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REPRESENTING THE STIRLING POLYNOMIALS σn(x)
IN DEPENDENCE OF n AND AN APPLICATION TO

POLYNOMIAL ZERO IDENTITIES

ALEXANDER KOVAČEC AND PEDRO BARATA DE TOVAR SÁ

Abstract: Denote by σn the n-th Stirling polynomial in the sense of the much
cited book Concrete Mathematics [GKP] by Graham, Knuth and Patashnik. We
show that there exist developments xσn(x) =

∑n
j=0(2

n−j(n− j)!)−1pj(n)xn−j with
polynomials pj of degree j. This should have some importance for refined asymptotic
analyses of the Stirling numbers of the second kind. We use the result to deduce
from it with extra effort the polynomial identities∑

a+b+c+d=n

(−1)d
(x− 2a− 2b)3n−s−a−c

a!b!c!d!(3n− s− a− c)!
= 0, for s ∈ Z≥1,

or equivalently the identities∑
a+b+c+d=n

(−1)d(−2)t−a−c

a!b!c!d!(t− a− c)!
(a+ b)t−a−c = 0 for t = 0, 1, 2, ..., 3n− 1,

found in an attempt to find a simpler formula for the density function in a 5-
dimensional random flight problem. Other, similarly looking identities should be
provable by the techniques employed.
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1. Introduction
In the context of research on a problem of random flights in dimension

5, a little background of which we relate in Section 4, the second author
conjectured the identities in the abstract, for whose attack the authors could
not find many hints in the literature. The work on its proof led us to a
(for us at least) surprising result about the behaviour of the coefficients of
sequences of Stirling polynomials. Let σn(x) be the n-th Stirling polynomial
in the sense of [GKP]; the precise definition is given in Section 2, but here we
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2 A. KOVAČEC AND PEDRO SÁ

present the following table of coefficients of the first few Stirling polynomials.
The table tells us for example that xσ3(x) = 0 + 0x− 1

48x
2 + 1

48x
3.

x0 x1 x2 x3 x4 x5 x6 x7 x8

xσ0(x) 1
xσ1(x) 0 1

2
xσ2(x) 0 − 1

24
1
8

xσ3(x) 0 0 − 1
48

1
48

xσ4(x) 0 1
2880

1
1152

− 1
192

1
384

xσ5(x) 0 0 1
5760

1
2304

− 1
1152

1
3840

xσ6(x) 0 − 1
181440

− 1
69120

13
414720

1
9216

− 1
9216

1
46080

xσ7(x) 0 0 − 1
362880

− 1
138240

1
829440

1
55296

− 1
92160

1
645120

xσ8(x) 0 1
9676800

101
348364800

− 1
2580480

− 67
39813120

− 1
1658880

1
442368

− 1
1105920

1
10321920

We convene to begin row and column indices both with 0 and then multiply
the entries in column j of this table with 2jj!. We get this table:

0 1 2 3 4 5 6 7 8
0 1
1 0 1
2 0 − 1

12 1
3 0 0 −1

6 1
4 0 1

1440
1

144 −1
4 1

5 0 0 1
720

1
48 −1

3 1
6 0 − 1

90720 − 1
8640

13
8640

1
24 − 5

12 1
7 0 0 − 1

45360 − 1
2880

1
2160

5
72 −1

2 1
8 0 1

4838400
101

43545600 −
1

53760 −
67

103680 −
1

432
5
48 − 7

12 1

The first main result proven in the current paper can be expressed as
saying that the j-th diagonal of this table is a polynomial sequence of degree
j, j = 0, 1, 2, ... . Accept this for the moment and denote the sequence by
(qj(n))n≥0. As is well known, see almost any text on numerical analysis, e.g.
[BF, p. 95ff], using j + 1 interpolation points of distinct abscissae, in our
case n = 0, 1, 2, ..., one can compute a unique polynomial of degree ≤ j
whose graph passes through these points. From the second table one finds
for example

q0(n) = 1, q1(n) =
−n
12
, q2(n) =

(−1 + n)n

288
, q3(n) =

26n+ 15n2 − 5n3

51840
.

The sequence of numbers in the j-th diagonal of the original table is given

by (
qj(`)
2``!

)`≥0. We can use its row n to determine the polynomial xσn(x) for
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symbolic n. The leftmost coefficient is the beginning and hence at position 0

of diagonal n. So it has value (qn(0)
200! ). The coefficient of x1 pertains to diagonal

n− 1. It is at position 1 of that diagonal so has value qn−1(1)
211! . In general the

coefficient pertaining to xj is at position j of diagonal n − j and therefore

has value
qn−j(j)

2jj! . Thus we get xσn(x) =
∑n

j=0
qn−j(j)

2jj! x
j.

As it happens, the fact qj(0) = 0 for j ≥ 1 implies n|qj(n) so that
(n − j)|qj(n − j). This means that putting q̃j(n) := qj(n)/n and using the
polynomials q0, q1, q2, q3 computed above we find

xσn(x) =
n−4∑
j=0

qn−j(j)x
j

2jj!
+
q3(n− 3)xn−3

2n−3(n− 3)!
+
q2(n− 2)xn−2

2n−2(n− 2)!
+
q1(n− 1)xn−1

2n−1(n− 1)!
+
q0(n)xn

2nn!

