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Abstract: We describe the pronilpotent quotients of a class of projective profinite
groups, that we call ω-presented groups, defined using a special type of presentations.
The pronilpotent quotients of an ω-presented group are completely determined
by a single polynomial, closely related with the characteristic polynomial of a
matrix. We deduce that ω-presented groups are either perfect or admit the p-adic
integers as quotients for cofinitely many primes. We also find necessary conditions for
absolute and relative freeness of ω-presented groups. Our main motivation comes from
semigroup theory: the maximal subgroups of free profinite monoids corresponding to
primitive substitutions are ω-presented (a theorem due to Almeida and Costa). We
are able to show that the incidence matrix of a primitive substitution carries partial
information on the pronilpotent quotients of the corresponding maximal subgroup.
We apply this to deduce that the maximal subgroups corresponding to primitive
aperiodic substitutions of constant length are not absolutely free.
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1.Introduction
In the early 2000s, Almeida established a connection between symbolic dy-

namics and free profinite monoids [1, 2, 3]. He showed that to each minimal
shift space correponds a maximal subgroup of a free profinite monoid, later
named the Schützenberger group of the shift space. This group is obtained
by taking the topological closure of the language of the shift space inside the
corresponding free profinite monoid, and it defines an invariant of the shift
space: two conjugate shift spaces have isomorphic Schützenberger groups [7] (as
do, even, flow equivalent shift spaces [8]).

In 2013, Almeida and Costa showed how to obtain presentations for the
Schützenberger groups corresponding to substitutive minimal shift spaces using
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return substitutions and ω-powers [4]. Using a similar process, every endomor-
phism of a free group of finite rank yields a presentation for some profinite group.
Groups thus defined are called ω-presented and they are formally introduced in
§3.1. The main goal of this paper is to describe the pronilpotent quotients of
ω-presented groups and apply this knowledge to study Schützenberger groups
of primitive substitutions. In order to do this, we rely on several properties of
maximal quotient functors which are presented in §2. Since ω-presented groups
are projective (§3.1), their maximal pronilpotent quotients are products of free
pro-p groups (§2.2). The ranks of these pro-p components are completely deter-
mined, in a very straightforward way, by a single polynomial: the reciprocal of
the characteristic polynomial of the incidence matrix of the free group endomor-
phism used in the ω-presentation (§3.2). In particular, for a given ω-presented
group, all the information about its pronilpotent quotients is contained in this
single polynomial.

Using all of this, we draw a number of conclusions. We show in §3.3 that these
groups are either perfect, or have prime-rich Abelianizations, in the sense that
they admit the p-adic integers as quotients for cofinitely many primes. In §3.4,
we give necessary conditions for absolute and relative freeness of ω-presented
groups (on this topic, other results may also be found in a recent preprint by
the author [16]). This may be viewed as a contribution toward a solution to a
problem proposed in 2013 by Almeida and Costa [4, Problem 8.3].

In §4, we specialize these results to maximal subgroups of free profinite monoids
corresponding to primitive substitutions. In this case, an ω-presentation can be
obtained using a return substitution [4]. Our first observation is that these groups
are neither perfect nor pro-p, partially answering a question of Zalesskii reported
by Almeida and Costa [4]. Extending an idea of Durand (§4.3), we show that the
structure of the pronilpotent quotients of the maximal subgroup corresponding
to a primitive aperiodic substitution is partially reflected in the characteristic
polynomial of the substitution itself (§4.4). The section culminates with one of
our main results: the Schützenberger group of a primitive aperiodic substitution
of constant length is not absolutely free (Theorem 4.12). We conclude with a
series of examples that illustrate various aspects of our results (§4.5).

2.Maximal pronilpotent quotients
The aim of this section is to collect some general facts about maximal quotient

functors, and more specifically about the pronilpotent one. We also recall along
the way some definitions and set up some notation for the next sections. The first
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subsection is concerned with general properties of maximal quotient functors,
while the second one focuses on the pronilpotent case.

2.1.Maximal quotient functors. By a pseudovariety, we mean a class of
finite groups H closed under taking quotients and subgroups, and forming
finite direct products. For the definition and basic properties of so-called pro-H
groups, the reader may wish to consult Ribes and Zalesskii’s book on the topic
[22]. (Note that they use the term variety instead of pseudovariety.) Let

• G be the pseudovariety of all finite groups;
• Gp be the pseudovariety of finite p-groups (p a prime);
• Gnil be the pseudovariety of finite nilpotent groups.

Pro-H groups are respectively called profinite when H = G, pro-p when H = Gp

or pronilpotent when H = Gnil.
Given a profinite group G and a pseudovariety H, we let RH(G) be the

intersection of all clopen normal subgroups N ⊴ G such that G/N ∈ H. We
further define QH(G) = G/RH(G), and we denote by µHG : G → QH(G) the
corresponding canonical epimorphism, µHG(x) = xRH(G). Note that QH(G) is
pro-H: it is a subdirect product of the groups G/N , where N ranges over all
clopen normal subgroups N ⊴ G such that G/N ∈ H, and every subdirect
product of pro-H groups is also pro-H [22, Proposition 2.2.1(c)].

Let Pro(H) be the category of pro-H groups equipped with continuous group
homomorphisms, and consider the inclusion functor IH : Pro(H) → Pro(G).
The next result is standard, although not usually stated in those terms. We
include a proof for the reader’s convenience. For more details on adjunctions, we
refer to Mac Lane’s book [20, §IV]. The reader will also find there the definition
of universal arrows used in the proof below [20, §III.1].

Proposition 2.1 (cf. [22, Lemma 3.4.1(a)]). For every pseudovariety H, QH is
a functor which is a left adjoint of IH. Moreover, µH is a natural transformation
which is the unit of this adjunction.

Proof : It suffices to show that for every profinite group G, the pair (QH(G), µHG )
is a universal arrow from G to IH [20, §IV.1, Theorem 2].

LetH be a pro-H group and φ : G→ H be a continuous group homomorphism.
The set B of all clopen normal subgroups N ⊴ H such that H/N ∈ H
forms a neighborhood basis of the identity element of H [22, Theorem 2.1.3].
Hence, ker(φ) is the intersection

⋂
N∈B φ

−1(N) and G/φ−1(N) ∼= H/N ∈ H.
Thus, RH(G) ⊆ ker(φ) and by standard properties of quotients, the map
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φ̄ : QH(G) → H defined by φ̄(xRH(G)) = φ(x) is a well-defined morphism of
profinite groups. In particular, it satisfies φ̄µHG = φ, as required.

Note that QH acts on morphisms as follows: if φ : G→ G′ is a morphism of
profinite groups, then QH(φ) is the unique morphism satisfying QH(φ)µ

H
G =

µHG′φ. The group QH(G) is called the maximal pro-H quotient of G, and when
H = Gnil or Gp, the maximal pronilpotent quotient or maximal pro-p quotient
of G. Moreover, we abbreviate QGnil

by Qnil and QGp
by Qp.

Left adjoints are unique up to natural isomorphism [20, §IV.1, Corollary 1].
We make use of this fact to establish the next lemma. The proof uses a character-
ization of pro-H groups which already appeared in the previous proof: a profinite
group G is pro-H if and only if its identity element admits a neighborhood
basis consisting of clopen normal subgroups N ⊴ G such that G/N ∈ H [22,
Theorem 2.1.3].

Lemma 2.2. Let H and K be pseudovarieties. There is a natural isomorphism

QHQK
∼= QH∩K.

Proof : Let L = H∩K. We claim that a profinite group G which is both pro-H
and pro-K must also be pro-L. Let B and B′ be neighborhood bases of the
identity element of G consisting of clopen normal subgroups N ⊴ G satisfying
respectively G/N ∈ H (for N ∈ B) and G/N ∈ K (for N ∈ B′). Given N ∈ B,
there is N ′ ∈ B′ such that N ′ ⊆ N , hence G/N is a quotient of G/N ′. In
particular, G/N ∈ L which proves the claim.

By the previous paragraph, QHQK is a functor Pro(G) → Pro(L). By the
uniqueness of left adjoints, it suffices to show that QHQK is a left adjoint of
IL, or equivalently that for every profinite group G, the pair (QH(K), µHKµ

K
G ),

where K = QK(G), is a universal arrow from G to IL [20, §IV.1, Theorem 2].
Let φ : G → H be a morphism of profinite groups, where H is pro-H. The

universal properties of QK(G) and QH(K) give morphisms φ′ : QK(G) → H
and φ′′ : QH(K) → H such that φ′µKG = φ and φ′′µHK = φ′, as in the diagram
below.

G QK(G) K QH(K)

H H

µK
G

φ φ′

µH
K

φ′

φ′′

Finally, we find that φ′′µHKµ
K
G = φ′µKG = φ, as required.
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Let us denote by F̂H(X, ∗) the free pro-H group over a pointed Stone space
(X, ∗). Free pro-H groups have the universal property determined by the fact
that F̂H is the left adjoint of UH, where UH is the forgetful functor from the
category of pro-H groups to that of pointed Stone spaces (with the identity
element of a group acting as basepoint). See [22, §3] for more details. We
abbreviate F̂G by F̂ , F̂Gnil

by F̂nil, and F̂Gp
by F̂p for every prime p. Groups of

the form F̂ (X, ∗), F̂p(X, ∗) and F̂nil(X, ∗) are respectively called free profinite
groups, free pro-p groups and free pronilpotent groups. Next is a slightly stronger
version of a well-known result.

