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Abstract: The aim of this work is to investigate the behavior of equidivisibility
under coproduct in the category of pro-V semigroups, where V is a pseudovariety of
finite semigroups. Exploring the relationship with the two-sided Karnofsky–Rhodes
expansion, the notions of KR-cover and strong KR-cover for profinite semigroups
are introduced. The former is stronger than equidivisibility and the latter provides
a characterization of equidivisible profinite semigroups with an extra mild condi-
tion, so-called letter super-cancellativity. Furthermore, under the assumption that
V is closed under two-sided Karnofsky–Rhodes expansion, closure of some classes of
equidivisible pro-V semigroups under (finite) V-coproduct is established.
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1. Introduction
A semigroup is equidivisible if any two factorizations of every element have a

common refinement. The class of equidivisible semigroups was introduced and
studied in [10] as a natural common generalization of free semigroups and com-
pletely simple semigroups. More recently, this property has appeared as a useful
tool in profinite semigroup theory, beginning with [3, 9], where it was noted,
independently, that for several important pseudovarieties of finite semigroups
(like that of all finite semigroups, or that of all finite aperiodic semigroups), the
corresponding finitely generated relatively free profinite semigroups are equidi-
visible. Other recent papers where the equidivisibility of relatively free profinite
semigroups is applied or deserves some kind of attention include [6, 5, 20]. A
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complete characterization of the pseudovarieties for which the corresponding
finitely generated relatively free profinite semigroups are equidivisible appears
in [4].
As observed in [10], the class of equidivisible semigroups is closed under

taking free products, that is, coproducts in the category of semigroups. In this
paper, we investigate an analog for profinite semigroups. For that purpose, we
introduce V-coproducts of pro-V semigroups with respect to a pseudovariety of
semigroups V, extending what was done in [18] for the pseudovariety of finite
groups. We give simple conditions on V guaranteeing that the free product of
pro-V semigroups embeds naturally in their V-coproduct.
We introduce a restricted form of projectivity. The profinite semigroups with

this property are called KR-covers and turn out to be equidivisible semigroups.
We show that the class of pro-V KR-covers is closed under V-coproduct when
V is closed under two-sided Karnofsky–Rhodes expansion. This expansion is
a two-sided analog of the so-called Karnofsky–Rhodes expansion [8, 14], which
has recently found new applications beyond semigroup theory [12, 13].
One of the motivations for searching for new examples of equidivisible profi-

nite semigroups comes from the fact that several results in [5] were stated
for equidivisible profinite semigroups, frequently with the additional require-
ment that they satisfy a certain cancellation property. Semigroups satisfying
this cancellation property are called letter super-cancellative in [4] and finitely
cancellable in [5]. They include the finitely generated relatively free profinite
semigroups that are equidivisible but not completely simple. In this paper
we provide a characterization of the class of all finitely generated equidivisible
letter super-cancellative profinite semigroups, involving the notion of strong
KR-cover, which we introduce. We show that the subclass consisting of pro-V
semigroups is also closed under taking finite V-coproducts when V is closed
under two-sided Karnofsky–Rhodes expansion. We also exhibit an element of
the class that is not relatively free (the existence of such an example was left
open in [5]).

2. Preliminaries
The reader is referred to standard references for general background on profi-

nite semigroups and pseudovarieties [1, 2, 15]. For the remainder of the section,
we introduce briefly specific notions and terminology needed in the sequel.
For a semigroup S, let SI be the semigroup which is obtained by adjoining

a new identity element, denoted I, even if S is itself a monoid. The semigroup
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S is equidivisible when, for every u, v, x, y ∈ S, the equality uv = xy implies
the existence of t ∈ SI such that x = ut and ty = v, or xt = u and y = tv.
Equivalently, any two factorizations of the same element of S have a common
refinement.
A pseudovariety (of semigroups) is a class of finite semigroups closed under

taking homomorphic images, subsemigroups and finite direct products. For the
remainder of the paper, V denotes an arbitrary pseudovariety.
A topological semigroup is a semigroup S endowed with a topology such that

the semigroup multiplication S × S → S is continuous. We then say that
a mapping ϕ : X → S, with X a nonempty set, is a generating mapping if
ϕ(X) generates a dense subsemigroup of S. When the generating mapping is
understood, we may simply say that S is X-generated. When no topology is
mentioned, we consider semigroups endowed with the discrete topology.
Throughout the paper, when we consider compact spaces, we assume that

they are Hausdorff. A pro-V semigroup is a compact semigroup which is resid-
ually V. A profinite semigroup is a pro-S semigroup for the pseudovariety S
of all finite semigroups. Since in a finite semigroup, for every element s the
sequence (sn!)n converges, and the limit is idempotent, the same holds in an
arbitrary profinite semigroup; the limit of the sequence is denoted sω. More
generally, the sequence (sn!+k)n>|k| converges for every integer k and the limit
is denoted sω+k.
Pro-V semigroups may be alternatively described as the inverse limits of

inverse systems of finite semigroups. Here, by an inverse system, we mean a
family (Si)i∈I of compact semigroups, where I is an upper directed set, together
with continuous homomorphisms ϕi,j : Si → Sj whenever i > j such that ϕi,i
is the identity mapping and ϕj,k ◦ϕi,j = ϕi,k whenever i > j > k. We say that
the inverse system is an inverse quotient system if every mapping ϕi is onto.
The inverse limit lim←−i∈I Si of the inverse system (Si)i∈I is the subsemigroup
of the direct product

∏
i∈I Si consisting of the elements (si)i∈I of such that

ϕi,j(si) = sj whenever i > j. The restriction to lim←−i∈I Si of the j-component
projection is a continuous homomorphism ϕj : lim←−i∈I Si → Sj. In case the Si
are pro-V semigroups, so is lim←−i∈I Si. In the case of an inverse quotient system,
we also say that lim←−i∈I Si is an inverse quotient limit ; in this case, the mappings
ϕi are onto.
Given a nonempty set X, there is a free pro-V semigroup on X given by

a mapping ι : X → ΩXV with the following universal property: for every
mapping ϕ : X → S into a pro-V semigroup S, there is a unique continuous
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homomorphism ϕ̂ : ΩXV → S such that ϕ̂ ◦ ι = ϕ. Such semigroups are well
known to exist and may be constructed as inverse limits of X-generated semi-
groups from V or, in the case X is finite, as completions of the free semigroup
X+ on X with respect to a natural pseudometric. From the universal property
of ΩXV it follows immediately that ι is a generating mapping and, unless V is
the trivial pseudovariety, consisting only of singleton semigroups, the mapping
ι is injective and we then identify each element x ∈ X with its image ι(x).
A homomorphism ψ : S → T of finite semigroups is said to be a V-morphism

if ϕ−1(e) ∈ V for every idempotent e of T . For pseudovarieties V and W,
their Mal’cev product is the pseudovariety V©m W generated by the class of all
finite semigroups S for which there is a V-morphism S → T with T ∈ W. For
example, it is well known that J = N©m Sl, where J, N and Sl are, respectively,
the pseudovarieties of all finite J -trivial semigroups nilpotent semigroups and
semilattices.

3. Coproduct of profinite semigroups
Let V be a pseudovariety of finite semigroups. Given a nonempty family

(Si)i∈I of pro-V semigroups, their V-coproduct is a pro-V semigroup S together
with a collection of continuous homomorphisms ϕi : Si → S such that the
following universal property holds: for every pro-V semigroup T and every col-
lection of continuous homomorphisms ψi : Si → T , there is a unique continuous
homomorphism ψ : S → T such that Diagram 3.1 commutes for every i ∈ I.

Si
ϕi

��

ψi

��

S
ψ

// T.

(3.1)

Note that, by the usual “abstract nonsense”, if such a pro-V semigroup S
exists, then it is unique up to isomorphism. It is then denoted

∐V
i∈I Si. In

the case of a finite family (Si)i=1,...,n we also write S1 qV · · · qV Sn to denote∐V
i=1 Si.

3.1. Construction and basic properties of V-coproducts. The following
is the extension to arbitrary profinite semigroups of the special case of profinite
groups considered in [18, Proposition 9.1.2].

Proposition 3.1. Let (Si)i∈I be a nonempty family of pro-V semigroups. Then
the V-coproduct

∐V
i∈I Si exists.
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In the proof of Proposition 3.1 we use the following alternative character-
ization of the V-coproduct, consisting in replacing “pro-V semigroup T ” by
“semigroup T from V” in the above definition of V-coproduct.

Proposition 3.2. Consider a nonempty family (Si)i∈I of pro-V semigroups.
The pro-V semigroup S, together with the collection of continuous homomor-
phisms ϕi : Si → S, is the V-coproduct of the family (Si)i∈I if and only if for
every semigroup T from V and every collection of continuous homomorphisms
ψi : Si → T , there is a unique continuous homomorphism ψ : S → T such
that Diagram (3.1) commutes for every i ∈ I.

Proof : The “only if” part of the proposition is trivial.
Conversely, let us assume that the restricted version of the universal property

holds for S whenever T belongs to V. Take now an inverse limit T = lim←−λ∈Λ
Tλ

of semigroups Tλ from V. For each λ ∈ Λ, denote by πλ the associated pro-
jection T → Tλ, and for µ, λ ∈ Λ such that λ 6 µ, let πµ,λ be the connecting
homomorphism Tµ → Tλ. Consider a collection of continuous homomorphisms
ψi : Si → T . By hypothesis, for each λ ∈ Λ, there is a continuous homomor-
phism ψλ : S → Tλ such that Diagram 3.2 commutes for every i ∈ I.

Si
ϕi

��

πλ◦ψi
��

S
ψλ // Tλ.

(3.2)

Given µ, λ ∈ Λ such that λ 6 µ, we have

πµ,λ ◦ ψµ ◦ ϕi = πµ,λ ◦ πµ ◦ ψi = πλ ◦ ψi

for every i ∈ I. Since ψλ is the unique continuous homomorphism for which
Diagram (3.2) commutes for all i ∈ I, we deduce that πµ,λ ◦ ψµ = ψλ. By
the definition of inverse limit, we conclude that there is a continuous homo-
morphism ψ : S → T for which Diagram (3.3) commutes whenever µ, λ ∈ Λ
satisfy µ 6 λ.