=
n−4∑
j=0

q̃n−j(j)x
j

2j(j − 1)!
+
q̃3(n− 3)xn−3

2n−3(n− 4)!
+
q̃2(n− 2)xn−2

2n−2(n− 3)!
+
q̃1(n− 1)xn−1

2n−1(n− 2)!
+

xn

2nn!

=
n−4∑
j=0

q̃n−j(j)x
j

2j(j − 1)!
+

(64− 54n+ 5n2)xn−3

51840 · (2n−3(n− 4)!)
+

(−3 + n)xn−2

288(2n−2(n− 3)!)
+

−1xn−1

12(2n−1(n− 2)!)
+

xn

2nn!
,

thus illustrating the claim in the abstract. A simple closed expression f(j, n)
such that xσn(x) =

∑n
j=0 f(j, n)xn−j for all j, n ∈ Z≥0 does probably not

exist because it would for example via the identity Bm = −mm!σm(0) imply
a simple formula for the Bernoulli numbers.

In the following section we collect a number of results on Stirling numbers
and Stirling polynomials. In Section 3 we assume the representation xσn(x) =∑n

k=0(−1)kan,kx
n−k and prove that the sequence Z≥k 3 n 7→ 2n−k(n− k)!an,k

is polynomial of degree k; a fact equivalent to the representation claimed
for xσn(x) given in the abstract. For this we have to solve a first order
difference equation with polynomial coefficients. As we do so we formulate a
certain ‘meta-theorem’ according to which most of the difference equations
of a certain type should have a particular solution which is polynomial. In
Section 4 we deduce the identities mentioned in the abstract.

More important than the particular polynomial identity which we derive
might be the methods which we employ. They should be applicable in a
number of similarly looking identities. But we admit it would be desirable to
first simplify our proof significantly. In this vein note also that by introducing
the notation x[k] := xk/k! the identities assume a more convenient form.
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2. Stirling numbers, Stirling polynomials, and some known
auxiliary facts.

We collect here facts on Stirling numbers and Stirling polynomials. Our
sources are a paper by Gessel and Stanley [GS] and the book by Graham,
Knuth, Patashnik [GKP, pp 257-272]. Very informative is also the article by
Boyadzhiev [B]

Stirling polynomials are born from investigations on Stirling numbers. Stir-
ling numbers, in a notation proposed by Jovan Karamata and promoted by
[GKP] are defined for integers n, k ≥ 0, and come in two kinds. 1st kind

Stirling numbers are denoted by
[
n
k

]
and verbalized by ‘n cycle k’ . They

count the number of partitions of [n] = {1, 2, ..., n} into k nonempty cycles.

2nd kind Stirling numbers are denoted by
{
n
k

}
and verbalized by ‘n subset k’

. They count the number of partitions of [n] = {1, 2, ..., n} into k nonempty
subsets.

With the supplementary conditions
[
n
0

]
=

{
n
0

}
= δn,0, there hold for n > 0 the

following recursions, for whose easy combinatorial explanations see [GKP].[
n
k

]
= (n− 1)

[
n− 1
k

]
+

[
n− 1
k − 1

]
,

{
n
k

}
= k

{
n− 1
k

}
+

{
n− 1
k − 1

}
.

Jekuthiel Ginsberg discovered in 1928 that there is a way to meaning-

fully define for n ≥ 0,

[
x

x− n

]
and

{
x

x− n

}
as polynomials in x of de-

gree 2n (so that whenever x is an integer> n there occur the usual Stirling
numbers). This is explained in [GKP] where it is observed also that when
x ∈ {0, 1, 2, ..., n} then these polynomials are zero and hence we find that
with the exception of the case n = 0, the expressions

σn(x) =

[
x

x− n

] /
x(x− 1)(x− 2) · · · (x− n)

are polynomials, called there Stirling polynomials. The exception is σ0(x) =
1/x. We have deg σn(x) = n− 1.

The authors of [GS] approach the topic of Stirling polynomials differently.
They are interested in the sequences Zn≥1 7→ fk(n) := S(n + k, n) (where

S(n, k) =
{
n
k

}
), not so much for its own sake but for giving a combinatorial

interpretation to the coefficients of the power series (1−x)2k+1
∑

k≥0 fk(n)xn.
In this context they establish that the functions fk are polynomial of degree
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2k with leading coefficient (2kk!)−1, a fact attributed to C. Jordan’ s book
on difference equations not available to us. For k = 0 the claim is clear
since f0(n) = S(n, n) = 1. The general case is done by induction on k. It
is observed, with the not completely trivial proof left to the reader, that
the recursion for the second kind Stirling numbers can be recast into the
equation (∆fk)(n) = (n + 1)fk−1(n + 1), valid for all n ≥ k ∈ Z>0, where
∆ is the forward difference operator. Using the elementary fact that a se-
quence {(∆f)(n)}n≥0 is polynomial of degree d if and only if the sequence
{f(n)}n≥0 is polynomial of degree d + 1; and that then the corresponding
leading coefficients stand in the relation lc(∆f) = deg f · lc(f) one obtains
the claim.

Once one has that the map n 7→ fk(n) coincides on the infinitely many
points constituting Z≥1 with the values of a polynomial of degree 2k the au-
thors can define fk(x) as being this polynomial. Observing that the difference
equation fk(x+ 1)− fk(x) = (x+ 1)fk−1(x+ 1) holds for all x and supposing
fk−1(0) = fk−1(−1) = · · · fk−1(1 − k) = 0 and fk(0) = 0 one derives succes-
sively 0 = fk(0) = fk(−1) = fk(−2) = · · · = fk(−k). From this in turn it
follows that fk(x) = x(x+1) · · · (x+k)·(a monic polynomial of degree k − 1)·
(1/2kk!). In [GS], it is the fk(x) that are called Stirling polynomials.

