a〉)−1(Sa − αI7 − α−1aaT ))
= −(α2 + 〈a, a〉)−1(S2

a − αSa − α−1Saaa
T + αSa − α2I7 − aaT )

= −(α2 + 〈a, a〉)−1(−〈a, a〉I7 − α2I7)
= I7.

In the last results of the present section, the indexes of matrices related to
the matrices defined in (3.1)-(3.2) are determined.

Theorem 3.8. Let a ∈ C7 such that 〈a, a〉 6= 0. Then Ind(Sa) = 1.

Proof : The matrix Sa has index 1 if C7 = R(Sa)⊕N(Sa).
First of all, from 10. in Proposition 3.1, every x ∈ C7 can be written as

x = 〈a, a〉−1(aaTx − S2
ax). Clearly, S2

ax ∈ R(Sa). By 6. in Proposition 3.1,
aaTx ∈ N(Sa) since Sa(aa

Tx) = (Saa)(aTx) = 0.
Secondly, let x ∈ R(Sa) ∩ N(Sa). As x ∈ R(Sa), there exists y ∈ C7

such that x = Say. In addition, x ∈ N(Sa) which, together with 11. in
Proposition 3.1, allows to write 0 = S2

ax = S3
ay = −〈a, a〉Say. Consequently,

y ∈ N(Sa), which implies x = 0.

Theorem 3.9. Let u, v ∈ C7 such that 〈u, u〉 6= 0. Let α ∈ C\{0} such that
α is not a square root of −〈v, v〉. Then Ind((Sv + αI7)

−1Su) = 1.

Proof : By Lemma 3.6, Sv+αI7 is non-singular. Notice thatN((Sv+αI7)
−1Su)

⊆ N(((Sv + αI7)
−1Su)

2). Suppose that

N((Sv + αI7)
−1Su) ( N(((Sv + αI7)

−1Su)
2).

Hence, there exists x ∈ C7\{0} such that ((Sv + αI7)
−1Su)

2x = 0 and (Sv +
αI7)

−1Sux 6= 0. It is clear that N((Sv + αI7)
−1Su) = N(Su). By 13. of

Proposition 3.1, as (Sv + αI7)
−1Sux ∈ N((Sv + αI7)

−1Su),

(Sv + αI7)
−1Sux = δu

for some δ ∈ C\{0}, that is, Sux = δ(Svu + αu). This implies that δαu =
u×x−δv×u and so, 〈δαu, u〉 = 〈u×x−δv×u, u〉 = 0, that is, δα〈u, u〉 = 0,
which is a contradiction. Thus, N((Sv + αI7)

−1Su) = N(((Sv + αI7)
−1Su)

2).
Finally, N(((Sv +αI7)

−1Su)
0) 6= N((Sv +αI7)

−1Su). The result is proved.
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4. Equations
4.1. Vector Cross Product Equations. In the following results, some
vector cross product equations in C7 are presented.

Lemma 4.1. Let a, b ∈ C7 such that 〈a, a〉 6= 0. Then, the equation a×x = b
is consistent in C7 if and only if 〈a, b〉 = 0.

Proof : Observe that, from (3.1), the matrix form of the equation a × x = b

is Sax = b. By Theorem 3.4, S
(1)
a = −〈a, a〉−1Sa is a generalized inverse of

Sa. Invoking Theorem 2.1, Sax = b is consistent if and only if SaS
(1)
a b = b.

Finally, applying 10. in Proposition 3.1, notice that

SaS
(1)
a b = b⇔ −〈a, a〉−1a(atb) + b = b⇔ −〈a, b〉〈a, a〉−1a = 0⇔ 〈a, b〉 = 0.

Theorem 4.2. Let a, b ∈ C7 such that 〈a, a〉 6= 0 and 〈a, b〉 = 0. Then, the
solutions in C7 of the equation a× x = b are

−〈a, a〉−1Sab+ λa, (4.1)

where λ ∈ C.

