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BEST FITTING GEODESIC GOING THROUGH

THE RIEMANNIAN MEAN

LUÍS MACHADO AND FÁTIMA SILVA LEITE

Abstract: We address the problem of finding the geodesic that best fits a given
finite set of points on connected and compact Lie groups and on Grassmannians.
By constraining the geodesic to pass through the Riemannian mean of the data,
a property that is shared by their Euclidean counterparts, we derive an implicit
equation defining the velocity of the best fitting geodesic and give a geometric
interpretation of the result.

Keywords: Riemannian manifolds, matrix Lie groups, Lie algebras, geodesics,
least squares problems.

1. Introduction
The role of Riemannian geometry is vital in computer vision and machine

learning. In these areas, most data is intrinsically non-Euclidean and nat-
urally manifold-valued. Using Riemannian computations based on the ge-
ometry of the underlying manifolds is faster and more accurate than their
classical Euclidean counterparts [21], [18].

Riemannian regression is a technique that allows to estimate a continuous
evolution of a process from a discrete set of points qi, corresponding to ob-
served data (typically images) at time ti, within a certain time interval [10],
[9]. But unlike the linear setting, these problems will typically not yield an
analytic solution. The most simple method of regression on a Riemannian
manifold is the geodesic regression, which is an extension of linear regression
[3]. It allows to best fit a geodesic to a time-series of data points, typically
images obtained over a period of time. In machine learning, a typical proce-
dure is to infer a functional relationship between a set of attribute variables
and associated target variables in order to predict the response for any set
of attributes. This is frequently used in medical imaging, for instance, to
study ageing processes, brain development, or disease progression [22], [7].
Riemannian regression, for instance, has been used in [6] to analyze shape
changes in the brain as a function of age.
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In this context, Grassmann manifolds, which are manifolds of linear sub-
spaces play an important role. Also, most of the transformations used in
computer vision have matrix Lie group structure [5].

The literature about geodesic regression in already quite vast, but mainly
dedicated to the implementation of methods to find approximated solutions
and present simulation studies to validate the proposed algorithms. This is
very important from the viewpoint of real applications, but we are primarily
interested in the mathematical aspects of these problems. The derivation
of the normal equations for the geodesic that best fits data on manifolds
appeared, for instance, in [17] for Lie groups and spheres and more recently
in [4] for the Grassmann manifold. Here we simplify those equations by
constraining the solution to pass through the Riemannian mean of the data,
a property which is shared by their Euclidean counterparts. We also present
a geometric interpretation of the implicit equation defining the velocity of the
best fitting geodesic. This may facilitate the implementation of more suitable
algorithms for solving these least square problems. The organization of the
paper is the following. The general problem on a Riemannian manifold is
formulated in Section 2. In Section 3 we briefly review the normal equations
for the regression line in Euclidean spaces. Section 4 contains the main results
for connected and compact Lie groups and is followed by an adaptation to
the Grassmannian case in Section 5. We end with some final remarks.

2. Formulation of the problem
LetM be a Riemannian manifold with Riemannian metric 〈., .〉, and assume

that M is geodesically complete. We first review some concepts that are
important to understand the formulation of the problem. For more details
we refer to [14].

Geodesic distance between two points p and q in M , denoted by d(p, q), is
defined as the length of the shortest geodesic in M that joins those points.
Weighted Riemannian mean of a given set ofN distinct points inM , q1, . . . , qN ,
each qi having attached a positive weight ωi, is defined to be a point q in M
that yields the minimum value for the functional

Φ(q) = 1
2

N∑
i=1

ωi d
2(q, qi).
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We now formulate the general problem consisting in finding the geodesic
that best fits a given finite set of data, consisting of N distinct points in M
and N instants of time.

Let q1, . . . , qN , be N distinct points in M and t1, . . . , tN a set of instants
of time. Denote by q the Riemannian mean of the given points and let t :=
1
N

∑N
i=1 ti. Furthermore, let C denote the class of geodesic curves t 7→ γ(t)

in M , satisfying γ(t) = q.