Lemma 2.3. Let H and K be pseudovarieties. There is a natural isomorphism

QHF̂K
∼= F̂H∩K.

Proof : The case K = G is handled by [22, Proposition 3.4.2]. To deduce the
general case, use the first case together with Lemma 2.2, as follows:

QHF̂K
∼= QHQKF̂ ∼= QH∩KF̂ ∼= F̂H∩K.

2.2.Pronilpotent quotients of projective profinite groups. Recall that a
profinite group G is projective when, for all profinite groups H and K, and all
morphisms of profinite groups φ : G→ H and ψ : K → H, with ψ surjective,
there exists a morphism φ′ : K → H such that ψφ′ = φ.

G

K H

φ
φ′

ψ

Our main result for this section, Proposition 2.6 below, is a decomposition
of the maximal pronilpotent quotient for projective profinite groups. Bearing
in mind the properties of maximal quotient functors presented in §2.1, it is
a mostly straightforward consequence of Tate’s characterization of projective
pro-p groups, which we now recall.

Let A be a set (possibly infinite) equipped with its discrete topology, and H
be a pseudovariety. Consider the pointed Alexandroff extension (A ∪ {∗}, ∗)
of A. We stress that A ∪ {∗} has an extra point even when A is finite, so the
term compactification would be a misnomer. We write F̂H(A) as a shorthand
for F̂H(A∪{∗}, ∗), the free pro-H group over the pointed Alexandroff extension
of A. Groups of the form FH(A) are sometimes known as free pro-H groups on
sets converging to 1. Observe that if two sets A and B are in bijection, then
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(A ∪ {∗}, ∗) and (B ∪ {∗}, ∗) are homeomorphic. Hence, up to isomorphism,
F̂H(A) depends only on Card(A).

Let G be a profinite group and A be a set. Recall that a map f : A → G
converges to 1 when, for every clopen neighborhood U of the identity element
of G, the preimage f−1(U) contains all but finitely many elements of A. If G is
a pro-H group, then the pro-H group morphisms F̂H(A) → G are in bijection
with the maps f : A→ G converging to 1. A result of Melnikov states that every
free pro-H group is isomorphic to F̂H(m) for some cardinal m, called its rank
[22, Proposition 3.5.12]. In particular, every profinite group G admits a map
A → G converging to 1 for some set A, and we denote by d(G) the smallest
cardinality of such a set. Here is a statement for Tate’s theorem extracted from
the proof found in Fried and Jarden’s book [14, Proposition 22.7.6].

Theorem 2.4 (Tate). Let G be a projective pro-p group. Then, G is isomorphic
to F̂p(d(G)), the free pro-p group of rank d(G).

Let G be a profinite group and p be a prime. A p-Sylow subgroup of G is
a closed pro-p subgroup H ≤ G such that [G : H] is coprime to p. (The
definition of the index [G : H] may be recalled in [22, §2.3]). It is well known
that G is pronilpotent if and only if it has, for every prime p, a unique p-Sylow
subgroup, which we denote Gp [22, Proposition 2.3.8]. Moreover, in that case,
G =

∏
pGp where p ranges over all primes. In the next lemma, we record a

simple observation which will prove useful in the sequel. Let us write Rp in
place of RGp

for every prime p (so Rp(G) denotes the intersection of the clopen
normal subgroups N ⊴ G such that G/N ∈ Gp).

Lemma 2.5. Let G be a pronilpotent group. For every prime p, the p-Sylow
subgroup Gp is isomorphic to Qp(G). In particular, G is isomorphic to

∏
pQp(G)

where p ranges over all primes.

Proof : Fix a prime p and let N be the kernel of the component projection
G → Gp. Since G/N ∼= Gp is pro-p, we have Rp(G) ⊆ N . Let M ⊴ G be a
clopen normal subgroup such that G/M is a finite p-group. Then, N/(N∩M) ∼=
(MN)/M is a subgroup of G/M , hence it is also a finite p-group. Note however
that N ∼= G/Gp, so the order of N is coprime to p. Hence, N/(N ∩M) is trivial
and N ⊆M . This shows that N ⊆ Rp(G), finishing the proof.

We now give our main result for this section. Let Abp be the pseudovariety
of finite elementary Abelian p-groups. Given a profinite group G, we abbreviate
d(QAbp

(G)) by dp(G).
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Proposition 2.6. For every projective profinite group G, we have

Qnil(G) ∼=
∏
p

F̂p(dp(G)),

where p ranges over all primes.

Proof : By Lemmas 2.2 and 2.5, we have that Qnil(G) is isomorphic to the
product

∏
pQp(G) for p ranging over all primes. Fix a prime p and let H stand

for Qp(G); it suffices to show that H ∼= F̂p(dp(G)). Since G is projective, so is H
[14, Proposition 22.4.8]. By Tate’s theorem (Theorem 2.4), it follows that H ∼=
F̂p(d(H)). On the one hand, we have d(H) = d(QAbp

(H)) [14, Lemma 22.7.4],
while on the other hand, Lemma 2.2 implies that QAbp

(H) ∼= QAbp
(G), hence

d(QAbp
(H)) = dp(G).

Remark 2.7. A further consequence of [14, Lemma 22.7.4] is that QAbp
(G) and

(Z/pZ)dp(G) are isomorphic as elementary Abelian p-groups. If G is finitely
generated, then dp(G) is finite for every p and it also gives the dimension of
QAbp

(G) as a vector space over Z/pZ. This fails when dp(G) is infinite [14,
Remark 22.7.5].

The decomposition of the maximal pronilpotent quotient above leads to the
characterization of pronilpotent quotients below. Let us say that a profinite
group G is m-generated, for a cardinal m, if there is a map m → G converging
to 1 whose image generates a dense subgroup of G.

Corollary 2.8. Let G be a projective profinite group and H be a pronilpotent
group. Then, H is a continuous homomorphic image of G if and only if for
every prime p, the p-Sylow subgroup of H is dp(G)-generated.

Proof : If ψ : G → H is a surjective morphism of profinite groups, then so
is Qp(ψ) : Qp(G) → Qp(H), for every prime p. By the proof of the previous
proposition, d(Qp(G)) = dp(G), while by Lemma 2.5, Qp(H) is isomorphic to
the p-Sylow subgroup Hp, hence Hp is indeed dp(G)-generated.

On the other hand, assume that for every prime p, Hp is dp(G)-generated.
Then, the proof of the previous proposition shows that Qp(G) ∼= F̂ (dp(G)),
hence there is a surjective morphism of profinite groups ψp : Qp(G) → Hp.
Since H is the product of its Sylow subgroups, ψ =

∏
p ψp gives a surjective

morphism
∏

pQp(G) → H. The result follows since
∏

pQp(G) ∼= Qnil(G) is
itself a continuous homomorphic image of G.
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3.ω-presented groups
In this section, we introduce ω-presented groups (§3.1) and give a formula for

the dimensions of the vector spaces QAbp
(G), where G is an ω-presented group

(§3.2). We then proceed to deduce a number of things about the structure of
ω-presented groups in §§3.3 and 3.4.

3.1.ω-presentations. Let A be a set and R be a subset of F̂ (A). Denote by
N(R) the closed normal subgroup of F̂ (A) generated by R. A presentation of a
profinite group G is a pair (A,R) with A and R as above and F̂ (A)/N(R) ∼= G.
We write G ∼= ⟨A | R⟩. We call A the set of generators and R the set of relators.

Projective profinite groups are also characterized by a special kind of presenta-
tion (Proposition 3.2). This was first noticed by Lubotzky [19, Proposition 1.1]
and later extended by Almeida and Costa to the setting of profinite semigroups
[4, Proposition 2.4]. Both sources work with finitely generated objects, but for
profinite groups, the characterization holds in full generality. We start with a
lemma.

Lemma 3.1. Let A be a set and ψ be a continuous endomorphism of F̂ (A). If
ψ is idempotent, then Im(ψ) ∼= ⟨A | ψ(a)a−1 : a ∈ A⟩.

Proof : Letting R = {ψ(a)a−1 : a ∈ A}, it is enough to show that N(R) =
ker(ψ). It follows from the idempotence of ψ that

ker(ψ) = {ψ(x)x−1 : x ∈ F̂ (A)},

hence N(R) ⊆ ker(ψ). Showing that the remaining inclusion holds amounts to
establishing that H = {x ∈ F̂ (A) : ψ(x)x−1 ∈ N(R)} is the whole of F̂ (A).
Equivalently, we have to show that H is a closed subgroup of F̂ (A) that contains
A. That H is closed follows readily from the fact that so is N(R), together with
the continuity of ψ and basic properties of compact groups. That H contains A
follows from its definition. Finally, for x, y ∈ H, we find that

ψ(x−1y)(x−1y)−1 = ψ(x−1)ψ(y)y−1x = x−1(ψ(x)x−1)−1(ψ(y)y−1)x,

and since N(R) is a normal subgroup of F̂ (A), we have x−1y ∈ H.