Proof : From Lemma 4.1, the equation a× x = b is consistent. Furthermore,
from (3.1), the matrix form of the equation a × x = b is Sax = b. Let a0

be a particular solution of this equation. Then, for each λ ∈ C, a0 + λa is a
solution of the same equation since, by 6. in Proposition 3.1,

Sa(a0 + λa) = Saa0 + λSaa = b.

Observe that there are no other solutions for the considered equation. In
fact, if a1 and a2 are two solutions then Sa(a1 − a2) = 0. Hence, a1 − a2 ∈
N(Sa) and, by 13. of Proposition 3.1, a1 = a2 + βa for some β ∈ C.

From the calculations in the proof of Lemma 4.1 with 〈a, b〉 = 0, as

Sa
(
−〈a, a〉−1Sa

)
b = SaS

(1)
a b = b

then −〈a, a〉−1Sab is a solution of the equation in question. Therefore, the
solutions in C7 of this equation are the ones stated in (4.1).

Corollary 4.3. Let a, b ∈ C7 such that 〈a, a〉 6= 0 and 〈a, b〉 = 0. Then, the
solutions in C7 of the equation x× a = b are

〈a, a〉−1Sab+ λa, (4.2)

where λ ∈ C.
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Proof : In order to obtain (4.2), after observing that Sxa = b⇔ Sax = −b by
5. in Proposition 3.1, it suffices to apply Theorem 4.2.

Corollary 4.4. Let a, b ∈ C7 such that 〈a − b, a− b〉 6= 0. The solutions in
C7 of the equation a× x = b× x are λ(a− b) with λ ∈ C.

Proof : As, by 1. in Proposition 3.1, Sax = Sbx ⇔ S(a−b)x = 0, then the
corollary follows invoking Theorem 4.2.

Corollary 4.5. Let a, b ∈ C7 such that 〈a + b, a+ b〉 6= 0. The solutions in
C7 of the equation a× x = x× b are λ(a+ b) with λ ∈ C.

Proof : As, by 1. and 5. in Proposition 3.1, Sax = Sxb ⇔ S(a+b)x = 0, then
the result follows from Theorem 4.2.

Corollary 4.6. Let a, b, c ∈ C7 such that 〈a−b, a− b〉 6= 0 and 〈a−b, c〉 = 0.
Then, the solutions in C7 of the equation a× x = b× x+ c are

−〈a− b, a− b〉−1Sa−bc+ λ(a− b), (4.3)

where λ ∈ C.

Proof : From 1. in Proposition 3.1, Sax = Sbx + c ⇔ Sa−bx = c. Thus, by
Theorem 4.2, (4.3) is obtained.

Corollary 4.7. Let a, b, c ∈ C7 such that 〈a+b, a+ b〉 6= 0 and 〈a+b, c〉 = 0.
Then, the solutions in C7 of the equation a× x = x× b+ c are

−〈a+ b, a+ b〉−1Sa+bc+ λ(a+ b), (4.4)

where λ ∈ C.

Proof : By 1. and 5. in Proposition 3.1, Sax = Sxb + c ⇔ Sa+bx = c. Thus,
(4.4) is got from Theorem 4.2.

In the next corollary, denote the composition of 2m+ 1 functions equal to

a× by a
◦(2m+1)
× .

Corollary 4.8. Let a, b ∈ C7 such that 〈a, a〉 6= 0 and 〈a, b〉 = 0. Then, the

solutions in C7 of the equation a
◦(2m+1)
× x = b are

(−1)m+1〈a, a〉−m−1Sab+ λa, (4.5)

where λ ∈ C.

Proof : By (3.4) in Lemma 3.2, S2m+1
a x = b⇔ Sax = (−1)m〈a, a〉−mb. Hence,

Theorem 4.2 allows to arrive at (4.5).
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The last result of the present section gives a characterization of the column
space of Sa.

Corollary 4.9. Let a ∈ C7 such that 〈a, a〉 6= 0. The column space of Sa is
R(Sa) = {y ∈ C7 : 〈y, a〉 = 0}.