The ‘Stirling polynomials’ of [GKP] and the ‘Stirling polynomials’ of [GS]
are not the same but they are easily transformed to each other. By [GKP,

p. 267], for all k, n ∈ Z,
[
n
k

]
=

{
−k
−n

}
. It follows, first for integer x and then, by

the usual polynomial argument on the formal level, that

fn(x) =

{
x+ n
x

}
=

[
−x
−x− n

]
= σn(−x) · (−x)(−x− 1) · · · (−x− n)
= σn(−x)(−1)n+1x(x+ 1) · · · (x+ n).

(While we are at it we should mention that we know of at least two other
notions of Stirling polynomials which do not seem to have a close connection
to either of the polynomials fk(x) or σm(x).)

We shall need the following recursion formula for the σn, mentioned in
[GKP, Exercise 6.18].

Lemma 1. For n ≥ 1, one has

(x+ 1)σn(x+ 1) = (x− n)σn(x) + xσn−1(x).
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Proof: Substituting, for the left- and right hand sides of this equation,
respectively, the definitions of the σs, we get

lhs =

[
x+ 1

x+ 1− n

] /
x(x− 1) · · · (x+ 1− n),

rhs =

[
x

x− n

] /
x(x− 1) · · · (x+ 1− n) +

[
x

x+ 1− n

] /
(x− 1) · · · (x+ 1− n).

Multiplying everything with x(x− 1) · · · (x+ 1− n) we get that the claim
is equivalent to [

x+ 1
x+ 1− n

]
=

[
x

x− n

]
+ x

[
x

x+ 1− n

]
Now this is simply an instance of the recursion formula for Stirling poly-

nomials of the first kind.

In Section 4 we will also use the following known facts.

Proposition 2. Let a = a(x) =
∑

j≥0 ajx
j be any polynomial and let

pn(x) := (−1)n · −xσn(−x). Then:
a. One has the following equivalent identities of finite sums∑
k≥0

(−1)k

k!(m− k)!
a(k) = (−1)m

∑
j≥0

aj

{
j
m

}
;

∑
k+l=m

(−1)l

k!l!
a(k) =

∑
j≥0

aj

{
j
m

}
.

b. For n, k nonnegative integers, there holds{
n+ k
k

}
=

(n+ k)!

k!
pn(k).

Proof. a. The sums are finite because the aj for j > deg a are 0 and
because for a negative integer s, one has 1/s! = 0. The left formula is then
essentially mentioned for polynomials a(x) that are of the form xl as [GKP,
formula (6.19)]. The formula given follows as any polynomial is a linear
combination of monomials. The right formula follows by multiplying both
sides with (−1)m and using that (−1)m+k = (−1)m−k.

b. From the relation mentioned before Lemma 1 we see that
{
n+ k
k

}
=

σn(−k)(−1)n+1k(k + 1) · · · (k + n). Use the definition of pn to conclude the
proof.

Remarks. In part a of the proposition note that if deg a < m then in
the equalities of sums the ones at the right hand sides and hence at the left
hand sides are 0. Also, if a(x) = xl then the right hand sides reduce to
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(−1)m
{
l
m

}
and

{
l
m

}
, respectively. The identities in part a are usually proved

by applying the forward difference operator. A multivariate generalization
based on completely different reasoning can be found in [SK3].

3. The main result on the diagonals of the modified co-
efficient table of Stirling polynomials

We transform the recursion of Lemma 2.1 into a matrix equation for the
coefficients.

Proposition 1. Writing

σn(x) =
n−1∑
j=0

ajx
j and xσn−1(x) =

n−1∑
j=0

bjx
j, n = 2, 3, 4...,

there holds the following (n− 1)× (n− 1) matrix equation :

(1 + n)
(
2
0

) (
3
0

) (
4
0

)
. . .

(
n−1
0

)
2 + n

(
3
1

) (
4
1

)
. . .

(
n−1
1

)
3 + n

(
4
2

)
. . .

(
n−1
2

)
. . .

...
(2n− 2)

(
n−1
n−3

)
2n− 1




a0
a1
a2
...

an−2

 =


b0 −

(
n
0

)
an−1

b1 −
(
n
1

)
an−1

b2 −
(
n
2

)
an−1

...
bn−2 −

(
n

n−2

)
an−1

 .

Proof. With the understanding that a−1 = an = 0 we have

(x+ 1)σn(x+ 1) =
n−1∑
j=0

aj(1 + x)j+1 =
n−1∑
j=0

aj
j+1∑
l=0

(
j+1
l

)
xl

=
n−1∑
l=0

(
n−1∑
j=l

aj
(
j+1
l

))
xl +

n−1∑
j=0

ajx
j+1

=
n∑
l=0

(
n−1∑
j=l

aj
(
j+1
l

)
+ al−1

)
xl;

(x− n)σn(x) =
n∑
l=0

(al−1 − nal)xl,

and hence, since below the inner expression for l = n is 0,

(x+ 1)σn(x+ 1)− (x− n)σn(x) =
n−1∑
l=0

(
n−1∑
j=l

aj
(
j+1
l

)
+ nal

)
xl.