Proposition 3.2. Let A be a set of cardinality m and G be an m-generated
profinite group. Then, G is projective if and only if G ∼= ⟨A | ψ(a)a−1 : a ∈ A⟩,
where ψ is a continuous idempotent endomorphism of F̂ (A).
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Proof : Suppose that G ∼= ⟨A | ψ(a)a−1 : a ∈ A⟩ for some continuous idem-
potent endomorphism ψ of F̂ (A). By the previous lemma, this means that
G ∼= Im(ψ), hence G is isomorphic to a closed subgroup of F̂ (A). Therefore,
it must be projective [22, Lemma 7.6.3]. Conversely, assume that G is pro-
jective. Since G is A-generated, there is a surjective morphism of profinite
groups α : F̂ (A) → G. By projectivity, there is a morphism of profinite groups
β : G→ F̂ (A) such that αβ = idG. Let ψ be the composite βα. Plainly, ψ is an
idempotent endomorphism and ker(ψ) = ker(α). Hence, G = Im(α) ∼= Im(ψ)
and the previous lemma concludes the proof.

We now restrict our attention to an even more specialized form of presentation.
First, recall that if G is a finitely generated profinite group, then End(G), the
space of continuous endomorphisms of G equipped with composition and the
pointwise topology, is a profinite monoid [17, Proposition 1]. In particular, for
every endomorphism ψ ∈ End(G), the sequence (ψn)n≥1 has a unique idempo-
tent accumulation point given by ψω = limn ψ

n! [5, Proposition 3.7.2 and 3.9.2].
Given a finite set A, let F (A) denote the free group over A and End(F (A)) be
the set of endomorphisms of F (A). Viewing F (A) as a subgroup of F̂ (A), it
follows from the universal property of F̂ (A) that every φ ∈ End(F (A)) admits
a continuous extension φ̂ ∈ End(F̂ (A)).

Definition 3.3 (ω-presented groups). A profinite group G is called ω-presented
when it admits a presentation of the form G ∼= ⟨A | φ̂ω(a)a−1 : a ∈ A⟩, where A
is a finite set and φ ∈ End(F (A)). We then say that φ defines an ω-presentation
of G.

We emphasize that ω-presented groups are finitely generated by definition.
While it clearly follows from Proposition 3.2 above that every ω-presented
group is projective, it does not hold that every projective profinite group is
ω-presented. First and most obviously for not all projective profinite groups
are finitely generated, as ω-presented groups must be. But second and perhaps
more interestingly, no ω-presented group is a pro-p group (§3.3).

3.2.Dimension formula. Following §2.2, the maximal pronilpotent quotient
of a projective profinite group G is completely determined by the cardinals
dp(G), which in the finitely generated case agree, for each prime p, with the
dimension of QAbp

(G) as a vector space over Z/pZ. Proposition 3.5 below gives
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a simple formula for these dimensions in case G is ω-presented, which we call
the dimension formula.

Before stating this proposition, we need to set up some notation. Let φ
be an endomorphism of F (A), where A is a finite set. For every a ∈ A, let
| − |a : F (A) → Z be the group homomorphism defined on b ∈ A by |b|a = 1 if
a = b and |b|a = 0 otherwise. The incidence matrix of φ is the A× A matrix
over Z defined by

Mφ(a, b) = |φ(b)|a, a, b ∈ A.

Given a prime p, we denote by Mp,φ the matrix over Z/pZ obtained by reducing
modulo p the coefficients of Mφ. We define the characteristic polynomial of a
square matrix M by χ(x) = det(x−M), with the convention that χ = 1 when
M is the empty matrix. We denote by χφ and χp,φ respectively the characteristic
polynomial of Mφ and Mp,φ. Given a polynomial ξ of degree n, we let ξ∗ be
its reciprocal polynomial, defined by ξ∗(x) = xnξ(x−1). We also call χφ and χ∗

φ

the characteristic polynomial and reciprocal characteristic polynomial of φ. We
record the following observations for future use.

Remark 3.4. Let K be an algebraically closed field and M be a square matrix
over K. Let χ be the characteristic polynomial of M . Recall that χ splits over K
and that its roots are precisely the eigenvalues of M in K. By Vieta’s formulas,
the degree of χ∗ is the number of non-zero eigenvalues of M counted with
multiplicity. Moreover, up to a sign, the leading coefficient of χ∗ is the product,
taken with multiplicities, of the non-zero eigenvalues of M . This quantity is
sometimes known as the pseudodeterminant of M , and we denote it by pdet(M).

Proposition 3.5 (Dimension formula). Let φ ∈ End(F (A)) define an ω-
presentation of a profinite group G. The dimension of QAbp

(G) over Z/pZ is
deg(χ∗

p,φ).

Proof : For convenience, we write Fp = Z/pZ. By Lemma 3.1, we have G ∼=
Im(φ̂ω), thus what we need is to compute the dimension of the image of
QAbp

(φ̂)ω. Note that QAbp
(φ̂) is a linear transformation of FAp which may

be identified with the matrix Mp,φ. Moreover, End(FAp ) is a finite monoid, so
Mω

p,φ =Mn
p,φ for infinitely many positive integers n, and it follows that

ker(Mω
p,φ) = {x ∈ FAp : ∃n ≥ 1,Mn

p,φ(x) = 0}.

But this is the generalized eigenspace of Mp,φ of eigenvalue 0, which has dimen-
sion mul0(χp,φ), the multiplicity of 0 as a root of χp,φ [24, Corollary 7.5.3(2)].
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By the rank-nullity theorem,

dim(Im(Mω
p,φ)) = deg(χp,φ)−mul0(χp,φ) = deg(χ∗

p,φ).

In light of §2.2, we then have the following.

Theorem 3.6. If φ ∈ End(F (A)) defines an ω-presentation of a profinite
group G, then Qnil(G) ∼=

∏
p F̂p(deg(χ

∗
p,φ)). Moreover, a pronilpotent group H

is a continuous homomorphic image of G if and only if for every prime p, the
p-Sylow subgroup of H is deg(χ∗

p,φ)-generated.

Proof : By Proposition 2.6, the first part follows if we show that dp(G) =
deg(χ∗

p,φ) for every prime p. Since G is finitely generated, dp(G) is the dimension
of QAbp

(G) over Z/pZ (Remark 2.7), which is indeed deg(χ∗
p,φ) by the dimension

formula. The second part is proved in a similar way, using Corollary 2.8.

3.3.Perfect ω-presented groups. We now characterize perfect ω-presented
groups and describe what happens otherwise. We deduce that ω-presented
groups are never pro-p, and this includes the maximal subgroups of free profinite
monoids defined by primitive substitutions (the topic of §4). The material in
this section partially answers a question of Zalesskii reported in [4, §8]: can
free pro-p groups be realized as maximal subgroups of free profinite monoids?
The answer is negative at least for the maximal subgroups corresponding to
primitive substitutions. At time of writing, the question remains open for
arbitrary minimal shift spaces.

Let us start with a characterization. By a perfect profinite group, we mean a
profinite group G whose commutator subgroup is dense in G. Equivalently, the
maximal pro-Abelian quotient of G is trivial.

Proposition 3.7. Let φ define an ω-presentation of a profinite group G. Then,
G is perfect if and only if Mφ is nilpotent, i.e. Mn

φ = 0 for some n ≥ 1.

Proof : Note that non-trivial pronilpotent groups are not perfect (they are
prosolvable), hence G is perfect if and only if its maximal pronilpotent quotient
is trivial. Then, by Theorem 3.6, G is perfect if and only if deg(χ∗

p,φ) = 0 for all
primes. However, for cofinitely many primes, deg(χ∗

p,φ) = deg(χ∗
φ). The latter

is zero if and only if χφ(x) = xn, and this is equivalent to Mφ being nilpotent
by the Cayley–Hamilton theorem.

We deduce immediately the following result.
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Corollary 3.8. If G is ω-presented, then either G is a perfect profinite group,
or the group Zp of p-adic integers is a continuous homomorphic image of G
for cofinitely many primes p. In particular, non-trivial pro-p groups are not
ω-presented.

Proof : If G is not perfect, then Mφ is not nilpotent and deg(χ∗
φ) > 0. As

previously noted, deg(χ∗
φ) = deg(χ∗

p,φ) for cofinitely many primes p. But by
Theorem 3.6, the product Znp where n = deg(χ∗

p,φ) is the Abelianization of
Qp(G), hence it is a continuous homomorphic image of G. The last part follows
by recalling that non-trivial prosolvable groups are not perfect.

Both alternatives occur in a non-trivial way. In §3.5, we exhibit a non-trivial
perfect ω-presented group. As for the other alternative, plenty of non-trivial
examples are found among maximal subgroups of free profinite monoids (§4).

3.4.Freeness. We give necessary conditions for absolute and relative freeness
of ω-presented groups. These results partially address [4, Problem 8.3].