Proof : (⊇) Let y ∈ C7 such that 〈y, a〉 = 0. As 〈a, y〉 = 〈y, a〉, then, from
5. in Proposition 3.1 and the proof of Theorem 4.2, Sa

(
〈a, a〉−1Sya

)
=

Sa
(
−〈a, a〉−1Say

)
= y. Thus, y ∈ R(Sa).

(⊆) Let b ∈ R(Sa) such that 〈b, a〉 6= 0. There is d ∈ C7 such that
Sad = b, which means that d is a solution of Sax = b. By Lemma 4.1, this
equation is consistent in C7 if and only if 〈a, b〉 = 0, that is, 〈b, a〉 = 0 – a
contradiction.

4.2. Vector Cross Product Differential Equations. In the present sec-
tion, some vector cross product differential equations in C7 are considered.
First, we introduce a technical result.

Lemma 4.10. Let b ∈ C7 such that 〈b, b〉 6= 0. Then

e−tSb = cos(βt)I7 −
sin(βt)

β
Sb +

1− cos(βt)

β2
bbT , (4.6)

where β = |〈b, b〉|1/2ei θ2 , with θ an argument of 〈b, b〉.

Proof : Using Lemma 3.2, the expression of e−tSb as a infinite power series
can be written in the following way

e−tSb = (1− 〈b,b〉2 t2 + 〈b,b〉2
4! t

4 + · · · )I7

−(t− 〈b,b〉3! t
3 + 〈b,b〉2

5! t
5 − · · · )Sb

+(1
2t

2 − 〈b,b〉4! t
4 + 〈b,b〉2

6! t
6 − · · · )bbT .

From the infinite power series expansions of the complex functions cos(βt)
and sin(βt), (4.6) is obtained.

Theorem 4.11. Let b ∈ C7 such that 〈b, b〉 6= 0 and let x = x(t) be an
unknown C7-valued function of the real variable t. The unique solution of
the vector cross product differential equation

ẋ+ b× x = 0, (4.7)
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with initial condition x(t0) = x0, is

x(t) = cos(β(t− t0))x0−
sin(β(t− t0))

β
Sbx0 +

1− cos(β(t− t0))
β2

bbTx0, (4.8)

where β = |〈b, b〉|1/2ei θ2 , with θ an argument of 〈b, b〉.

Proof : From (3.1), equation (4.7) assumes the form ẋ + Sbx = 0, which is a
tractable equation by Theorem 2.2. In fact, from Lemma 3.6, (λI7 + Sb)

−1

exists for every λ ∈ C\{0} such that λ2 6= −〈b, b〉. As the coefficient of the
term in ẋ is a non-singular matrix, the classical theory recalled in [9, p.171]
applies to the homogeneous initial value problem ẋ+Sbx = 0, x(t0) = x0. Its
unique solution is given by

x(t) = e−(t−t0)Sbx0.

Invoking Lemma 4.10, we obtain (4.8).

Theorem 4.12. Let b ∈ C7 such that 〈b, b〉 6= 0, let f = f(t) be a C7-valued
function of the real variable t, continuous in some interval containing t0, and
let x = x(t) be an unknown C7-valued function of the real variable t. The
unique solution of the vector cross product differential equation

ẋ+ b× x = f, (4.9)

with initial condition x(t0) = x0, is

x(t) = cos(β(t− t0))x0 −
sin(β(t− t0))

β
Sbx0 +

1− cos(β(t− t0))
β2

bbTx0+∫ t

t0

(
cos(β(t− s))− sin(β(t− s))

β
Sb +

1− cos(β(t− s))
β2

bbT
)
f(s)ds,

(4.10)

where β = |〈b, b〉|1/2ei θ2 , with θ an argument of 〈b, b〉.

Proof : Again by (3.1), we can rewrite equation (4.9) as ẋ+Sbx = f , where the
coefficient of the term in ẋ is a non-singular matrix. Thus, the classical theory
applies to the inhomogeneous initial value problem ẋ + Sbx = f, x(t0) = x0.
Its unique solution is given by

x(t) = e−(t−t0)Sbx0 +

∫ t

t0

e−(t−s)Sbf(s)ds.