Tµ

��

πµ,λ

��

S

ψµ --

ψ
//

ψλ
11

T

πµ 99

πλ %%
Tλ

(3.3)
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Let i ∈ I. Since for every λ ∈ Λ we have πλ ◦ (ψ ◦ ϕi) = ψλ ◦ ϕi = πλ ◦ ψi, we
conclude that ψ ◦ ϕi = ψi, thus establishing the proposition.

We may now proceed with the proof of Proposition 3.1. It is well known that
coproducts exist in the category of semigroups (see [11, Theorem I.13.5]). We
denote the coproduct, also known as free product, of a nonempty family (Si)i∈I
of semigroups by S = ∗i∈I Si.
Proof of Proposition 3.1: We start by taking the free product S = ∗i∈I Si in
the category of semigroups and the corresponding natural homomorphisms ϕ̃i :
Si → S. We consider the family C of all congruences θ on S such that S/θ ∈
V and, for each i ∈ I, the congruence (ϕ̃i × ϕ̃i)

−1(θ) is a clopen subset of
Si × Si. The latter condition expresses that the composite of ϕ̃i followed by
the natural quotient mapping qθ : S → S/θ is continuous. Given θ, ρ ∈ C,
note that θ ∩ ρ ∈ C since V is closed under taking subsemigroups and finite
direct products. Hence, the quotients S/θ with θ ∈ C form an inverse system,
for which we may consider the inverse limit, which we denote SV. Thus, SV

is a pro-V semigroup. Let ι : S → SV be the natural homomorphism and let
ϕi = ι ◦ ϕ̃i (i ∈ I).
For every θ ∈ C, the natural projection πθ : SV → S/θ satisfies πθ ◦ ι = qθ,

and so we have the equalities

πθ ◦ ϕi = πθ ◦ ι ◦ ϕ̃i = qθ ◦ ϕ̃i,

for which the reader may wish to refer to Diagram (3.4) below. Since, by the
definition of C, the mapping qθ ◦ ϕ̃i is continuous for every θ ∈ C, it follows
that each mapping ϕi is continuous.
Suppose that T ∈ V and (ψi)i∈I is a family of continuous homomorphisms

ψi : Si → T . By the universal property of the free product S, there exists a
unique homomorphism γ : S → T such that γ ◦ ϕ̃i = ψi (i ∈ I). Let θ be the
kernel of γ. Then θ ∈ C and there is a unique homomorphism β : S/θ → T such
that β ◦ qθ = γ, and so the non-dashed part of Diagram (3.4) is commutative.

Si
ϕ̃i

��

ψi

��
ϕi

��

S
γ

//

ι
��

qθ

&&

T

SV
πθ //

ψ

88

S/θ

β

OO (3.4)
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Therefore, for the continuous homomorphism ψ = β ◦ πθ, we have ψ ◦ϕi = ψi,
for every i ∈ I.
Since the restriction to ι(S) of each πθ is onto, as so is qθ, and the preimages

of points under the πθ form a base of the topology of SV, we see that ι(S) is
dense in SV. On the other hand, S is generated by

⋃
i∈I ϕ̃i(Si). Thus, ψ is

completely determined by its restriction to the union
⋃
i∈I ϕi(Si), and so ψ is

the unique continuous homomorphism from SV to T such that, for every i ∈ I,
the following diagram commutes:

Si
ϕi

��

ψi

��

SV
ψ

// T.

Since T is an arbitrary semigroup from V, it follows from Proposition 3.2 that
the profinite semigroup SV, together with the family of continuous homomor-
phisms (ϕi)i∈I , provides a V-coproduct of the family (Si)i∈I .

Let k ∈ I. The continuous semigroup homomorphism ϕk : Sk →
∐V

i∈I Si
introduced in the definition of V-coproduct is said to be the natural mapping
from Sk into

∐V
i∈I Si.

Proposition 3.3. If (Si)i∈I is a nonempty family of pro-V semigroups then,
for every k ∈ I, the natural mapping ϕk : Sk →

∐V
i∈I Si is injective, whence

an embedding of topological semigroups.

Proof : Let k ∈ I. Since Sk is pro-V, in Diagram 3.1 we may take T = Sk,
choose ψk as the identity IdSk on Sk, and if i ∈ I \ {k}, we choose ψi as any
constant mapping from Si onto an idempotent of Sk. We may then consider the
continuous homomorphism ψ as in Diagram 3.1, for which we have in particular
ψ ◦ ϕk = IdSk , and so the proposition holds.

In view of Proposition 3.3, we may henceforth see each Si as a closed sub-
semigroup of

∐V
i∈I Si, with ϕi being the inclusion.

Let Sl denote the pseudovariety of all finite semilattices. The following tech-
nical observation will be convenient later on.

Lemma 3.4. Suppose that V contains Sl. Let (Si)i∈I be a nonempty family of
nontrivial pro-V semigroups. Let A be a generating subset of the V-coproduct∐V

i∈I Si as a topological semigroup. Then A ∩ Si generates Si as a topological
semigroup for every i ∈ I.
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Proof : Let S = ∗i∈I Si and let SV =
∐V

i∈I Si. Note that
⋃
i∈I Si generates SV.

We should show that every element of Si is the limit of a net of products of
elements of A ∩ Si. With this aim, we first claim that there is a continuous
homomorphism ψV from SV to the two-element semilattice {0, 1} such that
ψ−1
V (1) = Si. It follows that SV \ Si = ψ−1

V (0) is an ideal of SV containing
A \ Si. Hence, in a net of products of elements of A converging to an element
of Si all products from some point on can only involve factors from A ∩ Si.
To establish the claim, we use the universal properties of S and SV to define

a homomorphism ψ and a continuous homomorphism ψV by considering the
constant homomorphisms ϕk on the Sk, with value 1 for k = i and value 0 for
k ∈ I \ {i}. More precisely, we have the following commutative diagram for
each k ∈ I:

S
ψ

%%
ι
��

Sk?
_oo

ϕk
��

SV
ψV // {0, 1}.

Since ψV is continuous and ι(S) is dense in SV, we obtain the following formula:

ψ−1
V (1) = ι(ψ−1(1)) = ι(Si) = Si

which establishes the claim and completes the proof of the lemma.

Note that the hypothesis that V contains Sl may not be omitted in Lemma
3.4. For instance, if G is a cyclic group of order 2 with generator a and H is
a cyclic group of order 3 with generator b, then ab2 is a generator of GqAb H
(since (ab2)2 = b and (ab2)3 = a) but ab2 /∈ G ∪H.
The next couple of facts (that one should bear in mind, albeit not needed

for the sequel) may also be easily proved with the universal property of the
V-coproduct:

1. The V-coproduct is associative: if the nonempty set I has a partition I =⊎
j∈J Ij, and (Si)i∈I is a family of pro-V semigroups, then we have an iso-

morphism ∐V
i∈I Si

∼=
∐V

j∈J(
∐V

i∈Ij Si)

of profinite semigroups.
2. For a subpseudovariety V, the V-coproduct of free pro-V semigroups is also

free pro-V.
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3.2. On the injectivity of the mapping ι. It is natural to ask under what
conditions the natural mapping

ι : ∗
i∈I
Si →

V∐
i∈I

Si

is injective for pro-V semigroups Si (i ∈ I). A partial solution to the analogous
question for pseudovarieties of groups in the category of groups can be found in
[18, Proposition 9.1.8]. Note, that in, that category, the free product of trivial
groups is trivial, whereas the free product of more than one trivial semigroup
(in every category of semigroups containing semigroups with more than one
idempotent) is an infinite idempotent-generated semigroup. Our main result
of this section gives a sufficient condition for injectivity of the function ι. Our
sufficient condition holds for a large class of pseudovarieties considered in the
remainder the paper, namely equidivisible pseudovarieties containing Sl. We
leave as an open problem the complete characterization of the pseudovarieties
for which the function ι is injective.
We start by some simple observations.

Remark 3.5. Let ϕi : Si → Ti (i ∈ I) be continuous homomorphisms between
pro-V semigroups. By the universal property of V-coproducts, there is a unique
continuous homomorphism ϕV such that the following diagram commutes:

Si
ϕi //

� _

��

Ti
� _

��∐V
i∈I Si

ϕV //
∐V

i∈I Ti.

Remark 3.6. Let X be a set and suppose that x and y are distinct elements
of X such that xω is a factor yω in the semigroup ΩXV. Then, V is contained
in LG. Indeed, it follows that, in every semigroup from V, all idempotents are
factors of each other, a property that characterizes membership in LG.

Lemma 3.7. Let V be a pseudovariety of semigroups containing J. Then the
natural mapping ι : ∗i∈I Si → ∐V

i∈I Si is injective whenever the Si are trivial
semigroups.

Proof : Let Si = {ei} (i ∈ I) and let I → X be a bijection given by i 7→
xi. By the universal property of V-coproducts, there is a unique continuous
homomorphism ϕ :

∐V
i∈I{ei} → ΩXJ such that ϕ(ei) = xωi .
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Given elements ei1ei2 · · · eim and ej1ej2 · · · ejn in ∗i∈I{ei} (with adjacent in-
dices distinct), suppose that their images under ι coincide. Then, their images
under ϕ ◦ ι also coincide, giving the equality

xωi1x
ω
i2
· · ·xωim = xωj1x

ω
j2
· · ·xωjn. (3.5)

Hence, it suffices to show that, for every equality in ΩXJ of the form (3.5),
with xk ∈ X for every index k, if all adjacent indices are distinct, then we
must have n = m and ik = jk for every k ∈ {1, . . . , n}. This is a special case
of [1, Theorem 8.2.8].