Let H be a pseudovariety. We say that a profinite group is free with respect
to H if it is isomorphic to F̂H(A) for some set A. A profinite group is called
relatively free if it is free with respect to some pseudovariety H, and absolutely
free if moreover H = G, the pseudovariety of all finite groups. The next
proposition characterizes relative freeness of maximal pronilpotent quotients of
ω-presented groups. Let π be a set of primes. We let Gnil,π be the pseudovariety
of finite nilpotent groups whose p-Sylow subgroups are trivial for all primes
p /∈ π.

Proposition 3.9. Let φ ∈ End(F (A)) define an ω-presentation of a profinite
group G. Let π be the set of all primes p such that deg(χ∗

p,φ) ̸= 0. Then, the
following are equivalent.

(i) Qnil(G) is relatively free.
(ii) For every prime p, deg(χ∗

p,φ) equals deg(χ∗
φ) or 0.

(iii) Qnil(G) is free with respect to the pseudovariety Gnil,π.
In particular, Qnil(G) is a free pronilpotent group if and only if the pseudode-
terminant of Mφ is ±1.

Proof : (i) implies (ii). Suppose that Qnil(G) is free with respect to a pseu-
dovariety H, say Qnil(G) = F̂H(A) where A is a finite set of cardinality n.
The case n = 0 is trivial: the only substitution on the empty alphabet has
an empty incidence matrix, so then χ∗

φ = 1 and (ii) holds trivially. We may
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assume from now on that n > 0. Fix a prime p ∈ π and let k = deg(χ∗
p,φ).

Theorem 3.6 implies that F̂p(k) is a continuous homomorphic image of G, hence
so is (Z/pZ)k. Since p ∈ π, we have k > 0, hence Z/pZ ∈ H and Abp ⊆ H.
It follows from Lemma 2.3 that QAbp

(G) ∼= (Z/qZ)n. In particular, n is the
dimension of QAbp

(G) over Z/pZ, so the dimension formula (Proposition 3.5)
implies that n = k. But recall that deg(χ∗

p,φ) = deg(χ∗
φ) for all sufficiently large

p ∈ π, hence n = deg(χ∗
φ) and the result follows.

(ii) implies (iii). Writing d = deg(χ∗
φ), we have by assumption deg(χ∗

p,φ) = 0
whenever p /∈ π and deg(χ∗

p,φ) = d otherwise. Applying Theorem 3.6 then gives

Qnil(G) ∼=
∏
p

F̂p(deg(χ
∗
p,φ))

∼=
∏
p∈π

F̂p(d),

which is indeed the free pro-Gnil,π group of rank d (e.g. by Lemmas 2.3 and
2.5).

That (iii) implies (i) is trivial, so it remains only to prove the last part of the
statement. Recall that the leading coefficient of χ∗

φ is equal, up to a sign, to
the pseudodeterminant of Mφ (Remark 3.4). Thus, if pdet(Mφ) = ±1, then (ii)
is satisfied, π is the set of all primes and by (iii), Qnil(G) is free pronilpotent.
Conversely, suppose that Qnil(G) is free pronilpotent and that moreover there
is a prime p that divides pdet(Mφ). In particular, deg(χ∗

p,φ) < deg(χ∗
φ) and

Qnil(G) is non-trivial. Since Qnil(G) is relatively free, (ii) must hold, thus
deg(χ∗

p,φ) = 0. But then, (iii) implies that the p-Sylow subgroup of Qnil(G)
is trivial, contradicting the fact that Qnil(G) is a non-trivial free pronilpotent
group.

We proceed to deduce necessary conditions for an ω-presented group to be
relatively or absolutely free. We think of these two results as quick tests for
relative and absolute freeness. The second one extends a recent result of the
author [16, Corollary 4.7].

Corollary 3.10. Let φ define an ω-presentation of a profinite group G. If there
is a prime p such that 0 < deg(χ∗

p,φ) < deg(χ∗
φ), then G is not relatively free.

Proof : If G is relatively free, then so is Qnil(G) by Lemma 2.3. But the assump-
tion that 0 < deg(χ∗

p,φ) < deg(χ∗
φ) contradicts (ii) from Proposition 3.9.

Corollary 3.11. Let φ define an ω-presentation of a profinite group G. If
pdet(Mφ) is not ±1, then G is not absolutely free.
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Proof : We prove the contrapositive. If G is absolutely free, then it follows from
Lemma 2.3 that Qnil(G) is a free pronilpotent group, hence pdet(Mφ) = ±1 by
the last part of Proposition 3.9.

3.5. A perfect example. We conclude this section with an example of a
perfect ω-presented group. Consider the following endomorphism of the free
group F ({0, 1}):

ψ :

{
0 7→ 010−11−1

1 7→ 0.

Let P = Im(ψ̂ω) be the corresponding ω-presented group. Plainly, Mψ is
nilpotent, so Proposition 3.7 ensures that P is perfect. We now show that P is
non-trivial.

Consider a finite set A and a finite group H. Let End(F̂ (A)) act on the
right of HA as follows: an element t ∈ HA, viewed as a map t : A → H,
naturally corresponds to a morphism of profinite groups t̂ : F̂ (A) → H. For
φ ∈ End(F̂ (A)), define

tφ = (t̂ ◦ φ)|A.
This gives a continuous right monoid action of End(F̂ (A)) onHA [4, Lemma 3.1].
Moreover, H is a continuous homomorphic image of Im(φω) if and only if there
exists t ∈ HA and k ≥ 1 such that {t(a) : a ∈ A} generates H and tφk

= t [4,
Proposition 3.2]. Let F4 be the field with 4 elements.

Proposition 3.12. The special linear group SL2(F4) is a continuous homo-
morphic image of P .

Proof : Let g be a generator of the multiplicative group F×
4 , and consider the

following 2× 2 matrices over F4:

u =

(
1 1
1 0

)
, v =

(
0 1
1 g

)
.

One checks, via explicit computations, that

(u, v)ψ
2

= (wuw−1, wvw−1), where w =

(
g 1
0 1

)
.

It follows that (u, v)ψ2k

= (u, v), where k is the order of the matrix w in GL2(F4),
the general linear group of dimension 2 over F4. Let H be the subgroup of
SL2(F4) generated by {u, v}. By the aforementioned result [4, Proposition 3.2],
it follows that H is a continuous homomorphic image of P . As P is perfect, so is
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H. But then H is a non-trivial perfect subgroup of SL2(F4), and since the latter
is the smallest non-trivial perfect group, we conclude that H = SL2(F4).

Question 3.13. We wonder whether the above argument can be generalized to
show that SL2(F2n) is a continuous homomorphic image of P for every n ≥ 2,
where F2n is the field with 2n elements.

Using GAP and SageMath [15, 23], we were able to verify that the answer is
positive for 2 ≤ n ≤ 12.

4.Maximal subgroups of free profinite monoids
We further study examples of ω-presented groups arising from Almeida’s

correspondence between shift spaces and maximal subgroups of free profinite
monoids (recalled in §4.1). We will focus on such maximal subgroups correspond-
ing to primitive aperiodic substitutions. These groups are projective profinite
groups by the main result of [21], and are in fact ω-presented by the main
result of [4]. This last result is of particular interest to us, so additional details
are given in §4.2. In §4.3, we revisit a result of Durand about eigenvalues of
return substitutions. (By an eigenvalue of a substitution, we simply mean an
eigenvalue of its incidence matrix.) In §4.4, using this result, we relate more
directly the characteristic polynomial of a primitive aperiodic substitution with
the pronilpotent quotients of its Schützenberger group. We proceed to deduce
specialized forms of the freeness tests of §3.4 and finally that the ω-presented
groups corresponding to primitive aperiodic substitutions of constant length
cannot be free (Theorem 4.12, our main result of this section). We finish, in
§4.5, with a series of examples.

4.1.Almeida’s correspondence. We give a brief account of Almeida’s corre-
spondence, which associates to each minimal shift space a maximal subgroup
in a free profinite monoid. For a more collected presentation of the topic, see
Almeida et al.’s recent monograph [5]. Given a finite discrete set A, consider the
space AZ equipped with the product topology. The map σ : AZ → AZ defined
by σ(x)n = xn+1 defines a self-homeomorphism of AZ called the shift map. A
shift space is a closed, non-empty subset X ⊆ AZ satisfying σ(X) = X . Define
the language of a shift space X to be the subset L(X) of the free monoid A∗

formed by all words appearing as finite, contiguous subsequences in the elements
x ∈ X . A shift space is called minimal if it contains no shift space besides itself.
It is well-known that a shift space is minimal if and only if L(X) is uniformly
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recurrent: this is essentially [5, Proposition 5.2.3]. (The definition of uniform
recurrence may recalled e.g. in [5, p.140].)

Almeida showed in [3] that if X is a minimal shift space, then the topological
closure of L(X) in the free profinite monoid Â∗ intersects Â∗\A∗ in a regular J -
class. By standard semigroup theory, this J -class contains maximal subgroups
of Â∗ that are (continuously) isomorphic to one another. We may think of these
maximal subgroups as one single group, sometimes known as the Schützenberger
group of X. We say that a minimal shift space is periodic if it is finite, or
equivalently if its points have finite orbit under the shift map σ. Otherwise, by
minimality, all points of X have infinite orbit under σ and we say that X is
aperiodic. If X is periodic, then its Schützenberger group is easily described: it
is simply a free profinite group of rank 1 [6, Theorem 7.5]. Hence, we restrict
our attention to the aperiodic case.

