
Pré-Publicações do Departamento de Matemática
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Abstract: A general insertion theorem due to Preiss and Vilimovský is extended
to the category of locales. More precisely, given a preuniform structure on a
locale we provide necessary and sufficient conditions for a pair f ≥ 1 of localic real
functions to admit a uniformly continuous real function in-between. As corollaries,
separation and extension results for uniform locales are proved. The proof of
the main theorem relies heavily on (pre-)diameters in locales as a substitute for
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(pre-)diameters are also shown.
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1.Introduction
In classical point-set topology, one finds in the literature a large number

of insertion-type results that provide conditions under which two compa-
rable real-valued functions belonging to given classes admit a continuous
function in-between (see the different variants in [5, 12, 17, 20, 27, 28]).
However, besides a paper by Preiss and Vilimovský [24], the literature
on insertion results for uniform structures is scarce. The main insertion
theorem from [24] can be stated as follows:

Topological insertion theorem for uniform spaces. Let X be a uniform space
and f , 1 : X→ R two maps with f ≥ 1. Then the following are equivalent.

(i) There is a uniformly continuous h : X→ R such that f ≥ h ≥ 1;
(ii) For every δ > 0 there is a uniform cover U of X such that for all n ∈ N

the subspaces f−1(−∞, r] and 1−1[s,+∞) are Stn(U)-far whenever s − r >
(n + 1)δ.
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2 I. ARRIETA AND A. B. AVILEZ

The main goal of the present paper is to extend this result to the category
of locales. Even more generally, we prove the result for preuniform locales
(i.e., locales equipped with uniformities but no compatibility condition
between them) so that, in particular, complete regularity of the underlying
locale is not required.

Throughout the paper, we make use of the theory of general localic real
functions launched in [9], because it provides a useful representation of
arbitrary — i.e., not necessarily continuous — real functions on locales. As
is well known, this representation allows one to phrase and prove point-
free counterparts of the Katětov-Tong theorem for normal spaces [9], of
the general insertion result of Blair and Lane [8], and many others (see e.g.
[1, 6, 10]).

In this paper we show that the notion of uniform continuity can be
recasted via these general maps of locales in such a way that one obtains
a convenient setting to phrase and prove the uniform insertion, extension
and separation results for uniform locales.

In certain aspects, the localic approach diverges significantly from the
classical one. For example, as a substitute of classical pseudometrics, we
make use of the notion of localic diameter, which was introduced by Pultr
in the eighties for extending metric structures to the category of locales. In
particular, we partially improve some results from [26].

This paper is organized as follows. In Section 2 we provide specific pre-
liminaries concerning real functions and uniform locales. Section 3 con-
cerns (pre-)diameters and contains the proof of the main technical lemma
for the uniform insertion theorem. In Section 4 we discuss the notion of
farness for sublocales, and we introduce uniform continuity in the setting
of arbitrary localic real functions. In particular, we prove that this notion
coincides with the usual notion of a uniform homomorphism. Section 5
is devoted to proving the main result of the paper — the uniform inser-
tion theorem for locales. We also outline an easier proof of the insertion
theorem for the bounded case by using a technique due to Katětov. In
Section 6, we prove a separation result for sublocales and an extension
result as consequences of the insertion theorem.

2.Preliminaries
Our notation and terminology regarding the categories of frames and

locales will be that of [21]. The Heyting operator in a frame L, right adjoint
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to the meet operator, will be denoted by →; for each a ∈ L, a∗ = a → 0 is
the pseudocomplement of a. Furthermore, an element b is rather below a
(written b ≺ a) if b∗ ∨ a = 1. A sublocale of a locale L is a subset S ⊆ L closed
under arbitrary meets such that

∀a ∈ L ∀s ∈ S (a→ s ∈ S).

These are precisely the subsets of L for which the embedding jS : S ↪→ L is
a morphism of locales.

The system S(L) of all sublocales of L, partially ordered by inclusion, is
a coframe [21, Theorem III.3.2.1], that is, its dual lattice is a frame. Infima
and suprema are given by∧

i∈I
Si =

⋂
i∈I

Si,
∨
i∈I

Si = {
∧

M |M ⊆
⋃
i∈I

Si}.

The least element is the sublocale O = {1} and the greatest element is the
entire locale L.

Since S(L) is a coframe, every sublocale S of L has a supplement denoted by
S#L (or simply S# if there is no risk of confusion) which can be characterized
as the smallest sublocale of L whose join with S is the entire L. We note
that if S is a complemented sublocale of L and T is a sublocale of S, then

T#S = S ∩ T# (2.1)

(see [7, Proposition 4.1 (7)]).
For any a ∈ L, the sublocales

cL(a) = ↑a = {x ∈ L | x ≥ a} and oL(a) = {a→ b | b ∈ L}

are the closed and open sublocales of L, respectively (that we shall denote
simply by c(a) and o(a) when there is no danger of confusion). For each
a ∈ L, c(a) and o(a) are complements of each other in S(L) and satisfy the
identities ⋂

i∈I
c(ai) = c(

∨
i∈I

ai), c(a) ∨ c(b) = c(a ∧ b), (2.2)∨
i∈I
o(ai) = o(

∨
i∈I

ai) and o(a) ∩ o(b) = o(a ∧ b).

For any sublocale S of L, the closed (resp. open) sublocales cS(a) (resp.
oS(a)) of S are precisely the intersections c(a) ∩ S (resp. o(a) ∩ S) and we
have, for any a ∈ L, c(a) ∩ S = cS( j∗S(a)) and o(a) ∩ S = oS( j∗S(a)).
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2.1. The frame of reals. Recall the frame of reals L(R) from [3]. Here we
define it, equivalently, as the frame presented by generators (r,—) and (—, r)
for all r ∈ Q, and relations

(r1) (p,—) ∧ (—, q) = 0 if q ≤ p;
(r2) (p,—) ∨ (—, q) = 1 if p < q;
(r3) (p,—) =

∨
r>p(r,—);

(r4) (—, q) =
∨

s<q(—, s);
(r5)

∨
p∈Q(p,—) = 1;

(r6)
∨

q∈Q(—, q) = 1.
Further, for rationals r, s ∈ Qwe denote (r, s) = (r,—) ∧ (—, s).

A continuous real-valued function [3] on a frame L is a frame homomor-
phism h : L(R) → L. We denote by R(L) the collection of all continuous
real-valued functions on L — i.e.,

R(L) := Frm(L(R),L).

The collection R(L) is an `-ring partially ordered by

f ≤ 1 ⇐⇒ 1(—, r) ≤ f (—, r) for all r ∈ Q ⇐⇒ f (r,—) ≤ 1(r,—) for all r ∈ Q.

There is a useful way of specifying continuous real-valued functions with
the help of scales ([9, Section 4]). A descending scale (resp. ascending scale)
in L is a family {br}r∈Q ⊆ L such that b∗s ∨ br = 1 (b∗r ∨ bs = 1) whenever r < s
and such that

∨
r∈Q br = 1 =

∨
r∈Q b∗r. For each descending (resp. ascending)

scale {br}r∈Q in L, the formulas

h(p,—) =
∨
p<r

br and h(—, q) =
∨
q>s

b∗s

(resp. h(p,—) =
∨
p<r

b∗r and h(—, q) =
∨
q>s

bs)

determine an h ∈ R(L).
Let S(L)op = (S(L),≤), with ≤≡⊇, be the dual lattice of S(L). Now, a

real-valued function on L is a frame homomorphism h : L(R) → S(L)op (see
[9]). We denote by F(L) the collection of all real-valued functions on L —
i.e.,

F(L) := Frm(L(R),S(L)op).
By the identities (2.2), the set cL of all closed sublocales of L is a subframe

of S(L)op isomorphic to the given L. Using this isomorphism L ' cL, the
collection R(L) of continuous real-valued functions on L can be identified
with the set of all f ∈ F(L) such that f (r,—) and f (—, r) are closed for every
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r ∈ Q; since we want to distinguish notationally both collections, the latter
will be denoted by C(L) — i.e.,

C(L) = { f ∈ F(L) | f (r,—) and f (—, r) are closed for all r ∈ Q }.

