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Abstract: In this note we show how conjectures and current problems on determi-
nants and eigenvalues of highly structured tridiagonal matrices can be solved using
very classical results.
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In [4, p. 432], Z. Hu and P. B. Zhang conjectured that
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z0 − (n− 2k)

√
z21 + z2z3

)
. (1)

The authors were only able to prove the case z0 = 0 and z1 = 0. In [1], Z.
Chen, X. Chen, and M. Ding prove the above conjecture in connection with
the characteristic polynomial of a finite-dimensional Lie algebra. In [3], the
finite-dimensional Lie algebra is explored for the same purpose. However, this
approach masks the simplicity of the problem being addressed. Indeed, these
determinants are implicitly contained in the elementary lore of the “Theory of
Determinants”, which finds its roots in a note published in Nouvelles Annales
de Mathématiques in 1854 by J. J. Sylvester. For the reader’s convenience,
we reproduce below in their entirety (see [5, pp. 544-545]) two theorems
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from “A treatise on the Theory of Determinants” by T. Muir, in the edition
revised and enlarged by W. H. Metzler, from which (1) trivially follows:

“576. The continuant

∆n =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a b

−(n− 1)c a− (b+ c) 2b

−(n− 2)c a− 2(b+ c) 3b

. . . . . . . . .

−c a− (n− 1)(b+ c)

∣∣∣∣∣∣∣∣∣∣∣∣∣
n

≡ ϕn(a, b, c) say,

= (a− n− 1c)(a− n− 2c− b)(a− n− 3c− 2b) · · · (a− n− 1b).”

(This is ∆n = (a−(n−1)c)(a−(n−2)c−b)(a−(n−3)c−2b) · · · (a−(n−1)b).)

“577. The foregoing leads to the theorem that the value of the con-
tinuant ∆n is not altered by adding to its matrix the matrix of the
continuant

Dn =
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(n− 1)x x

(1− n)x (n− 3)x 2x

(2− n)x (n− 5)x

(3− n)x

. . . . . . . . .

−(n− 3)x (n− 1)x

−x −(n− 1)x
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.”

We have never seen the above result applied in the literature. However such
results are extremely flexible and useful. By Theorem 576, we see at once
that Zn = ∆n for a = z0, b = −

√
z21 + z2z3 and c = −b. For these values of a,

b and c, add to the corresponding matrix of the determinant ∆n the matrix
of the determinant Dn with x = z1 to get a matrix whose transpose is similar
to the matrix of the determinant Zn, and so Hu-Zhan’s conjecture follows,
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because these operations, according to Theorem 577, have not altered ∆n.
Indeed,
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∣∣∣∣∣∣∣∣∣∣∣
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(n− 1)(−
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. . . . . .

. . .
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= Zn.

Naturally, according to [2, Lemma 7.2, p. 32], and taking into account
the relation between the elements of the sub-diagonals of the considered
matrices (regardless of the value by which they appear multiplied), we can
make a direct connection with sl(2,F). But, when calculating this and other
related determinants that fall into what might be called Sylvester’s type
determinants, we only need a little trick to transform known results into new
results. The reader can look for other recent results in the literature that
can be proved with the help of Muir’s theorems.
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