Let now φ be a primitive substitution over a finite alphabet A. That is, φ
is an endomorphism of A∗ whose incidence matrix Mφ is a primitive matrix.
Equivalently, there is n ∈ N such that, for all a, b ∈ A, the letter b occurs
in φn(a). Such a substitution defines a shift space Xφ ⊆ AZ, whose language
consists of all factors of the words φn(a) for n ≥ 1, a ∈ A (see [5, §5.5]). Going
forward, we denote the language of Xφ by L(φ). Note that this language is
uniformly recurrent (a proof may be found in [5, Proposition 5.5.4]), hence Xφ

is minimal. We say that φ is aperiodic if Xφ is aperiodic in the above sense;
otherwise, we say that φ is periodic. We denote the Schützenberger group of
Xφ by G(φ) and by extension, we call it the Schützenberger group of φ.

4.2.Return substitutions. Return substitutions are one of the key tools for
studying Schützenberger groups of primitive substitutions: they were used in [4]
to obtain ω-presentations for these groups. We give below the precise statement
and reference for this result. But before, let us briefly recall what are return
substitutions. Further details may be found in [12].

Let φ be a primitive substitution over a finite alphabet A. A pair of non-empty
words (u, v) is called a connection of φ when uv ∈ L(φ) and there exists n ≥ 1
such that φn(u) ∈ A∗u and φn(v) ∈ vA∗. The least such n is known as the order
of the connection. Consider the return set Ru,v, consisting of all words r ∈ A∗

such that urv ∈ L(φ) and urv starts and ends with consecutive occurrences of
uv. Such a word is called a return word to (u, v). Recall that, by primitivity of
φ, the language L(φ) is uniformly recurrent. Hence, every long enough word in
L(φ) has an occurrence of uv, and the return set Ru,v must be finite.
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By uniform recurrence of L(φ), there exists l ∈ N such that for all r ∈ Ru,v,
urv occurs in uφnl(v), where n is the order of (u, v). We order Ru,v ac-
cording to the leftmost occurrences of each urv in uφnl(v). Letting Au,v =
{0, . . . ,Card(Ru,v)− 1}, this ordering induces a monoid homomorphism θu,v :
A∗
u,v → A∗, which moreover does not depend on l. Note that Ru,v is the basis

of a free submonoid of A∗ [12, Lemma 17], so θu,v is injective. If r ∈ Ru,v,
then uφn(r)v starts and ends with uv and it follows that φn(r) is uniquely a
concatenation of elements of Ru,v. In particular, we may define a substitution
φu,v of A∗

u,v by φnθu,v = θu,vφu,v. We call φu,v the return substitution of φ with
respect to (u, v). It is again a primitive substitution [12, Lemma 21].

We now recall a key result of Almeida and Costa implying that Schützenberger
groups of primitive substitutions are ω-presented. We stress that this is only
valid for aperiodic substitutions. We also warn the reader that the original
statement of the result is restricted to connections (u, v) satisfying |u| = |v| = 1,
but this assumption is in fact never used in the proof. Relaxing this assumption
can be convenient because it may happen that longer connections have less
return words (e.g. the substitution φ : 0 7→ 01, 1 7→ 21, 1 7→ 20).

Theorem 4.1 ([4, Theorem 6.2]). Let φ be a primitive aperiodic substitution
and (u, v) be a connection of φ. Then, φu,v, viewed as an endomorphism of
F (Au,v), defines an ω-presentation of G(φ), that is

G(φ) ∼= ⟨Au,v | φ̂u,vω(a)a−1 : a ∈ Au,v⟩.
Since all primitive substitutions have at least one connection (see [5, Propo-

sition 5.5.10]), Schützenberger groups of primitive aperiodic substitutions are
indeed ω-presented. We further deduce the following.

Corollary 4.2. Schützenberger groups of primitive substitutions are neither
perfect nor pro-p.

Proof : Let φ be a primitive substitution. If φ is periodic, then the result is
an easy consequence of [6, Theorem 7.5]. From now on, we assume that φ is
aperiodic. By Theorem 4.1, the group G(φ) is ω-presented, hence it cannot
be pro-p (Corollary 3.8). Moreover, note that the ω-presentation given by
Theorem 4.1 is defined by an endomorphism with a primitive incidence matrix.
Of course, primitive matrices are never nilpotent. In light of Proposition 3.7,
G(φ) cannot be perfect.

Remark 4.3. Let φ : A∗ → A∗ be a primitive aperiodic substitution. It is called
proper when for some a, b ∈ A and k ≥ 1, φk(c) ∈ aA∗ ∩ A∗b for all c ∈ A.
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In the proper case, there is a simpler version of the above theorem, which
is sometimes more convenient: φ itself defines an ω-presentation of G(φ) [4,
Theorem 6.4].

In any case, return substitutions may be effectively computed, for instance
using the algorithm described in [11, p.205], and as a result, the pronilpotent
quotients of Schützenberger groups of primitive substitutions are quite trans-
parent. Indeed, by Theorems 3.6 and 4.1, all is needed is a quick look at the
reciprocal characteristic polynomial of any return substitution. However, com-
puting return substitutions can be very tedious, as the example below shows.
This motivates the results of §4.3.

Example 4.4. Consider the following primitive substitution

φ :


0 7→ 12
1 7→ 22
2 7→ 33
3 7→ 00.

The pair of 1-letter words (2, 3) is a connection of φ of order 12. The set
R2,3 contains 12 return words with length ranging from 4 to 274. The return
substitution φ2,3 is thus defined on a 12-letter alphabet, and it is truly unyieldy:
the images of the letters under φ2,3 have lengths ranging from 821 to 97913. The
other connections, which also have order 12, appear to give return substitutions
that are comparable or even worse.

4.3.Characteristic polynomials of return substitutions. Thankfully, we
may relate, for a primitive substitution φ with a connection (u, v) of order
n, the two polynomials χφn and χφu,v

, and in turn the reciprocal polynomials
χ∗
φn and χ∗

φu,v
. In [10, Proposition 9], Durand shows that (up to taking a

power) a primitive substitution shares the same eigenvalues as its one-sided
return substitutions, except possibly for 0 and roots of 1. The main result of
this subsection, Proposition 4.6, is a sharper version of this. We start with a
technical lemma, also due to Durand. The lemma is outlined in the discussion
preceding [10, Proposition 9]. Since Durand’s version of this lemma is stated
for one-sided return substitutions, we include a proof.

Let w, z be two words. An occurrence of z in w is an integer i ≥ 0 such that
w = xzy and |x| = i. The number of occurrences of z in w is denoted |w|z.
(Note that there is no conflict with the similar-looking notation introduced in
§3.2.) We also need to define incidence matrices for homomorphisms between
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xw yw zw
u v u v

Figure 1. Factorization of w used to define the map f in the proof
of Lemma 4.5. The occurrences of uv represented above are the first
and last of w. They might overlap and even coincide.

free monoids over possibly different alphabets, which is done as follows. If
φ : B∗ → A∗ is a semigroup homomorphism where A and B are finite sets, then
we let Mφ be the A×B matrix defined by

Mφ(a, b) = |φ(b)|a, a ∈ A, b ∈ B.

Note that the formation of incidence matrices is compatible with composi-
tion, in the sense that Mφψ = MφMψ whenever φ and ψ are composable
homomorphisms.

Lemma 4.5. Let φ : A∗ → A∗ be a primitive substitution and (u, v) be a
connection of φ of order n. Then, there is a sequence of matrices (Kl)l∈N with
integer coefficients making the following sets finite:

{M l
φn −Mθu,vKl : l ∈ N}, {M l

φu,v
−KlMθu,v : l ∈ N}.

Proof : For simplicity, we replace φ by φn and assume that n = 1. We define a
map f : L(φ) → L(φu,v) as follows. If w ∈ L(φ) has an occurrence of uv, then
it has a factorization w = xwywzw satisfying (and defined by) the conditions

xw ∈ A∗u,

xwyw ∈ A∗u,

|xwv|uv = 1,


zw ∈ vA∗,

ywzw ∈ vA∗,

|uzw|uv = 1.

In this case, yw is a concatenation of elements of Ru,v and we let f(w) = θ−1
u,v(yw),

which is well-defined by injectivity of θu,v [12, Lemma 17]. Otherwise, let
f(w) = ε, the empty word. The lemma is proved in 3 steps.

Step 1. Let us write

C1 = max{|r| : r ∈ Ru,v}, C2 = min{|r| : r ∈ Ru,v}.
We claim that, for every w ∈ L(φ) and b ∈ A,

0 ≤ |w|b − |θu,vf(w)|b ≤ |w| − |θu,vf(w)| ≤ 2C1 + |uv|. (1)

If w has no occurrence of uv, then the claim holds trivially. If w has an occurrence
of uv, then |w| − |θu,vf(w)| = |xw|+ |zw| and the rightmost inequality of the
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claim follows from the upper bounds

|xw| ≤ C1 + |u|; |zw| ≤ C1 + |v|. (2)

To prove, say, the upper bound for |xw|, note that xwv is a suffix of urv for some
r ∈ Ru,v, hence |xw| ≤ |ur| ≤ C1 + |u|. The upper bound for |zw| is obtained
similarly. The two remaining inequalities of the claim are straightforward.