From Lemma 4.10, we obtain (4.10).
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Theorem 4.13. Let a, b ∈ C7\{0} and let x = x(t) be an unknown C7-valued
function of the real variable t. The vector cross product differential equation

a× ẋ+ b× x = 0 (4.11)

is not tractable.

Proof : From (3.1), the rewriting of equation (4.11) leads to Saẋ + Sbx = 0.
By Proposition 3.5, for any λ ∈ C, λSa + Sb is a singular matrix and the
result follows from Theorem 2.2.

Taking into account the previous result, the remaining part of the section
is devoted to the study of differential equations which can be considered as
perturbations of (4.11).

Theorem 4.14. Let a ∈ C7 with 〈a, a〉 6= 0, b ∈ C7\{0} and α ∈ C\{0} such
that α is not a square root of −〈b, b〉. Let x = x(t) an unknown C7-valued
function of the real variable t. A vector x0 ∈ C7 is a consistent initial vector
for the vector cross product differential equation

a× ẋ+ b× x+ αx = 0 (4.12)

if and only if x0 is of the form

x0 = ŜaŜ
D
a q, (4.13)

for some q ∈ C7, where

Ŝa = −(α2 + 〈b, b〉)−1
(
Sb − αI7 − α−1bbT

)
Sa. (4.14)

Moreover, if x0 ∈ C7 is a consistent initial vector for (4.12), then the unique
solution of (4.12), with initial condition x(t0) = x0, is

x(t) = e−Ŝ
D
a (t−t0)ŜaŜ

D
a x0. (4.15)

Proof : According to (3.1), equation (4.12) assumes the form Saẋ + (Sb +
αI7)x = 0 where α ∈ C\{0} is such that α2 6= −〈b, b〉. Let us denote Sb+αI7

by B, matrix which, due to Lemma 3.6, is non-singular. Thus, (λSa + B)−1

exists for λ = 0 and, by Theorem 2.2, Saẋ+Bx = 0 is a tractable equation.
Following the notation in [9], let

Ŝa,λ = (λSa +B)−1Sa and B̂λ = (λSa +B)−1B,

where λ ∈ C is such that λSa + B is non-singular. By [9, Theorem 9.2.2, p.
174], the consistency of an initial vector for (4.12) and its general solution are
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independent of the used λ. Hence, in what follows, we drop the subscripts λ
and take λ = 0.

From Theorem 3.9, Ind(Ŝa) = 1. Invoking [9, Theorem 9.2.3, p. 175], we

obtain the necessary and sufficient condition x0 ∈ R(Ŝa) = R(ŜDa Ŝa) for a

vector x0 ∈ C7 to be a consistent initial vector for (4.12). Since ŜDa Ŝa =

ŜaŜDa , we get (4.13). As Ŝa = B−1Sa, then, by (3.7) in Theorem 3.7, we
obtain (4.14).

Assume now that x0 ∈ C7 is a consistent initial vector for (4.12). As B̂ = I7,
once again from [9, Theorem 9.2.3], the unique solution of the homogeneous
initial value problem Saẋ+Bx = 0, x(t0) = x0, is given by (4.15).

Theorem 4.15. Let a ∈ C7 with 〈a, a〉 6= 0, b ∈ C7\{0} and α ∈ C\{0} such
that α is not a square root of −〈b, b〉. Let f = f(t) be a C7-valued function
of the real variable t, continuously differentiable around t0, and let x = x(t)
an unknown C7-valued function of the real variable t. A vector x0 ∈ C7 is a
consistent initial vector for the vector cross product differential equation

a× ẋ+ b× x+ αx = f (4.16)

if and only if x0 is of the form

x0 = (I − ŜaŜDa )f̂(t0) + ŜaŜ
D
a q, (4.17)

for some vector q ∈ C7, where

Ŝa = −(α2 + 〈b, b〉)−1
(
Sb − αI7 − α−1bbT

)
Sa (4.18)

and

f̂ = −(α2 + 〈b, b〉)−1
(
Sb − αI7 − α−1bbT

)
f. (4.19)

