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SYMMETRIC SPACES ROLLING

ON FLAT SPACES

V. JURDJEVIC, I. MARKINA AND F. SILVA LEITE

Abstract: The objective of the current paper is essentially twofold. Firstly, to
make clear the difference between two notions of rolling a Riemannian manifold over
another, using a language accessible to a wider audience, in particular to readers
with interest in applications. Secondly, we concentrate on rolling an important class
of Riemannian manifolds. In the first part of the paper, the relation between intrinsic
and extrinsic rollings is explained in detail, while in the second part we address
rollings of symmetric spaces on flat spaces and complement the theoretical results
with illustrative examples.
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1.Introduction
In the contemporary literature, there exist two notions of rolling a Rie-

mannian manifold over another, which more recently have also been extended
to the semi-Riemannian case. One of these notions is intrinsic rolling, that
doesn’t require that the Riemannian manifolds are embedded. This concept
uses the intrinsic geometry of the manifolds only, and for Riemannian sur-
faces was introduced by Agrachev and Sachkov in [1] and by Bryant and
Hsu in [2], and later studied for manifolds of higher dimensions, for instance,
in [3], [4] and [8]. Extension to the semi-Riemannian situation appeared in
[21].

Another definition of rolling initiated by K. Nomizu in [23] and presented
more formally by R.W. Sharpe in [25] is the extrinsic rolling, which makes use
of the isometric embedding of the manifolds in an ambient (semi)-Euclidean
vector space V , so that the rolling is described in terms of the action of the
group SE(V ) of oriented isometries of V . More recent works that use the
extrinsic rolling are, for instance, [26, 12, 16, 11, 6, 20, 18, 22]. As far as we
know, only in [8] and [21] both notions of rolling were addressed, the first for
the Riemannian case and the second for the semi-Riemannian case. These
two works are rather theoretical for researchers interested in applications
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of rolling motions but that do not have a strong background in differential
geometry.

The purpose of the current paper is essentially twofold. Firstly, we want to
elucidate the difference between the two notions of rolling using a language
that is more accessible to those with practical interest in rolling motions but
less familiar with semi-Riemannian geometry. Secondly, we make transparent
the relation between the geometry of the symmetric spaces and its rolling on
flat spaces. Our main message is that the transitive action τ of a Lie group
on a symmetric space completely defines its rolling along a chosen curve on
the manifold. The differential map dτ is the isometry between the tangent
spaces (after an identification of related vector spaces), that also matches
the parallel vector fields on the rolling curves. Examples of semi-Riemannian
symmetric spaces are provided, together with how to construct both types
of rollings. It is always assumed throughout the paper that nonholonomic
constraints of no-slip and no-twist are required in both situations, and the
rollings are confined to semi-Riemannian manifolds.

The organization of the paper is the following. After setting the notation,
we discuss in Section 3 the intrinsic rolling versus extrinsic. Section 4 is
dedicated to rolling of symmetric spaces on flat spaces. Finally, we include
Section 5 with the rolling of Stiefel manifolds, in order to illustrate the dif-
ference in the construction of rolling motions for a reductive homogeneous
manifold that is not a symmetric semi-Riemannian manifold.

2.Background and notations
In this section we revisit the most important known concepts and results

that will be used in the paper, and introduce the necessary notations. The
main reference is the book of O’Neill [24], where the reader may find further
details.

2.1. Semi-Riemannian manifolds. A semi-Riemannian manifold M is a
smooth manifold endowed with a non-degenerate symmetric tensor g(. , .).
We write n = dimM , and denote by p the number of positive eigenvalues of
the tensor g, so that n − p is the number of negative eigenvalues of g. The
crucial example of a semi-Riemannian manifold is the semi-Euclidean vector
space Rp,n−p with the semi-Euclidean product
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〈x, y〉p,n−p =

p∑
k=1

xkyk −
n∑

k=p+1

xkyk, x, y ∈ Rp,n−p.

Another important example is a vector space V with a bilinear symmetric
non-degenerate form (. , .)p,n−p. We will often refer to (. , .)p,n−p as a scalar
product and simply write (. , .) in case there is no need to specify the signa-
ture.

Let (V, (. , .)p,n−p) be a semi-Riemannian vector space. The isometric em-
bedding map will be denoted by

ι : M → V.

On existence of such an embedding see [5]. For the moment, we will identify
the manifold M with its image under the embedding, that is, notationally,
ι(M) = M . The semi-Riemannian metric g(. , .) on the embedded manifold
M is inherited from the semi-Riemannian product (. , .)p,n−p in the ambient
space V .

The isometric embedding of M into V splits the tangent space of V , at a
point m ∈M , into a direct sum:

TmV = TmM ⊕ (TmM)⊥, m ∈M, (1)

where ⊥ denotes the orthogonal complement with respect to (. , .)p,n−p. Note
that the tangent space TmM and the normal space (TmM)⊥ are nondegen-
erate subspaces of (V, (. , .)p,n−p). According to this, any vector v ∈ TmV,
m ∈M , can be written uniquely as the sum v = v> + v⊥, where v> ∈ TmM ,
v⊥ ∈ (TmM)⊥.

In what follows,∇ denotes the Levi-Civita connection on the ambient space
V , and∇ for the Levi-Civita connection on M . If X and Y are tangent vector
fields on M , and Υ is a normal vector field on M , then

∇XY (p) =
(
∇X̄ Ȳ (p)

)>
, ∇⊥XΥ(p) =

(
∇X̄Ῡ(p)

)⊥
, p ∈M,

where X̄, Ȳ and Ῡ are any local extensions to V of the vector fields X, Y and
Υ, respectively. If Z(t) and Υ(t) are vector fields along a curve α(t), we use
Dα(t)

dt Z(t) to denote the covariant derivative of Z(t) along α(t) and
D⊥α(t)
dt Υ(t)

for the normal covariant derivative of Υ(t) along α(t) (these notations are
according to [24, p. 119]). Again, to simplify notations, in cases where it is
clear what is the curve along which the covariant derivative is considered, we
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may simply write D
dt and D⊥

dt instead of the above. Observe that an isometric
imbedding of M into V induces the equalities

D

dt
Z(t) =

(
d

dt
Z(t)

)>
,

D⊥

dt
Υ(t) =

(
d

dt
Υ(t)

)⊥
. (2)

A tangent vector field Y (t) along an absolutely continuous curve α(t) is
tangent parallel if D

dtZ(t) = 0, for almost every t. Similarly, a normal vector

field Υ(t) along α(t) is normal parallel if D⊥

dt Υ(t) = 0, for almost every t.
From now on we assume that all curves are absolutely continuous on some

real interval I = [0, T ], T > 0 and, even if not said, conditions involving
derivatives are valid only for values of the parameter t for which they are
well defined.

We denote by SE(V ) the Lie group of semi-Riemannian isometries of the
space (V, (. , .)p,n−p). It can be shown that SE(V ) = SO(V ) n V , where, by
abuse of notation, V is the subgroup of translations on the vector space V ,
and SO(V ) is the connected component containing identity e of the group
of isometries O(V ), preserving the orientation of both positive definite and
negative definite subspaces of V . Elements in SE(V ) will be represented by
pairs g = (R, s), R ∈ SO(V ), s ∈ V , and in this representation the action of
SE(V ) on V is denoted by (g, v) 7→ g.v := R.v+s, v ∈ V , where (R, v) 7→ R.v
denotes the action of SO(V ) on V . The group product in SE(V ) is defined as
(R2, s2)(R1, s1) = (R2R1, s2 + R2.s1). It then follows that (e, 0) is the group
identity in SE(V ), and (R, s)−1 = (R−1,−R−1.s).

3.Intrinsic versus extrinsic rolling
We want to recall the definition of a rolling of a semi-Riemannian mani-

fold M over a semi-Riemannian manifold M̂ along a given curve α : I → M
with the restrictions of no-slip and no-twist. There are two notions of such a
rolling, commonly referred to as ”intrinsic” and ”extrinsic”, that currently ex-
ist in the literature. Intrinsic rolling of the Riemannian manifold, introduced
in [1, 2], and also used, for instance, in [3, 8]. The intrinsic rolling of semi-
Riemannian manifolds was studied in [21], and the extrinsic rolling of partic-
ular families of semi-Riemannian manifolds was treated in [6, 16, 17, 22]. The
difference between the two definitions is that an ”intrinsic” rolling doesn’t

require that semi-Riemannian manifolds M and M̂ are isometrically embed-
ded into (V, (. , .)p,n−p), meanwhile an ”extrinsic” rolling presumes such an
embedding.
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In the following definitions, the semi-Riemannian manifolds (M, g) and

(M̂, ĝ) have equal dimension and the semi-Riemannian metric tensors have

equal signature. We call an isometry A : TmM → Tm̂M̂ oriented if it preserves
the orientation of the positive definite and the negative definite subspaces of

TmM and Tm̂M̂ .

Definition 1. Intrinsic rolling. A curve α(t) on M is said to roll on a

curve α̂(t) on M̂ if there exists an oriented isometry A(t) : Tα(t)M → Tα̂(t)M̂
such that

˙̂α(t) = A(t)α̇(t), and (3)

A(t)X(t) is a parallel vector field in M̂ along α̂(t) if and
only if X(t) is a parallel vector field in M along α(t).

The triplet (α(t), α̂(t), A(t)) is called a rolling curve.

In the Riemannian case, the definition of “extrinsic” rolling initiated by
K. Nomizu [23] and presented more formally by R.W. Sharpe [25], makes

use of the isometric embedding of M and M̂ in an ambient space. Here
we use a definition of extrinsic rolling that is more general then that used
by [25]. This extended class of rollings is better suited for making the bridge
with control theory and also for comparison with Definition 1. It includes
the presence of a semi-Riemannian vector space (V, (. , .)p,n−p), orientability
for the group of semi-Riemannian motions SE(V ), and the replacement of
piecewise continuous curves by absolutely continuous curves, see also [8, 21].