Lemma 3.8. Let V be a pseudovariety of semigroups containing Sl such that
N ©m V = V and let S be a member of V. Then, the natural mapping ι :
S ∗{e} → S qV {e} is injective.

Proof : Let u = s1es2e · · · esm and v = t1et2e · · · etn be distinct elements
of S ∗{e}, where s2, . . . , sm−1, t2, . . . , tn−1 ∈ S and s1, sm, t1, tn ∈ SI . Con-
sider the ideal J =

⋃
k>max{m,n} S

Ie(Se)kSI of S ∗{e}. Since the elements u
and v are not in J , they are distinguished in the Rees quotient T = S ∗{e}/J .
Note that, since S is finite, so is T . To complete the proof, it suffices to estab-
lish that T belongs to V, since then the natural homomorphism S ∗{e} → T
factors through ι.
Let K be the complement of S ∪ {e} in T . Then K is an ideal and a

nilpotent subsemigroup of T . Thus, if we show that T/K ∈ V, then it follows
that T ∈ N©m V = V. But, T/K is the zero sum of the semigroups S and {e},
which is a quotient of the direct product S × U where U is the three-element
semilattice which is the zero sum of two trivial semigroups. This shows that
indeed T ∈ V.

Theorem 3.9. Let V be a pseudovariety of semigroups containing Sl such that
N©m V = V. Then the natural mapping ι : ∗i∈I Si → ∐V

i∈I Si is injective
whenever the Si are pro-V semigroups.

Proof : Consider constant homomorphisms ϕi : Si → {ei}, the induced con-
tinuous homomorphism ϕV :

∐V
i∈I Si →

∐V
i∈I{ei} given by Remark 3.5, and

an analogous abstract homomorphism ϕ : ∗i∈I Si → ∗i∈I{ei}. We get the
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following commutative diagram, where ι′ is the natural mapping:

∗i∈I Si ϕ
//

ι
��

∗i∈I{ei}
ι′
��∐V

i∈I Si
ϕV //

∐V
i∈I{ei}.

Given elements u = si1si2 · · · sim and v = tj1tj2 · · · tjn of ∗i∈I Si, with si, ti ∈ Si
and no two adjacent indices equal, suppose that their images under ι coincide.
As J = N©m Sl ⊆ N©m V = V, we see that ι′ is injective by Lemma 3.7. Hence,
the images of u and v under ϕ must be equal, too. We conclude that m = n
and i1 = j1, . . . , im = jm.
It remains to show that sik = tik for k = 1, . . . ,m. Suppose, on the contrary,

that sj 6= tj for some j = ik with k ∈ {1, . . . ,m}. Since Sj is a pro-V
semigroup, there is a continuous homomorphism ψ : Sj → F into some F ∈ V
such that ψ(sj) 6= ψ(tj). We also consider the unique homomorphisms Si →
{e} for each i ∈ I \ {j}. Together, these mappings induce the horizontal
mappings in the following commutative diagram:

∗i∈I Si ψ̄
//

ι
��

F ∗{e}
ι′
��∐V

i∈I Si
ψ̄V // F qV {e}

where ι′ is the natural mapping. As ι(u) = ι(v), we get ι′(ψ̄(u)) = ι′(ψ̄(v)).
Since ι′ is injective by Lemma 3.8, we conclude that ψ̄(u) = ψ̄(v), which implies
that ψ(sj) = ψ(tj), contradicting the choice of ψ.

4. The two-sided Karnofsky–Rhodes expansion
The two-sided Karnofsky–Rhodes expansion plays a central role in [4] when

studying equidivisible relatively free profinite semigroups. We recall here this
expansion.
We adopt the following notational conventions. Let S be a semigroup. Given

a mapping ϕ : A → S, we may denote the unique homomorphism A+ → S
extending ϕ also by ϕ. Similarly, if S is a pro-V semigroup, then the unique
continuous homomorphism ΩAV → S extending ϕ : A → S may also be
denoted by ϕ. Conversely, given a homomorphism ϕ : A+ → S, or a continuous
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homomorphism ϕ : ΩAV → S, its restriction to A may also be denoted by ϕ,
if no confusion arises.
Let ϕ be a homomorphism from A+ onto a semigroup S. We denote by Γϕ

the two-sided Cayley graph, whose set of vertices is SI × SI , and where an
edge from (s1, t1) to (s2, t2) is a triple ((s1, t1), a, (s2, t2)), with a ∈ A, such
that s1ϕ(a) = s2 and t1 = ϕ(a)t2. We see Γϕ as a labeled directed graph,
by labeling each edge ((s1, t1), a, (s2, t2)) with the letter a. By the label of a
directed path in Γϕ we mean the word obtained by concatenating the successive
labels of its edges.
A transition edge of a directed graph is an edge x → y such that there

is no directed path from y to x. For each path p in the two-sided Cayley
graph Γϕ, we denote by T (p) the set of transition edges of Γϕ that occur
in p. For each u ∈ A+, let pu be the unique path of Γϕ from (I, ϕ(u)) to
(ϕ(u), I) that is labeled by the word u. Consider the binary relation ≡ϕ on
A+ defined by u ≡ϕ v if ϕ(u) = ϕ(v) and T (pu) = T (pv). Then one can easily
check that ≡ϕ is a congruence, which is of finite index if both S and A are
finite. Consider the quotient semigroup SKR

ϕ = A+/≡ϕ and the corresponding
quotient homomorphism ϕKR : A+ → SKR

ϕ .
We also consider the unique homomorphism πϕ : SKR

ϕ → S such that the
following diagram commutes:

A+

ϕ

��

ϕKR

||

SKR
ϕ πϕ

// S.

(4.1)

Remark 4.1. Suppose that the homomorphism ϕ : A+ → S is such that A
and S are finite, so that so is SKR

ϕ . It is folklore that πϕ is an LI-morphism; in
fact, for W = Jxyz = xzK, it follows easily from the definition of SKR

ϕ that πϕ
is a W-morphism, and one clearly has W ⊆ LI.

The homomorphism ϕKR is the two-sided Karnofsky–Rhodes expansion of ϕ,
and SKR

ϕ is a two-sided Karnofsky–Rhodes expansion of S. The correspondence
(S, ϕ) 7→ (SKR, ϕKR) is an expansion cut to generators [14]. In fact, a more
general property holds, which we state in the next proposition.

Proposition 4.2. Let ϕ : A+ → S and ψ : B+ → T be two homomorphisms
from finitely generated free semigroups onto finite semigroups. Suppose that
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the homomorphisms λ : S → T and α : A+ → B+ are such that λ ◦ϕ = ψ ◦α.
Then, there is a unique homomorphism Λ : SKR

ϕ → TKR
ψ such that the diagram

SKR
ϕ

πϕ

��

Λ // TKR
ψ

πψ

��

A+

ϕ

zz

α //

ϕKRcc

B+

ψ

%%

ψKR ;;

S
λ // T

(4.2)

is commutative.

The analog of Proposition 4.2 in the category of monoids appears as part
of [7, Proposition 4.4] (see also [7, Proposition 4.10]). Since the original proof
is somewhat indirect, for the sake of completeness we present here a direct
proof for the category of semigroups.

Proof of Proposition 4.2: Let u, v ∈ A+. Suppose that ϕKR(u) = ϕKR(v).
We want to show that ψKR(α(u)) = ψKR(α(v)). By the commutativity of
the left triangle and of the lower trapezoid in Diagram (4.2), we know that
ψ(α(u)) = ψ(α(v)). We need to show that the coterminal paths pα(u) and
pα(v) of Γψ contain the same transition edges of Γψ.
Suppose that τ is a transition edge of Γψ that occurs in the path pα(u). Then,

there are words w1, w2 ∈ B∗ and b ∈ B such that α(u) = w1bw2 and τ is the
edge

τ : (ψ(w1), ψ(bw2))
b−→ (ψ(w1b), ψ(w2)).

Moreover, there are u1, u2 ∈ A∗, a ∈ A, and w′1, w′2 ∈ B∗ such that u = u1au2,
w1 = α(u1)w

′
1, α(a) = w′1bw

′
2 and w2 = w′2α(u2). The reader may wish to

refer to Figure 1.

α(u1) α(a) α(u2)

w1 b w2

w′
1 w′

2

Figure 1. Factorizations of α(u).

Note that the edge τ ′ of Γϕ given by

τ ′ : (ϕ(u1), ϕ(au2))
a−→ (ϕ(u1a), ϕ(u2))
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belongs to the path pu of Γϕ. We claim that τ ′ is a transition edge of Γϕ.
Suppose it is not. Then, there is some z ∈ A+ such that

ϕ(u1az) = ϕ(u1) and ϕ(u2) = ϕ(zau2).

By the commutativity of the lower trapezoid of Diagram (4.2), we get

ψ(α(u1az)) = ψ(α(u1)) and ψ(α(u2)) = ψ(α(zau2)).

Hence, we have

ψ(w1b · w′2α(z)w′1) = ψ(α(u1)w
′
1bw

′
2α(z)w′1)

= ψ(α(u1az)w′1)

= ψ(α(u1)w
′
1)

= ψ(w1),

and similarly
ψ(w2) = ψ(w′2α(z)w′1 · bw2).

Therefore, the graph Γψ contains the path

(ψ(w1b), ψ(w2))
w′2α(z)w′1−−−−−→ (ψ(w1), ψ(bw2)).

with contradicts τ being a transition edge of Γψ. To avoid the contradiction,
the edge τ ′ must be a transition edge of Γϕ. Since the paths pu and pv of Γϕ
contain the same transition edges of Γϕ, and in view of the commutativity of
the lower trapezoid in Diagram (4.2), we conclude that

(ψ(α(u1)), ψ(α(au2)))
α(a)−−→ (ψ(α(u1a)), ψ(α(u2)))

is a path of Γψ contained in the path pα(v). But this path factorizes as

(ψ(α(u1)), ψ(α(au2)))
w′

1−→ (ψ(w1), ψ(bw2))
b−→ (ψ(w1b), ψ(w2))

w′
2−→ (ψ(α(u1a)), ψ(α(u2))),

thus having τ as one of its edges. This shows that every transition edge of
Γψ that belongs to pα(u) also belongs to pα(v). By symmetry, we conclude that
ψKR(α(u)) = ψKR(α(v)).
Since, for every u, v ∈ A+, the equality ϕKR(u) = ϕKR(v) implies the equality

ψKR(α(u)) = ψKR(α(v)), and since ϕKR is onto, we conclude that there exists
a unique homomorphism Λ such that Diagram (4.2) commutes.

