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Abstract: The higher degree stop-loss transforms provide a way to measure the
risk of cutting off the lower-income population. By interpreting these measures as
iterated equilibrium distributions, we prove that the monotonicity of the failure rate
function allows for an ordering between stop-loss transforms with respect to their
degree. We also show that, without relying on this monotonicity property, it is still
possible to establish a pointwise comparison between compactly supported iterated
equilibrium distributions.
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1. Introduction
Stop-loss transforms are a popular tool in economics and finance when

measuring the concentration of wealth (see Goovaerts et al. [11], Heerwaar-
den [12] or Sundt [16]). They can also be interpreted as risk measures, since
the risk associated to the decision of cutting off the lower-income population
can be measured by higher degree stop-loss transforms. Different degrees of
stop-loss transforms represent different risk measures, thus making it inter-
esting to find criteria under which the comparison between these measures
can be established.

Analytically, stop-loss transforms may be viewed as iterated distributions
introduced by Averous and Meste [5], and later studied by Fagiuoli and
Pellerey [10] and Nanda et al. [14]. Following this approach, stop-loss trans-
forms are usually designated equilibrium distributions, a notion that is also of
interest in ageing problems (see Chatterjee and Mukherjee [8]) or renewal the-
ory (see Cox [9]). Intuitively, higher degree equilibrium distributions become
more and more asymmetric. Hence, it is of interest to study the asymmetry
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behaviour with respect to their degree. Comparison of the asymmetry is ad-
equately described by the star-shape transform order, introduced by Barlow
and Proschan [6]. A recursive relationship between survival functions has
been explored by Arab and Oliveira [1] and Arab et al. [2] to give a complete
description of the ordering within the iterated gamma and Weibull distribu-
tions. As far as the ordering of stop-loss transforms with respect to their
degree is concerned, not much work seems to have been done. In this direc-
tion, Arab et al. [3] obtained some asymptotic behaviour results. However,
results on star-shape transform comparison seem not to be available.

This paper is structured as follows. In Section 2, we recall some definitions
and intermediary results. In Section 3, a characterisation of the iterated
equilibrium distributions, based on a monotonicity property of the failure
rate function, is established. We also present a result that allows us to keep
the comparison between iterated distributions, through the star-shape order,
even if the mentioned monotonicity property fails. In the last section, we es-
tablish some inequalities, known as probabilities of exceedance for compactly
supported distributions.

2. Preliminaries
Let F denote the family of distribution functions vanishing at 0. In the

sequel, let X be a nonnegative random variable, with distribution function
FX ∈ F , density function fX , and survival function FX . Recall that the stop-
loss transform of degree s ≥ 1 of X is, for each x ≥ 0, given by E(X − x)s+,
where t+ = max(t, 0).

Definition 1. For each x ≥ 0, define TX,0(x) = fX(x) and µ̃X,0 = 1. For
each s ≥ 1, we define the s-iterated distribution TX,s, by their tails, TX,s(x) =
1− TX,s(x), as follows,

TX,s(x) =
1

µ̃X,s−1

∫ ∞
x

TX,s−1(t) dt, where µ̃X,s−1 =

∫ ∞
0

TX,s−1(t) dt,

assuming that the integrals above are finite.

Remark 2. Following Lemma 2 and Remark 3 in [1], it is easily verified
that TX,s(x) = 1

EXs−1E(X − x)s−1
+ . Thus, the s-iterated distribution may be

interpreted as the normalized stop-loss transform of order s–1.

In reliability theory, the distribution TX,2 is known as the equilibrium distri-
bution of the random variable X. Hence, the iteration process above defines,
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for each s ≥ 2, TX,s as the equilibrium distribution of a random variable with
survival function TX,s−1.

We recall a monotonicity notion of the failure rate, that will allow proving
a stronger ordering relationship.

Definition 3. Let X be a nonnegative random variable with distribution
function FX ∈ F . The random variable is said to be IFR (resp., DFR), if
fX(x)

FX(x)
is increasing (resp., decreasing) with x > 0.

Finally, we present below the definition of the star-shape transform order,
following Shaked and Shantikumar [15].

Definition 4. Let X and Y be two nonnegative random variables with distri-
bution functions FX , FY ∈ F , respectively. We say that X is less asymmetric

or smaller than Y in the star-shape order, denoted by X ≤∗ Y , if F
−1
Y (FX(x))

is star-shaped, that is, 1
xF
−1
Y (FX(x)) is increasing with x > 0.

We may also write FX ≤∗ FY , meaning that X ≤∗ Y , as this ordering only
depends on the distributions of the variables.

In many cases, the survival functions do not have explicit closed repre-
sentations or manageable ones, so the verification of the star-shapedness of

F
−1
Y (FX(x)) often relies on a sign variation technique, as described by Shaked

and Shantikumar [15] or Marshall and Olkin [13].

Proposition 5. Let X and Y be nonnegative random variables with distri-
bution functions FX , FY ∈ F , respectively. Then X ≤∗ Y if and only if for
any c > 0, V (x) = F Y (x) − FX(cx) changes sign at most once, and if the
change of signs occurs, it is in the order “−,+”, as x traverses from 0 to
+∞.