By the Lemma 2.1, hence we have that
∑n−1

j=l aj
(
j+1
l

)
+ nal = bl for

l = 0, 1, ..., n − 1. It is easy to see that these equations can be encoded in
the above matrix equation: for example, for l = n − 2 we get an−2

(
n−1
n−2

)
+
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an−1

(
n
n−2

)
+ nan−2 = bn−2 which is equivalent to the last encoded equation.

(The case l = n − 1 needs not be encoded since it expresses 2nan−1 = bn−1

which is a consequence of the known fact that the leading coefficients for
σn and σn−1 are, as mentioned earlier, an−1 = 1/(2nn!), and lc(σn−1(x)) =
lc(x · σn−1(x)) = bn−1 = 1/2n−1(n− 1)!.)

In this proposition σn was fixed and an−k is the coefficient of xn−k in σn
and hence the coefficient of xn+1−k = xn−(k−1) of xσn(x). Similarly bn−k is the
coefficient of xn−k in xσn−1(x). Since in the sequel we have to consider the de-
pendence on n as well, we define an,k := (−1)k ·coefficient of xn−k of xσn(x).
The matrix equation of the previous proposition says that for k = 2, 3, ..., n,

(2n−k+1)an−k+

(
n− k + 2

n− k

)
an−k+1+

(
n− k + 3

n− k

)
an−k+2+· · ·+

(
n− 1

n− k

)
an−2

= bn−k −
(

n
n−k
)
an−1.

Doing the proper replacements according to an−k → (−1)k−1an,k−1, and
bn−k → (−1)k−1an−1,k−1 we get after a rearrangement the following equation
valid for k = 2, ..., n.

(2n− k + 1)an,k−1 − an−1,k−1 = (−1)k
k−2∑
j=0

(−1)j
(
n− j
n− k

)
an,j.

The last two lines in the following formula being clear, and writing now k
for k − 1 this can also be written as follows.

an,k =


1

2n−k(an−1,k + (−1)k+1
k−1∑
j=0

(−1)j
(

n−j
n−k−1

)
an,j) for n ≥ k > 0 or n > k = 0

0 for n < k or k < 0
1 for n = k = 0.

The main line is valid at first for k = 1, ..., n − 1 but as it happens it
also is valid for k = 0; in which case it reproduces that an,0 = 1/(2nn!). By
systematically checking the nine cases nε1k & kε20 for ε1, ε2 ∈ {<,=, >} one
finds that any (n, k) ∈ Z2 satisfies exactly one of the cases indicated; and
beginning with any n, k the base of the recursion will be in the second or
third cases. Thus the recursion is well defined.

The recursion serves well if one would desire a rapid computation of the
polynomials σn or fn(x)

/
(x+ 1) · · · (x+ n). The following Mathematica c©

code can be used to define an,k (as a[n,k]). Then e.g. (-1)^3 a[5,3]

gives the coefficient of x2 in xσ5(x).
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a[n_,k_]:=(-k+2*n)^(-1)*((-1)^(k+1)*

Sum[(-1)^j*a[n,j]*Binomial[n-j,-k+n-1],{j,0,k-1}]+

a[n-1,k])/;n>=k>0||n>k==0;

a[0,0]:=1;a[n_,k_]:=0/;n<k||k<0;

Alternatively one also may use generating function approaches like the iden-
tity [GKP, (6.50)], which reads ((zez)

/
(ez − 1))x =

∑
n xσn(x)zn and the

Series[ . . . ] command to get the polynomials σn.
Recall that one of our main goals is to show that the sequence Z≥k 3 n 7→

fn,k := 2n−k(n − k)!an,k is polynomial of degree k. Motivated by this, one
feels it might be simpler to work with a recursion for the fn,k instead of the
an,k.

Multiplying the main line of the recursion above with 2n−k(n − k)!, the
replacements an,j → fn,j

/
(2n−j(n− j)!) and simplification yield

fn,k = 2n−k(n−k)!
2n−k · fn−1,k

2n−1−k(n−1−k)!
+ 1

2n−k

k−1∑
j=0

(−1)1+k+j
(

n−j
n−k−1

)
· 2n−k(n−k)!

2n−j(n−j)!fn,j

= 2(n−k)
2n−k fn−1,k + 1

2n−k

k−1∑
j=0

(−1)1+k+j
(

n−j
n−k−1

) fn,j
2k−j(n−k+1)···(n−j)

One more simplification now yields:

Corollary 2. The numbers fn,k satisfy the following recursion:

fn,k =


(n−k)
(2n−k)(2fn−1,k −

k−1∑
j=0

(−1/2)k−j
fn,j

(k+1−j)!) for n ≥ k > 0 or n > k = 0

0 for n < k or k < 0
1 for n = k = 0.

Our guiding principle for proving the theorem below was the following
observation.

Observation. Assume p11 and p12 are two polynomials of degree 1 with
the same leading coefficient and assume q is a polynomial of degree k. Then
‘in general’ there will exist a particular solution Z≥0 3 n 7→ (fn) for the
difference equation p11(n)fn = p12(n)fn−1 + q(n) which is polynomial of
degree k.