Definition 2. Extrinsic Rolling. An absolutely continuous curve g(t) in
SE(V ), defined on an interval I = [0, T ], is said to roll a curve α(t) in M

onto a curve α̂(t) in M̂ , without slipping and without twisting, if

1 g(t)α(t) = α̂(t), for all t ∈ I,

2 dα(t)g(t)Tα(t)M = Tα̂(t)M̂ , for all t ∈ I.
3 No-slip condition:

˙̂α(t) = dα(t)g(t) α̇(t), for almost every t;

4 No-twist condition (tangential part)

dα(t)g(t)
D

dt
Z(t) =

D

dt
dα(t)g(t)Z(t),

for any tangent vector field Z(t) along α(t) and almost every t;
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5 No-twist condition (normal part)

dα(t)g(t)
D⊥

dt
Ψ(t) =

D⊥

dt
dα(t)g(t) Ψ(t),

for any normal vector field Ψ(t) along α(t) and almost every t;

6 dα(t)g(t)|Tα(t)M : Tα(t)M → Tα̂(t)M̂ is orientation preserving.

The curve g(t) that satisfies the above conditions is called rolling map
along the curve α(t) (also called rolling curve), and α̂(t) is the devel-

opment of α(t) on M̂ .

From now on, we may refer to rolling without slipping and without twisting
simply as “rolling”. The first two conditions in Definition 2 are called “rolling
conditions”. Notice that the second rolling condition and the splitting (1) also
implies:

dα(t)g(t)(Tα(t)M)⊥ = (Tα̂(t)M̂)⊥. (4)

The no-slip and no-twist conditions can be seen as nonholonomic constraints.
They give rise to equations for the velocity of the rolling map, usually called
the kinematic equations of rolling.

At first glance, the no-slip and no-twist conditions in Definition 2 may look
different from those in [25], however they are equivalent, as proven in [8, 21].
When dealing with concrete examples these nonholonomic constraints are
easier to handle when written as in [25]. For that reason, after introducing
some necessary notations, we rewrite conditions 3, 4 and 5 in Definition 2
using the terminology in [25].

For each action g(t) = (R(t), s(t)) ∈ SE(V ) on V , defined by g(t).p =
R(t).p+ s(t), the differential (or tangent map) of g(t) at p ∈ V is given by

dpg(t)v :=
d

dε
g(t).p(ε)

∣∣∣∣
ε=0

= R(t).v, (5)

where ε 7→ p(ε) is a curve in V satisfying p(0) = p, dpdε (0) = v. If ġ(t) denotes
the time derivative of the curve g(t), i.e.,

ġ(t).p =
d

dε
g(ε).p

∣∣∣∣
ε=t

= Ṙ(t).p+ ṡ(t),

then, since g−1 = (R−1,−R−1.s), we can define(
ġ(t)g−1(t)

)
.p : = d

dεg(ε).(g−1(t).p)
∣∣
ε=t

= Ṙ(t)R−1(t).(p− s(t)) + ṡ(t),
(6)
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so that
dp
(
ġ(t)g−1(t)

)
.v : = d

dε

(
ġ(t)g−1(t)

)
.p(ε)

∣∣
ε=0

= Ṙ(t)R−1(t).v.
(7)

Proposition 1. Conditions 3, 4 and 5 in Definition 2 are, respectively, equiv-
alent to:

3’ No-slip condition:

(ġ(t)g−1(t)).α̂(t) = 0, for almost every t;

4’ No-twist condition (tangential part):

dα̂(t)(ġ(t)g−1(t))Tα̂(t)M̂ ⊂ (Tα̂(t)M̂)⊥, for almost every t;

5’ No-twist condition (normal part):

dα̂(t)(ġ(t)g−1(t)) (Tα̂(t)M̂)⊥ ⊂ Tα̂(t)M̂, for almost every t;

It was proved in [25] that given a curve α(t) in M there always exists a
unique rolling map g(t) that rolls a Riemannian manifold M on a Riemannian

manifold M̂ along α. The proof can be literally extended to the rolling of
semi-Riemannian manifolds, since the arguments in [25] do not rely on the
positive definite property of the metric tensor, but rather on being non-
degenerate.

Remark 1. The definition of rolling map doesn’t exclude the possibility that
g(t) is the identity in SE(V ), otherwise the existence of a rolling map for each
curve in M would not be guaranteed. This is clearly seen, for instance, in the
system consisting of a cylinder rolling on the tangent plane at a point, when
the rolling curve lies in the straight line of intersection of the two manifolds.

The no-twist conditions in Definition 2 can also be rewritten in terms
of parallel vector fields as follows. This is particularly important for the
comparison with the intrinsic rolling.

Proposition 2. Conditions 4 and 5 of Definition 2 are, respectively, equiv-
alent to:

4” No-twist condition (tangential part): A vector field Z(t) is tangent
parallel along the curve α(t) if, and only if, dα(t)g(t)(Z(t)) is tangent
parallel along α̂(t).

5” No-twist condition (normal part): A vector field Ψ(t) is normal parallel
along the curve α(t) if, and only if, dα(t)g(t)(Ψ(t)) is normal parallel
along α̂(t).
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Proof : We prove the tangential part only. The proof of the normal part can be
done similarly. It is clear that D

dtZ(t) = 0 if, and only if, D
dt

(
dα(t)g(t)(Z(t))

)
=

0. Consequently, condition 4 of Definition 2 implies condition 4” above.
To prove that condition 4” implies condition 4 of Definition 2, let Z(t) be an

arbitrary tangent vector field along α(t) and {E1(t), . . . , En(t)}, n = dim(M),
be a parallel tangent frame along α(t), so that

Z(t) =
n∑
i=1

zi(t)Ei(t) and
D

dt
Z(t) =

n∑
i=1

żi(t)Ei(t).

Now define Êi(t) := dα(t)g(t)(Ei(t)). Taking into account assumption 4′, we

can guarantee that {Ê1(t), . . . , Ên(t)} is a parallel tangent frame along the
development curve α̂(t). Since dα(t)g(t) is a linear isomorphism, using prop-
erties of the covariant derivative we obtain

dα(t)g(t)
(
D
dtZ(t)

)
=
∑n

i=1 żi(t)dα(t)g(t)(Ei(t))

=
∑n

i=1 żi(t)Êi(t)

and

D

dt

(
dα(t)g(t)(Z(t))

)
=
D

dt

(
n∑
i=1

zi(t)Êi(t)

)
=

n∑
i=1

żi(t)Êi(t).

Therefore, condition 4 in Definition 2 follows.

Remark 2. It is clear from Proposition 2 that the tangent part of the no-

twist condition is always satisfied when the manifolds M and M̂ are one-
dimensional, and the normal no-twist condition is always satisfied when those
manifolds have co-dimension one.

In order to relate the two seemingly very different definitions of rolling,

when M and M̂ are isometrically embedded in the semi-Riemannian vector
space (V, (. , .)p,n−p), we also need to compare A(t), the part responsible for
the isometric mapping of the tangent spaces in the intrinsic rolling definition,
with the rolling map g(t) = (R(t), s(t)) ∈ SE(V ), in the extrinsic definition.

Since SE(V ) = SO(V ) n V and SO(V ) both act on V , if α(t) is a curve
in V , then, for any g(t) = (R(t), s(t)) ∈ SE(V ) and any tangent vector field
Z(t) along α(t) we have

dα(t)g(t).Z(t) = dα(t)R(t)Z(t) = R(t).Z(t). (8)
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Remark 3. According to (8), we can refer to the restriction of dα(t)g(t)
to Tα(t)M , which is the same as the restriction of dα(t)R(t) to Tα(t)M , as
the restriction of R(t) to Tα(t)M . This abuse of terminology simplifies the
exposition that follows.

The following proposition provides a relationship between the intrinsic and

the extrinsic rolling when M and M̂ are isometrically embedded in V .

Proposition 3. Assume that (α(t), α̂(t), A(t)) is a rolling curve in the sense
of Definition 1. Let g(t) = (R(t), s(t)) be a curve in SE(V ) such that the
restriction of R(t) to Tα(t)M is equal to A(t) and s(t) = α̂(t) − R(t).α(t).
Then g(t) satisfies conditions 1 through 4 and 6 of Definition 2.

Conversely, if g(t) = (R(t), s(t)) is a curve in SE(V ) that satisfies condi-
tions 1 through 4 and 6 of Definition 2, then (α(t), α̂(t), A(t)) is an intrinsic
rolling curve, where A(t) is the restriction of R(t) to Tα(t)M . This happens,
in particular, if g(t) is a rolling map along α(t).

The previous statement is completely obvious in view of Proposition 2, since
the tangential no-twist condition in Definition 2 is equivalent to the parallel
transport condition required by the intrinsic rolling. According to the last
statement of Proposition 3, if g(t) = (R(t), s(t)) is a rolling map along α(t)
with development α̂(t), we say that R(t) defines the intrinsic rolling curve
(α(t), α̂(t), A(t)), where A(t) := R(t)|Tα(t)M .

Remark 4. We now also see precisely the difference between the rolling of
Definition 1 and the rolling of Definition 2. A curve α(t) in M rolls on a curve

α̂(t) in M̂ independently of the definition used. However, in the absence of
the normal no-twist condition, the lifting of the isometry A(t) to an isometry
dα(t)g(t) in Tα(t)V is not one to one since the latter can be completely arbitrary

on the orthogonal complement (Tα(t)M)⊥. If A⊥(t) : (Tα(t)M)⊥ → (Tα̂(t)M̂)⊥

is a map such that any normal parallel vector field along α(t) maps to a
normal parallel vector field along α̂(t), then g(t) is completely and uniquely
defined by

dα(t)g(t)|Tα(t)M = A(t) and dα(t)g(t)|(Tα(t)M)⊥ = A⊥(t).