A pseudovariety of semigroups V is said to be closed under two-sided Karnofsky–
Rhodes expansion when S ∈ V implies SKR

ϕ ∈ V, for every onto homomorphism
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A+ → S and every finite alphabet A. A proof of the following characteriza-
tion of such pseudovarieties may be found in [4], where one sees it as a direct
consequence of a deep result of Rhodes et al. [16, 17]

Theorem 4.3. A pseudovariety of semigroups V is closed under two-sided
Karnofsky–Rhodes expansion if and only if V = LI©m V.

5. KR-covers
We are now ready to introduce the following new definition, playing a central

role in this paper.

Definition 5.1 (KR-cover of a finite semigroup). Let S be a profinite semi-
group, and let T be a finite semigroup. We say that S is a KR-cover of T
when T is a continuous homomorphic image of S and for every continuous
onto homomorphism ϕ : S → T there is a generating mapping ψ : A → T ,
for some finite alphabet A depending on ϕ, and a continuous homomorphism
ϕψ : S → TKR

ψ such that the following diagram commutes:

S

ϕ

��

ϕψ

||

TKR
ψ πψ

// T.

(5.1)

The generating mapping ψ that appears in Definition 5.1 may in fact be any
generating mapping of T , as shown next. Thus, S is in a sense more general
than all two-sided Karnofsky–Rhodes expansions of T .

Lemma 5.2. Suppose that the profinite semigroup S is a KR-cover of the finite
semigroup T . Let ϕ : S → T be a continuous homomorphism from S onto T .
For every finite alphabet A and generating mapping ψ : A → T , there is a
continuous homomorphism ϕψ : S → TKR

ψ such that Diagram (5.1) commutes.

Proof : Let ψ : A+ → T be any homomorphism from A+ onto T , defined on
a finite alphabet A. Because S is a KR-cover of T , there is an onto homo-
morphism ζ : B+ → T , for some finite alphabet B, inducing a homomorphism
ϕζ : S → TKR

ζ such that the leftmost triangle of the following diagram is
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commutative:

TKR
ζ

πζ

��

Λ // TKR
ψ

πψ

��

S

ϕ $$

ϕζ <<

B+

ζ

yy

α //

ζKRcc

A+

ψ

%%

ψKR ;;

T
IdT

T.

(5.2)

Since ψ is onto, there is a homomorphism α : B+ → A+ such that ζ = ψ ◦ α,
that is, such the lower trapezoid in Diagram (5.2) commutes. By Proposi-
tion 4.2, there is a homomorphism Λ : TKR

ζ → TKR
ψ such that Diagram (5.2)

commutes. Therefore, if ϕψ is the homomorphism Λ ◦ ϕζ , then Diagram (5.1)
commutes.

Letting T vary in Definition 5.1, we are led to the following stronger property.

Definition 5.3 (KR-cover). A profinite semigroup S is a KR-cover if it is a
KR-cover of each of its finite continuous homomorphic images.

The notion of KR-cover is reminiscent of that of profinite projective semi-
group, which we recall here. Consider a pseudovariety V of semigroups. A
pro-V semigroup S is said to be V-projective if, whenever T and R are pro-V
semigroups and f : S → T and g : R → T are continuous homomorphisms
with g onto, there is some continuous homomorphism f ′ : S → R such that
the following diagram commutes:

S

f
��

f ′

~~
R g

// T.

A profinite projective semigroup is just an S-projective semigroup, where S is
the pseudovariety of all finite semigroups (cf. [15, Remark 4.1.34]). Every free
pro-V semigroup is an example of a V-projective semigroup.
The next simple observation gives our first examples of KR-covers and pro-

vides a more precise connection with projectivity.

Proposition 5.4. If V is a semigroup pseudovariety closed under two-sided
Karnofsky–Rhodes expansion, then every V-projective semigroup is a KR-cover.

Proof : Let S be a V-projective semigroup, and let ϕ be a continuous homomor-
phism from S onto a finite semigroup T . Note that T ∈ V (see, for instance, [2,
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Proposition 3.7]). Consider any two-sided Karnofsky–Rhodes expansion TKR
ψ

of T , with ψ : A→ T a generating mapping with finite domain. Since TKR
ψ ∈ V

and S is V-projective, there is a continuous homomorphism ϕ′ : S → TKR
ψ such

that πψ ◦ ϕ′ = ϕ.

Proposition 5.4 is complemented by the next proposition.

Proposition 5.5. Every profinite completely simple semigroup is a KR-cover.

Proposition 5.5 follows easily (explicit details are given below) from a simple
property, expressed in the next lemma. Let A be the pseudovariety of all finite
aperiodic semigroups.

Lemma 5.6. If π : S → T is an onto A-morphism of finite semigroups, and K
is a J -class of T which is a subsemigroup of T , then there is a subsemigroup
K ′ of S such that the restriction π : K ′ → K is an isomorphism.

Proof : As the J -class K is regular, there is a regular J -class J of S such that
π(J) = K and such that every element of π−1(K) is a factor of the elements of
J (cf. [15, Lemma 4.6.10]). Moreover, since K is a union of groups, J must be
a union of groups, and each maximal subgroup of S contained in J is mapped
by π onto a maximal subgroup of T contained in K.
Fix an idempotent e ofK. LetX be the set of idempotentsR-equivalent to e,

and let Y be the set of idempotents L-equivalent to e. Choose an idempotent
γe in J such that π(γe) = e. If f ∈ X \ {e} then, since f = ef , we may
choose an idempotent γf ∈ J such that π(γf) = f and γf = γeγf . Similarly, if
f ∈ Y \ {e} then we may choose an idempotent γf ∈ J such that π(γf) = f
and γf = γfγe. Note that X ′ = {γf | f ∈ X} is contained in the R-class of
γe, and that Y ′ = {γf | f ∈ Y } is contained in the L-class of γe.
For each idempotent g ∈ X ′ ∪ Y ′, consider the H-class Hg of g. Let K ′ be

the subsemigroup of T generated by
⋃
g∈X ′∪Y ′Hg. Then K ′ is a completely

semigroup contained in J and such that π(K ′) ⊆ K. Moreover, each H-class
H of K contains an element of the form yx, with y ∈ Y and x ∈ X, and so if
H ′ is the H-class of γyγx ∈ K ′, then we have π(H ′) = H. Hence, we actually
have π(K ′) = K.
Since K ′ has |X| = |X ′| R-classes and |Y | = |Y ′| L-classes, we know that

K ′ has the same number of H-classes as K. On the other hand, the restriction
of an A-morphism to a regular H-class is injective (cf. [15, Lemma 4.4.4]). We
then conclude that π restricts to an isomorphism K ′ → K.
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Proof of Proposition 5.5: Let S be a profinite completely simple semigroup,
and let ϕ : S → T is a continuous homomorphism onto a finite semigroup T .
Then T is a completely simple semigroup, and, for every generating mapping
ψ : A→ T such that A is a finite alphabet, the homomorphism πψ : TKR

ψ → T
is an A-morphism (cf. Remark 4.1). Applying Lemma 5.6, we deduce that
there is a subsemigroup T ′ of TKR

ψ such that the restriction πψ|T ′ : T ′ → T is an
isomorphism, whose inverse we denote ρ. Then the continuous homomorphism
ϕψ : S → TKR

ψ such that ϕψ = ρ ◦ ϕ satisfies πψ ◦ ϕψ = ϕ. This establishes
that S is a KR-cover.

By Proposition 5.4, the class of finite projective semigroups includes examples
of finite KR-covers that are not among those provided by Proposition 5.5:
see [15, Lemma 4.1.39 and Exercise 4.1.43] for simple examples of such kind.
For a complete characterization of the finite projective semigroups, see [21].
All finite projective semigroups are bands whose J -classes form a chain (for a
proof of this fact, alternative to [21] and implicitly using the equidivisibility of
the free profinite semigroup, see [19]).
The following gives a necessary and sufficient condition for a finite semigroup

to be a KR-cover.

Proposition 5.7. A finite semigroup S is a KR-cover if and only if there are
a finite set A, a generating mapping ψ : A→ S, and a homomorphism θ such
that the following diagram commutes:

S

Id
��

θ
||

SKR
ψ πψ

// S.
(5.3)

Moreover, then the same property holds for every generating mapping ψ : A→ S
with A finite.

Proof : The possibility of completing the diagram for every generating mapping
ψ : A→ S with A finite follows directly from the assumption that S is a finite
semigroup and a KR-cover. Conversely, if the diagram can be completed for a
generating mapping ψ : A → S with A finite then, for every onto homomor-
phism ϕ : S → T , we may consider the following commutative diagram, where
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θ is given by hypothesis and ϕKR by Proposition 4.2:

S

Id
��

θ

||

SKR
ψ πψ

//

ϕKR

��

S

ϕ

��

TKR
ψ◦ϕ

πϕ◦ψ
// T.

Hence, S is a KR-cover.

An immediate consequence of Proposition 5.7 is that it is decidable whether
a finite semigroup is a KR-cover.
If S is a profinite semigroup, then the monoid SI is also a profinite semigroup,

where we endow SI with the sum topology of S with {I}.

Proposition 5.8. Let S be a profinite semigroup. If S is a KR-cover, then SI
is a KR-cover.