In other words, if f ∈ F(L) then one has that f ∈ C(L) if and only if f factors
through c : L→ S(L)op (the frame homomorphism that sends a to c(a)).

The `-ring F(L) is an extension of R(L), and so it is partially ordered by

f ≤ 1 ⇐⇒ f (—, r) ⊆ 1(—, r) for all r ∈ Q ⇐⇒ 1(r,—) ⊆ f (r,—) for all r ∈ Q.
(2.3)

Remarks 2.1. The following properties are easy to check:
(1) If f ∈ R(L), then

f (s,—) ≤ f (—, s)∗ ≤ f (s′,—) for any s′ < s, and
f (—, r) ≤ f (r,—)∗ ≤ f (—, r′) for any r′ > r

(2) If f ∈ F(L), then

f (s′,—) ⊆ f (—, s)#
⊆ f (s,—) for any s′ < s, and

f (—, r′) ⊆ f (r,—)#
⊆ f (—, r) for any r′ > r.

Examples 2.2.(1) For every p ∈ Q we have the constant function p ∈ F(L)
given by

p(r,—) =

O if r < p,
L if r ≥ p,

and p(—, r) =

L if r ≤ p,
O if r > p.

Notice that p ∈ C(L) for every p ∈ Q.
(2) For each complemented sublocale S of L we define the characteristic
function χS ∈ F(L) of S given by

χS(r,—) =


O if r < 0,
S# if 0 ≤ r < 1,
L if r ≥ 1,

and χS(—, r) =


L if r ≤ 0,
S if 0 < r ≤ 1,
O if r > 1.

Notice that 0 ≤ χS ≤ 1.

We say that an f ∈ F(L) is bounded if there are α, β ∈ Q such thatα ≤ f ≤ β.
By (2.3) it is easy to check that α ≤ f ≤ β holds if and only if for every
r, s ∈ Qwith r < α and s > β we have

f (r,—) = O and f (—, s) = O, (2.4)
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or equivalently if for every r, s ∈ Qwith r ≤ α and s ≥ β we have

f (s,—) = L and f (—, r) = L. (2.5)

2.2. Uniform locales via covers. Some general references for uniformities
in locale theory are [4, 25, 26] and Chapters VIII–XII in [21]. In this paper,
we adopt the “Tukey-style” approach via open covers (cf. also [15, 16]),
and the preliminaries contained in [2] will be enough for our purposes. In
what follows, we recall briefly some of the basic notions needed.

2.2.1. Basic properties of covers. A cover of a frame L is a subset U ⊆ L such
that

∨
U = 1. A cover U refines (or is a refinement of) a cover V, written,

U ≤ V, if for any u ∈ U there is some v ∈ V such that u ≤ v. For covers U,V
we have the largest common refinement U ∧ V = {u ∧ v | u ∈ U, v ∈ V }.

For any U ⊆ L and any a ∈ L the star of a in U is the element

U · a =
∨
{u ∈ U | u ∧ a , 0 }.

For any U,V ⊆ L, set
U · V = {U · v | v ∈ V }.

One usually denotes Ua and UV instead of U · a and U ·V. Since this oper-
ation is neither associative nor commutative, we will also use parentheses
when needed.

Proposition 2.3. For any covers U,V ⊆ L and any frame homomorphism h : L→
M, we have:

(1) UV is a cover of L;
(2) a ≤ Ua;
(3) Ua ≤ b implies a ≺ b;
(4) U ≤ UU;
(5) U ≤ V and a ≤ b imply Ua ≤ Vb;
(6) U(Va) ≤ (UV)a = U(V(Ua));
(7) U (

∨
i∈I ai) =

∨
i∈I Uai;

(8) h[U] h(a) ≤ h(Ua).

For a cover U, define a cover Un for n ≥ 1 inductively by setting

U1 = U and Un+1 = U ·Un.

Following [2], given a cover U of L we define a map SU : L→ L given by
SU(a) = Ua for each a ∈ L. We denote by Sn

U the result of composing SU
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with itself n times. Notice that, in general, SUn , Sn
U. We shall need the

following technical properties:

Lemma 2.4. Let L be a locale, U a cover of L and n,m ∈N. Then:

(1) If n > 1, then a ∈ Un if and only if there is a u ∈ U such that a = Sn−1
U (u);

(2) SUn = S2n−1
U ;

(3) UnU = U2n;
(4) Unm

≤ (Un)m.

Proof : (1) and (2) are proved in [2, Fact 5.1] and [2, Eq. 5.1.2] respectively.

(3) By definition a ∈ UnU if and only if there is a u ∈ U with a = SUn(u) =
S2n−1

U (u) but by (1) the latter is equivalent to a ∈ U2n.

(4) We may assume n,m > 1. By an application of (1) one has a ∈ Unm if
and only if a = Snm−1

U (u) for some u ∈ U. Further, by (1), b ∈ (Un)m if and
only if b = Sm−1

Un (v) for some v ∈ Un. By another application of (1), the latter
is equivalent to the existence of a w ∈ U such that b = Sm−1

Un (Sn−1
U (w)) =

S(m−1)(2n−1)
U (Sn−1

U (w)) = S(m−1)(2n−1)+n−1
U (w). The result thus follows from the

obvious fact that nm ≤ (m − 1)(2n − 1) + n.

2.2.2. Stronger notions of refinements. We shall be interested in certain
strengthenings of the notion of refinement of covers (see e.g., [15]). Let
U,V be covers. We say that

(1) U is a star refinement of V, denoted by U ≤∗ V, if U2
≤ V;

(2) U is a barycentric refinement of V, denoted by U ≤∗1 V, if there is a
cover W of L with UW ≤ V;

(3) U is a connected refinement of V, denoted by U ≤∗2 V, if for all S ⊆ U
such that a ∧ b , 0 for all a, b ∈ S, there is a v ∈ V with

∨
S ≤ v;

(4) U is a regular refinement, denoted by U ≤∗3 V, of V if for all a, b ∈ U
with a ∧ b , 0, there is a v ∈ V with a ∨ b ≤ v.

Note that star refinement is the strongest relation, and regular refinement is
the weakest and it implies ordinary refinement. Further, conditions (2) and
(3) are generally unrelated, even classically, as displayed in the following
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diagram.

U ≤∗ V

U ≤∗1 V U ≤∗2 V

U ≤∗3 V

U ≤ V

2.2.3.Farness. If U is a cover of L, elements a, b ∈ L are said to be U-far if

∀u ∈ U u ∧ a , 0 =⇒ u ∧ b = 0.

For a general view of the importance of the farness relation in the uniform
context, we refer the reader to [2]. We note that if a and b are U-far and
V ≤ U, then a and b are also V-far. Further, if a and b are U-far and
a′ ≤ a and b′ ≤ b, then a′ and b′ are also U-far. The following proposition
summarizes a number of other useful characterizations:

Proposition 2.5. Let L be a locale, U a cover of L and a, b ∈ L . Then the following
are equivalent:

(i) The elements a and b are U-far;
(ii) For every u ∈ U, either u ≤ a∗ or u ≤ b∗;

(iii) Ua ∧ b = 0;
(iv) a ∧Ub = 0;
(v) a∗∗ and b∗∗ are U-far.