The arbitrariness of A(t), which due to Remark 3 can be seen as an arbitrari-
ness of R(t), is removed by adding the normal part of the no-twist condition,
for then there is a one to one correspondence between A(t) that rolls α(t)
onto α̂(t) in the sense of Definition 1 and the rolling map g(t) = (R(t), s(t))
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in SE(V ) that rolls α(t) onto α̂(t) in the sense of Definition 2. In fact,
dα(t)(g(t)) is equal to A(t) on the tangent space Tα(t)M , and is uniquely de-
termined on the orthogonal complement by the normal no-twist condition.

We have already seen in Proposition 3 that if g(t) = (R(t), s(t)) is a rolling
map along a curve α(t) with development α̂(t), then the triple (α(t), α̂(t), A(t)),
where for A(t) := R(t)|Tα(t)M , is an intrinsically rolling curve. In other words,
each extrinsic rolling map determines a unique intrinsic rolling curve.

However, we may perturb R(t) so that the normal part of the no-twist
condition is violated and still obtain an intrinsic rolling curve of α(t) on
α̂(t). The next proposition makes this statement clear. We use the symbol ◦
to denote the composition of linear maps.

Proposition 4. Suppose that g(t) = (R(t), s(t)) is a rolling map along the
curve α(t) with development α̂(t), and Ṙ(t) = Ω(t)◦R(t), with Ω(t) ∈ so(V ).

Let R̃(t) be the solution of

˙̃
R(t) = (Ω(t) + Ω0(t)) ◦ R̃(t), R̃(0) = R(0), (9)

where Ω0(t) ∈ so(V ) satisfies

Ω0(t)(Tα̂(t)M̂) = 0, Ω0(t)(Tα̂(t)M̂)⊥ ⊆ (Tα̂(t)M̂)⊥. (10)

Then R(t) and R̃(t) define the same intrinsic rolling, given by the triple
(α(t), α̂(t), A(t)).

Proof : We already know that R(t) defines the intrinsic rolling curve

(α(t), α̂(t), A(t)),

where A(t) = R(t)|Tα(t)M . In order to prove the statement it is enough to

show that R̃(t)|Tα(t)M = A(t). For that, first notice that R and R̃ are related

by R̃(t) = R(t) ◦ S(t), where S(t) ∈ SO(V ) is the solution of

Ṡ(t) = (R−1(t) ◦ Ω0(t) ◦R(t)) ◦ S(t), S(0) = I. (11)

Indeed, since S(t) ∈ SO(V ), we have Ṡ(t) = Λ(t) ◦ S(t), for some Λ(t) ∈
so(V ). And so,

˙̃
R(t) = Ṙ(t) ◦ S(t) +R(t) ◦ Ṡ(t)

= (Ω(t) +R(t) ◦ Λ(t) ◦R−1(t)) ◦ R̃(t),
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which according to the assumption
˙̃
R(t) = (Ω(t) + Ω0(t)) ◦ R̃(t) implies

Λ(t) = R−1(t) ◦ Ω0(t) ◦R(t). Since by assumption R(t) satisfies

R(t)(Tα(t)M) = Tα̂(t)M̂, R(t)(Tα(t)M)⊥ = (Tα̂(t)M)⊥, (12)

and Ω0(t) satisfies (10), we conclude that for Λ(t) := R−1(t) ◦ Ω0(t) ◦R(t),

Λ(t)(Tα(t)M) = R−1(t) ◦ Ω0(t)(Tα̂(t)M̂) = 0,

Λ(t)(Tα(t)M)⊥ = R−1(t) ◦ Ω0(t)(Tα̂(t)M̂)⊥

⊆ R−1(t)(Tα̂(t)M̂)⊥ = (Tα(t)M)⊥.

Now we are going to choose a system of coordinates so that S(t)|Tα(t)M be-
comes the identity map; that is S(t)Z(t) = Z(t), for every Z(t) ∈ Tα(t)M .
Let {b1(t), . . . , bN(t)} be an orthonormal frame in V along α(t) such that,
for every t, {b1(t), . . . bn(t)} and {bn+1(t), . . . , bN(t)} are basis for Tα(t)M and

(Tα(t)M)⊥, respectively. In this system of coordinates, Λ(t)(Tα(t)M) is rep-

resented by the block matrix

(
0n,n

0N−n,n

)
, where 0m,n denotes the zero ma-

trix of size m × n, while Λ(t)(Tα(t)M)⊥ is represented by the block matrix(
0n,N−n
Λ0(t)

)
, where Λ0(t) is the projection of Λ(t)(Tα(t)M)⊥ on (Tα(t)M)⊥. As

a consequence, Λ(t) is represented by the block matrix

Λ(t) =

(
0n,n 0n,N−n

0N−n,n Λ0(t)

)
.

So, since Ṡ(t) = Λ(t) ◦ S(t), we must have

S(t) =

(
In 0n,N−n

0N−n,n S4(t)

)
,

from what follows that S(t)Z(t) = Z(t), for every Z(t) ∈ Tα(t)M , and, con-
sequently,

R̃(t)|Tα(t)M = R(t)|Tα(t)M = A(t).

These subtle differences between various notions of rollings are best illus-
trated through the comparison of the rolling of a semi-Riemannian manifold

M over a flat manifold M̂ , versus the rolling of M on its affine tangent

space M̂ at a fixed point, when M and M̂ are isometrically embedded in
(V, (. , .)p,n−p). We start by revising general facts about a rolling on affine
tangent spaces.
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The following important properties of the rolling map of Riemannian man-
ifolds have also been proved in [25]. The proof uses the arguments involving
the group properties of SE(V ), that are also true for the semi-Riemannian
vector space (V, (. , .)p,n−p).

Proposition 5. Let M , M1 and M2 be manifolds of the same dimension,
isometrically embedded in V , and α(t), α1(t) and α2(t) curves in M , M1 and
M2 respectively, defined in the real interval I, that satisfy α(0) = α1(0) =
α2(0).

• Symmetric property of rolling
If g(t) ∈ SE(V ) is a rolling map of M on M1 along the rolling curve
α(t) with development curve α1(t), then g−1(t) ∈ SE(V ) is a rolling
map of M1 on M , along the rolling curve α1(t) with development curve
α(t).
• Transitive property of rolling

If g(t) ∈ SE(V ) is a rolling map of M on M1 along the rolling curve
α(t) with development curve α1(t), and g1(t) ∈ SE(V ) is a rolling map
of M1 on M2 along the rolling curve α1(t) with development curve
α2(t), then g(t)g1(t) ∈ SE(V ), is a rolling map of M on M2, with
rolling curve α(t) and development curve α2(t).

Remark 5. Using these two properties, one can reduce the study of rolling a
manifold on another to the simpler situation when the second manifold is the
affine tangent space at a point of the first. Properties above have been used
in [20] to derive the kinematic equations of a sphere rolling on another sphere
of the same dimension, using the equations of spheres rolling on affine tangent
spaces at a point. Also in the semi-Riemannian case, these properties have
been used in [22] to derive the kinematic equations for rolling a hyperbolic
sphere over another.

4.Rolling of symmetric spaces on flat manifolds
We start from setting the notation and recalling useful information about

symmetric spaces based on [24].

4.1.Symmetric spaces.
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Definition 3. A connected semi-Riemannian manifold
(
M, g

)
is called a

semi-Riemannian symmetric space if for each o ∈ M there exists a diffeo-
morphic isometric map ζo : M → M , called the global isometry of M at o,
such that doζo = −Id on the vector space ToM .

The symmetric semi-Riemannian spaces have close relation to Lie groups.
The connected identity componnet G of the isometry group acts transitively
on M . Let H be the isotropy subgroup of a point o ∈ M . Then M can be
identified with the homogeneous space G/H. Note that the isotropy sub-
groups of different points are conjugate subgroups of G. Let g and h be the
Lie algebras of the Lie groups G and H respectively. Then, the following
Cartan decomposition holds,

g = h⊕ p, [h, h] ⊂ h, [h, p] ⊂ p, [p, p] ⊂ h. (13)

We denote by τ : G ×M → M , (q,m) 7→ τ(q,m) = q.m the action of G on
M . Then, for any fixed q ∈ G, τq : M →M is a diffeomorphism of M . Recall
that a metric tensor g(. , .) on M is said to be G-invariant if

g(X(m), Y (m)) = g(dmτq(X), dmτq(Y )),

for q ∈ G, and vector fields X, Y on M . A scalar product 〈. , .〉 in g is said to
be AdH-invariant if

〈AdhX,AdhY 〉 = 〈X, Y 〉, h ∈ H, X, Y ∈ g.

Let π denote the projection ofG on the coset manifold, i.e., π : G→ G/H =
M , g 7→ g.o = m . If e is the identity of G, then the map π and the differential
map

deπ : TeG = g→ ToM (14)

have the following properties, see [24, Chapter 11]:

1. π : G → G/H = M is a submersion, such that deπ(h) = {0} ⊂ ToM ,
and deπ : p→ ToM is an isomorphism;

2. deπ makes one-to-one correspondence between AdH-invariant scalar
products on p and G-invariant metrics on M .

Definition 4. Let (M, gM) and (N, gN) be two semi-Riemannian manifolds
and π : N →M a submersion such that TnN = Vn⊕Hn, with Vn = ker(dnπ).
Then π is called a semi-Riemannian submersion if π−1(m) is a Riemannian
submanifold of N and the direct sum Vn ⊕Hn is orthogonal at each n ∈ N .
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Let M = G/H be a semi-Riemannian symmetric space with G-invariant
metric g(. , .) corresponding to an AdH-invariant scalar product 〈. , .〉 on p, as
mentioned in property 2 before Definition 4. We extend 〈. , .〉 to the entire
Lie algebra g such that the direct sum g = p ⊕ h becomes orthogonal. We
denote by Lqh = qh the multiplication from the left on G. We then define
the vertical left invariant distribution V by Vq = deLq(h) and the horizontal
distribution H by Hq = deLq(p). We keep the notation 〈. , .〉 for the left-
invariant AdH-invariant metric on G induced by the extended scalar product
on g. Under these conditions the projection map π : G → M is a semi-
Riemannian submersion.