3. Comparison of iterated distributions
In the following result, it is shown that the monotonicity of the failure

rate implies a pointwise majorization between iterated tails, known as first
stochastic dominance (cf. Shanked and Shantikumar [15]).

Theorem 6. Let X be an IFR (DFR) nonnegative random variable with
distribution function FX ∈ F . Then TX,s−1(x) ≥ (≤)TX,s(x), for every
s ≥ 2 and x ≥ 0.
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Proof : Since X is IFR, applying Lemma 8 in Arab and Oliveira [1], we may

conclude that
TX,s−1

TX,s
is increasing. Given that

TX,s−1(0)

TX,s(0)
= 1, it follows that,

for every s ≥ 2 and x ≥ 0, TX,s−1(x) ≥ TX,s(x).

Remark 7. Under the conditions of Theorem 6, if for every s ≥ 2, we
have that EXs ≤ EXs−1, we obtain that for every x > 0, E(X − x)s+ ≤
E(X − x)s−1

+ . If X represents income, this means that the risk of cutting
off the population with income smaller than x > 0 is decreasing w.r.t its
degree. For a given risk `, we may conclude that having for every s ≥ 2,
E(X − xs)s+ = `, and E(X − xs−1)

s−1
+ = ` implies that xs ≤ xs−1, meaning

that the percentage of the population that is cut off becomes smaller when s
increases.

The following theorem gives a sufficient condition for the comparison of
stop-loss transforms w.r.t. the star-shape order under a mild condition, char-

acterized by the bathtub behaviour of the ratio Q(x) = f(cx)
F (x) . We will say

that Q is at most upside down bathtub, that is Q changes monotonicity at
most once, and when it does, it starts strictly increasing and then it becomes
strictly decreasing. Similarly, we say that Q is at most bathtub if -Q is at
most upside down bathtub.

Theorem 8. Let X be a nonnegative random variable with distribution func-

tion FX ∈ F . If for every c > 0, Q(x) = fX(cx)

FX(x)
is at most upside down

bathtub, then for every s ≥ 2, TX,s−1 ≤∗ TX,s.

Proof : According to Proposition 5, we need to prove that, for every c > 0,
V (x) = TX,s(x) − TX,s−1(cx) changes sign at most once, and if it occurs, it
is in the order “−,+”, as x goes from 0 to +∞. Differentiating k ≤ s − 1
times, we have that

V (k)(x) = (−1)k

(
1∏k

j=1 µ̃X,s−j
TX,s−k(x)− ck∏k

j=1 µ̃X,s−j−1

TX,s−k−1(cx)

)
.

Therefore, we may rewrite,

V (s−1)(x) = (−1)s
cs−1∏s−1

j=1 µ̃X,s−j−1

FX(x)P (x),

where P (x) = −L+Q(x) and L = 1∏s−1
j=1 µ̃X,s−j

∏s−1
j=1 µ̃X,s−j−1c

s−1 > 0. We shall

separate our analysis into two cases.
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s even: Given that Q is at most upside down bathtub, P and thus
V (s−1) changes sign at most twice in the order “−,+,−”. Since,
limx→+∞ V

(s−2)(x) = 0, it follows that V (s−2) changes sign at most
once in the order “+,−,+”. Again, taking into consideration that
limx→+∞ V

(s−3) = 0, it follows that V (s−3) changes sign at most twice
in the order “−,+,−”. Repeating the same argument, we obtain that
V ′ has the same possible sign variations as V (s−1). Taking into account
that V (0) = 0 and limx→+∞ V (x) = 0, we conclude that V changes
sign at most once, in (0,+∞), and if the change occurs, it is in the
order “−,+”.
s odd: In this case, V (s−1) changes sign at most twice in the order
“+,−,+”. Hence, following the arguments of the first case mutatis
mutandis, we find that V changes sign at most once, in (0,+∞), and
if the sign change occurs, it is in the order “−,+”.

Remark 9. Observe that for distributions with compact support [0, x1], x1 >
0, the previous result remains true if, for c ≤ 1, we have that limx→x1 Q(x) =
+∞, meaning that Q is strictly increasing. Moreover, if Q is at most bathtub
and X has distribution with support [0,+∞), we may obtain analogously
that TX,s ≤∗ TX,s−1. However, if X has a distribution with support [0, x1], it
may not be possible to establish the star-shape order. In fact, in this case, if
c > 1 we may have that V ′ changes sign at most three times, thus we cannot
conclude that V changes sign at most once.

Remark 10. Theorem 8 states that TX,s−1 is less asymmetric than TX,s.
Therefore, the higher the degree of the stop-loss transform, the more asym-
metric is the corresponding risk measure. Moreover, the monotonicity as-
sumption about Q is satisfied by several families of distributions, such as
Weibull, Gamma, Beta or Power distributions. In fact, it can be verified that
for Weibull and Gamma distributions, with shape parameter α > 1(α < 1),
the function Q is at most upside down bathtub (bathtub). For Beta distribu-
tions, the monotonicity assumption of the function Q is also satisfied, if both
shape parameters are bigger than 1.