Proof : Given a profinite semigroup S which is a KR-cover, let Φ : SI → R be a
continuous homomorphism onto a finite semigroup R. Set T = Φ(S). Denote
ϕ the restriction of Φ to S, which is an onto continuous homomorphism S → T .
We may take a generating mapping ψ : A → T such that A is finite. Since S
is a KR-cover, there is a continuous homomorphism ρ : S → TKR

ψ such that
ϕ = πψ ◦ ρ.
Consider the alphabet B = A ∪ {b}, for some letter b not in A. Denote Ψ

the extension B → R of ψ such that

Ψ(b) = Φ(I).

Then Ψ generates R. Since RKR
Ψ is finite, we may take a positive integer n such

that xn = xω for every x ∈ RKR
Ψ . Consider the homomorphism α : A+ → B+

such that α(a) = bnabn for every a ∈ A. By Proposition 4.2, there is a
homomorphism Λ : TKR

ψ → RKR
Ψ such that Diagram (5.4) commutes.

TKR
ψ

πψ

��

Λ // RKR
Ψ

πΨ

��

A+

ψ

zz

α //

ψKRcc

B+

Ψ

%%

ΨKR
;;

T � � // R

(5.4)
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For every a ∈ A+, we have ΨKR ◦ α(a) = ΨKR(b)ω · ΨKR(a) · ΨKR(b)ω and so
the image of ΨKR ◦ α is contained in the subsemigroup M of RKR

Ψ defined by

M = ΨKR(b)ω ·RKR
Ψ ·ΨKR(b)ω.

Since Λ ◦ ψKR = ΨKR ◦ α and ψKR is onto, it follows that the image of Λ is
contained inM . Let θ = Λ◦ρ. Note thatM is a monoid, whose neutral element
is ΨKR(b)n. Therefore, the homomorphism θ : S → M extends to a monoid
homomorphism θ̃ : SI →M . The reader may wish to refer to Diagram (5.5).

S �
� //

θ
��

ρ

yy

SI

Φ
��

θ̃

zz

TKR
ψ

Λ // RKR
Ψ

πΨ // R

(5.5)

If s ∈ S, then in view of the commutativity of Diagram (5.4), we have

πΨ ◦ θ̃(s) = πΨ ◦ Λ ◦ ρ(s) = πψ ◦ ρ(s) = ϕ(s) = Φ(s).

On the other hand, we also have

πΨ ◦ θ̃(I) = πΨ(ΨKR(b)n) = Ψ(b)n = Φ(I)n = Φ(I).

Therefore, the equality πΨ ◦ θ̃ = Φ holds. This shows that Diagram (5.5) is
commutative and that SI is a KR-cover.

6. KR-covers are equidivisible
We highlight the following property of KR-covers, to be shown below.

Theorem 6.1. Let S be a profinite semigroup. If S is a KR-cover, then it is
equidivisible.

Before the proof of Theorem 6.1, we formulate an improvement of the main
theorem of [4]. Let CS be the pseudovariety of all finite completely simple
semigroups, that is, of all finite semigroups with only one (nonempty) ideal.

Theorem 6.2. The following conditions are equivalent for a pseudovariety V
not contained in CS:

(1) for every finite alphabet A, ΩAV is equidivisible;
(2) for every alphabet A, ΩAV is equidivisible;
(3) the equality LI©m V = V holds;
(4) the pseudovariety V is closed under two-sided Karnofsky–Rhodes expan-

sion.
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Proof : The equivalence of (1) and (3) is the main result of [4], while the equiv-
alence of (3) and (4) is given by Theorem 4.3. To finish the proof, just note
that (4) implies (2) by Theorem 6.1 in view of Proposition 5.4, since free pro-V
semigroups are V-projective.

As in [4], we say that a pseudovariety V is equidivisible if it satisfies Prop-
erty (1) of Theorem 6.2.
The proof of Theorem 6.1 relies on the following lemma.

Lemma 6.3. Let T be a finite semigroup, and let ψ : A+ → T be an onto
homomorphism, where A is a finite alphabet. Suppose that u, v, x, y ∈ TKR

ψ are
such that uv = xy. Then, there is t ∈ T I such that at least one of the following
situations occurs:

(1) πψ(u)t = πψ(x) and πψ(v) = tπψ(y);
(2) πψ(u) = πψ(x)t and tπψ(v) = πψ(y).

Proof : Along the proof, the reader may wish to refer to the following commu-
tative diagram:

A+

ψ

��

ψKR

||

TKR
ψ πψ

// T.

Let ū, v̄, x̄, ȳ ∈ A+ be such that ψKR(ū) = u, ψKR(v̄) = v, ψKR(x̄) = x and
ψKR(ȳ) = y. The equality

ψKR(ūv̄) = ψKR(x̄ȳ)

means that ψ(ūv̄) = ψ(x̄ȳ) and that, in the graph Γψ, the coterminal paths
pūv̄ and px̄ȳ have the same transition edges. Since the pair (ψ(ū), ψ(v̄)) is a
vertex in the path pūv̄ and (ψ(x̄), ψ(ȳ)) is a vertex in the path px̄ȳ, we know
that at least one of the following situations occurs in the graph Γψ:

• there is a (possibly empty) path from vertex (ψ(ū), ψ(v̄)) to vertex
(ψ(x̄), ψ(ȳ));
• there is a (possibly empty) path from vertex (ψ(x̄), ψ(ȳ)) to vertex

(ψ(ū), ψ(v̄)).
In the first case, we have ψ(ū)t = ψ(x̄) and ψ(v̄) = tψ(ȳ), for some t ∈ T I .
It then suffices to note that, since πψ ◦ ψKR = ψ, we get πψ(u)t = πψ(x) and
πψ(v) = tπψ(y). The second case is analogous.
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We are now ready to establish Theorem 6.1.

Proof of Theorem 6.1: Let {ϕj,i : Sj → Si | i, j ∈ I, i 6 j} be an inverse
system of homomorphisms between finite semigroups such that S is its inverse
limit. For each i ∈ I, the canonical projection S → Si is denoted ϕi. Let
u, v, x, y ∈ S be such that uv = xy. Take i ∈ I. Since S is a KR-cover,
there is a generating mapping θ : A → Si, for some finite alphabet A, and a
homomorphism (ϕi)θ : S → (Si)

KR
θ such that the following diagram commutes:

S

ϕi
��

(ϕi)θ

yy

(Si)
KR
θ πθ

// Si.

Then, we have (ϕi)θ(uv) = (ϕi)θ(xy). By Lemma 6.3, there is ti ∈ SIi such
that at least one of the following situations occurs:

(1) ϕi(u)ti = ϕi(x) and ϕi(v) = tiϕi(y);
(2) ϕi(u) = ϕi(x)ti and tiϕi(v) = ϕi(y).

Let I1 (respectively, I2) be the subset of elements i of I for which the first
(respectively, second) situation occurs. Since I = I1 ∪ I2, at least one of the
sets I1 or I2 is cofinal. Without loss of generality, suppose that I1 is cofinal
(note that, since the conjuction of i ∈ I1 and k 6 i implies k ∈ I1, we then
actually have I1 = I). By a standard compactness argument, we conclude that
there is t ∈ SI such that ut = x and v = ty.

The following result shows that the converse of Theorem 6.1 fails.

Proposition 6.4. Let G0 = G ] {0} be the semigroup obtained by adjoining
a zero to a finite group G. Then G0 is equidivisible, while G0 is a KR-cover if
and only if G is trivial.

Proof : It is easy to check that G0 satisfies the definition of equidivisible semi-
group. If G is trivial, then G0 is a two-element semilattice, which is well known
to be projective, whence a KR-cover (cf. [15, Lemma 4.1.39]).
The remainder of the proof consists in showing that S = G0 is not a KR-cover

when G is a finite nontrivial group. For that purpose we let ϕ : A ∪ {b} → S
be a generating mapping, where ϕ(A) ⊆ G (so that ϕ(b) = 0). In view of
Remark 4.1, we know that π−1

ϕ (0) is a subsemigroup of SKR
ϕ satisfying the

identity xyz = xz. It follows that every element of π−1
ϕ (0) is of one of the
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forms

ubv/≡ϕ or ubvbw/≡ϕ, where u, v, w ∈ A∗. (6.1)

Moreover, in both cases, the occurrences of b label transition edges in the cor-
responding paths from (I, 0) to (0, I): for instance for the first occurrence of b,
the corresponding edge is of the form (g, 0)→ (0, s) with g ∈ G and, therefore,
it must be a transition edge; the argument is similar for the last occurrence of
b taking into account instead the second component of the vertices. Hence, the
idempotents in π−1

ϕ (0) are the elements of the second form in (6.1).
Next, we show that ubvbwt ≡ϕ ubvbw with u, v, w ∈ A∗ and t ∈ A+ implies

ϕ(t) = 1. Indeed, as the paths pubvbwt and pubvbw use the same transition edges
and the b’s label such edges, comparing the second components of the end vertex
of the edge corresponding to the second b, we conclude that ϕ(wt) = ϕ(w).
Hence, ϕ(t) is equal to the identity element of the group G.
Suppose that there is a homomorphism θ : S → SKR

ϕ completing Dia-
gram (5.3). Let g ∈ G. As πϕ(θ(g)) = g 6= 0, there is some t ∈ A+ such
that θ(g) = t/≡ϕ. Moreover, we have θ(0)θ(g) = θ(0). Since θ(0) is an idem-
potent in π−1

ϕ (0), we already know that it is of the form ubvbw/≡ϕ for some
u, v, w ∈ A∗. It follows from the previous paragraph that g = πϕ(θ(g)) =
πϕ(t/≡ϕ) = ϕ(t) is the identity of G. This shows that G is trivial.

It is routine to check that an inverse quotient limit of equidivisible compact
semigroups is equidivisible. In the context of this paper, it is worthy to record
the following similar fact.

Proposition 6.5. An inverse quotient limit of KR-covers is a KR-cover.