Step 2. Let s ∈ L(φu,v) and fix a factorization

θu,v(s) = w1 . . . wk.

Assume further that each wi has at least one occurrence of uv, that is |wi|uv ≥ 1.
We claim that, for every letter c ∈ Au,v,

0 ≤ |s|c −
k∑
i=1

|f(wi)|c ≤ |s| −
k∑
i=1

|f(wi)| ≤
k(2C1 + |uv|)

C2
. (3)

By assumption, we have for every i = 1, . . . , k a factorization

wi = xwi
ywi
zwi
,

as described at the beginning of the proof. Since the cutting points of these
factorizations correspond to occurrences of uv in θu,v(s) shifted by |u|, there
must be a corresponding factorization s = x̃1ỹ1 . . . ỹkx̃k+1 such that

θu,v(ỹi) = ywi
, θu,v(x̃i) =


xw1

i = 1,

zwi−1
xwi

2 ≤ i ≤ k,

zwk
i = k + 1.

(Use [9, Proposition 2.6(2)].) For i = 2, . . . , k, we may use (2) to conclude that

|x̃i| ≤
C1 + |u|
C2

+
C1 + |v|
C2

≤ 2C1 + |uv|
C2

.

Similarly, we have |x̃1|+ |x̃k+1| ≤ 2C1+|uv|
C2

. Noting that ỹi = f(wi) by definition
of f , we may now deduce the rightmost inequality of (3),

|s| −
k∑
i=1

|f(wi)| = |x̃1|+ |x̃k+1|+
k∑
i=2

|x̃i| ≤
k(2C1 + |uv|)

C2
.

The two remaining inequalities are again straightforward.
Step 3. For l ∈ N, define a homomorphism κl : A

∗ → A∗
u,v by

κl(a) = f(φl(a)), a ∈ A.
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Let Kl =Mκl. We finish the proof by showing that the matrices (Kl)l∈N fulfill
the requirements of the lemma. First, by (1), for all a, b ∈ A and l ∈ N, we have

0 ≤ |φl(a)|b − |θu,vκl(a)|b = |φl(a)|b − |θu,vf(φl(a))|b ≤ 2C1 + |uv|.

Hence, the entries of the matrices M l
φ −Mθu,vKl can only take finitely many

values, and this proves the first half of the statement. For the remaining half,
we fix a letter c ∈ Au,v and we let θu,v(c) = a1 . . . ak, where ai ∈ A. For every
large enough l, the following factorization satisfies the condition of Step 2:

θu,v(φ
l
u,v(c)) = φl(a1) . . . φ

l(ak).

Applying (3) while noting that k ≤ C1 yields, for every letter d ∈ Au,v,

0 ≤ |φlu,v(c)|d − |κlθu,v(c)|d = |φlu,v(c)|d −
k∑
i=1

|f(φl(ai))|d ≤
C1(2C1 + |uv|)

C2
.

This shows that the entries of the matrices M l
φu,v

−KlMθu,v can take only finitely
many values, completing the proof of the lemma.

This leads us to the following result, which is our main result for the subsection.
Roughly speaking, it states that, up to powers of x and cyclotomic polynomials,
a primitive substitution shares its characteristic polynomial with all of its return
substitutions. As we already mentioned, this is a slightly sharpened version of a
result of Durand [10, Proposition 9].

Proposition 4.6. Let φ : A∗ → A∗ be a primitive aperiodic substitution and
(u, v) be a connection of φ of order n. Then, there exists a unique pair of
coprime polynomials ξ1, ξ2 ∈ Z[x] which are products of cyclotomic polynomials
and satisfy

ξ1χ
∗
φn = ±ξ2χ∗

φu,v
.

Proof : We note that cyclotomic polynomials, and hence their products, satisfy
the relation ξ∗ = ±ξ. Hence, the result follows if we can show that for some
positive integers k1, k2, we have

xk1ξ1(x)χφn(x) = xk2ξ2(x)χφu,v
(x), (4)

where ξ1, ξ2 ∈ Z[x] are coprime and are both products of cyclotomic polynomials.
As in the proof of the previous lemma, we may assume that n = 1. Fix an

eigenvalue λ ∈ C of Mφ which is not 0 or a root of 1, and let E(λ) and E ′(λ)
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denote the respective generalized eigenspaces of Mφ and Mφu,v
, that is

E(λ) = {x ∈ CA : ∃k ≥ 1, x(Mφ − λ)k = 0},
E ′(λ) = {x ∈ CAu,v : ∃k ≥ 1, x(Mφu,v

− λ)k = 0}.

Note that we view the elements of CA and CAu,v as row vectors, so matrices act
on the right. Fix an element x ∈ E(λ), so x ∈ ker(Mφ − λ)k for some k ≥ 1.
Since φθu,v = θu,vφu,v, we have MφMθu,v =Mθu,vMφu,v

, and so

xMθu,v(Mφu,v
− λ)k = x(Mφ − λ)kMθu,v = 0.

Therefore, xMθu,v belongs to E ′(λ) and Mθu,v gives a linear map E(λ) → E ′(λ).
We claim that the kernel of this map is trivial. Indeed, fix x ∈ E(λ)∩ker(Mθu,v),
and let k ∈ N be minimal such that x(Mφ − λ)k = 0. Clearly, k = 0 exactly
when x = 0. Thus, we assume k > 0 and x ̸= 0, and we argue by contradiction.
Then, the vector y = x(Mφ − λ)k−1 is an eigenvector of Mφ of eigenvalue λ
which also belongs to ker(Mθu,v). For every l ≥ 1, let Ql =M l

φ−Mθu,vKl, where
Kl is the matrix from Lemma 4.5. It follows that

λly = yM l
φ = y(Mθu,vKl +Ql) = yQl.

But Lemma 4.5 states that the set of matrices {Ql : l ∈ N} is finite, so we
may choose 1 ≤ l1 < l2 with Ql1 = Ql2. Since y ̸= 0, it follows that λl1 = λl2,
which contradicts the fact that λ is not 0 or a root of 1. Thus, x = 0 and
E(λ) is isomorphic to a subspace of E ′(λ). Using a similar argument, one
proves that the left action of Mθu,v on CAu,v , whose elements are now viewed
as column vectors, induces an injective linear map E ′(λ) → E(λ) (use instead
Ql = M l

φu,v
− KlMθu,v). In particular, dim(E ′(λ)) = dim(E(λ)) for every λ

which is not 0 or a root of 1.
Next, recall that these dimensions give the algebraic multiplicities of λ as

a root of χφ and χφu,v
respectively [24, Corollary 7.5.3(2)]. Hence, for some

polynomials ξ, ζ1, ζ2 in C[x] and some positive integers k1, k2, we have the
following factorizations:

χφ(x) = xk2ζ2(x)ξ(x), χφu,v
(x) = xk1ζ1(x)ξ(x),

where ξ has no root equal to 0 or roots of 1, and all roots of ζ1, ζ2 are roots of
1. We claim that ζ1 and ζ2 are products of cyclotomic polynomials. Both cases
being analogous, we argue only for ζ2. Choosing a root λ of ζ2, we find that the
minimal polynomial of λ over Q, say γ, must divide χφ. But γ is a cyclotomic
polynomial, thus its roots are all roots of 1. In particular, it follows that γ is
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coprime with both ξ and xl2. Hence, γ must divide ζ2. Repeating this process
until all roots of ζ2 are accounted for proves the claim.

Let δ be the greatest common divisor of ζ1 and ζ2 in Z[x] and for i = 1, 2,
let ξi = ζi/δ. Clearly we have ξ1ζ2 = ξ1ξ2δ = ξ2ζ1, so ξ1 and ξ2 together with
the integers k1 and k2 satisfy (4). That ξ1 and ξ2 are coprime and products
of cyclotomic polynomials follows by construction. It remains to show that
this is the only such pair. Suppose that ξ′1 and ξ′2 are products of cyclotomic
polynomials satisfying (4) for some positive integers l1, l2. This readily implies
xl1+k2ξ′1ξ2 = xl2+k1ξ′2ξ1. Since ξ1 and ξ2 are coprime, we deduce that ξ1 divides
ξ′1 and ξ2 divides ξ′2, thus proving uniqueness.

4.4.Pronilpotent quotients of Schützenberger groups. Let φ be a primi-
tive aperiodic substitution. Recall that Theorem 3.6 together with Theorem 4.1
imply that all the information concerning the pronilpotent quotients of G(φ) is
contained within the reciprocal characteristic polynomial of any return substi-
tution of φ. The main result of §4.3 means that the reciprocal characteristic
polynomial of φ itself carries at least partial information about the pronilpotent
quotients of its Schützenberger group. This allows us to specialize some results
from §3, culminating with our main result (Theorem 4.12), which states that
Schützenberger groups of primitive aperiodic substitutions of constant length
are never free.