The following result allows us to conclude that under the conditions of The-
orem 8 it is still possible to establish a pointwise comparison between iterated
equilibrium distributions when the inducing random variable is compactly
supported.
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Proposition 11. Let X and Y be nonnegative random variables, with distri-
bution functions FX , FY ∈ F supported in [0, x1] and [0, y1], respectively, such
that X ≤∗ Y . If y1 ≤ x1 then FX(x) ≥ F Y (x). If y1 > x1, then FX(x) ≤
F Y (x) if limx→0+

1
xF
−1
Y (FX(x)) ≥ 1, and if limx→0+

1
xF
−1
Y (FX(x)) < 1 and

EY ≤ EX, then E(Y − x)+ ≥ E(X − x)+.

Proof : If y1 ≤ x1, since X ≤∗ Y , it follows that 1
xF
−1
Y (FX(x)) ≤ y1

x1
≤ 1, im-

plying that FX(x) ≥ F Y (x). Assume now that y1 > x1. If

limx→0+
1
xF
−1
Y (FX(x)) ≥ 1, we have that 1

xF
−1
Y (FX(x)) ≥ 1, and the con-

clusion follows. Finally, if limx→0+
1
xF
−1
Y (FX(x)) < 1 and EY ≤ EX,

if follows from Theorem 4.B.4 in [15] that Y ≤icv X, which implies that
E(Y − x)+ ≥ E(X − x)+.

4. Probabilities of exceedance
The probability of a random variable being greater (smaller) than its ex-

pected value is monotone with respect to the convex ordering (cf. Shaked
and Shantikumar [15]) of their distributions. As noted by [17], this is an im-
mediate consequence of Jensen’s inequality. [4] proved that this monotonicity
property remains true for any functional satisfying a Jensen-type inequality.
If we consider the star-shape order relation, a similar result to Theorem 4 in
[4] may be obtained.

Proposition 12. For any interval I, measurable function φ : I → R and
random variable X with distribution P supported on I, denote by Pφ the
distribution of φ(X). Let D be a set of continuous probability distributions on
intervals in R and T : D → R a functional satisfying φ(T (P )) ≤ (≥)T (Pφ),
for all P ∈ D and φ star-shaped and increasing, with Pφ ∈ D. Let X and Y
be two random variables with distributions P,Q ∈ D, respectively, such that
X ≤∗ Y . Then P(X ≥ T (P )) ≥ (≤)P(Y ≥ T (Q)).

Proof : Assume that T satisfies φ(T (P )) ≤ T (Pφ), for all P ∈ D and φ is an
increasing and star-shaped function, with Pφ ∈ D. Let FX and FY be the
distribution functions of X and Y , respectively, and φ(x) = F−1

Y (FX(x)).
Then φ is increasing and star-shaped, given that X ≤∗ Y . Therefore,
F−1
Y (FX(T (P ))) = φ(T (P )) ≤ T (Pφ) = T (Q). Since G is increasing, it

follows that FX(T (P )) ≤ FY (T (Q)). If T satisfies φ(T (P )) ≥ T (Pφ), the
conclusion follows by reproducing the same argument with reversed inequal-
ity.
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The following result, due to Barlow et al. [7], gives a criterion for obtaining
an inequality similar to Jensen’s for star-shaped functions.

Lemma 13. (Barlow et al. [7], Corollary 4.5) Let φ be a star-shaped function
with domain [0, b], with b > 0, such that φ(0) = 0. Then, for all increasing

functions g, such that g(0) = 0, φ
(∫

[0,b] g(x)dH(x)
)
≤
∫

[0,b] φ(g(x))dH(x) if

and only if there exists 0 ≤ x1 ≤ b, such that H(u) =
∫

[u,b] dH(x) ∈ [0, 1] and

is increasing, for 0 ≤ u < x1 and H(u) = 0, for u ≥ x1.

Observe that if we consider H(x) = F (x), for x ∈ [0, x1), where F is the
distribution function of a random variable X, and H(x) = 0, for x ≥ x1, then
by choosing T (P ) = g(x1)−Eg(X), for X ∼ P , where P has support [0, x1],
x1 > 0, we conclude that Lemma 13 implies that φ(T (P )) ≤ T (Pφ) only for
g(x) = x. Therefore, the following result is an immediate consequence of
Proposition 12.

Corollary 14. Let X and Y be two random variables, whose distributions
have a compact support [0, x1] and [0, y1], x1, y1 > 0, respectively. If X ≤∗ Y ,
then P(X ≤ x1 − EX) ≤ P(Y ≤ y1 − EY ).

Remark 15. Note that if X and Y represent the losses of two portfolios of
size x1 and y1, respectively, then x1−X and y1−Y represent the remainders
of the corresponding portfolios, that is the new size (amount of money) of the
portfolio after X or Y loss. Since P (X ≤ x1 − EX) = P (x1 − X ≥ EX),
this probability may be interpreted as the probability of the remainder of the
portfolio being bigger than the average loss. Hence, if X ≤∗ Y , one may
prefer the portfolio with loss Y , as the aforementioned probability is smaller
for the portfolio with loss X.
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