The ‘proof’ for this goes as follows. We make an ansatz fn = a0+a1n+· · ·+
akn

k. Then the expressions p11(n)fn and p12(n)fn−1 will be polynomials of
degree k + 1 whose coefficients are linear forms in a0, a1, ..., ak. However, the
coefficient of nk+1 of the expression p11(n)fn−p12(n)fn−1 will be lc(p11)lc(fn)−
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lc(p12)lc(fn−1) = (lc(p11) − lc(p12))ak = 0, so that the expression can be

expected to be of degree k and it can be written
∑k

j=0 lj(a0, ..., ak)n
j for

certain linear forms lj. It can then be expected that the linear map

Rk+1 3 a0:k 7→ l0:k(a0:k) ∈ Rk+1

is surjective and hence it will be possible to solve the system of k+1 equations
lj(a0:k) = coefficient of xj of polynomial q, j = 0, ..., k, uniquely for a0:k =
(a0, ..., ak). To be sure, it is well possible that the map is not surjective. For
example, if p11(n) = a + bn, p12(n) = c + bn and q is a polynomial of degree
3, then surjectivity holds if and only if a+ ib− c 6= 0 for i = 0, 1, 2, 3.

Strangely, in various books on difference equations consulted we did not
find a hint for a fact like this which should allow various generalizations.

Theorem 3.Let k be a nonnegative integer. Then the sequence

Z≥k 3 n 7→ fn,k

is polynomial of degree k.
Proof. The main line of the recursion for the fn,k can be rewritten as

∗1 : (2n− k)fn,k − (2n− 2k)fn−1,k = (n− k)
k−1∑
j=0

((−2)1+k−j(k + 1− j)!)−1fn,j.

This is a necessary condition which the fn,k, uniquely and well defined by
the recursion, must satisfy.

We know that an,0 = (2nn!)−1, and so by definitions, fn,0 = 1 for all n.
(This can also be deduced from the recursion which reduces for the case
k = 0 to fn,0 = fn−1,0 and uses f0,0 = 1.) So fn,0 is a polynomial of degree 0.
We fix now k > 0 and assume already proved for j = 0, 1, 2, . . . , k − 1, that
the sequences Z≥j 3 n 7→ fn,j are polynomial of degree j. The right hand
side of the recursion shown is then a polynomial; and it must be of degree k
since there exists only one polynomial sequence of degree k − 1 in the sum,
namely Z≥k−1 3 n 7→ fn,k−1, all other sequences fn,j occurring have lower
degree. We will denote the polynomial (sequence) defining the right hand

side by q(n) =
∑k

j=0 cjx
j and have ck 6= 0.

Now we make the ansatz

fn,k = a0 + a1n+ · · ·+ akn
k

and (again) with the understanding that a−1 = ak+1 = 0, find
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(2n− k)fn,k = (2n− k)
k∑
i=0

ain
i =

k+1∑
i=0

(2ai−1 − kai)ni;

(2n− 2k)fn−1,k = (2n− 2k)
k∑
j=0

aj(n− 1)j

= (2n− 2k)
k∑
j=0

aj

(
j∑
i=0

(
j
i

)
ni(−1)j−i

)
= (2n− 2k)

k∑
i=0

(
k∑
j=i

aj
(
j
i

)
(−1)j−i

)
ni

=
k∑
i=0

(
k∑
j=i

2aj
(
j
i

)
(−1)j−i

)
ni+1 −

k∑
i=0

(
k∑
j=i

2kaj
(
j
i

)
(−1)j−i

)
ni

=
k+1∑
i=0

(
k∑

j=i−1

2aj
(
j
i−1

)
(−1)j−i+1 −

k+1∑
j=i

2kaj
(
j
i

)
(−1)j−i

)
ni

=
k+1∑
i=0

(
2ai−1 −

k+1∑
j=i

2aj(−1)j−i
((

j
i−1

)
+ k
(
j
i

)))
ni

Thus the left hand side of the recursion ∗1 is

(2n− k)fn,k − (2n− 2k)fn−1,k

=
k+1∑
i=0

(
k+1∑
j=i

2aj(−1)j−i
((

j
i−1

)
+ k
(
j
i

))
− kai

)
ni

=
k∑
i=0

(
ai(2i+ k) + 2

k∑
j=i+1

(−1)j−i
((

j
i−1

)
+ k
(
j
i

))
aj

)
ni,

and so we have to solve, for a0, a1, ..., ak, the system

li(a0:k) := ai(2i+ k) + 2
k∑

j=i+1

(−1)j−i
((

j
i−1

)
+ k
(
j
i

))
aj = ci, i = 0, 1, ..., k.

That this will be possible is evident since the linear form li depends actually
only on ai, ..., ak and the coefficient of ai is (2i + k) 6= 0. So in matrix form
the system would be upper triangular k + 1 × k + 1 without zeros on the
diagonal.

What we have done till here is to have shown that the equation ∗1 at
the beginning of the proof permits a polynomial solution of degree k. As
yet our reasoning did not take into account the hypothesis n ≥ k nor any
initial values. The general solution to the equation is obtained as the family
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of all sequences (fn,k + ḟn)n∈Z, where fn,k is the polynomial sequence

obtained above and (ḟn)n∈Z is any solution to the homogeneous equation
(2n − k)ḟn − (2n − 2k)ḟn−1 = 0. Now at n = k this equation degenerates
to kḟk = 0 so that ḟk = 0. But then we see, putting successively n =
k + 1, k + 2, ... that ḟn = 0. Therefore the only solution to the equation ∗1

possible for n ≥ k is the polynomial solution found. By putting in that
equation n = k we get (2k − k)fk,k = 0, that is fk,k = 0. It so happens that
the recursion of the Corollary before requires precisely fk,k = 0 for the case
k ≥ 1. Therefore the sequence Z≥k 3 n 7→ fn,k coincides indeed with the
polynomial sequence of degree k found for ∗1.