We say that a vector field X on G is horizontal if X(q) ∈ Hq for any q ∈ G.
An absolutely continuous curve q : I → G on G is horizontal if q̇(t) ∈ Hq(t)

for almost every t ∈ I, or equivalently, if q−1(t)q̇(t) ∈ Hq(0).

For a vector field Y on M there is a horizontal vector field Ỹ on G such
that dqπ(Ỹ (q)) = Yπ(q). In particular, this implies that for any absolutely
continuous curve α : I → M there is a horizontal curve q : I → G such that
π(q(t)) = α(t) and dq(t)π(q̇(t)) = α̇(t) for almost every t ∈ I. We call Ỹ and
q(t) the horizontal lifts of Y and α(t), respectively. A horizontal lift q(t) of a
curve α(t) is unique, if we specify the initial value q(0).

The following result will be useful later on.

Lemma 1. Let π : G→ M be a semi-Riemannian submersion onto a semi-
Riemannian symmetric space as above. Let α : [0, T ] → M be an absolutely
continuous curve and Y be a vector field along α. Let q : [0, T ] → G be a

horizontal lift of α and Ỹ a horizontal lift of Y along q. Then

DM
α(t)

dt
Y (t) = dq(t)π

( k∑
j=1

dyj(t)

dt
Aj

)
, (15)

where dq(t)Lq−1(t)Ỹ (t) =
∑k

j=1 yj(t)Aj is written in a left invariant basis
{A1, . . . , Ak} of p.

Proof : We denote by ∇G the Levi-Civita connection on G. First we show
that

∇G
VW =

1

2
[V,W ] (16)
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for left invariant vector fields V,W ∈ p. Since p and the metric on G are
AdH-invariant, then

〈[V, Z],W 〉 = 〈V, [Z,W ]〉, V,W ∈ p, Z ∈ h, (17)

see, for instance [24, Lemma 3, Chapter 11]. Then for any Z ∈ g and V,W ∈ p
we have

2〈∇G
VW,Z〉 = −〈V, [W,Z]〉+ 〈W, [Z, V ]〉+ 〈Z, [V,W ]〉 (18)

by Koszul formula. If Z ∈ h, then the first two terms on the right hand side
are cancelled by (17). If Z ∈ p, then the first two terms on the right-hand
side vanish by [p, p] ∈ h and the orthogonality of p and h. It shows (16).

Let π : G→M be a Riemannian submersion, X, Y vector fields on M , and
X̃, Ỹ their horizontal lifts to G. We denote prHq : TqG→ Hq the orthogonal
projection onto a horizontal sub-bundle H at q ∈ G. We recall that the
Levi-Civita connections ∇M on M and ∇G on G are related by

∇M
X Y = dqπ(prHq ∇

G
X̃
Ỹ ), (19)

see [24, Lemma 45, Chapter 7]. We write the horizontal lifts X̃ and Ỹ , in the
left invariant basis {A1, . . . , Ak} of p by

dq(t)Lq−1(t)X̃ =
k∑
i=1

xiAi, dq(t)Lq−1(t)Ỹ =
k∑
j=1

yjAj

Then,

∇G
X̃
Ỹ = ∇G∑k

i=1 xiAi

k∑
j=1

yjAj =
k∑

i,j=1

xi

(
∇G
Ai
yjAj

)

=
k∑

i,j=1

xi

(
Ai(yj)Aj + yj∇G

Ai
Aj

)

=
k∑
j=1

( k∑
i=1

(xiAi)(yj)
)
Aj +

k∑
i,j=1

xiyj∇G
Ai
Aj

=
k∑
j=1

( k∑
i=1

(xiAi)(yj)
)
Aj +

1

2

k∑
i,j=1

xiyj[Ai, Aj].
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Since M is a semi-Riemannian symmetric space we have [Ai, Aj] ⊂ h and
therefore

prHq ∇
G
X̃
Ỹ =

k∑
j=1

( k∑
i=1

(xi(q)Ai)(yj(q))
)
Aj.

Now, we set

dq(t)Lq−1(t)X̃(t) = dq(t)Lq−1(t)q̇(t) =
k∑
i=1

xi(q(t))Ai,

and obtain

prHq(t)
DG
q̇(t)Ỹ (t)

dt
= prHq(t)∇

G
q̇(t)Ỹ (t) =

k∑
j=1

(
q̇(t)(yj(q(t)))

)
Aj

=
k∑
j=1

dyj(q(t))

dt
Aj.

We set X(t) = α̇(t) in formula (19) and obtain (15).

4.2.Intrinsic rolling of symmetric spaces on flat manifolds. The defi-
nition of a symmetric space is intimately related to the rolling on a flat
space. We aim to construct an intrinsic rolling of a semi-Riemannian sym-

metric manifold M on the tangent space ToM = M̂ . Namely, we will find the
triplet

(
α(t), α̂(t), A(t)

)
satisfying Definition 1 by using only the data of the

symmetric manifold.
The main properties that result from assuming that M is a symmetric

space can be summarised in the following commutative diagrams,

G

Lq
��

π // M
τq
��

G π
// M

g = p⊕ h

de(Lq)
��

deπ // ToM

do(τq)
��

TqG = Hq ⊕ Vq
dqπ

// Tτq(o)M

(20)

Thus we conclude that

π(q) = π(Lq(e)) = τq(π(e)) = τq(o), q ∈ G. (21)

We also recall that, ∀q ∈ G,

Vq = ker(dqπ), h = ker(deπ),
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and the map dqπ : Hq → Tτq(o)M is an isometry. Let U ∈ p. Then, from the
second diagram in (20), it follows that

dqπ(deLq(U)) = doτq(deπ(U)). (22)

Now, choose an absolutely continuous curve α : [0, T ] → M such that
α(0) = o. Then, there exists a horizontal curve q : [0, T ] → G that projects
to α. More precisely

L1 π(q(t)) = α(t) = τq(t)(o). In the last equality we used (21);
L2 dq(t)π(q̇(t)) = α̇(t);
L3 q̇(t) = deLq(t)U(t), for some curve U ∈ p.

Combining L3, L2 and (22) we obtain

α̇(t)
L2
= dq(t)π(q̇(t))

L3
= dq(t)π(deLq(t)U(t))

(22)
= d0τq(t)(deπ(U(t))),

(23)

and emphasize that both maps dq(t)π and d0τq(t) are isometries between the
corresponding spaces, for any t ∈ [0, T ].

Now we define the curve α̂(t) ∈ ToM . For the curve U(t) = dq(t)Lq−1(t)(q̇(t))
on p, we write deπ(U(t)) ∈ ToM , and by solving the Cauchy problem{

dα̂
dt = deπ(U(t)) = ˙̂α

α̂(0) = 0,
(24)

we obtain α̂(t) Here we implicitly identified the vector space ToM and
Tα̂(t)(ToM) by an isometric orientation preserving map j.

We also define A(t) : Tα(t)M → Tα̂(t)(ToM) as a composition of the maps

Tα(t)M
L1
= Tτq(t)(o)M

(d0τq(t))
−1

−−−−−→
by (20)

ToM
j−→ Tα̂(t)(ToM). (25)

Note that, by the commutative diagram (20), the map A(t) can be defined
alternatively by the composition of the following isometric maps,

Tα(t)M
(dq(t)π)−1

−−−−−→ Hq(t)

dq(t)Lq−1(t)−−−−−−→ p
deπ−−→ ToM

j−→ Tα̂(t)(ToM). (26)

Proposition 6. If α(t), α̂(t) and A(t) : Tα(t)M → Tα̂(t)(M̂) are defined as in

Section 4.2, with M̂ = ToM , the triple (α(t), α̂(t), A(t)) is a rolling curve for

the intrinsic rolling of the manifold M on M̂ , i.e., it satisfies conditions in
Definition 1.
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Proof : By the construction of A, the condition (3) in the intrinsic rolling for
the isometry A(t) : Tα(t)M → Tα̂(t)(ToM) is fulfilled. We need to verify that

a parallel vector field Y along α is mapped to a parallel vector field Ŷ along
α̂.

Let Y be a vector field along α(t) = τq(t)(o), where q(t) is a horizontal lift

of α(t). Then Ŷ = A(Y ) is given by

Ŷ (t) = deπ ◦ dq(t)Lq−1(t)(Ỹ (t)) = deπ
( k∑
j=1

ỹ(t)Aj

)
, (27)

where we used (26). We also denoted by Ỹ (t) ∈ Hq(t) the horizontal lift of

Y (t), and write dq(t)Lq−1(t)Ỹ (t) =
∑k

j=1 ỹ(t)Aj, where {A1, . . . , Ak} is a basis
for p. Assume that Y (t) is a parallel vector field along α. Then, using the

identity (15) in Lemma 1, dq(t)π
(∑k

j=1
dỹ(t)
dt Aj

)
= 0. Since dq(t)π : Hq(t) →

Tα(t)M is a bijection, we conclude that
dỹj(t)
dt = 0 for all j = 1, . . . , k. Then,

(27) shows that

dŶ (t)

dt
= deπ

( k∑
j=1

dỹ(t)

dt
Aj

)
= 0.

Thus Ŷ is a parallel vector field along α̂ on ToM .