2.2.4.Covering uniformities. From now on we shall always assume that 1 , 0
in L (that is, |L| ≥ 2). A (covering) uniformity on L is a nonempty systemU
of covers of L such that

(U1) U ∈ U and U ≤ V implies V ∈ U,
(U2) U,V ∈ U implies U ∧ V ∈ U,
(U3) for every U ∈ U there is a V ∈ U such that VV ≤ U, and
(U4) for every a ∈ L, a =

∨
{b | b CU a}

where we write b CU a if Ub ≤ a for some U ∈ U.
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Without (U4) one speaks of a preuniformity, without (U1) one speaks
of a basis of a (pre)uniformity (in the latter case one obtains, of course, a
(pre)uniformity adding all the V with V ≥ U ∈ U).

A uniform frame (resp. preuniform frame) is a pair (L,U) where U is a
uniformity (resp. preuniformity) on L.

2.2.5. The metric uniformity of L(R). The frame of reals carries a natural
uniformity, its metric uniformity [3], generated by covers

Dn =
{

(r, s) ∈ L(R) | s − r = 1
n

}
, n ∈N.

We will consider, more generally, the covers

Dδ =
{

(r, s) ∈ L(R) | s − r = 1
δ

}
, δ ∈ Q+

(where Q+ denotes the set of positive rational numbers).

3.Prediameters
Let us recall (cf. [26, 1.2] or [21, XI.3.1]) that a prediameter on a frame L is

a function f : L→ [0,+∞] with the following properties:
(PD1) f (0) = 0;
(PD2) a ≤ b implies f (a) ≤ f (b) for all a, b ∈ L;
(PD3) For all ε > 0, the set { a ∈ L | f (a) < ε } is a cover of L.
Consider now the following two properties:
(PD4) If a, b ∈ L are such that a ∧ b , 0, then f (a ∨ b) ≤ f (a) + f (b);
(PD5) If a, b ∈ L are such that a∧ b , 0, f (a∨ b) ≤ 2 max{ f (a), f (b) } (and so,

in particular, f (a ∨ b) ≤ 2 f (a) + 2 f (b)).
Clearly, (PD4) implies (PD5). A prediameter satisfying (PD4) is referred to
as a diameter. Moreover, a prediameter satisfying (PD5) is a weak diameter
(cf. [26]). The latter should not be confused with the notion of strong
prediameter (cf. [21]) — i.e., a prediameter which additionally satisfies
(PD6) If S ⊆ L is such that a∧b , 0 for all a, b ∈ S, then f (

∨
S) ≤ 2 sup { f (s) |

s ∈ S }.
Clearly, every strong prediameter is a weak diameter. For our purposes
we shall be interested only in weak diameters, but in passing we shall
also present an application to strong prediameters. The following lemma
about weak diameters will be crucial in the proof of the uniform insertion
theorem.
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Lemma 3.1. Let f be a weak diameter on a locale L. Let a1, . . . , ak ∈ L with
ai−1 ∧ ai , 0 for all i = 2, . . . , k. Then,

f (a1 ∨ ak) ≤ 2 f (a1 ∨ a2) + 4
k−1∑
i=3

f (ai−1 ∨ ai) + 2 f (ak−1 ∨ ak).

Proof : Obviously we can assume that every summand in the right hand
side is finite (and in that case, by (PD5), the left hand side is also readily
seen to be finite, and moreover each f (a1 ∨ ai) is also readily seen to be
finite). We proceed by induction over k. If k = 1 or k = 2 there is nothing to
prove. If k = 3, we need to check that f (a1 ∨ a3) ≤ 2 f (a1 ∨ a2) + 2 f (a2 ∨ a3).
But f (a1 ∨ a3) ≤ f ((a1 ∨ a2)∨ (a2 ∨ a3)) and use (PD5). Assume now it holds
for all sequences of length < k and let a1, . . . , ak ∈ L with ai−1 ∧ ai , 0 for all
i = 2, . . . , k. Let

A := { i ∈ { 1, . . . , k } | f (a1 ∨ ak) ≤ 2 f (a1 ∨ ai) }.

One has trivially k ∈ A, so A , ∅, hence there is a well-defined m = min A.
If m = 1 or m = 2, the formula in the statement holds trivially so assume
m > 2. By minimality (and because m > 1) m− 1 < A — i.e., 2 f (a1 ∨ am−1) <
f (a1 ∨ ak).

Now, by way of contradiction suppose 2 f (ak ∨ am−1) < f (a1 ∨ ak). Then

2max{ f (ak ∨ am−1), f (a1 ∨ am−1) } < f (a1 ∨ ak). (3.1)

But
f (a1 ∨ ak) ≤ f ((a1 ∨ am−1) ∨ (ak ∨ am−1))

and (a1 ∨ am−1) ∧ (ak ∨ am−1) ≥ am−1 , 0, so by (PD5) it follows that

f (a1 ∨ ak) ≤ 2max{ f (ak ∨ am−1), f (ak ∨ am−1) }. (3.2)

Combining (3.1) and (3.2) we see that f (a1∨ak) < f (a1∨ak), a contradiction.
Hence, we have

f (a1 ∨ ak) ≤ 2 f (ak ∨ am−1). (3.3)
Now, if m = k, we see that the desired formula holds, so we may as well
assume m < k. Now, we have

f (a1 ∨ ak) = 1/2 f (a1 ∨ ak) + 1/2 f (a1 ∨ ak) ≤ f (a1 ∨ am) + f (am−1 ∨ ak) (3.4)

(because of (3.3) and the fact that m ∈ A). We use induction twice:

f (a1 ∨ am) ≤ 2 f (a1 ∨ a2) + 4
m−1∑
i=3

f (ai−1 ∨ ai) + 2 f (am−1 ∨ am)
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and

f (am−1 ∨ ak) ≤ 2 f (am−1 ∨ am) + 4
k−1∑

i=m+1
f (ai−1 ∨ ai) + 2 f (ak−1 ∨ ak).

This together with (3.4) gives the desired inequality.

The combination of the previous lemma with (PD5) yields the following

Corollary 3.2. Let f be a weak diameter on a locale L. Let a1, . . . , ak ∈ L with
ai ∧ ai−1 , 0 for all i = 2, . . . , k. Then

f (a1 ∨ ak) ≤ 4 f (a1) + 12 f (a2) + 16
k−2∑
i=3

f (ai) + 12 f (ak−1) + 4 f (ak).

Remark 3.3. The last corollary is, in a certain sense, an improvement of
[26, Lemma 3.9] (cf. also [21, Lemma XI.3.2.4]), which shows a similar
inequality whenever f satisfies a property stronger than (PD5) —too strong
for our purposes—, namely:
(3W) If a, b, c ∈ L are such that a ∧ b , 0 , b ∧ c, then f (a ∨ b ∨ c) ≤

2 max{ f (a), f (b), f (c) }.
Of course, the price one has to pay for considering (PD5) instead of (3W) is
that the inequality in Corollary 3.2 is not as sharp as that in [26, Lemma 3.9].

We close this section with an application of Lemma 3.1 to strong predi-
ameters. For that, we first recall the definition of star-additive diameter
(see [21, XI.1.2]). It is an important notion, since any such diameter imme-
diately induces a uniformity on L, and it can be satisfactorily approximated
by a metric diameter (see [21, XI.1.3]). Precisely, a diameter f is said to be
star-additive if

(DS) If a ∈ L and S ⊆ L are such that a ∧ b , 0 for all b ∈ S, then
f (a ∨

∨
S) ≤ f (a) + sup { f (b) + f (c) | b, c ∈ S }.