Proof : Let S = lim←−i∈I Si be an inverse quotient limit of the KR-covers Si. For
each i ∈ I, let pi be the canonical projection S → Si. Suppose that ϕ : S → T
is a continuous homomorphism onto a finite semigroup T . Then there is k ∈ I
for which there is a factorization ϕ = ϕk ◦ pk such that ϕk : Sk → T is a
continuous onto homomorphism (see, for instance, [15, Lemma 3.1.37]). As Sk
is a KR-cover, there is a finite alphabet A and a generating mapping ψ : A→ T
for which there is a continuous homomorphism ρ : Sk → TKR

ψ satisfying ϕk =
πψ ◦ ρ. Since the continuous homomorphism ϕψ = ρ ◦ pk satisfies πψ ◦ϕψ = ϕ,
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we conclude that S is a KR-cover. The diagram

S
ϕ

//

pk
��

ϕψ
&&

T

Sk
ρ

//

ϕk

88

TKR
ψ .

πψ

OO

may help visualizing the various homomorphisms involved in this proof.

To finish this section we observe that a profinite KR-cover may not be, up
to isomorphism, an inverse limit of finite KR-covers. Indeed, KR-covers are
equidivisible by Theorem 6.1. Now, by [10, Theorem 1.9] (which is attributed
to Rees), elements of finite order of an equidivisible semigroup lie in groups;
in particular, finite KR-covers are unions of groups and, therefore, so are their
inverse limits. On the other hand, the semigroups ΩAV of Theorem 6.2 (that
is, with V closed under two-sided Karnofsky–Rhodes expansion) are KR-covers
by Proposition 5.4 but they are never unions of groups since V contains LI.

7. Profinite coproducts of KR-covers
In combination with Theorem 6.1, the following property provides a way of

producing new examples of profinite equidivisible semigroups.

Theorem 7.1. For every pseudovariety of semigroups V closed under two-
sided Karnofsky–Rhodes expansion, the class of all pro-V KR-covers is closed
under V-coproducts.

Proof : Let (Si)i∈I be a family of pro-V KR-covers. Let S be their V-coproduct,
with associated continuous homomorphisms ϕi : Si → S.
Consider a continuous homomorphism ψ : S → T onto a finite semigroup T

and let ψi = ψ ◦ ϕi. Let Ti be the image of ψi. Since Si is a KR-cover, there
are a finite set Ai, a generating mapping δi : Ai → Ti, depending on Ti only
(not on i), and a continuous homomorphism βi such that the following diagram
commutes:

Si
βi

yy
ψi
��

ϕi // S

ψ
��

(Ti)
KR
δi

πδi // Ti
� � // T.

(7.1)

We may assume that Ti 6= Tj implies Ai ∩ Aj = ∅, and we let A =
⋃
i∈I Ai.

Since T is finite, the set {Ti | i ∈ I} is finite; moreover, its union is T since the
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union of the images of the ϕi generates a dense subsemigroup of S. The union
δ =

⋃
i∈I δi is then a generating mapping A→ T with finite domain.

By Proposition 4.2, there are homomorphisms ηi : (Ti)
KR
δi
→ TKR

δ , with ηi
depending only on Ti, such that the lower rectangle of the following diagram
commutes:

S
ψ

%%

β
��

Si

ϕi
99

βi $$

TKR
δ

πδ // T

(Ti)
KR
δi

πδi //

ηi

OO

Ti.
?�

OO (7.2)

Since T is a finite continuous homomorphic image of the pro-V semigroup S,
we know that T belongs to V (again, see, for instance, [2, Proposition 3.7]).
And since V is closed under two-sided Karnofsky–Rhodes expansion, TKR

δ also
belongs to V. Therefore, by the definition of V-coproduct, the homomorphisms
ηi ◦ βi (i ∈ I) induce a unique continuous homomorphism β : S → TKR

δ such
that the left triangle in Diagram (7.2) commutes for each i ∈ I. Then, taking
also into account the commutativity of Diagram (7.1), we deduce that for every
i ∈ I and every s ∈ Si, the following chain of equalities holds:

ψ ◦ ϕi(s) = ψi(s) = πδi ◦ βi(s) = πδ ◦ ηi ◦ βi(s) = πδ ◦ β ◦ ϕi(s).

Since
⋃
i∈I ϕi(Si) generates a dense subsemigroup of S, we conclude that ψ =

πδ ◦ β (that is, Diagram (7.2) commutes). This completes the proof that S is
a KR-cover.

For a set A, one may consider the A-indexed V-coproduct
∐V

a∈A{1} of trivial
semigroups. Note that it is precisely the free object on A in the category of
idempotent-generated pro-V semigroups. By Theorem 7.1, such semigroups are
KR-covers whenever V is closed under two-sided Karnofsky–Rhodes expansion,
whence they are equidivisible by Theorem 6.1.

8. Letter super-cancellative equidivisible profinite semigroups
In this section we completely characterize a class of equidivisible profinite

semigroups, defined by a cancellation property (Definition 8.1), that was con-
sidered in [4, 5].
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8.1. Letter super-cancellative semigroups. In the following definition, we
adopt the terminology of [4].

Definition 8.1 (Letter super-cancellative semigroup). Let S be a compact
semigroup and suppose that S is generated, as a topological semigroup, by
a finite subset A. Say that S is letter super-cancellative (with respect to A)
when, for every a, b ∈ A and u, v ∈ SI , the following holds: if we have ua = vb
or au = bv, then we have a = b and u = v.

Remark 8.2. As observed in [5, Lemma 6.1], if S is letter super-cancellative
with respect to A and also with respect to B, then A = B. In [5], a letter
super-cancellative semigroup is called finitely cancellable.

Example 8.3. By [4, Proposition 6.3], for an equidivisible pseudovariety V
not contained in CS and a finite set A, ΩAV is letter super-cancellative. In
view of Theorem 6.2, this holds precisely when V is closed under two-sided
Karnofsky–Rhodes expansion.

An epigroup is a semigroup S such that every element x of S has some power
xn lying in a subgroup of S, with n a positive integer. For example, finite
semigroups and completely simple semigroups are epigroups. It is easy to see
that no profinite epigroup is letter super-cancellative. The argument extends
to the following proposition.

Proposition 8.4. Let V be a pseudovariety containing Sl. If a nonempty fam-
ily of nontrivial pro-V semigroups includes some epigroup and the V-coproduct
of the family is finitely generated as a topological semigroup, then that V-
coproduct is not letter super-cancellative.

Proof : Consider a nonempty family (Si)i∈I of nontrivial semigroups. Let i0 ∈ I
be such that Si0 is an epigroup. Let A be a finite generating subset of the
profinite semigroup S =

∐V
i∈I Si. By Lemma 3.4 there is a ∈ A ∩ Si0. Since

Si0 is an epigroup, there is a positive integer k such that ak = aω+k. Since
ak · I = ak · aω−k but I 6= aω−k, we conclude that S is not letter super-
cancellative with respect to A.

8.2. Strong KR-covers. The following somewhat subtly strengthened version
of KR-cover is crucial in our main result of this section.

Definition 8.5 (Strong KR-cover). Consider a profinite semigroup with a gen-
erating mapping κ : A→ S such that A is finite. Let T be a continuous finite
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homomorphic image of S. We say that S is a strong KR-cover of T with re-
spect to κ if, for every continuous onto homomorphism ϕ : S → T , there is
a continuous homomorphism ϕκ : S → TKR

ϕ◦κ such that the following diagram
commutes:

A
κ //

(ϕ◦κ)KR

��

S

ϕ

��

ϕκ

||

TKR
ϕ◦κ πϕ◦κ

// T.

(8.1)

The profinite semigroup S is a strong KR-cover of T if it is a strong KR-cover
of T with respect to some such κ. Finally, S is a strong KR-cover if it is a
strong KR-cover of each of its finite continuous homomorphic images.

Remark 8.6. Every strong KR-cover (of a finite semigroup T ) is a KR-cover
(of T ).

The definition of strong KR-cover is motivated by the following link with the
property of being letter super-cancellative.

Proposition 8.7. Let S be a profinite semigroup with a generating mapping
κ : A→ S, where A is a finite alphabet. If S is a strong KR-cover of the trivial
semigroup with respect to κ, then S is letter super-cancellative with respect to
κ(A).

Proof : Let x, y ∈ S and a, b ∈ A be such that x · κ(a) = y · κ(b). We want to
show that x = y and that κ(a) = κ(b). Since, by Theorem 6.1, the semigroup S
is equidivisible, we know that there is t ∈ SI such that xt = y and κ(a) = tκ(b),
or such that x = ty and κ(a)t = κ(b). Without loss generality, we assume that
xt = y and κ(a) = tκ(b).
Arguing by contradiction, suppose t 6= I. Let ϕ : S → T be the continuous

homomorphism from S onto the trivial semigroup T . As S is a strong KR-
cover of T , there is a continuous onto homomorphism ϕκ : S → TKR

ϕ◦κ such
that Diagram 8.1 commutes. Because t 6= I, we know that ϕκ(κ(a)) belongs
to TKR

ϕ◦κ · ϕκ(κ(b)). Therefore, and since ϕκ ◦ κ = (ϕ ◦ κ)KR, there are c ∈ A
and u ∈ A∗ such that (ϕ ◦ κ)KR(a) = (ϕ ◦ κ)KR(cub). The latter equality
means that ϕ(κ(a)) = ϕ(κ(cub)) and that the coterminal paths pa and pcub of
the two-sided Cayley graph Γϕ◦κ have the same transition edges. But pa has
length one, while pcub has at least two distinct transition edges of Γϕ◦κ, namely
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the edges
(I, ϕ(κ(cub)))

c−→ (ϕ(κ(c)), ϕ(κ(ub)))

and
(ϕ(κ(cu)), ϕ(κ(b)))

b−→ (ϕ(κ(cub)), I).

We reached a contradiction, resulting from assuming that t 6= I. This shows
that indeed we have x = y and κ(a) = κ(b).
Symmetrically, if κ(a) · x = κ(b) · y holds, then x = y and κ(a) = κ(b).

Remark 8.8. In view of Proposition 8.7 and Remark 8.2, up to the name of
generators, there can be only one injective generating mapping κ : A→ S with
respect to which the profinite semigroup S is a strong KR-cover.