Find the solution of the following minimization problem:

min
γ∈C

1
2

N∑
i=1

d2(qi, γ(ti)). (1)

3. Best fitting straight line on Euclidean spaces
The solution of the above problem, when M is the Euclidean space Rn, is

well known [15]. In this case, geodesics are straight lines and the best fitting
geodesic can be parametrized by γ(t) = q + (t− t)X, where t ∈ [t1, tN ]. The
solution of the following minimization problem

min
X∈Rn

1
2

N∑
i=1

∥∥qi − q − (ti − t)X
∥∥2
,

where ‖ · ‖ denotes the Euclidean norm, is given explicitly by

X =

∑N
i=1(ti − t)(qi − q)∑N

i=1(ti − t)2
. (2)

Moreover, it can be seen that the curve γ satisfies the so called normal
equations { ∑N

i=1(γ(ti)− qi) = 0∑N
i=1 ti(γ(ti)− qi) = 0

. (3)

4. Best fitting geodesic on connected and compact ma-
trix Lie groups

In this section, we assume that M is a connected and compact matrix
Lie group equipped with its bi-invariant Riemannian metric, and look for
solutions of the problem formulated in Section 2. To do so, one needs to
introduce some facts about the geometry of these groups.
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4.1. Geometric properties of connected and compact Lie groups.
Let G be a connected and compact real n−dimensional matrix Lie group,
equipped with the bi-invariant Riemannian metric, and g its Lie algebra.
Given X ∈ g, the map adX : g→ g, defined by adX(Y ) = [X, Y ], where [·, ·]
is the Lie bracket in g, is called the adjoint operator. The exponential map
exp : g → G is surjective, but only a local diffeomorphism whose inverse
is called logarithm map. When σ(B) ∩ R−0 = ∅, where σ(B) denotes the
spectrum of B, there exists a unique real logarithm of B whose spectrum lies
in the infinite horizontal strip {z ∈ C : −π < Im(z) < π} of the complex
plane. This logarithm is called the principal logarithm of B and hereafter
will be denoted by log(B). When ‖B − I‖ < 1, log(B) is uniquely defined
by the following convergent power series:

log(B) =
+∞∑
k=1

(−1)k+1 (B − I)k

k
.

When the previous norm restriction is not satisfied, one can still define a
unique real logarithm of B using the following identity

log(B) := 2k log
(
B

1

2k
)
, k ∈ Z.

This is the so called inverse scaling and squaring method whose details may
be found in [12]. This allows to define log(B) for any B ∈ G that has no
eigenvalues in R−0 . This assumption is imposed throughout the paper.

Given p, q ∈ G, the geodesic that joins p to q can be parametrized in
the interval [0, 1] by β(s) = p exp

(
s log(p−1q)

)
. Thus, the geodesic distance

between p and q is given by

d(p, q) =
∥∥log(p−1q)

∥∥. (4)

Next, we list some properties that are required to deduce the main results.

Proposition 4.1. ([20]) Let t 7→ X(t) and t 7→ p(t) be two differentiable
mappings taking values in g and G, respectively, and let eu−1

u denote the sum

of the series
∑+∞

m=0
um

(m+1)! and u
eu−1 the sum of the series

∑+∞
m=0(−1)m (eu−1)m

m+1 .

Then,

1.
d exp(X(t))

dt
= eu−1

u

∣∣
u=adX(t)

(
Ẋ(t)

)
exp(X(t)),

2.
d log

(
p(t)

)
dt

= u
eu−1

∣∣
u=adlog(p(t))

(
ṗ(t)p−1(t)

)
,
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Proposition 4.2. ([17]) The operators that appear in Proposition 4.1 are
skew-adjoint with respect to the bi-invariant Riemannian metric in G, i.e.,
for all X, Y, Z ∈ g,

1.
〈

eu−1
u

∣∣
u=adX

(Y ), Z
〉

=
〈
Y, 1−e−u

u

∣∣∣
u=adX

(Z)
〉

,

2.
〈

u
eu−1

∣∣
u=adX

(Y ), Z
〉

=
〈
Y, u

1−e−u

∣∣
u=adX

(Z)
〉

.