We then have the following (compare with [21, Proposition XI.3.2.5]):

Proposition 3.4. Let L be a locale and f a strong prediameter on L. Then there is
a star-additive diameter d on L such that

1
32 f ≤ d ≤ f

We omit the details of the proof, as it is very similar to [21, Proposi-
tion XI.3.2.5] (instead of [21, Lemma XI.3.2.4] and property (3W), one uses
Lemma 3.1).
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3.1. A special case. In this subsection, we shall specialize the previous
results towards proving the uniform insertion theorem.

Lemma 3.5. Let L be a locale, {Vn}n∈Z a sequence of covers with Vn−1 ≤
∗

3 Vn for
all n ∈ Z and set f : L→ [0,∞] given by

f (a) = inf { 2n
| ∃u ∈ Vn with a ≤ u }.

Then f is a weak diameter on L.

Proof : Note that if f (a) ≤ 2n, then there is a v ∈ Vn such that a ≤ v. Properties
(PD1) and (PD2) are obvious, and (PD3) follows from the fact that each Vn
is a cover and Vn ⊆ { a ∈ L | f (a) < 2n+1

}. Let us finally show (PD5) so let
a, b ∈ L such that a∧ b , 0. If f (a) = +∞ or f (b) = +∞, then there is nothing
to prove. Now assume without loss of generality that f (a) ≤ f (b) < +∞.
If f (b) = 0, then f (a) = 0 — i.e., for all n ∈ Z there are un, vn ∈ Vn with
a ≤ un and b ≤ vn. Now, let n ∈ Z. Then un−1 ∧ vn−1 ≥ a ∧ b , 0, and since
Vn−1 ≤

∗

3 Vn, there is a v ∈ Vn with un−1 ∨ vn−1 ≤ v. Consequently a ∨ b ≤ v
and so f (a ∨ b) = 0. Assume f (b) = 2n, then there are u, v ∈ Vn with a ≤ u
and b ≤ v. Since u ∧ v , 0 and Vn ≤

∗

3 Vn+1, there is a w ∈ Vn+1 such that
u, v ≤ w. Hence, a ∨ b ≤ w and so f (a ∨ b) ≤ 2n+1 = 2 · 2n, as desired.

Remarks 3.6.(1) It is easy to check that the previous lemma also holds when
one replaces the relation ≤∗3 by ≤∗2 and the words “weak diameter” by
“strong prediameter”.

(2) The lemma above can be clearly adapted to a sequence {Vn}n∈N with
Vn+1 ≤

∗

3 Vn in which case f : L → [0,∞] is given by f (a) = inf{ 2−n
| ∃u ∈

Vn with a ≤ u }.

We also state the following for future reference:

Corollary 3.7. Let L be a locale, {Vn}n∈Z a sequence of covers with Vn−1 ≤
∗

3 Vn
for all n ∈ Z. Let a1, . . . , ak ∈ L with ai−1 ∧ ai , 0 for all i = 2, . . . , k, and suppose
that ai ∈ Vni for all i = 1, . . . , k. Suppose also that

k∑
i=1

2ni+4 < 2n.

Then there is a v ∈ Vn−1 such that a1, ak ≤ v.
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Proof : Let f denote the weak diameter given by Lemma 3.5. By the defini-
tion of f , we have f (ai) ≤ 2ni for all i = 1, . . . , k. In particular,

4 f (a1) + 12 f (a2) + 16
k−2∑
i=3

f (ai) + 12 f (ak−1) + 4 f (ak) ≤ 16
k∑

i=1
f (ai) ≤

k∑
i=1

2ni+4 < 2n.

By Corollary 3.2, f (a1 ∨ ak) < 2n, so it follows by the definition of f that
there is a v ∈ Vn−1 with a1 ∨ ak ≤ v.

4.Farness for sublocales and characterizations of uniform
continuity

4.1. Covers of S(L). A subset U ⊆ S(L) is a cover of S(L) if
∨
U = L. In this

context, we shall say that a cover U of S(L) refines a cover V of S(L) if for
every S ∈ U there is a T ∈ V such that S ⊆ T. In that case we shall write
U ≤ V.

We will be particularly interested in open covers of S(L), that is, covers of
the form

o[U] := {o(u) | u ∈ U}
for a cover U of L. Observe that if U and V are covers of L, then U ≤ V in
the sense of Subsection 2.2 if and only if o[U] ≤ o[V].

4.2. Farness for general sublocales. Let U be a cover of S(L). Then,
sublocales S and T of L are said to be U-far if

∀D ∈ U D ∩ S , O =⇒ D ∩ T = O.

The following observations are trivial:

Remarks 4.1. Let U be a cover of S(L), and let S,T be sublocales of L. Then:
(1) If S and T are U-far and S′ ⊆ S and T′ ⊆ T, then S′ and T′ are also U-far;
(2) If U ≤ V and S and T are V-far, then S and T are also U-far.

With only a couple of exceptions, we shall be interested in the case
where the cover U is open, say U = o[U] for a cover U of L. In that case,
we shall simply say that S and T are U-far when they are o[U]-far. This
notion coincides with that of [2] (see Subsection 2.2 above) in the sense that
elements a and b of L are U-far if and only if o(a) and o(b) are U-far.

Given a cover U of L and a sublocale S ⊆ L, we set

U ∗ S :=
∨
{ o(u) | u ∈ U, o(u) ∩ S , O }
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(see also [15] or [11, 22] for this concept in the more general context of
nearness structures). Notice that U ∗ S is an open sublocale of L, and
that S ⊆ U ∗ S (the latter follows easily because U is a cover and because
families of open sublocales are distributive — i.e., S∩

∨
i∈I o(ai) =

∨
i∈I S∩o(ai)

for every {ai}i∈I ⊆ L, cf. [23]). Note also that for every a ∈ L one has
U ∗ o(a) = o(Ua). Moreover, if S ⊆ T, then U ∗ S ⊆ U ∗ T.

In the case of open covers, we can give a few more characterizations of
farness:

Proposition 4.2. Let L be a locale and U a cover of L. For sublocales S and T of
L, the following conditions are equivalent:

(i) S and T are U-far;
(ii) (U ∗ S) ∩ T = O;

(iii) T ⊆ (U ∗ S)#;
(iv) S and T are U-far.

Moreover, if S and T are U-far, then S ∩ T = O.

Proof : (i)⇐⇒ (ii): Since families of open covers are distributive, (U∗S)∩T =∨
{ o(u) ∩ T | u ∈ U, o(u) ∩ S , O }. Then, (U ∗ S) ∩ T = O iff for each u ∈ U,
o(u) ∩ S , O implies o(u) ∩ T = O — i.e., iff S and T are U-far.

(ii) ⇐⇒ (iii): This equivalence follows because U ∗ S is open and hence
complemented.

(i)⇐⇒ (iv): Assume that S and T are U-far; equivalently one has T ⊆ (U∗S)#

and since (U ∗ S)# is closed, it follows that T ⊆ (U ∗ S)#. The latter is in turn
equivalent to T and S being U-far. Now, (iv) follows repeating the argument
with S and T. The reverse implication is trivial by Remark 4.1 (1).

For the last assertion, if S and T are U-far, then so are S and T and by (ii)
it follows that S ∩ T ⊆ (U ∗ S) ∩ T = O.

Since being U-far is a symmetric relation, we may exchange the roles of
S and T in the conditions of the previous proposition. We also have the
following:

Corollary 4.3. Let L be a locale and U a cover of L. For sublocales S and T of L,
the following conditions are equivalent:

(i) U ∗ S ⊆ T;
(ii) U ∗ S ⊆ int T;
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(iii) S and T# are U-far.

Proof : The equivalence between (i) and (ii) follows because

U ∗ S ⊆ T ⇐⇒ U ∗ S ⊆ int T because U ∗ S is open,

⇐⇒ U ∗ S ∩ (int T)# = O because int T is complemented,

⇐⇒ U ∗ S ∩ (int T)# = O because of Proposition 4.2,

⇐⇒ U ∗ S ⊆ int T because int T is complemented.