Note that no finite semigroup is a strong KR-cover: indeed, finite semigroups
are epigroups and we already observed that epigroups are not letter super-
cancellative, while strong KR-covers of the trivial semigroup are letter super-
cancellative by Proposition 8.7. On the other hand, there are several examples
of finite KR-covers (see Section 5).
More generally, for every pseudovariety of semigroups V containing Sl and

closed under two-sided Karnofsky–Rhodes expansion, if S is the V-coproduct
of a nonempty finite family of finitely generated pro-V semigroups which are
KR-covers, with at least one being an epigroup, then S is a KR-cover which
is not a strong KR-cover, thanks to Theorem 7.1 and also Propositions 8.4
and 8.7.
Next is a complete characterization of the strong KR-covers.

Theorem 8.9. Let S be a finitely generated profinite semigroup. The following
conditions are equivalent:

(1) S is equidivisible and letter super-cancellative;
(2) S is a strong KR-cover;
(3) S is a KR-cover, and S is a strong KR-cover of the trivial semigroup.

The proof of Theorem 8.9, given in this section, is inspired by the proof of [4,
Theorem 8.3].
Note that, for an equidivisible pseudovariety V not contained in CS, Prop-

erty (1) of Theorem 8.9 holds for ΩAV whenever A is finite (cf. Example 8.3).
Thus, strong KR-covers may be seen as a generalization of finitely generated
free profinite semigroups over pseudovarieties closed under two-sided Karnofsky–
Rhodes expansion.
We recall the following definition used in [4].
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Definition 8.10 (Transition edge for a pseudoword). Let A be a finite alphabet
and u ∈ ΩAS. Consider a continuous homomorphism ϕ from ΩAS onto a finite
semigroup. Suppose that (un)n is a sequence of elements of A+ converging to
u. A transition edge for u in Γϕ is an edge of Γϕ which is a transition edge for
un in Γϕ for all sufficiently large n.
Moreover, a sequence of edges of Γϕ is said to be a sequence of transition edges

for u in Γϕ if it is the sequence of all transition edges of un for all sufficiently
large n, where (un)n is a sequence of elements of A+ such that un → u.

Since ϕKR(un)→ ϕKR(u), the property of being a transition edge (or of being
a sequence of transition edges) for u in Γϕ does not depend on the choice of
the sequence un, it only depends on ϕ and u.
For proving Theorem 8.9, we need the following property, contained in [4,

Lemma 8.1].

Lemma 8.11. Let ϕ be a continuous homomorphism from ΩAS onto a finite
semigroup, where A is a finite alphabet. Let u ∈ ΩAS. If ((s1, t1), a, (s2, t2))
is a transition edge for u in Γϕ, then there is a factorization u = u1au2 of u,
with u1, u2 ∈ (ΩAS)I , such that ϕ(u1) = s1 and ϕ(u2) = t2.

Proof of Theorem 8.9: The implication (2) ⇒ (3) is trivial, and (3) ⇒ (1) fol-
lows from Theorem 6.1 and Proposition 8.7. It remains to show (1)⇒ (2).
Suppose that S is letter super-cancellative with respect to the finite set A.
Denote by κ the continuous onto homomorphism ΩAS → S extending the
inclusion of A in S.
Let ϕ : S → T be a continuous homomorphism onto a finite semigroup.

Let Φ = ϕ ◦ κ. We then have the following diagram, where the outer square
commutes.

ΩAS
κ //

ΦKR

��

S

ϕ

��

ϕκ

||

TKR
Φ πΦ

// T

(8.2)

Our aim is to show that there exists a continuous homomorphism ϕκ such
that the whole diagram commutes. For that purpose, take u, v ∈ ΩAS such
that κ(u) = κ(v). We claim that ΦKR(u) = ΦKR(v). Let (εi)i∈{1,...,n} and
(δi)i∈{1,...,m} be the sequences of transition edges in ΓΦ respectively for u and
for v. Without loss of generality, we may assume that n 6 m. For an edge
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ε of the graph ΓΦ, α(ε) and ω(ε) denote the beginning and end vertices of ε,
respectively.
Suppose that the set

{i ∈ {1, . . . , n} | εi 6= δi} (8.3)

is nonempty, and let j be its minimum. By Lemma 8.11, there are factorizations

u = u1au2 and v = v1bv2

with a, b ∈ A and u1, u2, v1, v2 ∈ (ΩAS)I , such that

εj = ((Φ(u1),Φ(au2)), a, (Φ(u1a),Φ(u2))

and
δj = ((Φ(v1),Φ(bv2)), b, (Φ(v1b),Φ(v2)).

Note that α(εj) and α(δj) belong to the same strongly connected component
of ΓΦ, by the minimality of the index j.
If u1 = I, then j = 1, which in turn implies that v1 = I. We then have

κ(au2) = κ(u) = κ(v) = κ(bv2). Because S is finitely cancellable with respect
to A, we deduce that a = b and κ(u2) = κ(v2), and so we get that εj = δj, a
contradiction. Hence we have u1 6= I, and, analogously, v1 6= I.
Similarly, if u2 = v2 = I, then j = n = m and εj = δj, a contradiction.
Suppose that u2 = I and v2 6= I. We then have κ(u1a) = κ(v1bv2). Since S is

letter super-cancellative with respect to A, it follows that there is a pseudoword
v′2 ∈ (ΩAS)I such that v2 = v′2a and κ(u1) = κ(v1bv

′
2). This implies the exis-

tence of a path in ΓΦ from ω(δj) = (Φ(v1b),Φ(v2)) to α(εj) = (Φ(v1bv
′
2),Φ(a))

labeled by a word v′′2 of A∗ such that Φ(v′′2) = Φ(v′2). As α(εj) and α(δj) belong
to the same strongly connected component of ΓΦ, we deduce that there is in
ΓΦ a path from ω(δj) to α(δj), contradicting the fact that δj is a transition
edge of ΓΦ. Therefore, we must have u2 6= I.
Since S is equidivisible, and we have κ(u1a · u2) = κ(v1 · bv2) with none of

the elements κ(u1a), κ(u2), κ(v1), κ(bv2) being equal to I, we know that there
is t ∈ (ΩAS)I such that

κ(u1at) = κ(v1) and κ(u2) = κ(tbv2), (8.4)

or
κ(v1t) = κ(u1a) and κ(bv2) = κ(tu2). (8.5)

If Case (8.4) holds, then there is in ΓΦ a (possibly empty) path from ω(εj) to
α(δj), labeled by a word t0 ∈ A∗ such that Φ(t0) = Φ(t). But, since α(εj) and
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α(δj) are in the same strongly connected component, we reach a contradiction
with the hypothesis that εj is a transition edge of ΓΦ.
Therefore, Case (8.5) holds with t 6= I. Since S is letter super-cancellative

with respect to A, there is t′ ∈ (ΩAS)I with t = t′a and

κ(v1t
′) = κ(u1) and κ(bv2) = κ(t′au2). (8.6)

Suppose that t′ 6= I. Again because S is letter super-cancellative with respect
to A, it follows from (8.6) that there is t′′ ∈ (ΩAS)I with t′ = bt′′ and

κ(v1b · t′′) = κ(u1) and κ(v2) = κ(t′′ · au2). (8.7)

This implies the existence of a path in ΓΦ from ω(δj) to α(εj), which once more
contradicts the definition of a transition edge.
Therefore, we have t′ = I, and so, once again because S is letter super-

cancellative with respect to A, from (8.6) we get κ(v1) = κ(u1), a = b and
κ(v2) = κ(u2). This yields εj = δj, which contradicts the initial assumption.
Therefore, the set (8.3) is empty. In particular, εn = δn holds. Since εn is the
last transition edge for u, we have ω(δn) = (Φ(u), I), which means that δn is the
last transition edge for v, whence m = n and εi = δi for every i ∈ {1, . . . , n}.
We have therefore established the claim that ΦKR(u) = ΦKR(v) holds when-

ever κ(u) = κ(v), and so there is a unique continuous homomorphism ϕκ :
S → TKR

Φ such that Diagram 8.2 commutes, thus showing that S is a strong
KR-cover.

8.3. A strong KR-cover which is not relatively free. Let S be a finite
semigroup and let ϕ : A → S be a generating mapping, where A is a finite
alphabet. We define the onto homomorphism ϕKRn

: A+ → SKRn

ϕ recursively
by

ϕKR0

= ϕ and ϕKRn+1

= (ϕKRn

)KR (n > 0).

For m > n, let %m,n be the unique (onto) homomorphism SKRm

ϕ → SKRn

ϕ such
that the following diagram commutes:

A+

ϕKRm

��

ϕKRn

��

SKRn

ϕ SKRm

ϕ .%m,n
oo

The family of homomorphisms {%m,n | m,n ∈ N,m > n} defines an inverse
system of A-generated semigroups. Consider its inverse limit, the profinite
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semigroup SKRω

ϕ = lim←−S
KRn

ϕ , with generating mapping ϕKRω

: A → SKRω

ϕ .
The associated projection SKRω

ϕ → SKRn

ϕ , denoted %n, is an onto continuous
homomorphism, since the connecting homomorphisms defining the inverse limit
are onto (see, for instance, [15, Lemma 3.1.26]).
Using results that can be found in [15] (namely, Corollary 5.3.22 and Theo-

rem 3.6.4), one may show that for an arbitrary pseudovariety V, the following
equality holds, where two-sided Karnofsky–Rhodes expansion needs to be ex-
tended to profinite semigroups (as in [14]) when V is not locally finite:

(ΩAV)KRω

= ΩA(LI©m V).

Proposition 8.12. Let S be a finite semigroup generated by ϕ : A→ S, where
A is a finite alphabet. The profinite semigroup SKRω

ϕ is a strong KR-cover with
respect to the generating mapping ϕKRω

: A→ SKRω

ϕ .