4.3.Extrinsic rolling of symmetric spaces on flat manifolds. In the
present section we describe the rolling of a semi-Riemannian symmetric man-

ifold M on the flat manifold which is the affine tangent space M̂ = T aff
o M at

o ∈ M . We will connect the intrinsic rolling, described in Section 4.2 to the
extrinsic rolling, by choosing an isometric embedding into a vector space V .
Let M = G/H be a semi-Riemannian symmetric manifold. Let

ι : M → V, M = ι(M) (28)

be an isometric embedding. In the present section all the objects related to
V will be marked by a line on top, like the image M = ι(M) ⊂ V of M in
V , or o = ι(o) the image of the isotropy point in V . The map doι is a linear
isometry and

doι(ToM) = Tι(o)M = ToM ⊂ V. (29)

We define

M̂ := T aff
o M = o+ ToM. (30)
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Note that diagram (20) implies that any W ∈ ToM can be written as

W = doι(W ) = doι(deπ(U)), where W ∈ ToM, U ∈ p. (31)

We assume that ρ : G→ GL(V ) is a representation of G on V , and define

G := ρ(G). (32)

The action of G on M is denoted by q.m, with q = ρ(q) ∈ G and m ∈ V ,

to emphasize that the group G acts on both M and M̂ as it does on vectors
in V . We keep writing τq for the action of q ∈ G on M . Moreover, we assume
that the imbedding map ι is equivariant under these actions, i.e.,

ι(τq(m)) = q.(ι(m)) = q.m. (33)

We know that G acts on the symmetric space M by isometries and ι : M →
V is an isometric embedding. So, since the metric on M is the restriction of
the metric on V , G = ρ(G) must preserve the metric on V . As a consequence,
G ⊂ SO(V ).

The group representation ρ induces the Lie algebra representation deρ that
maps A ∈ g to Ā ∈ ḡ ⊂ so(V ). Let (. , .) denote the scalar product on ḡ,
defined by

(Ā, B̄) := 〈A,B〉.
Then p̄ = deρ(p) is the orthogonal complement to h̄ = deρ(h) in ḡ relative to
(. , .), and ḡ = h̄⊕ p̄ is a Cartan decomposition.

Define the map P : G→M by

P(ρ(q)) = ι(π(q)). (34)

The map P is smooth, as a composition of smooth maps.
Differentiating (33), we get that the lower part of the following diagram

commutes, while differentiating (34) we also get that the upper part of this
diagram commutes.

p

deπ
��

deρ // p

p = deP
��

ToM

doτq
��

doι // ToM

doq
��

Tτq(o)M
dτq(o)ι

// Tq.oM

(35)
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Here all the linear maps are bijective isometries.
We take an absolutely continuous curve α : [0, T ] → M , α(0) = o, and its

horizontal lift

q : [0, T ]→ G, dq̇(t)Lq−1(t)q̇(t) = U(t) ∈ p, (36)

such that α(t) = τq(t)(o). This, together with the equivariance of ι given
by (33), imply that

α(t) = ι(α(t)) = ι(τq(t)(o)) = q(t).o, (37)

where q : [0, T ]→ G is horizontal, i.e., q̄−1q̇ ∈ p̄. But then,

α̇(t) = dα(t)ι(α̇(t)) = dα(t)ι ◦ doτq(t)(deπ(U))

= doq(t)(p ◦ deρ(U)) = doq(t)(W ) (38)

where U ∈ p from (36), and W := p ◦ deρ(U) ∈ ToM , by diagram (35).
Since q(t) is a linear map, then doq(t) = q(t) and we simply write W (t) =
q(t)−1. α̇(t) for q(t) from (37).

We are ready to define α̂ ∈ M̂ = T aff
o M . For that we find a curve s : [0, T ]→

ToM as the solution of the Cauchy problem{
ṡ(t) = W (t) = q(t)−1.α̇(t)

s(0) = 0
, (39)

and set α̂(t) = o+ s(t) ∈ T aff
o M .

Proposition 7. In the notation of Section 4.3, there is R : [0, T ] → SO(V )
such that g(t) = (R(t), s(t)) ∈ SE(V ) is a rolling map that rolls the curve

α(t) ∈M onto the curve α̂(t) ∈ M̂ = T aff
o M , where α̂(t) = o+ s(t).

We emphasise that for the rolling map g(t) in the statement of this propo-
sition, one has the freedom to define R(t)|T⊥M such that g(t) satisfies the
normal no-twist condition. The no-slip and tangent no-twist conditions are
determined by the intrinsic rolling, the latter being the nature of symmetric
spaces.

Proof : The proof is constructive. Since s is the solution of (39), it is enough
to define R(t) ∈ SO(V ) so that g(t) = (R(t), s(t)) ∈ SE(V ) satisfies the
conditions in Definition 2.

Let R(t) be such that

dα(t)R(t)|Tα(t)M(X(t)) = q(t)−1. X(t), (40)
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for any tangent vector field X(t) along α(t) and R(0) = e.
Using (38) and (39), we see that g(t) satisfies the no-slip condition

dα(t)g(t)(α̇(t)) = q(t)−1. α̇(t) = ṡ(t) = ˙̂α(t).

Now, we show that if R(t) is defined as above, then g(t) = (R(t), s(t))
satisfies the tangent no-twist condition given in Proposition 2. Let X(t) be
a tangent parallel vector field along α(t). Notice that, from the bottom of
diagram (35), dαι is a bijective isometry between TαM and TαM . Since,
according to [24, Proposition 3.59], the covariant derivative on M is the
pullback of the covariant derivative on M under the isometries, the vector

field X(t) =
(
dα(t)ι

)−1
(X(t)) is parallel along α(t) on M .

Moreover, diagram (35) shows that the parallel vector field X(t) is mapped

to the parallel tangent vector field X̃(t) along s(t) on ToM due to Lemma 1

and the isometric embedding. As a consequence, the vector field X̂(t) along

α̂ on M̂ = T aff
o M is parallel.

As was mentioned earlier on, the condition (40) on R(t) still leaves freedom
on how dα(t)R(t) acts on the normal space T⊥α(t)M . In order to guarantee that

g(t) = (R(t), s(t)) ⊂ SE(V ) also satisfies the normal no-twist condition,
we define the (unique) map R(t) along α on M such that the differential
dα(t)R(t)|T⊥α(t)M maps the normal parallel vector fields along α to the normal

parallel vector fields along α̂ on M̂ = T aff
o M .

Remark 6. In relation to the last part of the proof of Proposition 7, we
point out that in [8, Section 3.3] a complete answer was given to the problem
of extending intrinsic rollings to extrinsic ones. We also refer to [18] for
non-twist conditions in the case of embedded sub-Euclidean manifolds.

Corollary 1. If M has co-dimension 1, let α(t) = q(t).o be a curve in M ,
satisfying α(0) = o, where q(t) is a horizontal curve in G and q̇ = q . U(t).

Then, (R(t), s(t)) ∈ SE(V ) is a rolling map of M on M̂ along α(t), with
development α̂(t) = s(t) + o, where R(t) = q(t)−1 and s(t) satisfies the
Cauchy problem ṡ(t) = U(t).o, s(0) = 0. Moreover,{

Ṙ(t) = −U(t).R(t)
ṡ(t) = U(t).o

, (41)

are the corresponding kinematic equations.
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Proof : For manifolds of co-dimension 1, the normal non-twist condition is
always satisfied. So, taking into account (40) and Remark 3, we have R(t) =

q(t)−1. So, Ṙ(t) = −U(t)R(t). According to (39), ṡ(t) = q(t)−1.α̇(t). But
α̇(t) = q̇(t).o, so it follows that ṡ(t) = q(t)−1q̇(t).o = U(t).o.

4.4.Examples. We will exemplify the results of Sections 4.2 and 4.3.

4.4.1.Rolling the 2-dimensional hyperbolic space. First we describe the hy-
perbolic disc as a symmetric manifold, and construct the intrinsic and extrin-
sic rolling on the corresponding flat spaces. We refer to [19] for more details
about hyperbolic spaces and the relationship between two of its equivalent
models, which will be used in this section.

Let D be the unit disk {z ∈ C : |z| < 1} in R2, with the hyperbolic metric

given in coordinates (x1, x2) by h2 = 4 (dx1)2+(dx2)2

(1−(x21+x22))
2 . D is also known as the

Poincaré ball model. The Lie group

G = SU(1, 1) =

{
g =

(
a b
b̄ ā

)
: a, b ∈ C, |a|2 − |b|2 = 1

}
acts transitively on D via the Möebius transformations, i.e.,

τg(z) =
az + b

b̄z + ā
, τg(0) =

b

ā
.

Let H :=

{(
a 0
0 ā

)
, |a|2 = 1

}
be the isotropy subgroup of 0 ∈ D. The pro-

jection map is
π : G → D = G/H

g =

(
a b
b̄ ā

)
7→ τg(0) = b

ā

(42)

The Lie algebra g of G is given by

g = su(1, 1) =

{(
iv u1 + iu2

u1 − iu2 −iv

)
: v, u1, u2 ∈ R

}
.

We endow g with an AdG-invariant semi-Riemannian metric defined by

〈X, Y 〉 = 2 tr(XY ) =
1

2
B(X, Y ),

B(. , .) being the Killing form. The matrices

A1 =
1

2

(
i 0
0 −i

)
, A2 =

1

2

(
0 1
1 0

)
, A3 =

1

2

(
0 i
−i 0

)
(43)
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form an orthonormal basis of g.
The Lie algebra h of the isotropy subgroup H is spanned by A1 and its

orthogonal complement p is spanned by A2 and A3. Note that the restriction
of 〈. , .〉 to p is positive definite. From the commutation relations, we conclude
that g = h⊕ p is a Cartan decomposition of g.

A curve z(t) in D lifts to a horizontal curve

g(t) =
1√

1− |z(t)|2

(
1 z(t)
z̄(t) 1

)
eθ(t)A1 ∈ G,

when θ̇ = −2
1−|z|2 (x1ẋ2 − ẋ1x2). In such case,

g−1ġ =
1

1− |z|2

(
0 ż e−iθ

˙̄z eiθ 0

)
. (44)

The proof of these two facts regarding lifts of curves can be found in [15,
pages 97, 98], modulo minor obvious missprints.

• Intrinsic rolling of D on T0D.
We are now in conditions to apply the theory developed at the beginning

of this section for the intrinsic rolling of M = D on M̂ = T0D. Let α(t)

be a curve in D satisfying α(0) = 0. Define u(t) :=
α̇(t) e−iθ(t)

1− |α(t)|2
, so that the

horizontal lift of α to G satisfies g−1ġ =

(
0 u(t)
u(t) 0

)
=: U(t), g(0) = I.