Now, U ∗S ⊆ int T if and only if S and (int T)# = T# are U-far (see [7, Eq. 4.2]
for the equality), which by Proposition 4.2 holds if an only if S and T# are
U-far. Thus the equivalence between (ii) and (iii) follows.

4.3. Arbitrary real functions and uniform homomorphisms. Let L and
M be frames and let U (resp. V) be a a basis for a (pre)uniformity on
L (resp. M). Recall that a frame homomorphism f : L → M is a uniform
homomorphism (L,U) → (M,V) if for every U ∈ U there is some V ∈
V such that V ≤ h[U]. We are particularly interested in the uniform
homomorphisms L(R) → (L,U) where L(R) is endowed with its natural
metric uniformity whose basis consists of the covers

Dδ =
{

(r, s) ∈ L(R) | s − r = 1
δ

}
for δ ∈ Q+ (cf. Subsection 2.2.5). In other words, a real-valued function
f ∈ R(L) is a uniform homomorphism if for every n ∈ N there is a U ∈ U
such that U ≤ f [Dn] = { f (r, s) | (r, s) ∈ Dn }. In view of this, we introduce
the following terminology:

Definition 4.4. Let (L,U) be a preuniform frame. An f ∈ F(L) is uniformly
continuous if for every n ∈ N there is a U ∈ U such that o[U] ≤

{
f (r, s)#

|

(r, s) ∈ Dn

}
.

Remarks 4.5.(1) The set
{

f (r, s)#
| (r, s) ∈ Dn

}
is a cover of S(L). Indeed,

more generally let f , 1 ∈ F(L) with f ≥ 1 and let δ ∈ Q+. Consider the
following subset of S(L):

D f ,1
δ :=

{ (
f (r,—) ∨ 1(—, s)

)#
| (r, s) ∈ Dδ

}
.
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If f = 1 we simply denote D f
δ := D f , f

δ =
{

f (r, s)#
| (r, s) ∈ Dn

}
. Notice that,

since f ≥ 1 and Dδ is a cover of L(R), we have∨
D f ,1
δ =

∨{ (
f (r,—) ∨ 1(—, s)

)#
| (r, s) ∈ Dδ

}
⊇

∨{ (
1(r,—) ∨ 1(—, s)

)#
| (r, s) ∈ Dδ

}
=

∨{
1(r, s)#

| (r, s) ∈ Dδ

}
=

(⋂
{ 1(r, s) | (r, s) ∈ Dδ }

)# = L

— i.e., D f ,1
δ is a cover of S(L).

(2) If f ∈ C(L) (i.e., f : L(R) → S(L)op is of the form f = c ◦ 1 for a frame
homomorphism 1 : L(R)→ L), it is clear that f is uniformly continuous (in
the sense just defined) if and only if 1 is a uniform homomorphism.

(3) Actually, it is not necessary to require that f be continuous in order to
recover the usual notion of uniform continuity. Indeed, we shall show in
Proposition 4.8 below that uniform continuity (via Definition 4.4) implies
continuity. Hence, by virtue of (2), uniformly continuous maps in F(L)
correspond precisely to uniform homomorphisms L(R) → (L,U), thus
ensuring that this is the right notion of uniform continuity for maps in
F(L).

Before proving Proposition 4.8, we need a couple of lemmas.

Lemma 4.6. Let (L,U) be a preuniform frame and f , 1 ∈ F(L) with f ≥ 1. For
every δ ∈ Q+ and every r, s ∈ Q with s − r > 1

δ the sublocales f (r,—) and 1(—, s)
are D f ,1

δ -far.

Proof : Let δ ∈ Q+. Suppose by contradiction that there are r, s ∈ Q with
s − r > 1

δ such that f (r,—) and 1(—, s) are not D f ,1
δ -far. Then there is an

(r′, s′) ∈ D f ,1
δ such that

f (r,—) ∩
(

f (r′,—) ∨ 1(—, s′)
)# , O and 1(—, s) ∩

(
f (r′,—) ∨ 1(—, s′)

)# , O.

Now, by Remarks 2.1 one has that
(

f (r′,—) ∨ 1(—, s′)
)#
⊆ f (—, r′) ∩ 1(s′,—)

and so

f (r,—) ∩ f (—, r′) ∩ 1(s′,—) , O and 1(—, s) ∩ f (—, r′) ∩ 1(s′,—) , O.

In particular, we have

f (r,—) ∩ f (—, r′) , O and 1(—, s) ∩ 1(s′,—) , O.

Hence, r′ ≤ r and s ≤ s′. This means that 1
δ = s′ − r′ ≥ s − r > 1

δ , a
contradiction.
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Lemma 4.7. Let (L,U) be a preuniform frame and f ∈ F(L) be such that for every
δ ∈ Q+ there is a U ∈ U such that the sublocales f (r,—) and f (—, s) are U-far
whenever s − r > 1

δ . Then f is continuous (i.e., f ∈ C(L)).

Proof : For each δ ∈ Q+, let Uδ denote the uniform cover such that f (r,—)
and f (—, s) are Uδ-far whenever s − r > 1

δ . To show that f is continuous we
have to prove that for every r, s ∈ Q, the sublocales f (r,—) and f (—, s) are
closed. For r ∈ Q, by Proposition 4.2 we obtain

f (r,—) ⊆
(
Uδ ∗ f (—, r + 2

δ)
)#

for every δ ∈ Q+. Thus,

f (r,—) ⊆
⋂
δ∈Q+

(
Uδ ∗ f (—, r + 2

δ)
)#
.

From Remarks 2.1 and the fact that S ⊆ U ∗ S for any sublocale S ∈ S(L),
we obtain⋂
r<t

f (—, t)#
⊆

⋂
r<t

f (t,—) = f (r,—) ⊆
⋂
δ∈Q+

(
Uδ ∗ f (—, r + 2

δ)
)#
⊆

⋂
δ∈Q+

f (—, r + 2
δ)

# =

=
⋂
t>r

f (—, t)#.

Since
⋂
δ∈Q+

(
Uδ ∗ f (—, r + 2

δ)
)#

is closed, f (r,—) is a closed sublocale for every
r ∈ Q. Similarly, we can conclude that f (—, s) is closed for every s ∈ Q.

Proposition 4.8. Let (L,U) be a preuniform frame and f ∈ F(L) be uniformly
continuous. Then f is continuous (i.e., f ∈ C(L)).

Proof : Let us check that the assumption of Lemma 4.7 is satisfied. Let
δ ∈ Q+ and select an n ∈ N with 1

n ≤
1
δ . By uniform continuity, there

is a uniform cover U ∈ U of L such that o[U] ≤ D f
n. By Lemma 4.6 it

follows that f (r,—) and f (—, s) are D f
n-far whenever s− r > 1

n . Therefore, by
Remark 4.1 (2), one has that f (r,—) and f (—, s) are U-far whenever s − r >
1
δ .

We are interested in giving a few more characterizations of uniform
continuity via farness. Recall that the map c : L → S(L)op denotes the
canonical frame homomorphism that sends a ∈ L to c(a). We first need the
following.
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Lemma 4.9. Let (L,U) be a preuniform frame and let U be a cover of L. If δ ∈ Q+

and f , 1 ∈ R(L) are such that f ≥ 1, then the following are equivalent:
(i) the elements f (—, r) and 1(s,—) are U-far whenever s − r > 1

δ ;
(ii) the sublocales c f (r,—) and c1(—, s) are U-far whenever s − r > 1

δ .