Proof : Let κ = ϕKRω

and ψ be a continuous homomorphism from SKRω

ϕ onto
a finite semigroup T . Choose an integer n > 1 for which ψ has a factorization
ψ = ψn ◦ %n for some homomorphism ψn : SKRn

ϕ → T (its existence being
guaranteed, for instance, by [15, Lemma 3.1.37]). Observe that the non-dashed
part of Diagram (8.8) is commutative.

SKRn

ϕ

ψn

��

SKRn+1

ϕ

%n+1,n
oo

(ψn)KR

��

SKRω

ϕ
ψ

yy

%n

ee
%n+1

44

A+
κ

oo
ϕKRn+1

99

(ψ◦κ)KR

%%

T TKR
ψ◦κ

πψ◦κ
oo

(8.8)

Applying Proposition 4.2, we see that there is a unique homomorphism
(ψn)

KR : SKRn+1

ϕ → TKR
ψ◦κ for which Diagram (8.9) commutes. Since the topmost

triangle in Diagram (8.9) is the rightmost triangle in Diagram (8.8), we deduce
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that the latter is commutative.

SKRn+1

ϕ

%n+1,n

��

(ψn)KR

// TKR
ψ◦κ

πψ◦κ

��

A+

ϕKRn

yy

ϕKRn+1ee

ψ◦κ

$$

(ψ◦κ)KR
::

SKRn

ϕ

ψn // T

(8.9)

Note that (ψn)
KR is onto, as (ψ◦κ)KR is onto. Let ψκ be the onto continuous

homomorphism (ψn)
KR ◦ %n+1. The commutativity of Diagram (8.8) entails in

particular that

(ψ ◦ κ)KR = (ψn)
KR ◦ %n+1 ◦ κ = ψκ ◦ κ

and so Diagram (8.10) commutes.

A+

(ψ◦κ)KR

��

κ // SKRω

ϕ
ψκ

zz
ψ
��

TKR
ψ◦κ

πψ◦κ
// T

(8.10)

This establishes that SKRω

ϕ is a strong KR-cover.

Example 8.13. Let S = {a, b} be the 2-element semilattice, where b is the
minimum element. For the alphabet A = {a, b}, the description of S deter-
mines an onto homomorphism ϕ : A+ → S. By Proposition 8.12, the profinite
semigroup T = SKRω

ϕ is a strong KR-cover with respect to the natural gener-
ating mapping ϕKRω

: {a, b} → T . Since ϕKRω

(a) 6= ϕKRω

(b), we see {a, b} as
a subset of T .

In [5], some properties of the equidivisible profinite semigroups which are
letter supper-cancellative were studied. But the question of whether such semi-
groups may not be relatively free was left open (cf. [5, Section 9]). Example 8.13
provides an answer to that question, as shown next.

Proposition 8.14. The semigroup T from Example (8.13) is an equidivisible
profinite semigroup which is letter super-cancellative but not a relatively free
profinite semigroup.
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Proof : We already observed that T is a strong KR-cover. It then follows from
Theorem 8.9 that T is equidivisible and letter super-cancellative. We proceed
to show that T is not a relatively free profinite semigroup.
We claim that the idempotent ϕKRω

(bω) ∈ T belongs to the minimum ideal
of T . To avoid overloaded notation, denote ϕKRn

(v) by [v]n. We establish
the claim by proving that the idempotent [bω]n belongs to the minimum ideal
of Tn = SKRn

ϕ , for every n > 0. We do this by showing inductively on n that

[bωwbω]n = [bω]n for every w ∈ A∗. (8.11)

The base case n = 0 is immediate, as ϕKR0

= ϕ. Assume that (8.11) holds for
a certain value of n > 0. Let k be an integer such that [bω]n+1 = [bk]n+1. Note
that, since ϕKRn

= %n+1,n ◦ ϕKRn+1

, we also have [bω]n = [bk]n. In the graph
Γ = ΓϕKRn , the path pb2k is the concatenation of the path q from (I, [bk]n) to
([bk]n, [b

k]n) labeled by bk, and the path q′ from the latter vertex to ([bk]n, I),
which is also labeled by bk. On the other hand, by the induction hypothesis, we
know that, for every w ∈ A∗, the path pb2kwb2k of Γ decomposes as qrq′ where
r is the circuit at the vertex ([bk]n, [b

k]n) labeled by bkwbk (see Figure 2). In
particular, the two coterminal paths pb2k and pb2kwb2k use the same transition
edges of the graph Γ, and so the equality [b2k]n+1 = [b2kwb2k]n+1 holds. That
is, we have (8.11) for n+ 1 in the place of n. This concludes the inductive step
of the proof, and shows that bω belongs to the minimum ideal of T .

(I, [bk]n) ([bk]n, [b
k]n) ([bk]n, I)

bk bk
bkwbk

Figure 2. The path pb2kwb2k of the graph ΓϕKRn .

Arguing by contradiction, suppose that T is a relatively free profinite semi-
group ΩXV, for some semigroup pseudovariety V and alphabet X. As the
semilattice S = {a, b} is a continuous homomorphic image of T , the set X has
at least two elements and V contains the pseudovariety Sl (of all finite semilat-
tices). Let π be the unique continuous homomorphism ΩXV→ ΩXSl mapping
each generator to itself. Then π(b) = π(bω) belongs to the minimum ideal K
of ΩXSl by the claim, and since {a, b} generates T = ΩXV, we conclude that
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ΩXSl \K ⊆ π(a∗) = {π(a)}. But since X has at least two elements, which be-
long to the set ΩXSl\K, we reach a contradiction. To avoid the contradiction,
the only possibility is that T is not a relatively free profinite semigroup.

9. Profinite coproducts of letter super-cancellative equidi-
visible profinite semigroups
The proof of the following proposition is an adaptation of the proof of The-

orem 7.1.

Proposition 9.1. If V is a semigroup pseudovariety containing LI, then the
class of all pro-V strong KR-covers of the trivial semigroup is closed under
finite V-coproducts.

Proof : We start by observing that, by Remark 4.1, V contains all two-sided
Karnofsky–Rhodes expansions of the trivial semigroup.
Let (Si)i∈I be a finite family of pro-V strong KR-covers of the trivial semi-

group T . Let S be their V-coproduct, with associated continuous homomor-
phisms ϕi : Si → S. Consider the unique mapping ψ : S → T and let
ψi = ψ ◦ϕi. Since Si is a strong KR-cover of T , we know that there are a finite
set Ai, a generating mapping κi : Ai → Si, and a continuous homomorphism
βi such that the diagram

A+
i

κi //

(ψi◦κi)KR

��

Si

ψi

��

βi

||

TKR
ψi◦κi πψi◦κi

// T

commutes. We may assume that the sets Ai are pairwise disjoint. Let A =⋃
i∈I Ai. The union κ =

⋃
i∈I κi is then a generating mapping A → S with

finite domain.
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Applying Proposition 4.2, we see that for each i ∈ I there is a homomorphism
ηi : TKR

ψi◦κi → TKR
ψ◦κ such that Diagram (9.1) commutes.

TKR
ψi◦κi

πψi◦κi

��

ηi // TKR
ψ◦κ

πψ◦κ

��

A+
i

ψi◦κi

zz

� � //

ψi◦κiKR
cc

A+

ψ◦κ

$$

(ψ◦κ)KR

;;

T
IdT

T

(9.1)

Therefore, the non-dashed part of Diagram (9.2) commutes.

A+
i

κi

%%

(ψi◦κi)KR

��

� � // A+

(ψ◦κ)KR

��

κ

yy
Si

βi

��

ψi
��

ϕi // S

ψzz β

��

T

TKR
ψi◦κi

ηi //

πψi◦κi

99

TKR
ψ◦κ

πψ◦κ

jj

(9.2)

From the observation at the beginning of the proof, we know that TKR
ψ◦κ belongs

to V. Therefore, by the definition of V-coproduct, there is a unique continuous
homomorphism β : S → TKR

ψ◦κ such that β ◦ ϕi = ηi ◦ βi for each i ∈ I, thus
completing Diagram (9.2), which we next show to be commutative. Indeed,
using the already established commutativity of the non-dashed part of Dia-
gram (9.2), we see that for every i ∈ I and every a ∈ Ai, the following chain
of equalities holds:

β ◦ κ(a) = β ◦ ϕi ◦ κi(a) = ηi ◦ βi ◦ κi(a) = ηi ◦ (ψi ◦ κi)KR(a) = (ψ ◦ κ)KR(a).

This shows that β◦κ = (ψ◦κ)KR. In particular, we conclude that Diagram (9.3)

A+ κ //

(ψ◦κ)KR

��

S

ψ

��

β

||

TKR
ψ◦κ πψ◦κ

// T

(9.3)
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commutes, thereby completing the proof that S is a strong KR-cover of the
trivial semigroup T .

We are ready to deduce the following theorem.

Theorem 9.2. For every pseudovariety of semigroups V closed under two-sided
Karnofsky–Rhodes expansion, the class of letter super-cancellative equidivisible
finitely generated pro-V semigroups is closed under finite V-coproducts.

Proof : Let C be the class of all pro-V KR-covers, and let D be the class of
all pro-V strong KR-covers of the trivial semigroup. By Theorem 4.3, V con-
tains LI.∗ Both C and D are closed under taking finite V-coproducts, by Theo-
rem 7.1 and Proposition 9.1, respectively. By Theorem 8.9, the class of letter
super-cancellative equidivisible pro-V semigroups is the intersection C ∩ D.
Combining these observations, we immediately obtain the theorem.

A natural question arising from Theorem 9.2 is the following problem, which
we leave open.

Problem 9.3. Suppose that V is a pseudovariety of semigroups closed un-
der two-sided Karnofsky–Rhodes expansion. Is it true that the class of all
equidivisible pro-V semigroups is closed under V-coproducts? A perhaps sim-
pler question is the following: is the class of all finitely generated equidivisible
pro-V semigroups closed under finite V-coproducts?

It would also be interesting to have a complete characterization of the KR-
covers, in the spirit of the characterization of the strong KR-covers, established
in Theorem 8.9.
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