Proposition 4.7. Let φ be a primitive aperiodic substitution and (u, v) be a
connection of φ. Let mφ be the difference deg(χ∗

φu,v
)−deg(χ∗

φ). Then, for every
prime p, we have mφ = deg(χ∗

p,φu,v
) − deg(χ∗

p,φ). In particular, QAbp
(G(φ))

has dimension mφ + deg(χ∗
p,φ) over Z/pZ.

Proof : Let n be the order of the connection (u, v) and let ξ1, ξ2 be the pair of
polynomials given by Proposition 4.6. Fix a prime p, and for i = 1, 2, let ξp,i be
the polynomial obtained by reducing the coefficients of ξi modulo p. It follows
from Proposition 4.6 that deg(χ∗

p,φu,v
)− deg(χ∗

p,φn) = deg(ξp,1)− deg(ξp,2). But
observe that cyclotomic polynomials are monic, hence deg(ξp,i) = deg(ξi) for
i = 1, 2. We claim that deg(χ∗

p,φn) = deg(χ∗
p,φ). Indeed, let K be the algebraic

closure of Z/pZ and view Mp,φ and Mp,φn as matrices over K. Then, the
eigenvalues of Mp,φn are the nth powers of the eigenvalues of Mp,φ [18, §XIV,
Theorem 3.10], hence the two matrices must have the same number of non-zero
eigenvalues over K counted with multiplicity. By Remark 3.4, their reciprocal
characteristic polynomials must have the same degree, as claimed. Thus, for
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every prime p, we have

deg(χ∗
p,φu,v

)− deg(χ∗
p,φ) = deg(ξ1)− deg(ξ2).

But for p large enough, the left-hand side of this equation is equal to mφ, while
the right-hand side is clearly independent of p. This completes the proof of the
first part of the proposition. For the second part, recall that by Theorem 4.1, φu,v
defines an ω-presentation ofG(φ). Then, note thatmφ+deg(χ∗

p,φ) = deg(χ∗
p,φu,v

)

and apply the dimension formula (Proposition 4.7).

We stress that mφ need not be positive (Example 4.15). We also observe that
the integer mφ does not depend on the choice of (u, v). Indeed, we found it to
be equal, for every prime p, to dp(G(φ))− deg(χ∗

p,φ), a quantity which clearly
does not depend on (u, v). This can rephrased as follows.

Corollary 4.8. Let φ be a primitive aperiodic substitution and (u, v) be a
connection of φ. Let ξ1, ξ2 be the two polynomials given by Proposition 4.6. The
difference deg(ξ1)− deg(ξ2) does not depend on the connection (u, v).

Remark 4.9. Let (u, v) and (u′, v′) be two connections of a primitive aperiodic
substitution φ sharing the same middle letters (i.e., u and u′ share their last
letter while v and v′ share their first letter). Then, using a two-sided analog
of [10, Proposition 7], one finds that χ∗

φu,v
= χ∗

φu′,v′
. In particular, applying

Proposition 4.6 with either (u, v) or (u′, v′) yields the same pair ξ1, ξ2. This
might not be true for connections that do not share the same middle letters
(Example 4.18).

Because the value of mφ might be negative (Example 4.15), the relative
freeness test of Corollary 3.10 cannot be applied directly using χ∗

φ in place of
χ∗
φu,v

. However, we have the following weaker form.

Proposition 4.10. Let φ be a primitive aperiodic substitution. If there are two
primes p1, p2 such that

deg(χ∗
p1,φ

) < deg(χ∗
p2,φ

) < deg(χ∗
φ),

then G(φ) is not relatively free.

Proof : Let (u, v) be a connection of φ. By Proposition 4.7, adding mφ to each
term in the inequality above yields

0 ≤ deg(χ∗
p1,φu,v

) < deg(χ∗
p2,φu,v

) < deg(χ∗
φu,v

).
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Since φu,v defines an ω-presentation of G(φ) (Theorem 4.1), we may apply
Corollary 3.10 with p2 to conclude that G(φ) is not relatively free.

Example 4.16 gives an example where the test above is conclusive. For the
absolute freeness test of Corollary 3.11, the situation is more straightforward.

Proposition 4.11. Let φ be a primitive aperiodic substitution. If pdet(Mφ) is
not ±1, then the Schützenberger group G(φ) is not a free profinite group.

Proof : Let (u, v) be a connection of φ of order n. It follows from Proposition 4.6
that pdet(Mφn) = ± pdet(Mφu,v

). Moreover, we observe that pdet(Mφn) =
pdet(Mφ)

n. Hence, pdet(Mφ) equals ±1 if and only if so does pdet(Mφu,v
).

Recall (Theorem 4.1) that φu,v defines an ω-presentation of G(φ) and apply
Corollary 3.11 to conclude that G(φ) is not absolutely free.

A substitution φ : A∗ → A∗ is said to have constant length when there is some
integer k ∈ N such that |φ(a)| = k, for all a ∈ A. Constant length primitive
substitutions include the famous Thue–Morse substitution (Example 4.14),
which was shown to have a non-free Schützenberger group in [4]. The next
theorem generalizes this result.

Theorem 4.12. Let φ be a primitive aperiodic substitution of constant length.
Then G(φ) is not absolutely free.

Proof : Assume that k = |φ(a)| for every letter a. In light of Proposition 4.11,
it is enough to show that the leading coefficient of χ∗

φ is divisible by k. Note
that the vector (1, . . . , 1) is a (left) eigenvector of Mφ of eigenvalue k with
coefficients in Z, hence there is a factorization in Z[x]

χφ(x) = (x− k)γ(x).

Plainly then, k divides the leading coefficient of χ∗
φ.

Remark 4.13. We may contrast the last result with the case of unimodular
substitutions. Recall that a substitution is called unimodular when its incidence
matrix is invertible over Z, or equivalently when its determinant is ±1. If φ
is primitive, unimodular and aperiodic, then it follows from Propositions 3.9
and 4.6 that Qnil(G(φ)) is free pronilpotent. Therefore, G(φ) is indistiguishable
from a free profinite group in its finite nilpotent quotients. The same argument
applies for all primitive aperiodic substitutions whose incidence matrix has
pseudodeterminant ±1.
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However, while unimodularity of φ guarantees that Qnil(G(φ)) is free pronilpo-
tent, it does not, by any means, guarantee that G(φ) itself is free, even relatively
so. The reader can find in [16, §6] an example of a primitive substitution on 4
letters that induces an automorphism of the free group (hence is unimodular),
but whose Schützenberger group is not relatively free.

In a recent paper [8], Costa and Steinberg proved that the Schützenberger
groups (and, thus, their maximal pronilpotent quotients) of irreducible shift
spaces are invariant under flow equivalence. In particular, this means that our
results provide flow invariants for shift spaces of primitive aperiodic substitutions.
Here are some low hanging fruits. Among shift spaces defined by primitive
aperiodic substitutions, we found the following to be invariant under flow
equivalence:

(i) the sequence of integers (deg(χ∗
p,φu,v

))p indexed by prime numbers;
(ii) the set of primes dividing pdet(φ).

These are reasonably easy to compute, especially the second one, but they
are also fairly weak. For instance, (ii) cannot distinguish primitive unimodular
substitutions that are defined on the same alphabet. At least, these invariants
suffice to separate, for instance, unimodular substitutions from substitutions of
constant length.

4.5. Examples. Let us conclude with a series of examples chosen to illus-
trate different aspects of our results. All of them are primitive and aperiodic
(aperiodicity can be checked using [5, Exercise 5.15], for instance). We use,
without further mention, the fact that in these cases, every return substitution
defines an ω-presentation of the Schützenberger group (Theorem 4.1). Return
substitutions were computed using a Python implementation of an algorithm
described in [11, p.205]. In every example, we give also the relevant reciprocal
characteristic polynomials, and (save for Example 4.19) the polynomials ξ1, ξ2
of Proposition 4.6 and the integer mφ of Proposition 4.7. We then proceed,
using Theorem 3.6, to describe the pronilpotent quotients of the Schützenberger
group, and we draw conclusions regarding its freeness using our various tests
(§§3.4, 4.4).

In what follows, we use the term cyclic as a synonym for 1-generated. We also
recall the notation Zp, denoting for a prime p the additive group of the p-adic
integers. For a set of primes π, we write F̂nil,π instead of F̂Gnil,π

(the definition
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of Gnil,π may be recalled at the beginning of §3.4). Our first example is a good
contender for the title of “most studied substitution”.

Example 4.14. The Thue–Morse substitution is the binary substitution τ defined
by

τ :

{
0 7→ 01
1 7→ 10.

Since it has constant length, the group G(τ) is not free (Theorem 4.12). The
reciprocal characteristic polynomial of τ is −2x+1, so the weak relative freeness
test stated in Proposition 4.10 is inconclusive. Here is the return substitution
corresponding to the connection (0, 1) of τ , which has order 2:

τ0,1 :


0 7→ 0123
1 7→ 013
2 7→ 02123
3 7→ 0213.