Moreover, if x0 ∈ C7 is a consistent initial vector for (4.16), then the unique
solution of (4.16), with initial condition x(t0) = x0, is

x(t) = e−Ŝ
D
a (t−t0)ŜaŜ

D
a x0 +e−Ŝ

D
a t

∫ t

t0

eŜ
D
a sŜDa f̂(s) ds+(I7− ŜaŜDa )f̂(t). (4.20)

Proof : By (3.1), we can rewrite equation (4.16) as Saẋ + (Sb + αI7)x = f ,
where α ∈ C\{0} is such that α2 6= −〈b, b〉. As in the proof of Theorem 4.14,

let B = Sb + αI7, Ŝa = B−1Sa, B̂ = I7, f̂ = B−1f .
Taking into account Theorem 3.9, Ind(Ŝa) = 1. The necessary and suffi-

cient condition x0 ∈ {(I7− ŜaŜDa )f̂(t0)+R(ŜDa Ŝa)} for a vector x0 ∈ C7 to be
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a consistent initial vector for (4.16) comes from [9, Theorem 9.2.3, p. 175],
which leads to (4.17). By (3.7) in Theorem 3.7, we obtain (4.18) and (4.19).

Suppose now that x0 ∈ C7 is a consistent initial vector for (4.16). Once
again from [9, Theorem 9.2.3], the unique solution of the inhomogeneous
initial value problem Saẋ+Bx = f, x(t0) = x0, is given by (4.20).

4.3. Vector Cross Product Difference Equations. In the present sec-
tion, some vector cross product difference equations in C7 are studied.

Theorem 4.16. Let b ∈ C7 such that 〈b, b〉 6= 0 and let x(k) ∈ C7 be the k-th
term of an unknown sequence of vectors, k = 0, 1, 2, ... The unique solution
of the vector cross product difference equation

x(k+1) = b× x(k), (4.21)

with initial condition x(0) = x0, is

x(k) =


x0, k = 0

(−1)
k−1
2 βk−1Sbx0, k ∈ N, odd(

(−1)
k
2+1βk−2bbT + (−1)

k
2βkI7

)
x0, k ∈ N, even

(4.22)

where β = |〈b, b〉|1/2ei θ2 , with θ an argument of 〈b, b〉.

Proof : Due to (3.1), equation (4.21) assumes the form x(k+1) = Sbx
(k), which

is a tractable equation by Theorem 2.3. In fact, from Lemma 3.6, (λI7+Sb)
−1

exists for every λ ∈ C\{0} that is not a square root of −〈b, b〉. Taking
into account the recurrence relation, the unique solution of the homogeneous
initial value problem x(k+1) = Sbx

(k), k = 0, 1, 2, . . . , x(0) = x0, is given by

x(k) = Skb x0, k = 0, 1, 2, ...

From Lemma 3.2, we arrive at (4.22).

Theorem 4.17. Let b ∈ C7 such that 〈b, b〉 6= 0. Let f (k) ∈ C7 be the k-th
term of a sequence of vectors, k = 0, 1, 2, ..., and let x(k) ∈ C7 be the k-th
term of an unknown sequence of vectors, k = 0, 1, 2, .... The unique solution
of the vector cross product difference equation

x(k+1) = b× x(k) + f (k), (4.23)



18 P. D. BEITES, A. P. NICOLÁS AND JOSÉ VITÓRIA

with initial condition x(0) = x0, is

x(k) =



x0, k = 0

(−1)
k−1
2 βk−1Sbx0 +

k−1∑
i=0

Sk−1−i
b f (i), k ∈ N, odd

(
(−1)

k
2+1βk−2bbT + (−1)

k
2βkI7

)
x0 +

k−1∑
i=0

Sk−1−i
b f (i), k ∈ N, even

(4.24)

where β = |〈b, b〉|1/2ei θ2 , with θ an argument of 〈b, b〉.