Due to the differentiable structure of G, right translations on G, Rg : h 7→
hg,

are diffeomorphisms for all g ∈ G. Taking into account that TgG ' g, the
tangent map (or differential) of Rg at the identity e ∈ G(

dRg

)
e

: g −→ g
Z 7−→

(
dRg

)
e
(Z) = Zg

,

is an isomorphism in g, whose inverse is defined by
(
dRg

)−1

e
(Z) = Zg−1,

∀Z ∈ g.
Next, one gives a characterization for the left operator appearing in the

expression of the derivative of the exponential (1. of Proposition 4.1) which
is the counterpart of the result given in [11] (Theorem 1.7, Chapter II) for
the right operator.

Proposition 4.3. Let X ∈ g. Then

eu − 1

u

∣∣∣∣
u=adX

=
(
dRexp(−X)

)−1

e
◦ (d exp)X , (5)

where (d exp)X denotes the tangent map of the exponential map at X.

The following result gives an implicit characterization of the weighted Rie-
mannian mean of a given data set of points in G with attached weights.

Proposition 4.4. ([17]) Let q1, . . . , qN be N distinct points in G, having
attached the weight ωi at each point qi. The weighted Riemannian mean of
(qi, ωi), i = 1, . . . , N , is the set of points q satisfying the equation

N∑
i=1

ωi log(q−1
i q) = 0. (6)
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Remark 4.1. When all the weights are equal, the previous equation reduces
to

N∑
i=1

log(q−1
i q) = 0, (7)

which characterizes the Riemannian mean of the points q1, . . . , qN . The
uniqueness of the Riemannian mean can only be ensured if all the data points
lie inside a geodesic ball of appropriate radius [13].

4.2. Best fitting geodesic. The main goal is to find solutions for the
problem (1) formulated in Section 2 when M is a connected and compact
matrix Lie group G with bi-invariant metric.

Let q1, . . . , qN , be N points in G and t1, . . . , tN , a set of N instants of time.
Denote by q the Riemannian mean of points q1, . . . , qN , and let t = 1

N

∑N
i=1 ti.

Geodesic curves γ satisfying γ(t) = q can be parametrized explicitly by
γ(t) = q exp

(
(t − t)X

)
, where X ∈ g. We denote by C the class of such

geodesic curves.
We now state and prove the main result.

Theorem 4.5. A necessary condition for the geodesic curve γ, defined by
γ(t) = q exp

(
(t− t)X

)
, to be a solution of the problem (1), is that it satisfies

the equation

N∑
i=1

(ti − t)
eu − 1

u

∣∣∣∣
u=ad(ti−t)X

(
log
(
q−1
i γ(ti)

))
= 0. (8)

Proof : In order to find the critical points for the problem (1), one needs to
compute the tangent map of the function Φ, defined in g, by

Φ(X) =
1

2

N∑
i=1

〈
log
(
q−1
i q exp

(
(ti − t)X

))
, log

(
q−1
i q exp

(
(ti − t)X

))〉
.

Let Y ∈ g be arbitrary. The tangent map of Φ at X is therefore obtained by

(dΦ)X(Y ) =
d

ds

∣∣∣∣
s=0

Φ(X + sY )

=
N∑
i=1

〈 d

ds

∣∣∣∣
s=0

log
(
q−1
i q exp

(
(ti − t)(X + sY )

))
, log

(
q−1
i q exp

(
(ti − t)(X)

))〉
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=
N∑
i=1

〈 u

eu − 1

∣∣∣∣
u=ad

log(q−1
i

γ(ti))

(
q−1
i q

eu − 1

u

∣∣∣∣
u=ad(ti−t)X

(
(ti − t)Y

)
q−1qi

)
, log

(
q−1
i γ(ti)

)〉
=

N∑
i=1

〈
q−1
i q

eu − 1

u

∣∣∣∣
u=ad(ti−t)X

(
(ti − t)Y

)
q−1qi,

u

1− e−u

∣∣∣∣
u=ad

log(q−1
i

γ(ti))

(
log
(
q−1
i γ(ti)

))〉
=

N∑
i=1

〈 eu − 1

u

∣∣∣∣
u=ad(ti−t)X

(
(ti − t)Y

)
, q−1qi log

(
q−1
i γ(ti)

)
q−1
i q
〉

=
N∑
i=1

〈
(ti − t)Y,

1− e−u

u

∣∣∣∣
u=ad(ti−t)X

(
log
(
exp((ti − t)X)q−1

i q
))〉

=
〈
Y,

N∑
i=1

(ti − t)
eu − 1

u

∣∣∣∣
u=ad(ti−t)X

(
log
(
q−1
i γ(ti)

))〉
.