Proof : First, notice for any r, s ∈ Qwe have the following equivalences:

c f (r,—) and c1(—, s) are U-far ⇐⇒ ∀u ∈ U c f (r,—) ∩ o(u) = O
or c1(—, s) ∩ o(u) = O

⇐⇒ ∀u ∈ U c f (r,—) ⊆ c(u) or c1(—, s) ⊆ c(u)
⇐⇒ ∀u ∈ U u ≤ f (r,—) or u ≤ 1(—, s).

Now, assume (i) holds and let r, s ∈ Q with s − r > 1
δ . Select p, q ∈ Q such

that r < p < q < s with q − p > 1
δ . Then, f (—, p) and 1(q,—) are U-far — i.e.,

for all u ∈ U, one has u ≤ f (—, p)∗ or u ≤ 1(q,—)∗ (cf. Proposition 2.5). By
Remarks 2.1, it follows that for all u ∈ U either u ≤ f (r,—) or u ≤ 1(—, s). By
the equivalences above, c f (r,—) and c1(—, s) are U-far. The converse is even
easier (it follows at once from the equivalences above and Remarks 2.1).

Proposition 4.10. Let (L,U) be a preuniform frame and f ∈ R(L). Then the
following are equivalent:

(i) c f is uniformly continuous;
(ii) f is a uniform homomorphism;

(iii) For every δ ∈ Q+ there is a U ∈ U such that the elements f (—, r) and
f (s,—) are U-far whenever s − r > 1

δ ;
(iv) For every δ ∈ Q+ there is a U ∈ U such that for every n ∈N the elements

f (—, r) and f (s,—) are Un-far whenever s − r > n
δ ;

(v) For every δ ∈ Q+ there is a U ∈ U such that the sublocales c f (r,—) and
c f (—, s) are U-far whenever s − r > 1

δ ;
(vi) For every δ ∈ Q+ there is a U ∈ U such that for every n ∈N the sublocales
c f (r,—) and c f (—, s) are Un-far whenever s − r > n

δ .

Proof : The equivalence between (ii), (iii) and (iv) is proved in [2, Theo-
rem 3.1]. Moreover, (iii) and (v) are equivalent by Lemma 4.9, and so
are (iv) and (vi). Finally, (i) and (ii) are equivalent as observed in Re-
mark 4.5 (2).

As a consequence, we also have the following characterization of uniform
continuity in terms of farness:
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Corollary 4.11. Let (L,U) be a preuniform frame. Then f ∈ F(L) is uniformly
continuous if and only if for every δ ∈ Q+ there is a U ∈ U such that the sublocales
f (r,—) and f (—, s) are U-far whenever s − r > 1

δ .

Proof : The “only if” implication follows from Proposition 4.8 and Propo-
sition 4.10 (v) whereas the “if” holds because of Lemma 4.7 and Proposi-
tion 4.10 (v).

We end up this section with a useful lemma which deals with uniformly
continuous functions in terms of scales.

Lemma 4.12. Let (L,U) be a preuniform frame. If a family {Sr}r∈Q ⊆ S(L)
satisfies the following conditions:

(1)
⋂

r∈Q Sr = O =
⋂

r∈Q S#
r , and

(2) For every δ ∈ Q+ there is a U ∈ U such that U ∗Sr ⊆ Ss (resp. U ∗Ss ⊆ Sr)
whenever s − r > 1

δ ,
then the formulas

h(p,—) =
⋂
r>p

Sr and h(—, q) =
⋂
s<q

S#
s

(resp.
h(p,—) =

⋂
r>p

S#
r and h(—, q) =

⋂
s<q

Ss)

define a uniformly continuous h ∈ F(L).

Proof : Let {Sr}r∈Q ⊆ S(L) be a family of sublocales such that (1) holds and
for every δ ∈ Q+ there is a U ∈ U such that U ∗ Sr ⊆ Ss whenever s − r > 1

δ .
First, we claim {Sr}r∈Q is a descending scale in S(L)op. For every r < s we
have that there is a U ∈ U such that U ∗ Sr ⊆ Ss. From Corollary 4.3 we get
Sr ⊆ int Ss which implies

Sr ∩ S#
s ⊆ Sr ∩ (int Ss)# = O.

— i.e., {Sr}r∈Q is a descending scale in S(L)op. Hence, the formulas

h(p,—) =
⋂
r>p

Sr and h(—, q) =
⋂
s<q

S#
s

determine an h ∈ F(L). Now, let δ ∈ Q+ and take the U ∈ U given by (2).
Let p, q ∈ Q such that q− p > 1

δ . Select r′, s′ ∈ Q such that p < r′ < s′ < q and
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s′ − r′ > 1
δ , then U ∗ Sr′ ⊆ Ss′. By Corollary 4.3, we have that Sr′ and (int Ss′)#

are U-far. Now,

h(p,—) =
⋂
r>p

Sr ⊆ Sr′ ⊆ Sr′ and h(—, q) =
⋂
s<q

S#
s ⊆ S#

s′ ⊆ (int Ss′)#

so, by Remark 4.1 (1), h(p,—) and h(—, q) are U-far. Thus h is uniformly
continuous by Corollary 4.11. Similarly, one can prove the statement inside
parentheses.

5.Insertion theorem for uniform frames
Lemma 5.1. Let (L,U) be a preuniform frame and let f , 1 ∈ F(L) with f ≥ 1.
Assume that for every δ ∈ Q+ there is a U ∈ U such that for every n ∈ N, the
sublocales f (r,—) and 1(—, s) are Un-far whenever s − r > n

δ . Then, there is a
sequence {Vn}n∈Z ⊆ U such that for every n ∈ Z the following properties are
satisfied:

(1) Vn ≤
∗

1 Vn+1;
(2) For every r, s ∈ Q such that s − r > 2n, the sublocales f (r,—) and 1(—, s)

are Vn-far.

Proof : Let V0 be the cover given by the assumption by choosing δ = 1.
Moreover, for n ≥ 1, set Vn := (V0)2n

. Clearly, property (2) is satisfied
when n ≥ 0. Now, for n ≥ 0, condition (1) is also satisfied. Indeed, by an
application of Lemma 2.4 (3), we have that

VnV0 = (V0)2n
V0 = (V0)2n+1

= Vn+1,

hence Vn ≤
∗

1 Vn+1. Now we recursively define Vn for n < 0. First, for each
n < 0, let Un denote the cover given by the assumption for δ = 1

2n . For
n = −1, pick a V−1 ∈ U such that V2

−1 ≤ V0 ∧ U−1 (recall the axiom (U3)).
Clearly, conditions (1) and (2) are satisfied (the refinement V−1 ≤ V0 is a
star-refinement, so a fortiori it is barycentric). Suppose now that for an
n < 0 we have constructed Vn,Vn+1, . . . ,V−1 satisfying (1) and (2). Then
we choose a Vn−1 ∈ U such that V2

n−1 ≤ Vn ∧ Un−1. The sequence {Vn}n∈Z
clearly satisfies the required conditions.

We are now ready to prove the main result of this paper.

Theorem 5.2 (Uniform insertion theorem). Let (L,U) be a preuniform frame
and f , 1 ∈ F(L) with f ≥ 1. Then the following are equivalent:

(i) There exists a uniformly continuous h ∈ F(L) such that f ≥ h ≥ 1;
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(ii) For every δ ∈ Q+ there is a U ∈ U such that for every n ∈N the sublocales
f (r,—) and 1(—, s) are Un-far whenever s − r > n

δ .

Proof : (i) =⇒ (ii): This implication follows at once from Proposi-
tion 4.10 (vi), the definition of the partial order in F(L) (recall (2.3)) and
Remark 4.1 (1).