Proof : Again by (3.1), equation (4.23) assumes the form x(k+1) = Sbx
(k) +

f (k). The recurrence relation allows to obtain the unique solution of the
inhomogeneous initial value problem x(k+1) = Sbx

(k) + f (k), k = 0, 1, 2, . . . ,
x(0) = x0, given by

x(k) = Skb x0 +
k−1∑
i=0

Sk−1−i
b f (i), k = 1, 2, ... (4.25)

From Lemma 3.2, we obtain (4.24).

Corollary 4.18. Let b ∈ C7 such that 〈b, b〉 6= 0, c ∈ C7 and let x(k) ∈ C7 be
the k-th term of an unknown sequence of vectors, k = 0, 1, 2, .... The unique
solution of the vector cross product difference equation

x(k+1) = b× x(k) + c, (4.26)

with initial condition x(0) = x0, is

x(k) =



x0, k = 0

(−1)
k−1
2 βk−1Sbx0 +

k−1∑
i=0

Sibc, k ∈ N, odd

(
(−1)

k
2+1βk−2bbT + (−1)

k
2βkI7

)
x0 +

k−1∑
i=0

Sibc, k ∈ N, even

(4.27)

where β = |〈b, b〉|1/2ei θ2 , with θ an argument of 〈b, b〉.

Proof : A particular case of the previous result, putting c instead of the se-
quence

(
f (k)
)
k∈N0

.



SKEW-SYMMETRIC MATRICES RELATED TO THE VECTOR CROSS PRODUCT IN C7 19

Theorem 4.19. Let a, b ∈ C7\{0} and let x(k) ∈ C7 be the k-th term of an
unknown sequence of vectors, k = 0, 1, 2, ... The vector cross product differ-
ence equation

a× x(k+1) = b× x(k) (4.28)

is not tractable.

Proof : From (3.1), the rewriting of equation (4.28) leads to Sax
(k+1) = Sbx

(k).
From Proposition 3.5, for any λ ∈ C, λSa + Sb is a singular matrix and the
result follows from Theorem 2.3.

Similarly to subsection 4.2, due to the previous result, perturbed versions
of the difference equation (4.28) are now studied.

Theorem 4.20. Let a ∈ C7 with 〈a, a〉 6= 0, b ∈ C7\{0} and α ∈ C\{0} such
that α is not a square root of −〈b, b〉. Let x(k) ∈ C7 be the k-th term of an
unknown sequence of vectors, k = 0, 1, 2, .... A vector x0 ∈ C7 is a consistent
initial vector for the vector cross product difference equation

a× x(k+1) = b× x(k) + αx(k) (4.29)

if and only if x0 is of the form

x0 = ŜaŜ
D
a q, (4.30)

for some q ∈ C7, where

Ŝa = −(α2 + 〈b, b〉)−1
(
Sb − αI7 − α−1bbT

)
Sa. (4.31)

Moreover, if x0 ∈ C7 is a consistent initial vector for (4.29), then the unique
solution of (4.29), with initial condition x(0) = x0, is

x(k) =
(
ŜDa

)k
x0, k = 0, 1, 2, . . . (4.32)

Proof : From (3.1), equation (4.29) assumes the form Sax
(k+1) = Bx(k) where

B = Sb + αI7 with α ∈ C\{0} such that α is not a square root of −〈b, b〉.
By Lemma 3.6, B is non-singular. Owed to this fact, λSa +B is also a non-
singular matrix if λ = 0 and, by Theorem 2.3, (4.29) is a tractable equation.

Following the notation in [9], let

Ŝa,λ = (λSa +B)−1Sa and B̂λ = (λSa +B)−1B,

where λ ∈ C is such that λSa + B is non-singular. By [9, Theorem 9.2.2, p.
174], the consistency of an initial vector for (4.29) and its general solution are
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independent of the used λ. Hence, in what follows, we drop the subscripts λ
and take λ = 0.