The reciprocal characteristic polynomial of τ0,1, together with the polynomials
ξ1, ξ2 and the integer mτ , are as follows:

χ∗
τ0,1

(x) = (4x− 1)(x− 1), ξ1(x) = x− 1, ξ2(x) = 1, mτ = 1.

Hence, we may apply Corollary 3.10 with p = 2 to conclude that G(τ) is not
relatively free, thus recovering [4, Theorem 7.6]. (We note that the proof given
in [4] is, in some sense, similar to ours: it relies on variations in the dimensions
of the maximal pro-Abp quotients of G(τ) to reach a contradiction, much like
what we do in Proposition 3.9.) Letting π be the set of all odd primes, we
deduce from Theorem 3.6 that

Qnil(G(φ)) ∼= Z2 × F̂nil,π(2).

A pronilpotent group is a quotient of G(τ) if and only if its 2-Sylow subgroup
is cyclic and all other Sylow subgroups are 2-generated.

Next, we give an example of a substitution whose Schützenberger group has a
cyclic maximal pronilpotent quotient. It also features a negative value for mφ.

Example 4.15. Consider the following ternary substitution:

φ :

 0 7→ 120
1 7→ 121
2 7→ 200.
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Since it has constant length, its Schützenberger group is not free (Theorem 4.12).
Its reciprocal characteristic polyomial is equal to (3x− 1)(x− 1). The pair (0, 1)
is a connection of φ of order 1, and the corresponding return substitution is the
binary substitution

φ0,1 :

{
0 7→ 0011
1 7→ 01.

We give below its reciprocal characteristic polynomial, the two polynomials ξ1
and ξ2 and the integer mφ:

χ∗
φ0,1

(x) = 3x− 1, ξ1(x) = 1, ξ2(x) = x− 1, mφ = −1.

Let π be the set of all primes distinct from 3. Following Proposition 3.9, the
maximal pronilpotent quotient of G(φ) is free of rank 1 with respect to Gnil,π.
Accordingly, a pronilpotent group is a quotient of G(φ) if and only if it is cyclic
and its 3-Sylow subgroup is trivial.

Next is a substitution for which the weak freeness test of Proposition 4.10 is
conclusive.

Example 4.16. Consider the binary substitution

φ :

{
0 7→ 1001
1 7→ 000.

It satisfies χ∗
φ(x) = −6x2 − 2x+ 1, so its Schützenberger group is not relatively

free (apply Proposition 4.10 with p1 = 2, p2 = 3). The connection (0, 0) of φ,
which has order 2, gives the return substitution

φ0,0 :

 0 7→ 0012100
1 7→ 0012101221012100
2 7→ 0012101222221012100.

We give below its reciprocal characteristic polynomial, the polynomials ξ1, ξ2
and the integer mφ.

χ∗
φ0,0

(x) = −(x− 1)(36x2 − 16x+ 1), ξ1(x) = x− 1, ξ2(x) = 1, mφ = 1.

If π is the set of all primes distinct from 2 and 3, then Theorem 3.6 yields

Qnil(G(φ)) ∼= Z2 × F̂3(2)× F̂nil,π(3).

Consequently, a pronilpotent group is a quotient of G(φ) if and only if its
2-Sylow subgroup is cyclic, its 3-Sylow subgroup is 2-generated, and all other
Sylow subgroups are 3-generated.



PRONILPOTENT QUOTIENTS ASSOCIATED WITH PRIMITIVE SUBSTITUTIONS 29

We gave, in §4.2, an example of a substitution on a quaternary alphabet
whose return substitutions are very large. Let us revisit this example.

Example 4.17. Recall the substitution φ of Example 4.4,

φ :


0 7→ 12
1 7→ 22
2 7→ 33
3 7→ 00.

Because it has constant length, its Schützenberger group is not free (Theo-
rem 4.12). We find that its reciprocal characteristic polynomial is

−(2x− 1)(4x3 + 4x2 + 2x+ 1).

Its return substitutions are too big to be represented here, but for the purpose of
understanding the pronilpotent quotients of G(φ), we only need the reciprocal
characteristic polynomial of any return substitution. For instance, for the
connection (2, 3) of φ, according to our computations,

χ∗
φ2,3

(x) = (x− 1)6(212 x− 1)(226 x3 − (216 · 11)x2 − (28 · 5)x− 1),

so we have
ξ1(x) = (x− 1)6, ξ2(x) = 1, mφ = 6.

Applying Corollary 3.10 with p = 2, we conclude that G(φ) is not relatively
free. Moreover, we can apply Theorem 3.6 to deduce the following, where π is
the set of all odd primes:

Qnil(G(φ)) ∼= F̂2(6)× F̂nil,π(10).

A pronilpotent group is a quotient of G(φ) if and only if its 2-Sylow component
is 6-generated and all the other components are 10-generated.

Recall, from Remark 4.9, that the polynomials ξ1, ξ2 of Proposition 4.6 do not
vary between connections sharing the same middle letters. Our next example
shows that this is not true between arbitrary connections.

Example 4.18. Consider the ternary substitution

φ :

 0 7→ 010
1 7→ 21
2 7→ 102.

It is unimodular, so its Schützenberger group has a free pronilpotent maximal
quotient. Its reciprocal characteristic polyomial is −(x−1)(x2−3x+1). Consider
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the connections (1, 0) and (0, 1): they have respective order 1 and 2, and the
corresponding return substitutions are

φ1,0 :

 0 7→ 01
1 7→ 002
2 7→ 0012,

φ0,1 :


0 7→ 011202312
1 7→ 0112312
2 7→ 012
3 7→ 0112311202312.

With the connection (1, 0), we obtain the following values for the reciprocal
characteristic polynomial, and the polynomials ξ1, ξ2:

χ∗
φ1,0

(x) = (x+ 1)(x2 − 3x+ 1), ξ1(x) = x+ 1, ξ2(x) = x− 1,

while, with the connection (0, 1), we get instead

χ∗
φ0,1

(x) = −(x− 1)(x2 − 7x+ 1), ξ1(x) = 1 = ξ2(x).

In accordance with Corollary 4.8, both connections give the value mφ = 0. The
return substitutions have pseudodeterminant ±1, hence the maximal pronilpo-
tent quotient of G(φ) is a free pronilpotent group of rank 3 by Proposition 3.9.

We finish with an infinite family of examples determined by two parameters
k and l. One member of this family (the case k = 1, l = 3) was previously
studied in early work of Almeida about maximal subgroups of free profinite
monoids. To the best of our knowledge, it stands as the first published example
of a non-free maximal subgroup of a free profinite monoid [3, Example 7.2].

Example 4.19. Fix k, l ≥ 0 and let φ be the binary substitution

φ :

{
0 7→ 0k1
1 7→ 0l1.

Provided l ≥ 1, it is primitive. We claim that it is aperiodic if and only if k ≠ l.
Indeed, suppose that φ is periodic, and assume first that k ≥ l. Let w be a
period of L(φ), by which we mean that every word x ∈ L(φ) is a factor of some
power wn, and w is minimal for this property. By [5, Exercise 5.15], we may in
fact assume that w is is a prefix of 0k1, and clearly it cannot be a proper prefix;
hence, we have w = 0k1. But L(φ) also contains 10l1, and this can only be the
case if l = k. The case l ≥ k is analogous. From now on, we assume l ≥ 1 and
k ̸= l.

Next, we observe that φ is proper, hence it defines an ω-presentation of its own
Schützenberger group (see Remark 4.3). The reciprocal characteristic polynomial
of φ is given by: χ∗

φ(x) = (k − l)x2 − (k + 1)x + 1. By Proposition 3.9, the
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maximal pronilpotent quotient of G(φ) is free pronilpotent of rank 2 whenever
|k − l| = 1. (In fact, in that case, it is not hard to see that φ induces an
automorphism of the free group of rank 2. Such substitutions are well known
to be Sturmian [13, Corollary 9.2.7], and the Schützenberger group of every
Sturmian substitution must be a free profinite group of rank 2 [3, Corollary 6.1].)

On the other hand, when |k − l| > 1, Corollary 3.11 implies that G(φ) is
not free. Moreover, when there is a prime that divides k − l but not k + 1, we
conclude from Corollary 3.10 that the Schützenberger group is not relatively
free. Let π1 be the set of all primes that do not divide k− l and π2 be the (finite)
set of all primes that divide k − l but not k + 1. We deduce from Theorem 3.6
that

Qnil(G(φ)) ∼=

(∏
p∈π2

Zp

)
× F̂nil,π1(2).

In particular, a pronilpotent group is a quotient of G(φ) if and only if for every
prime p, its p-Sylow component is: 2-generated if p ∈ π1; cyclic if p ∈ π2; trivial
if p divides gcd(k − l, k + 1).

Using other means, the group G(φ) above was shown not to be relatively free
in the case k = 1 and l = 3 [4, Theorem 7.2], but this case is not covered by
Corollary 3.10. In fact, in light of our results, the pronilpotent quotients alone do
not contain enough information about G(φ) to reach this conclusion. Indeed, in
that case, χ∗

φ(x) = −2x2−2x+1 and Theorem 3.6 impliesQnil(G(φ)) ∼= F̂nil,π(2),
where π is the set of all odd primes.
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