(ii) =⇒ (i): Let {Vn}n∈Z ⊆ U denote the sequence of uniform covers given
by Lemma 5.1. We define a family {br}r∈Q ⊆ L as follows

br :=
∨

n∈Z

∨
An

r ,

where

An
r :=

{
a ∈ Vn | ∃k ∈N, ∃n1, . . . ,nk ∈ Z,

∃ai ∈ Vni for all i = 1, . . . , k such that a1 = a, n1 = n,

ai−1 ∧ ai , 0 (i = 2, . . . , k), and o(ak) ∩ f (r −
k∑

i=1
2ni+5,—) , O

}
.

Set also Br := o(br) for every r ∈ Q. Clearly, Br =
∨
{ o(a) | ∃n ∈ Zwith a ∈

An
r }.
First we will show that

f (—, r)#
⊆ Br ⊆ 1(—, r)# (5.1)

for every r ∈ Q. For the first inclusion, note that for each n ∈ Z one clearly
has Vn ∗ f (r − 2n+5,—) =

∨
{ o(a) | a ∈ Vn, o(a) ∩ f (r − 2n+5,—) , O } ⊆ Br.

Consequently,

Br ⊇
∨

n∈Z
Vn ∗ f (r − 2n+5,—) ⊇

∨
n∈Z

f (r − 2n+5,—) =
∨
s<r

f (s,—) ⊇
∨
s<r

f (—, s)#

=
(⋂

s<r
f (—, s)

)#
= f (—, r)#.

Let us now show the inclusion Br ⊆ 1(—, r)#. Let a ∈ An
r ; our goal is to show

that o(a) ⊆ 1(—, r)#. Since a ∈ An
r , there is a k ∈ N and there are ni ∈ Z and

ai ∈ Vni for all i = 1, . . . , k satisfying n1 = n, a1 = a, ai−1 ∧ ai , 0 for every
i = 2, . . . , k, and o(ak) ∩ f (r −

∑k
i=1 2ni+5,—) , O. Take an m ∈ Z such that

2m−1
≤

k∑
i=1

2ni+4 < 2m.
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By Corollary 3.7 (recall that barycentric refinement implies regular refine-
ment), there is a v ∈ Vm−1 such that a1, ak ≤ v. We have that

r − (r −
k∑

i=1
2ni+5) =

k∑
i=1

2ni+5 >
k∑

i=1
2ni+4

≥ 2m−1

so by Lemma 5.1 (2), f (r −
∑k

i=1 2ni+5,—) and 1(—, r) are Vm−1-far. Conse-
quently,

o(a) = o(a1) ⊆ o(v) ⊆ Vm−1 ∗ f (r −
k∑

i=1
2ni+5,—) ⊆ 1(—, r)#

where the second incusion holds because v ∈ Vm−1 and

O , o(ak) ∩ f (r −
k∑

i=1
2ni+5,—) ⊆ o(v) ∩ f (r −

k∑
i=1

2ni+5,—).

Hence, (5.1) holds. Now, we will show that the conditions of Lemma 4.12
hold for the family {Br}r∈Q. First, notice that by (5.1) one has⋂

r∈Q
Br ⊆

⋂
r∈Q
1(—, r)#

⊆
⋂
r∈Q
1(r,—) = O

and similarly ⋂
r∈Q

B#
r ⊆

⋂
r∈Q

f (—, r)##
⊆

⋂
r∈Q

f (—, r) = O.

Let δ ∈ Q+ and select an n ∈ Z such that 1
δ > 2n+5. Let s − r > 1

δ ; we will
show that

Vnbr ≤ bs, (5.2)

which is clearly equivalent to Vn ∗ Br ⊆ Bs. Now, since br =
∨

m∈Z
∨

Am
r , by

virtue of Proposition 2.3 (7), proving (5.2) is further equivalent to show that
if a ∈ Am

r and v ∈ Vn is such that v ∧ a , 0, then v ≤ bs. If a ∈ Am
r , there is a

k ∈N such that for every i = 1, . . . , k there is an ai ∈ Vni with a1 = a, n1 = m,
ai−1 ∧ ai , 0 for every i = 2, . . . , k and o(ak) ∩ f (r −

∑k
i=1 2ni+5,—) , O. But

since s−2n+5 > r it follows that f (r−
∑k

i=1 2ni+5,—) ⊆ f (s−2n+5
−
∑k

i=1 2ni+5,—)
and so

o(ak) ∩ f (s − 2n+5
−

k∑
i=1

2ni+5,—) , O.

Hence, if v ∈ Vn is such that v ∧ a , 0, it follows that v ∈ An
s , which yields

v ≤ bs, as required.
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By Lemma 4.12, the function h ∈ F(L) given by

h(p,—) =
⋂
r>p

Br and h(—, q) =
⋂
s<q

B#
s

is uniformly continuous. Finally, f ≥ h ≥ 1 because, from (5.1) and Re-
marks 2.1, we have

h(p,—) =
⋂
r>p

Br ⊆
⋂
r>p
1(—, r)#

⊆
⋂
r>p
1(r,—) = 1(p,—)

and
h(—, q) =

⋂
s<q

B#
s ⊆

⋂
s<q

f (—, s)##
⊆

⋂
s<q

f (—, s) = f (—, q)

for every p, q ∈ Q (see (2.3)).

5.1.The bounded case. Specializing Theorem 5.2 one can easily obtain the
Uniform Insertion Theorem for bounded functions — i.e., what is stated in
Theorem 5.4 below. However, in this subsection, we present an alternative
(and easier) proof of this special case by using a different technique; namely
the so-called Katětov’s Lemma (see [17] for the original formulation for
power sets). For that purpose, we recall that a binary relation b on a
lattice L is a Katětov relation if it satisfies the following conditions for all
a, b, a′, b′ ∈ L:

(K1) a b b⇒ a ≤ b;
(K2) a′ ≤ a b b ≤ b′ ⇒ a′ b b′;
(K3) a b b and a′ b b⇒ (a ∨ a′) b b;
(K4) a b b and a b b′ ⇒ a b (b ∧ b′);
(K5) a b b⇒ ∃c ∈ L : a b c b b.
The following extends the original idea of Katětov from power sets to

complete lattices (cf. [18, 19]).

Lemma 5.3 (Katětov’s Lemma). Let L be a complete lattice, b a Katětov relation
on L and C a transitive and irreflexive relation on a countable set D. Further, let
(ad | d ∈ D) and (bd | d ∈ D) be two families of elements of L such that

d1 C d2 implies ad2 ≤ ad1, bd2 ≤ bd1 and ad2 b bd1.

Then there exists a family (cd | d ∈ D) ⊆ L such that

d1 C d2 implies cd2 b cd1, ad2 b cd1 and cd2 b bd1.
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Let now (L,U) be a (pre)uniform frame. Then it is readily verified that
the relation CU in S(L) defined by

S CU T ⇐⇒ there is a U ∈ U such that U ∗ S ⊆ T

is a Katětov relation on S(L).

Theorem 5.4 (Uniform insertion theorem for bounded functions). Let (L,U)
be a preuniform frame and let f , 1 ∈ F(L) be bounded functions with f ≥ 1. Then
the following are equivalent:

(i) There exists a uniformly continuous h ∈ F(L) such that f ≥ h ≥ 1;
(ii) For every δ ∈ Q+ there is a U ∈ U such that the sublocales f (r,—) and
1(—, s) are U-far whenever s − r > 1

δ .

Proof : (i) =⇒ (ii): This implication follows at once from Proposi-
tion 4.10 (v), the definition of the partial order in F(L) (recall (2.3)) and
Remark 4.1 (1).