Thus, since X is a critical point of Φ if, and only if, (dΦ)X(Y ) = 0, ∀Y ∈ g,
it follows that X has to be the solution of equation (8).

4.3. Geometric interpretation of equation (8). Regarding the expres-
sion of the operator eu−1

u

∣∣
u=adX

given in Proposition 4.3, equation (8) can be
rewritten as

N∑
i=1

(ti − t)
((
dRexp((t−ti)X)

)−1

e
◦ (d exp)(ti−t)X

)(
log
(
q−1
i γ(ti)

))
= 0.

Now, according to the characterization of the weighted Riemannian mean
(6), equation (8) can be interpreted as a weighted Riemannian mean of a
transformation of the set of the velocity vectors of the minimizing geodesic

connecting points qi to γ(ti) via the operators
(
dRexp((t−ti)X)

)−1

e
◦(d exp)(ti−t)X ,

for each i = 1, . . . , N .

4.4. Particular case when G is Abelian. In this case, since all matrices
in G commute, the Riemannian mean of the points q1, . . . , qN is given by
q = (q1 · · · qN)

1
N . Regarding equation (8), it assumes the simpler form

N∑
i=1

(ti − t)
(
log
(
q−1
i γ(ti)

))
= 0. (9)
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The velocity vector of the geodesic γ can now be computed explicitly as in
the Euclidean case. In fact

N∑
i=1

(ti − t)
(
log
(
q−1
i γ(ti)

))
=

N∑
i=1

(ti − t)
(
log
(
γ(ti)

)
− log(qi)

)
=

N∑
i=1

(ti − t)
(
log q + (ti − t)X − log(qi)

)
,

and so, the solution of equation (9) is explicitly given by

X =

∑N
i=1(ti − t)

(
log(qi)− log q

)∑N
i=1(ti − t)2

,

which is equivalent to equation (2) for the velocity vector in the Euclidean
case.

Next proposition shows that the best fitting geodesic γ shares a property
of the regression line in Rn, namely it passes through the weighted mean of

the points qi, q =
(
qt11 · · · q

tN
N

)1/
∑N
i=1 ti, at the instant of time t =

∑N
i=1 t

2
i∑N

i=1 ti
.

Proposition 4.6. Assume that q1, . . . , qN belong to a connected, compact
and Abelian Lie group G. Then the geodesic γ that best fits the given data at

the given times t1, . . . , tN satisfies the condition γ
(
t
)

= q.

Proof : Note that

t− t =
N
∑N

i=1 t
2
i − (

∑N
i=1 ti)

2

N
∑N

i=1 ti
and

N∑
i=1

(ti − t)2 =
N∑
i=1

t2i −
1

N

( N∑
i=1

ti

)2

.

Moreover,

N∑
i=1

(ti − t)
(
log(qi)− log q

)
=

N∑
i=1

ti log(qi)−
1

N

N∑
i=1

ti

N∑
i=1

log(qi).
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Therefore,

γ
(
t
)

= q exp
(

1∑N
i=1 ti

N∑
i=1

(ti − t)(log(qi)− log q)
)

= q exp
(

1∑N
i=1 ti

N∑
i=1

ti log(qi)
)

exp
(
− 1
N

N∑
i=1

log(qi)
)

= exp
(

1
N

N∑
i=1

log(qi)
)

exp
(

1∑N
i=1 ti

N∑
i=1

ti log(qi)
)

exp
(
− 1
N

N∑
i=1

log(qi)
)

= exp
(

1∑N
i=1 ti

N∑
i=1

ti log(qi)
)

=
(
qt11 · · · q

tN
N

)1/
∑N
i=1 ti.

5. Best fitting geodesic on the Grassmann manifold
The objective in this section is to determine the geodesic that best fits

a given data set of points in the Grassmann manifold, assuming that it
passes through the Riemannian mean of the given data. For details on the
differential geometric structure of these manifolds, we refer to [8] and [1].