Notice that α(t) = τg(t)(0) = b(t)
ā(t) . According to (24) the curve α̂(t) is the

solution of the initial value problem ˙̂α(t) = deπ(U(t)) = u(t), α̂(0) = 0.

The isometry A : Tα(t)M → Tα̂(t)M̂ is obtained explicitly using (25) and it
is given by.

A(t)v(t) =
(
doτg(t)

)−1
= a(t)2v(t), v(t) ∈ Tα(t)M.

• Extrinsic rolling of D on T aff
0 D

The rollings of D can be also represented ”extrinsically” after embedding
D in a vector space and defining an appropriate representation of G. Here,
we consider the embedding of D in V = R1,2, which is R3 equipped with
the Minkowski metric dm2 = −(dx1)

2 + (dx2)
2 + (dx3)

2. V is isometric to
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(su(1, 1), 〈., .〉). The isometric diffeomorphism

ι : D → R1,2

z = x2 + ix3 7→ ι(z) = (1+|z|2
1−|z|2 ,

2x3
1−|z|2 ,

−2x2
1−|z|2 )

(45)

is obtained via the hyperbolic stereographic projection, through the point
(−1, 0, 0), and an appropriate change of coordinates. Then

ι(D) = H2 = {(x1, x2, x3) : x2
1 = 1 + x2

2 + x2
3, x1 > 0}. (46)

Now define G = AdG. It is known that G ⊂ SO(V ) = SO+(1, 2),[9, 24],
which is the connected identity component of

SO(1, 2) = {X ∈ SL(3,R : XT I1,2X = I1,2},

where

I1,2 =

−1 0 0
0 1 0
0 0 1

 .

Indeed, calculating gAjg
−1, j = 1, 2, 3, with g =

(
a b
b̄ ā

)
, |a|2 − |b|2 = 1, we

obtain

Adg =

 |a|2 + |b|2 2Im(āb) −2Re(ab̄)
2Im(ab) Re(a2 − b2) −Im(a2 + b2)
−2Re(ab) Im(a2 − b2) Re(a2 + b2)

 . (47)

It can be shown that Adg I1,2 Adg = I1,2, for all g ∈ G, and the determinant of
the diagonal blocks is in both cases equal to |a|2+|b|2 > 0, so Adg ∈ SO+(1, 2).
It follows that ġ(0) 7→ adġ(0) defines is a Lie algebra isomorphism deρ, between
g = su(1, 1) and ḡ = so(1, 2). Since [A1, A2] = A3, [A1, A3] = −A2, and
[A2, A3] = −A1, an easy calculation yields

A =
1

2

(
iv u
ū −iv

)
7→ adA =

 0 u2 −u1

u2 0 −v
−u1 v 0

 , u = u1 + iu2. (48)

We also have the Cartan decomposition so(1, 2) = h⊕ p, where

h = span


0 0 0

0 0 1
0 −1 0

 ,
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p = span


0 0 1

0 0 0
1 0 0

 ,

0 1 0
1 0 0
0 0 0

 ,

h is the Lie algebra of the isotropy subgroup of SO(1, 2) at the point e1.
We also need to guarantee that the embedding ι is equivariant relative to

G, i.e., ι(τg(z)) = Adg(ι(z)), for every z ∈ D and g ∈ G. We first show that
this identity is true for z = 0, and then use the transitive action of G on D
to prove the general case.

ι(τg(0)) = ι( bā) = ι( 1
|a|2Re(ab),

1
|a|2Im(ab))

=
(
|a|2 + |b|2, 2Im(ab),−2Re(ab)

)
= Adg(e1) = Adg(ι(0)).

(49)

Now, let h := 1√
1−|z|2

(
1 z
z̄ 1

)
∈ SU(1, 1), so that z = τh(0). Using this and

the identity (49), we can write, for each g ∈ G and z ∈ D,

ι(τg(z)) = ι(τg(τh(0))) = ι(τgh(0)) = Adgh(ι(0))

= Adg(Adh(ι(0))) = Adg(ι(τh(0)) = Adg(ι(z)).
(50)

We are finally in conditions to deal with the extrinsic rolling of the hy-
perboloid H on its affine tangent space at e1, resulting from the action of
SO+(1, 2). Since H2 is co-dimension 1, Corollary 1 applies and (R(t), s(t)) is
a rolling map along the curve α(t) = g(t)e1. The kinematic equations for the
extrinsic rolling of H2 on T aff

e1
H are, Ṙ(t) = −U(t)R(t)

ṡ(t) = U(t)e1

, U =

 0 u1 u2

u1 0 0
u2 0 0

 . (51)

This agrees with the results reported in [16].

4.4.2.The projective complex plane and the Riemann sphere. This is another
example where the natural geometry on M is induced by the structure of
G. The rollings of the projective space CP1, identified with the extended
complex plane C ∪ ∞, on its tangent planes can be obtained essentially in
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the same way as in the case of the Poincaré disk, with obvious adaptations.
For this reason we omit certain details here.

Consider the projective plane M = CP1 with the elliptic metric given in co-

ordinates (x1, x2) by l2 = 4 (dx1)2+(dx2)2

(1+(x21+x22))
2 . The Lie group G = SU(2) acts transi-

tively on M . The isotropy group of the origin z = 0 is H = {
(
a 0
0 ā

)
, |a| = 1}.

We endow g = su(2) with the metric defined by 〈X, Y 〉 = −2 tr(XY ). Rela-
tive to this metric, the matrices

A1 =
1

2

(
i 0
0 −i

)
, A2 =

1

2

(
0 1
−1 0

)
, A3 =

1

2

(
0 i
i 0

)
(52)

form an orthonormal basis of g. The Lie algebra h and the complementary
space p are given by

h = {1
2

(
iv 0
0 −iv

)
: v ∈ R}, p = {1

2

(
0 u
−ū 0

)
, u ∈ C}.

The horizontal lift of a curve α(t) = x1 + ix2 in CP1 to SU(2) is given

by g(t) = 1√
1+|α(t)|2

(
1 α(t)

−ᾱ(t) 1

)
eθ(t)A1, with θ being a solution of θ̇ =

2
1+|α|2 (x1ẋ2 − ẋ1x2).

• Intrinsic rolling of CP1 on T0CP1

We are ready to deal with the intrinsic rolling of M = CP1 on its tangent
space at z = 0. Let α(t) be a curve in CP1 satisfying α(0) = 0, and define

u(t) :=
α̇(t) e−iθ(t)

1 + |α(t)|2
, so that the horizontal lift g(t) ∈ SU(2) of α satisfies

g−1ġ =

(
0 u(t)
−u(t) 0

)
=: U(t) ∈ p, g(0) = I. So, according to Proposition 6,

the curve α(t) in CP1 rolls on the curve α̂(t) in T0CP1 which is the solution

of ˙̂α(t) = u(t), α̂(0) = 0.
The isometry (that preserves the elliptic metric) is given explicitly by

A = (d0τg(t))
−1 : Tα(t)M → Tα̂(t)M̂

v(t) 7→ v(t)a(t)2 .

So, (α, α̂, A) is a rolling curve for the intrinsic rolling of CP1 on its tangent
space at 0.
• Extrinsic rolling of CP1 on T aff

0 CP1
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For the extrinsic rolling, we embed CP1 in the 3-dimensional Euclidean
space, through the passage to the Riemann sphere S2 via the inverse of the
stereographic projection and a change of coordinates. This isometric embed-
ding is defined by

ι : CP1 → R3

z = x+ iy 7→ ι(z) = (
−2x

1 + |z|2
,
|z|2 − 1

1 + |z|2
,
−2y

1 + |z|2
)
. (53)

Clearly ι(CP1) = S2, and ∞ is mapped to the north pole of S2.
In this case

Adg =

 |a|2 − |b|2 −2Im(āb) 2Re(āb)
2Im(ab) Re(a2 + b2) −Im(a2 − b2)
−2Re(ab) Im(a2 + b2) Re(a2 − b2)

 ∈ SO(3), (54)

so, we define ρ(SU(2)) = G = AdG = SO(3). The Lie algebra isomorphism
deρ : su(2)→ so(3,R) is defined by

A =
1

2

(
iu1 u2 + iu3

−u2 + iu3 −iu1

)
7→ adA =

 0 −u3 u2
u3 0 −u1
−u2 u1 0

 . (55)

Clearly, p = span


 0 0 1

0 0 0
−1 0 0

 ,

0 0 0
0 0 1
0 −1 0

. Since the embedding defined in

(53) is equivariant relative to the adjoint group SO(3), we can finally apply
Corollary 1 to obtain the extrinsic rolling of the Riemann sphere on its affine
tangent space at the south pole −e3, along the curve α(t) = g(t)(−e3), where
g(t) is horizontal. Assume that

g(t)−1ġ(t) = U(t) =

 0 0 u1(t)
0 0 u2(t)

−u1(t) −u2(t) 0


Then, the kinematic equations are: Ṙ(t) = −U(t)R(t)

ṡ(t) = −U(t) e3

, (56)

with U as above. These equations are the same as the equations for the ball-
plate problem [13], or the equations for the sphere rolling on a plane [12, 14].
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4.4.3. Rolling semi-Riemannian orthogonal groups. Here we consider M to
be the connected component containing the identity of the semi-Riemannian
orthogonal group O(p, n − p), 1 ≤ p ≤ n − 1, consisting of invertible n × n
real matrices P , satisfying P JP = In, with J = diag(Ip,−In−p), and P J :=
JTP TJ . The Lie algebra of O(p, n − p), denoted by so(p, n − p), consists
of n × n matrices B satisfying BJ = −B. If we consider P ∈ O(p, n − p)

partitioned as P =

[
P1 P2

P3 P4

]
, where P1 is p× p, then

M = SO+(p, n− p)
= {P ∈ O(p, n− p) : det(P ) = 1, det(P1) > 0, det(P2) > 0} . (57)

We consider M equipped with the semi-Riemannian metric defined by

〈B,C〉J := tr (BJC). (58)

Consider the Lie group G := SO+(p, n− p)×SO+(p, n− p), equipped with
the natural semi-Riemannian metric induced by (58) on each component,
which is bi-invariant. G acts transitively on M with action

τ : G×M → M
((Q1, Q2), P ) 7→ Q1PQ

−1
2
. (59)

Fixing a point P0 ∈ M , the projection π : G → M maps (Q1, Q2) to
Q1P0Q

−1
2 . The isotropy subgroup at P0 is

H =
{

(Q1, Q2) ∈ G : Q1P0Q
−1
2 = P0

}
, (60)

and M = G/H. Of course, the semi-Riemannian metric (58) on M is also
AdH-invariant. The Lie algebra g = so(p, n − p) ⊕ so(p, n − p) splits as
g = h⊕ p, where

h =
{

(B,P−1
0 BP0) : B ∈ so(p, n− p)

}
p =

{
(C,−P−1

0 CP0) : C ∈ so(p, n− p)
} , (61)

and this orthogonal splitting satisfies (13).