By Theorem 3.9, Ind(Ŝa) = 1. Invoking [9, Theorem 9.3.2, p. 182-183],

we get the necessary and sufficient condition x0 ∈ R(Ŝa) = R(ŜDa Ŝa) for a

vector x0 ∈ C7 to be a consistent initial vector for (4.29). As ŜDa Ŝa = ŜaŜDa ,

we obtain (4.30). Since Ŝa = B−1Sa, then, by (3.7) of Theorem 3.7, we arrive
at (4.31).

Suppose now that x0 ∈ C7 is a consistent initial vector for (4.29). Since

B̂ = I7, once again from [9, Theorem 9.3.2], the unique solution of the
homogeneous initial value problem Sax

(k+1) = Bx(k), k = 0, 1, . . . , x(0) = x0,
is given by (4.32).

Theorem 4.21. Let a ∈ C7 with 〈a, a〉 6= 0, b ∈ C7\{0} and α ∈ C\{0}
such that α is not a square root of −〈b, b〉. Let f (k) ∈ C7 be the k-th term of
a sequence of vectors, k = 0, 1, 2, ..., and let x(k) ∈ C7 the k-th term of an
unknown sequence of vectors, k = 0, 1, 2, .... A vector x0 ∈ C7 is a consistent
initial vector for the vector cross product difference equation

a× x(k+1) = b× x(k) + αx(k) + f (k), k = 0, 1, 2, . . . , (4.33)

if and only if x0 is of the form

x0 = −
(
I7 − ŜaŜDa

)
f̂ (0) + ŜaŜ

D
a q, (4.34)

for some q ∈ C7, where

Ŝa = −(α2 + 〈b, b〉)−1
(
Sb − αI7 − α−1bbT

)
Sa (4.35)

and
f̂ (k) = −(α2 + 〈b, b〉)−1

(
Sb − αI7 − α−1bbT

)
f (k). (4.36)

Moreover, if x0 ∈ C7 is a consistent initial vector for (4.33), then the unique
solution of (4.33), with initial condition x(0) = x0, is x(k) given by
x0, k = 0(
ŜDa

)k
ŜaŜ

D
a x0 + ŜDa

k−1∑
i=0

(
ŜDa

)k−i−1

f̂ (i) −
(
I7 − ŜaŜDa

)
f̂ (k), k = 1, 2, . . .

(4.37)

Proof : By (3.1), the rewriting of equation (4.33) leads to Sax
(k+1) = Bx(k) +

f (k), where B = Sb + αI7 with α ∈ C\{0} such that α2 6= −〈b, b〉. As in the

proof of Theorem 4.20, let Ŝa = B−1Sa, B̂ = I7, f̂
(k) = B−1f (k).
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From Theorem 3.9, Ind(Ŝa) = 1. The necessary and sufficient condition

x0 ∈ {−(I7 − ŜaŜDa )f̂ (0) + R(ŜDa Ŝa)} for a vector x0 ∈ C7 to be a consistent
initial vector for (4.33) comes from [9, Theorem 9.3.2, p. 182-183]. Thus, we
obtain (4.34). By (3.7), we get (4.35) and (4.36).

Assume now that x0 ∈ C7 is a consistent initial vector for (4.33). Once
again from [9, Theorem 9.3.2], the unique solution of the inhomogeneous
initial value problem Sax

(k+1) = Bx(k) + f (k), k = 0, 1, 2, . . . , x(0) = x0, is
given by (4.37).
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[1] M. Antić, L. Vrancken, Three-dimensional minimal CR submanifolds of the sphere S6(1) con-

tained in a hyperplane. Mediterranean Journal of Mathematics 12 (2015), 1429–1449.
[2] P. D. Beites, P. Catarino, On the Leonardo quaternion sequence. (2021), submitted.
[3] P. D. Beites, A. P. Nicolás, A note on standard composition algebras of types II and III.

Advances in Applied Clifford Algebras 27 (2017), 955–964.
[4] P. D. Beites, A. P. Nicolás, P. Saraiva, J. Vitória, Vector cross product differential and difference
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