5.1. Some facts about the geometry of the Grassmann manifold.
The Grassmann manifold (or Grassmannian) Gn,k, consisting of the k-dimen-
sional subspaces of Rn, admits a representation by projection matrices. If
s(n) denotes the vector space of all n× n symmetric matrices, then

Gn,k :=
{
P ∈ s(n) : P 2 = P and rank(P ) = k

}
. (10)

Let so(n) denote the Lie algebra of all n× n skew-symmetric matrices, and
for each P ∈ Gn,k define the subspace of so(n),

soP (n) = {Ω ∈ so(n) : ΩP + PΩ = Ω}.

The tangent space of Gn,k at a point P is given by

TPGn,k =
{

[Ω, P ] : Ω ∈ soP (n)
}
. (11)

Consider the Riemannian metric induced by the Frobenius inner product

〈[Ω1, P ], [Ω2, P ]〉 = −tr
(
Ω1Ω2

)
. (12)

The special orthogonal Lie group SO(n) acts transitively onGn,k via (Θ, P ) 7→
ΘPΘT and so, any smooth curves on Gn,k can be parametrized explicitly by
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α(t) = Θ(t)PΘ(t)T , where Θ is a smooth curve on SO(n). In particular,
geodesics in the Grassmann manifold are of the form

α(t) = etΩP e−tΩ, Ω ∈ so(n), (13)

and the geodesic connecting the point P (at t = 0) to the point Q (at t = 1)
is of the form (13) (see [4] for details), with

Ω =
1

2
log((I − 2Q)(I − 2P )). (14)

Therefore, the geodesic distance between P and Q is defined as

d(P,Q) =
1

2

∥∥log((I − 2Q)(I − 2P ))
∥∥.

According to [4], given a collection of points P1, . . . , PN in the Grassmann
manifold Gn,k, its Riemannian mean is the point P that satisfies the equation

N∑
i=1

log((I − 2P )(I − 2Pi)) = 0. (15)

5.2. Best fitting geodesic in Gn,k through the Riemannian mean. It
is clear from the previous considerations that the developments in Section
4 applied to the situation when G = SO(n) will be used here. In [4] we
derived the counterpart of the normal equations for the best fitting geodesic
in Gn,k. Following the assumptions in Section 4, we simplify these equations
assuming that the geodesic passes through the Riemannian mean of the data.
It will be clear that the geometric interpretation also follows immediately
from previous discussions. We omit the proof of the main result in this
section due to limitation of pages and the fact that it results from obvious
adaptations of the proof of Theorem 4.5.

Let P1, . . . , PN be a set of N points in Gn,k and P its Riemannian mean.
Also, let t1, . . . , tN be a set of N instants of time and t its arithmetic mean.
Consider the family C of geodesics in Gn,k that pass through P at time t.

The main goal of this section is to solve the following optimization problem

min
γ∈C

1

4

N∑
i=1

∥∥log((I − 2γ(ti))(I − 2Pi))
∥∥2

(16)

Arguments similar to those in the proof of Theorem 4.5 can be used to
conclude the following.



BEST FITTING RIEMANNIAN GEODESIC 11

Theorem 5.1. A necessary condition for the geodesic curve defined by γ(t) =
e(t−t)ΩP e−(t−t)Ω to be a solution of (16) is that it satisfies the equation

N∑
i=1

(ti − t)
1− e−u

u

∣∣∣∣
u=ad(ti−t)Ω

(
log
(
(I − 2Pi)(I − 2γ(ti)

))
= 0. (17)

6. Final remarks
In [17] and [4], the normal equations for the best fitting geodesic problem

for some Riemannian manifolds have been derived. These coupled equations
look rather difficult to solve explicitly. Moreover, it is not clear if the solution
of the problem passes through the Riemannian mean, a condition that is
fullfiled by the regression line in Euclidean spaces.

In this paper, we assume à priori that the required geodesic goes through
the Riemannian mean of the data, to obtain a single equation for its veloc-
ity. This reduces the complexity of the problem and hopefully simplifies the
search for numerical solutions.

It is important to find out if these two apparently different approaches of
the best geodesic fitting problem are equivalent. This will be addressed in
the near future.
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