4. Origin, proof, and impact of the zero identities
Since some time the authors are involved in approaching the odd-dimensional

uniform random flight problem in ways differing from those given by Garćıa-
Pelayo [G-P] and followed up by Borwein and Sinnamon [BS]. For this see
the article [SK2]. In particular, in an attempt to find an alternative formula
for the probability of a particle subject to a uniform random flight in five
dimensional space after n steps being within a ball of radius r of the origin,
the second author was led to conjecture that, putting

ct,l = (−1)l
∑
µ

(−1)µ
(

n

µ, l − µ, t− µ, µ+ n− l − t

)
with t, l ∈ Z, the finite sum∑

t,l

(−1)tct,l
(3n− t− 1)!

(x+ n− 2l)3n−t−1,

(certainly a polynomial in x of degree ≤ 3n− 1) should be actually 0.
Let us cast the formulation of this proposition into a more manageable

form. First note that the sum is actually finite. Assume the expresson for
ct,l incorporated in the second sum. Then we can speak of an outer and an
inner sum. Recall that k ∈ Z<0, implies 1/k! = 0. Assume, say, we choose
in the outer sum t > n. Then n − t < 0 and consequently at least one of
l − µ, µ+ n− l − t is negative. Hence then by the definition of multinomial
coefficients, each of the multinomial coefficients associated in the inner sum is
0. Thus since the rôles of l, t are symmetrical we can limit the outer sum and
assume it written as

∑
0≤t,l≤n ... . It follows that the inner sum also can be
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limited as
∑min{l,t}

µ=(t+l−n)+ ... . So the sum is finite and under these conditions the

four lower indices of the multinomial coefficients are nonnegative and define a
composition of n; that is their sum is n. Now assume four nonnegative integers
a, b, c, d define a composition of n. Then let µ = a, l = a+b, t = a+c; we also
have n = a+ b+ c+d. Then clearly t, l ∈ {0, 1, ..., n}, 0 ≤ µ ≤ min{t, l}, and
t+ l−n = 2a+b+c−n = a−d ≤ a = µ. So (t+ l−n)+ ≤ µ ≤ min{t, l}. This

entails that within the double sum
∑

0≤t,l≤n
∑min{l,t}

µ=(t+l−n)+ ..., the quadruple

(µ, l−µ, t−µ, µ+n− l− t) ranges precisely over the compositions (a, b, c, d)
of n. What concerns the power (−1)t+l+µ = (−1)3a+b+c = (−1)n−d occurring
in the double sum, in the context what we wish to prove, it can evidently be
replaced by (−1)d. Finally we may also replace x+n by x in the proposition
above and after dividing by n! we see that the conjecture can be rewritten
as claiming that ∑

a+b+c+d=n

(−1)d
(x− 2a− 2b)3n−a−c−1

a!b!c!d!(3n− a− c− 1)!
= 0.

Clearly this expression is a polynomial in x of degree at most 3n− 1. It is
0 as claimed if and only if all its coefficients are 0. The claim in the abstract
is obtained simply by taking the (s− 1)-st derivative of the identity shown.
So we focus on the shown here which corresponds to the case s = 1. Now for
any positive integer λ we have that

coefficient of xt of (x− 2a− 2b)λ =
λ!(−2)λ−t

t!(λ− t)!
(a+ b)λ−t.

We use this for λ = 3n− a− c− 1. So we see that to prove the conjecture
is to show the following proposition.

Proposition 1. There holds for t = 0, 1, 2, ..., 3n− 1, that

S = S(t, n) =
∑

a+b+c+d=n

(−1)d(−2)t−a−c

a!b!c!d!(t− a− c)!
(a+ b)t−a−c = 0.

Here we simplified notation by replacing t by tnew = 3n− 1− t (and then
renaming tnew to t). The previous identity for general s similarly translated
leads exactly to this same identity. The rest of this section is dedicated to
the task of proving Proposition 1.
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Recall that in Proposition 2.2 we introduced the polynomials pn(x) =
(−1)n · −x · σn(−x) and after Proposition 3.1 we introduced an,k = (−1)k· c
(coefficient of xn−k in xσn(x)).

Lemma 2. Let m,n, µ, ν be integers for which 0 < n ≤ m ≤ 2n − 1 and
0 ≤ µ ≤ ν ≤ m− n. Then

n∑
i=0

(−1)i
pm−n−ν(i)pµ(n− i)

i!(n− i)!
2−ian−i+ν,ν−µ(n− i+ µ)! = 0.

Proof. The sequence {0, 1, 2, ..., n} 3 i 7→ 2−ian−i+ν,ν−µ(n − i + µ)! is well
defined and nontrivial in the sense that for the i used, the subindices of a
occurring are nonnegative and the first one is larger than or equal to the
second one and the factorial occurring is also nonnegative. By Theorem 3.3
the sequence Z≥ν−µ 3 n 7→ fn,ν−µ = 2n−ν+µ(n − ν + µ)!an,ν−µ is polynomial
of degree ν − µ. If we replace in a polynomial p = p(n) with coefficients in
R the n by n + ν − i we get a polynomial expression p(n + ν − i) which we
may view as a polynomial in i. Its leading coefficient as a polynomial in i
will be real number equal to ± its leading coefficient as a polynomial in n. In
particular its degree in i will be equal its degree in n. In particular thus the
sequence {0, 1, ..., n + ν} 3 i 7→ fn−i+ν,ν−µ and for that matter the sequence
on {0, ..., n} above defined at the beginning of the proof will be polynomial

of degree ν − µ. The sum of the lemma is of the form
∑n

i=0
(−1)i

i!(n−i)!q(i) where

q is a polynomial of degree ≤ (m − n − ν) + µ + (ν − µ) = m − n < n and
therefore 0 as follows from the remark to Proposition 2.2.