• Intrinsic rolling of the manifold M = SO+(p, n−p) on M̂ = TP0
SO+(p, n−

p).
We now apply the results obtained in Section 4.2 for the intrinsic rolling

of M = SO+(p, n − p) on its tangent space at the point P0. Note that the
differential of π at (e, e), the identity in G, is given by

d(e,e)π : g → TP0
M

(U1, U2) 7→ U1P0 − P0U2
, (62)
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and the kernel of d(e,e)π is h. So, d(e,e)π defines an isomorphism between p

and TP0
M , mapping (U,−P−1

0 UP0) to 2UP0.
Let α(t) be a curve in M satisfying α(0) = P0, and Q(t) a horizontal lift

of α(t) to G, i.e., π(Q(t)) = α(t) and Q−1Q̇ = (U(t),−P−1
0 U(t)P0), for some

curve U(t) ∈ so(p, n − p). Then, according to (24), Section 4.2, the curve

α(t) ∈M rolls on the curve α̂(t) ∈ M̂ defined by

˙̂α(t) = 2U(t)P0, α̂(0) = 0,

and the isometry A(t) is defined in (25) as the inverse of dP0
τQ(t). Since for

Q = (Q1, Q2),

dP0
τQ : TP0

M → TQ1P0Q
−1
2
M

CP0 7→ Q1CP0Q
−1
2 = Q1CQ

−1
1 Q1P0Q

−1
2

,

where C ∈ so(p, n−p), with the identification of the vector spaces TP0
M and

Tα̂(t)M(TP0
M), we finally obtain

A(t) : Tα(t)M → Tα̂(t)M̂
DQ1P0Q

−1
2 7→ Q−1

2 DQ2P0, D ∈ so(p, n− p) .

In conclusion, the triple (α(t), α̂(t), A(t)) is a rolling curve in the sense of
Definition 1.

• Extrinsic rolling of the manifold M = SO+(p, n−p) on M̂ = T aff
P0

SO+(p, n−
p).

We isometrically embed M and M̂ on the semi-Euclidean vector space V =

(gl(p, n− p), 〈. , .〉J), and identify ι(M) and ι(M̂) with M and M̂ respectively.
In this case, also the representation ρ of G on V is the identity map, so we can
write everything in Proposition 7 without using overlines. The equivariance
property (33) is also trivially satisfied, and the action of G on V is simply
the extension of the action (59) from M to the embedding space V . Notice
that

TP0
SO+(p, n− p) = {BP0, B

J = −B},

T⊥P0
SO+(p, n− p) = {CP0, C

J = C}.
(63)

We now find the rolling map g(t) = (R(t), s(t)) ∈ SE(V ) along the curve
α(t) = Q1(t)P0Q

−1
2 (t) in M , satisfying α(0) = P0 where Q(t) = (Q1(t), Q2(t))

is a horizontal lift of α(t) to G. So, Q−1Q̇ ∈ p, that is,

Q−1Q̇ = (Q−1
1 Q̇1,−P−1

O Q−1
1 Q̇1P0).
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Defining U := Q−1
1 Q̇1, we have Q−1Q̇ = (U,−P−1

O UP0), and after a few
simple calculations, we get α̇(t) = Q1(t)(2U(t)P0)Q

−1
2 (t). So, according to

Proposition 7, s(t) is the only solution of

ṡ(t) = 2U(t)P0, s(0) = 0.

We also know that, for every tangent vector field X(t) along α(t)

dα(t)R(t)|Tα(t)M(X(t)) = Q(t)−1X(t),

and the tangent no-twist condition is satisfied. For a general symmetric space
this is not enough to define a rolling map in the sense of Definition 2, be-
cause the normal no-twist condition also requires that we know how to de-
fine dα(t)R(t)|T⊥α(t)M . However, for this particular example, it turns out that if

dα(t)R(t) = Q(t)−1, the normal no-twist condition is also satisfied.
To show this we rewrite the normal no-twist condition 5 of Definition 1

in its equivalent form given in 5’ of Proposition 1. Taking into consideration
that

Tα̂(t)M̂ = TP0
SO+(p, n− p), T⊥α̂(t)M̂ = T⊥P0

SO+(p, n− p),
and using (63), the normal no-twist condition is equivalent to prove that for
every B = −BJ , (R−1Ṙ)(BP0) is always of the form CP0, for some matrix
C satisfying C = CJ . But R−1Ṙ = (U,−P−1

O UP0) and UJ = −U , so

(R−1Ṙ).(BP0) = UBP0 +BP0P
−1
O UP0

= (UB +BU)P0 = CP0,

where C = UB + BU = (UB + BU)J = CJ . Writing R = (R1, R2), the
kinematic equations are:

ṡ(t) = 2U(t)P0

Ṙ1(t) = −U(t)R1

Ṙ2(t) = P−1
O U(t)P0R2(t)

, (64)

with initial conditions s(0) = 0, R(0) = (e, e). This coincides with the results
in [6].

5.Rolling of Stiefel manifolds on the affine tangent space
We will now narrow our discussion to the Stiefel manifolds Stnk equipped

with the Riemannian metric inherited from the ambient Euclidean vector
spaceMnk consisting of n× k matrices. Rolling motions of Stiefel manifolds
were already studied in [10], but here we present an alternative approach
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which is coordinates free, and also a different representation of Stiefel as a
homogeneous space is used.

There are two compelling reasons for including the Stiefels in this paper.
Firstly, because it is the only case outside of the G-invariant Riemannian
manifolds where the rolling equations are explicitly calculated, and secondly
because it illustrates the relevance of the normal no-twist condition for rolling
manifolds that are homogeneous spaces but not symmetric spaces.

5.1.Stiefel manifold. Let Rn be the Euclidean vector space with its stan-
dard scalar product. We denote by gl(n) the vector space of all real n×n ma-
trices endowed with the positive definite scalar product 〈N,M〉 = tr(NTM).
We induce this metric on the subspace V =Mnk ⊂ gl(n) of n× k matrices.
We also consider the groups GL(n) and SO(n) as submanifolds of gl(n). We
define the action of gl(n) on V through the linear isometric homomorphism

ρ : gl(n) → gl(V )
A 7→ ρA

with ρA(M) = AM , M ∈ V . Under this convention, we obtain d
dtρA(t) = ρȦ(t)

for any smooth enought curve A(t) in gl(n). Moreover, the restriction of ρ
on the group SO(n) is a group homomorphism ρ : SO(n)→ SO(V ) meaning
that ρQ−1 = (ρQ)−1 and ρQ1Q2

= ρQ1
◦ ρQ2

.
The Stiefel manifold Stnk consists of ordered sets of k-orthonormal vectors

in Rn. Any ordered set m1, . . . ,mk of orthonormal vectors can be identified
with a matrix M whose columns are m1, . . . ,mk. Any such matrix M satis-
fies MTM = Ik, where Ik is the k-dimensional identity matrix, and MT is
the matrix transpose of M . This matrix representation realizes Stnk as an
isometrically embedded compact submanifold of the Euclidean vector space
V =Mnk, which we continue to denote by Stnk.

The Stiefel manifold can be also viewed as a homogeneous space. In what
follows {e1, . . . , en} denotes the standard basis in Rn and E denotes the
matrix with columns e1, . . . , ek. The group SO(n) acts transitively on Stnk.
Thus Stnk can be identified with the orbit {ρQ(E) : Q ∈ SO(n)}. The isotropy

subgroup H = {Q ∈ SO(n) : ρQ(E) = E} reduces to matrices Q =

(
Ik 0
0 X

)
,

withX ∈ SO(n−k). EvidentlyH is isomorphic to SO(n−k) and consequently
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Stnk = SO(n)/ SO(n− k). It follows that so(n) = p⊕ h, where

h =

{(
0 0
0 C

)
, C ∈ so(n− k)

}
,

p =

{(
A −BT

B 0

)
, A ∈ so(k), B ∈M(n−k)k

}
.

(65)

One can easily verify that h is the Lie algebra of H, p is the orthogonal
complement to h relative to the trace metric 〈M1,M2〉 = − tr(M1M2), and

[h, h] ⊂ h, [p, h] = p, h ⊂ [p, p]. (66)

The latter algebraic properties show that the Stiefel manifold Stnk is not
a symmetric space. It does not allow to use the general aproach for the
construction of the rolling, which we developed for symmetric spaces in Sec-
tion 4.2. The projection map π : SO(n)→ Stnk = SO(n)/ SO(n− k) is given
by π(Q) = QE = ρQ(E). It is a submersion, and deπ : p→ TEStnk is an iso-
morphism, mapping U ∈ p to UE. The group homomorphism ρ : SO(n) →
SO(V ) induces the Lie algebra homomorphism so(n) → sl(V ). We will use
the same notation p, h for the images of p, h under the Lie algebra homo-
morphism.