Lemma 3. If m ∈ {n, n+ 1, ..., 2n− 1} and ν ∈ {0, 1, ...,m− n}, then

n∑
i=0

2−i
pm−n−ν(i)

i!

n−i∑
k=0

(−1)k
pn−i+ν(k)

k!(n− i− k)!
= 0.

Proof. It is sufficient to establish the claim substituting the polynomial
pn−i+ν(k) of degree ≤ n − i + ν in the sum by any term of this polynomial.
Such a term is given by an−i+ν,ν−µk

n−i+µ with µ ≤ ν. By Proposition 2.2 and
the remarks following it, we get

n−i∑
k=0

(−1)k kn−i+µ

k!(n−i−k)! = (−1)n−i (n−i+µ)!
(n−i)! pµ(n− i).

If we substitute as indicated , the sum occurring is precisely of the form of
the previous lemma and hence it is 0. So the current lemma follows.
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A trivial, but at the end important corollary is:

Theorem 4. If m ∈ {n, n+ 1, ..., 2n− 1}, then

n∑
i=0

2−i
m−n∑
ν=0

pm−n−ν(i)

i!

n−i∑
k=0

(−1)k
pn−i+ν(k)

k!(n− i− k)!
= 0

Proof. Take the sum over all ν ∈ {0, 1, ...,m− n}, of the expression above
and interchange the two outer sums obtained.

We shall show that Proposition 1 follows from Theorem 4. We need two
further lemmas.

Lemma 5. If 0 ≤ κ ≤ n and l ≥ 0 are integers, then∑
b+ d = n− κ
a+ c = κ

(−1)d

a!b!c!d!
(a+ b)l =

∑
a+c=κ

1

a!c!

l∑
ν=0

(
l

ν

)
al−ν

{
ν

n− κ

}
.

Proof. Using Proposition 2.2 b we find

lhs =
∑
a+c=κ

1

a!c!

∑
b+d=n−κ

(−1)d

b!d!

l∑
ν=0

(
l

ν

)
al−νbν

=
∑
a+c=κ

1

a!c!

l∑
ν=0

(
l

ν

)
al−ν

∑
b+d=n−κ

(−1)d

b!d!
bν = rhs.

In accordance with [GKP], In the following lemma we use for integer i ≥ 0
the notation xi = x(x− 1) · · · (x− i+ 1) for falling factorials.

Lemma 6. If n and k are nonnegative integers, then
n∑
l=0

(
n

l

)
lk = 2n

k∑
i=0

{
k
i

}
ni2−i, or, equivalently,

∑
l+h=n

1

l!h!
lk =

k∑
i=0

{
k
i

}
2n−i

(n− i)!
.

Proof. It is known that lk =
∑

i

{
k
i

}
li, see [GKP, equation (6.10)]. Hence

the left equality can be deduced as follows:

lhs =
k∑
i=0

{
k
i

} n∑
l=0

(
n

l

)
li =

k∑
i=0

{
k
i

} n∑
l=0

ni
(
n− i
l − i

)
=

k∑
i=0

{
k
i

}
ni2n−i = rhs.

The right equality follows by dividing by n!.
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Proof of Proposition 1. This proof follows from the following chain of
equalities. Where it eases understanding we give immediately after a step
its justification. Have always in mind that S = S(t, n) and t, n are the only
fixed quantities of the integers occurring.

S =
∑

a+b+c+d=n

(−1)d(−2)t−a−c

a!b!c!d!(t− a− c)!
(a+ b)t−a−c

=
n∑
κ=0

∑
a+ c = κ

b+ d = n− κ

(−1)d(−2)t−κ

a!b!c!d!(t− κ)!
(a+ b)t−κ

since for κ > n the inner sum is empty, and hence 0

=
n∑
κ=0

(−2)t−κ

(t− κ)!

∑
a+ c = κ

b+ d = n− κ

(−1)d

a!b!c!d!
(a+ b)t−κ

=
n∑
κ=0

(−2)t−κ

(t− κ)!

∑
a+c=κ

1

a!c!

t−κ∑
ν=0

(
t− κ
ν

)
at−κ−ν

{
ν

n− κ

}
here we used Lemma 4.5 with l = t− κ

=
n∑
κ=0

(−2)t−κ
∑
a+c=κ

1

a!c!

t−κ∑
ν=0

at−κ−ν

ν!(t− κ− ν)!

{
ν

n− κ

}
use the definition of binomial coefficients; cancel (t− κ)!

=
n∑
κ=0

(−2)t−κ
t−κ∑

ν=n−κ

{
ν

n− κ

}
ν!(t− κ− ν)!

∑
a+c=κ

at−κ−ν

a!c!

permute inner sums; use that
{

ν
n− κ

}
= 0 for ν < n− κ

= 2t
n∑
κ=0

(−1)t−κ
t−κ∑

ν=n−κ

{
ν

n− κ

}
ν!(t− κ− ν)!

t−κ−ν∑
i=0

{
t− κ− ν

i

}
2i(κ− i)!

use Lemma 4.6; replace there n by κ, h by c, l by a, k by t − κ − ν.
Note (−2)t−κ2κ−i = (−1)t−κ2t−i.
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= 2t
n∑
κ=0

(−1)t−κ
t−κ∑

ν=n−κ

pν−n+κ(n− κ)

(n− κ)!

t−κ−ν∑
i=0

1

2i(κ− i)!
pt−κ−ν−i(i)

i!

use

{
a
b

}/
a! = pa−b(b)

/
b! whenever a ≥ b are nonnegative integers; see

Proposition 2.2b

= 2t
n∑
κ=0

(−1)t−n+κ
t−n+κ∑
ν=κ

pν−κ(κ)

κ!

t−n+κ−ν∑
i=0

1

2i(n− κ− i)!
pt−n+κ−ν−i(i)

i!

replace summation index κ by κnew = n− κ

= 2t
n∑
κ=0

(−1)m+κ
m+κ∑
ν=κ

pν−κ(κ)

κ!

m+κ−ν∑
i=0

1

2i(n− κ− i)!
pm+κ−ν−i(i)

i!

put m = t− n

= 2t(−1)m
n∑
κ=0

(−1)κ
m∑
ν=0

pν(κ)

κ!

m−ν∑
i=0

1

2i(n− κ− i)!
pm−ν−i(i)

i!

introduce νnew = ν − κ; revert name to ν.

= 2t(−1)m
m∑
ν=0

m−ν∑
i=0

2−i
pm−ν−i(i)

i!

n−i∑
κ=0

(−1)κ
pν(κ)

κ!(n− i− κ)!

rearrange summations; push
∑n

κ=0 into interior. Note that replacing
upper limit n by n − i is justified. Also if i > n, then S = 0 is clear.
So henceforth, 0 ≤ i ≤ n is assumed.

= 2t(−1)m
n∑
i=0

2−i
m−i∑
ν=0

pm−ν−i(i)

i!

n−i∑
κ=0

(−1)κ
pν(κ)

κ!(n− i− κ)!

note that summation index inequalities 0 ≤ ν ≤ m, 0 ≤ i ≤ m −
ν, 0 ≤ i ≤ n, 0 ≤ κ ≤ n − i are equivalent to 0 ≤ i ≤ n, 0 ≤ ν ≤
m− i, 0 ≤ κ ≤ n− i.

= 2t(−1)m
n∑
i=0

2−i
m−n∑
ν=i−n

pm−ν−n(i)

i!

n−i∑
κ=0

(−1)κ
pn−i+ν(κ)

κ!(n− i− κ)!

introduce νnew = ν + i− n.

= 2t(−1)m
n∑
i=0

2−i
m−n∑
ν=0

pm−ν−n(i)

i!

n−i∑
κ=0

(−1)κ
pn−i+ν(κ)

κ!(n− i− κ)!

If ν < 0 then pn−i+ν has degree< n − i so that the third sum is 0 by
Proposition 2.2. So symbol

∑m−n
ν=i−n can be replaced by

∑m−n
ν=0 .
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Looking at this last expression found for S we can argue why S = 0 if
t = 0, 1, ..., 3n − 1. If m < n then the middle sum

∑m−n
ν=0 ... is empty, and

hence S = 0. (This is actually already visible in the sixth equation.) For
the cases m = n, n + 1, ..., 2n − 1, Theorem 4 yields that S = 0. These m
correspond by the 10th equation to t = 2n, ..., 3n − 1. So we have proved
S = 0 for all t = 0, 1, ...., 3n− 1. This shows Proposition 1.

We conclude by mentioning that the zero identity presented is very probably
not an isolated phenomenon. We have experimental reasons to believe that,
for example, the following is true as well

Put
cn,t,l =

∑
0≤µ,ν,ρ≤t(−1)µ+t3n−ν−ρ

(
n

µ,ν,l−µ−ν,−µ−2ν−2ρ+t,ρ,−l+µ+2ν+n+ρ−t
)
.

Then
n∑
l=0

2n∑
t=0

cn,t,l
(5n− t− 1)!

(x+ n− 2l)5n−t−1 = 0.

Establishing this would probably be useful to give an alternative the Borwein-
Sinnamon formula for dimension 7 just as the zero identity mentioned in the
first paragraph of the current section (and proved via Proposition 1) allows
to prove an alternative to the Borwein Sinnamon formula for dimension 5.

Possibly by a profound re-inspection of the proofs given in the current
section, the proof of Proposition 1 can be abbreviated somewhat; or a com-
pletely different less computational proof can be found. But the authors
are currently unable to perform any significant cuts without compromising
readability. After a significantly more transparent proof of what we have is
available, it may be worth to attack the further conjectured identities.

References
[B] K. Boyadzhiev, Close Encounters with Stirling numbers of the second kind, Math. Mag. 85,

No. 4, 252-266 (2012).
[BF] R.L Burden and J. D. Faires, Numerical Analysis, 5th ed. PWS-Kent 1993.
[GS] I. Gessel and R.P. Stanley, Stirling Polynomials, J. Combin. Theory, Ser. A, 24, 24-33

(1978).
[GKP] R. Graham, D. Knuth, O. Patashnik, Concrete Mathematics, 2nd ed., Addison Wesley,

1994.
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