It follows, see for instance [7], that the tangent to Stnk at a point P ∈ Stnk
is given by

TPStnk = {W ∈Mnk : W TP + P TW = 0}. (67)

Remark 7. A simple calculation using (67) shows that for Q ∈ G, we have
TQPStnk = QTPStnk.

In particular,

TEStnk =

{(
A
B

)
, A ∈ so(k), B ∈M(n−k)k

}
⊂Mnk. (68)

Hence, its orthogonal complement in Mnk is

T⊥E Stnk =

{(
S
0

)
, S ∈Mkk, S

T = S

}
. (69)

The orthogonal complement is further decomposed as

T⊥E Stnk = VE ⊕ slkk, (70)
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where VE is the linear span of E, and its orthogonal complement, denoted
by slkk is defined as

slkk =

{(
S
0

)
, S ∈Mkk, S

T = S, tr(S) = 0

}
.

5.2.Extrinsic rolling of Stnk. We will now turn our attention to the rollings

of curves in M = Stnk on M̂ = T aff
E Stnk := E + TEStnk which is the affine

tangent space at E. According to Definition 2, curves α(t) in Stnk are rolled

on curves α̂(t) in M̂ by rolling maps g(t) = (R(t), s(t)) in SE(V ) = SO(V )nV
under the action g(t)(α(t)) = R(t)(α(t)) + s(t) = α̂(t). The fact that SO(n)
acts transitively on Stnk implies that there is a unique horizontal curve Q(t) ∈
SO(n), Q(0) = I, that projects on α(t), that is, ρQ(t)(E) := Q(t)E = α(t),

and Q−1(t)Q̇(t) ∈ p.
We will now assume that R(t)−1 = ρQ(t) ◦ S(t) for some curve S(t) in the

isotropy group K = {S ∈ SO(V ) : S(E) = E}. The choice of Q(t) as a
horizontal lift of α(t) allows particularly satisfy the first rolling condition
in Definition 2. Namelly: R(t)−1(E) = ρQ(t) ◦ S(t)(E) = ρQ(t)(E) = α(t),
and therefore R(t)(α(t)) = E. But then g(t)(α(t)) = R(t)(α(t)) + s(t) =
E+s(t) = α̂(t) by the reguirement of the first rolling condition in Definition 2.
It implies that

s(t) ∈ TEStnk, and so ṡ(t) = ˙̂α(t). (71)

In what follow we will find the condition on S(t) such that g(t) =
(
R(t), s(t)

)
satisfies the no-slip and both no-twist constrains. According to the second
rolling condition in Definition 2,

dα(t)g(t)(Tα(t)Stnk) = R(t)(Tα(t)Stnk) = TEStnk. (72)

Remark 7 and ρQ(t)(E) = α(t) lead to

dEρQ(t)(TEStn,k) = ρQ(t)(TEStn,k) = Tα(t)Stn,k.

Therefore,

TEStnk = R(t)(Tα(t)Stnk)
= S−1 ◦ ρQ−1(Tα(t)Stnk) = S−1(TEStn,k).

(73)

Hence, S(TEStnk) = TEStnk, and since S is an isometry in V , we also have
S(T⊥E Stnk) = T⊥E Stnk. So,

S(TEStnk) = TEStnk, S(T⊥E Stnk) = T⊥E Stnk. (74)
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Moreover, since S(E) = E and S is an orthogonal transformation,

S(VE) = VE, S(slkk) = slkk. (75)

From now on, we use the notation Ṙ(t) for the time derivative of R(t) ∈
SO(V ), and similarly for the time derivative of any other curves in SO(V ).
We also recall from the beginning of this section that ˙ρQ(t) := ρQ̇(t) for Q(t) ∈
SO(n).

The no-slip condition requires that Ṙ(t)(α(t)) + ṡ(t) = 0, or,

Ṙ(t) ◦R(t)−1(E) = −ṡ(t). (76)

Since R = S−1 ◦ ρQ−1, we have

Ṙ ◦R−1 = ( ˙S−1 ◦ ρQ−1 + S−1 ◦ ρ ˙Q−1) ◦ ρQ ◦ S
= ˙S−1 ◦ S + S−1 ◦ ρ ˙Q−1 ◦ ρQ ◦ S

(77)

Since ˙S−1 ◦ S = −S−1 ◦ Ṡ and ρ ˙Q−1 ◦ ρQ = −ρQ−1 ◦ ρQ̇ = −ρQ−1Q̇, the above
can be rewritten as

Ṙ ◦R−1 = −S−1 ◦ Ṡ − S−1 ◦ (ρQ−1Q̇) ◦ S. (78)

Note that S(E) = E implies Ṡ(E) = 0, and ρQ−1Q̇(E) = Q−1Q̇E = UE, for
U ∈ p. Taking into consideration the structure of elements in p, appearing in

(65), Q−1(t)Q̇(t) =

(
A(t) −BT (t)
B(t) 0

)
, and consequently the no-slip condition

requires that

ṡ(t) = −Ṙ(t)R−1(t)(E) = S−1
((

A(t)
B(t)

))
. (79)

We will now choose S(t) ∈ K, or equivalently Ω(t) = Ṡ ◦ S−1 ∈ so(V ) so
that R(t) satisfies the no-twist conditions.

Since Ω(t)(E) = 0. Therefore

Ṡ ◦ S−1(TEStnk) = Ω(t)(TEStnk) ⊂ TEStnk,

Ṡ ◦ S−1(T⊥E Stnk) = Ω(t)(T⊥E Stnk) ⊂ T⊥E Stnk.
(80)

Ω (VE) = 0, Ω (slkk) ⊂ slkk. (81)

due to (74) and (75).

Now, since Tα̂(t)M̂ = TEStnk, and similarly (Tα̂(t)M̂)⊥ = T⊥E Stnk, the tan-
gential no-twist condition 4’ given in Proposition 1, requires that

ġ(t) ◦ g−1(t)(TEStnk) ⊂ T⊥E Stnk. (82)
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Since ġ ◦ g−1(TEStnk) = Ṙ ◦ R−1(TEStnk), taking into account (78), we can
write

ġ ◦ g−1(TEStnk) = −S−1 ◦ (Ṡ ◦ S−1 + ρQ−1Q̇) ◦ S (TEStnk),

and using (74), the tangential no-twist condition (82) can be written as

Ṡ ◦ S−1 (TEStnk) + ρQ−1Q̇ (TEStnk) ⊂ T⊥E Stnk,

or, equivalently,

Ω (TEStnk) = −Π
(
ρQ−1Q̇ (TEStnk)

)
, (83)

where Π denotes the orthogonal projections of V onto TEStnk.
We now impose the normal no-twist condition

ġ(t) ◦ g−1(t)(T⊥E Stnk) ⊂ TEStnk, (84)

and similarly to the previous calculations, we obtain a second restriction on
S:

Ω (T⊥E Stnk) = −Π⊥
(
ρQ−1Q̇ (T⊥E Stnk)

)
, (85)

where Π⊥ denotes the orthogonal projections of V onto T⊥E Stnk.
To make sure that the previous condition can be fulfilled, we must show

that the righthand side of (85) is according to the action (81) of Ω on each
subspace of the direct decomposition of T⊥E Stnk in (70). For that, we compute

the product of the matrix Q−1Q̇ by elements in T⊥E Stnk, using the fact that

Q−1Q̇ ∈ p and the structure of the matrices in these subspaces, given in (65)
and (69).

Assume that

Q−1Q̇ =

(
A −BT

B 0

)
, A = −AT , and take X = XT .

Then,

Q−1Q̇

(
X
0

)
= 1

2

(
AX +XA

2BX

)
+ 1

2

(
AX −XA

0

)
.

Notice that AX − XA is symmetric with trace zero, and when X = Ik,
AX −XA = 0. Therefore, as required,

Π⊥
(
ρQ−1Q̇ (VE)

)
= 0, Π⊥

(
ρQ−1Q̇ (slkk)

)
⊂ slkk.

We now summarize how to find the rolling map (R(t), s(t)) ∈ SE(V ),
for rolling Stnk on T aff

E Stnk, along a curve α(t), α(0) = E.
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1. Find the horizontal lift Q(t) of α(t), s.t. Q(0) = eG. We know that

Q−1Q̇ =

(
A −BT

B 0

)
, A = −AT .

2. Find S(t) using the no-twist conditions (83), (85), with S(0) = eSO(V ).
Those conditions can be rewritten as:{

Ṡ ◦ S−1(v>) = −Π(Q−1Q̇ v>), ∀v> ∈ TEStnk
Ṡ ◦ S−1(v⊥) = −Π⊥(Q−1Q̇ v⊥), ∀v⊥ ∈ T⊥E Stnk

.

3. Find R = S−1 ◦ ρ
Q−1

.

4. Find s(t) by solving equation (79), resulting from the no-slip condition,
with s(0) = 0:

ṡ(t) = S−1
((

A(t)
B(t)

))
.
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C Anal. Non Linéaire, 29 (2012), pp. 927–954.

[5] C. J. S. Clarke, On the global isometric embedding of pseudo-Riemannian manifolds, Proc.
Roy. Soc. London Ser. A, 314 (1970), pp. 417–428.

[6] P. Crouch and F. S. Leite, Rolling motions of pseudo-orthogonal groups, in 2012 IEEE
51st IEEE Conference on Decision and Control (CDC), IEEE, 2012, pp. 7485–7491.

[7] A. Edelman, T. A. Arias, and S. T. Smith, The geometry of algorithms with orthogonality
constraints, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 303–353.

[8] M. Godoy Molina, E. Grong, I. Markina, and F. Silva Leite, An intrinsic formulation
of the problem on rolling manifolds, J. Dyn. Control Syst., 18 (2012), pp. 181–214.



SYMMETRIC SPACES ROLLING ON FLAT SPACES 37

[9] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, vol. 80 of Pure and
Applied Mathematics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New
York-London, 1978.

[10] K. Hüper, M. Kleinsteuber, and F. Silva Leite, Rolling Stiefel manifolds, Internat. J.
Systems Sci., 39 (2008), pp. 881–887.
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