(ii) =⇒ (i): Since f and 1 are bounded, by (2.5) take α, β ∈ Q with α < β
such that

f (β,—) = L, f (—, α) = L, 1(β,—) = L and 1(—, α) = L. (5.3)

By assumption, one has in particular that 1(—, s) CU f (r,—)# for every s > r.
SinceCU is a Katětov relation, by Lemma 5.3 there is a family {Cp}p∈Q ⊆ S(L)
such that

1(—, s) CU Cq CU Cp CU f (r,—)# (5.4)

whenever r < p < q < s. We will use Lemma 4.12 to show that {Cp}p∈Q
determines a uniformly continuous function. First, from (5.4) it is easy to
see that

⋂
p∈Q Cp = O =

⋂
p∈Q C#

p. We only have to show that

∀δ ∈ Q+ there is some U ∈ U such that U∗Cs ⊆ Cr for every s−r > 1
δ . (5.5)

Let δ ∈ Q+. Notice that if β < s or α > r, from (5.3) and (5.4) one obtains
Cs ⊆ f (β,—)# = O or L = 1(—, α) ⊆ Cr which clearly yields U∗Cs ⊆ Cr for any
U ∈ U. Thus, it suffices to show (5.5) for every s− r > 1

δ with α ≤ r < s ≤ β.
Select an n ∈N and t0, t1, . . . , tn+1 ∈ Q such that they satisfy

t0 = α < t1 < t2 < · · · < tn < β = tn+1

and tk+1 − tk <
1
2δ for all k = 0, . . . ,n. Set U := U0 ∧ U1 · · · ∧ Un, where Uk

is the cover that witnesses the relation Ctk+1 CU Ctk for k = 0, . . . ,n. Thus
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U ∗ Ctk+1 ⊆ Ctk for every k = 0, . . . ,n. Let s − r > 1
δ with α ≤ r < s ≤ β and

pick a k ∈ {0, . . . ,n} such that r ≤ tk < tk+1 ≤ s. Hence,

U ∗ Cs ⊆ U ∗ Ctk+1 ⊆ Ctk ⊆ Cr

as required. In conclusion, {Cp}p∈Q determines a uniformly continuous
h ∈ F(L) given by h(r,—) =

⋂
r<p C#

p and h(—, s) =
⋂

q<s Cq. Furthermore, by
(5.4) one may easily check that 1 ≤ h ≤ f .

Condition (ii) in Theorem 5.2 is formally stronger than condition (ii) in
Theorem 5.4. The following proposition and the remark afterwards explain
the reason behind this discrepancy:

Proposition 5.5. Let (L,U) be a preuniform frame and f , 1 ∈ F(L) with f ≥ 1.
Fix a δ0 ∈ Q+. Then the following are equivalent:

(i) For every δ ∈ Q+ there is a U ∈ U such that for every n ∈N the sublocales
f (r,—) and 1(—, s) are Un-far whenever s − r > n

δ ;
(ii) The following two conditions hold:

(a) There is a U0 ∈ U such that for every n ∈ N the sublocales f (r,—)
and 1(—, s) are Un

0-far whenever s − r > n
δ0

;
(b) For every δ ∈ Q+ there is a U ∈ U such that the sublocales f (r,—)

and 1(—, s) are U-far whenever s − r > 1
δ .

Proof : (i) =⇒ (ii) is trivial.

(ii) =⇒ (i): Let δ ∈ Q+ and select an m ∈ N such that δ < δ02m. For each
n ∈ { 1, . . . , 2m

− 1 } let Un be the cover given by (b) by chosing the rational
δ02m

n ∈ Q
+. Then

f (r,—) and 1(—, s) are Un-far whenever s − r > n
δ02m (5.6)

for each n ∈ { 1, . . . , 2m
− 1 }. Now (recall the axiom (U3)) choose a cover W

with the property that

W2m+1
≤ U0 ∧

2m
−1∧

n=1
Un.

We claim that for any n ∈N, the sublocales

f (r,—) and 1(—, s) are Wn-far whenever s − r > n
δ02m . (5.7)

Indeed, let n ∈N and s − r > n
δ02m . We distinguish two cases:
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(1) If n ∈ { 1, . . . , 2m
}, then f (r,—) and 1(—, s) are Un-far if n < 2m (by (5.6)) and

U0-far if n = 2m (by (a)). In either case they are W2m+1
-far by Remark 4.1 (2).

But n ≤ 2m
≤ 2m+1 and so Wn

≤W2m+1
, hence they are also Wn-far.

(2) If n > 2m. Since n2−m > 1, select an ` ∈ N with ` < n2−m
≤ ` + 1. Then

one can write n = `2m + j for a suitable j ∈ { 1, . . . , 2m
}, namely j = n − `2m.

Since s − r > n
δ02m =

`2m+ j
δ02m > `

δ0
, it follows from (a) that f (r,—) and 1(—, s) are

U`
0-far. By Lemma 2.4 (4) we conclude that

Wn = W`2m+ j
≤W`2m+2m

≤W`2m+1
≤ (W2m+1

)` ≤ U`
0,

so f (r,—) and 1(—, s) are Wn-far, as required.

Hence, (5.7) is proved. Finally, if s − r > n
δ , by the choice of m one has

s − r > n
δ02m so f (r,—) and 1(—, s) are Wn-far.

Remark 5.6. Let α ≤ 1 ≤ f ≤ β be bounded. Then by choosing δ0 = 1
β−α ,

property (a) in the last proposition is trivially satisfied. Indeed, if s − r >
n(β − α), then s − r > β − α and so either r < α or s > β. By (2.4), one has
f (r,—) = O or 1(—, s) = O, thus f (r,—) and 1(—, s) are U-far for any cover U.
This explains why condition (ii) in Theorem 5.4 is precisely (b).

6.Uniform separation and extension theorems
As usual, a Katětov-type insertion theorem yields the corresponding

Urysohn-type separation result and Tietze-type extension result as simple
corollaries. In this final section, we prove the uniform versions of these
theorems.

Theorem 6.1 (Uniform separation theorem). Let (L,U) be a preuniform frame,
and let S and T be sublocales of L. Then the following are equivalent:

(i) S and T are U-far for some U ∈ U;
(ii) There is a uniformly continuous h ∈ F(L) with 0 ≤ h ≤ 1 such that

T ⊆ h(0,—) and S ⊆ h(—, 1).

Proof : (i) =⇒ (ii): Assume that S and T are U-far for some U ∈ U. By
Proposition 4.2 we have that S and T are U-far. Consider the characteristic

functions of S and T
#

from Example 2.2 (2), namely the maps χS, χT
# ∈ F(L)
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given by

χS(p,—) =


O if p < 0,

S
#

if 0 ≤ p < 1,
L if p ≥ 1,

χS(—, q) =


L if q ≤ 0,
S if 0 < q ≤ 1,
O if q > 1,

and

χ
T

#(p,—) =


O if p < 0,
T if 0 ≤ p < 1,
L if p ≥ 1,

and χ
T

#(—, q) =


L if q ≤ 0,

T
#

if 0 < q ≤ 1,
O if q > 1.

Note that, since S and T are U-far, one has S ⊆ T
#
, and therefore it follows

that 0 ≤ χS ≤ χT
# ≤ 1. Furthermore, we claim that for every δ ∈ Q+ the

sublocales χ
T

#(r,—) and χS(—, s) are U-far whenever s − r > 1
δ . Indeed,

if r < 0 or 1 < s, one clearly has that χ
T

#(r,—) and χS(—, s) are U-far. If

0 ≤ r < s ≤ 1, then χ
T

#(r,—) = T and χS(—, s) = S which by assumption
are U-far. Consequently, by Theorem 5.4, there is a uniformly continuous
h ∈ F(L) such that 0 ≤ χS ≤ h ≤ χ

T
# ≤ 1. Moreover, (recall (2.3)), we have

S ⊆ S = χS(—, 1) ⊆ h(—, 1) and T ⊆ T = χ
T

#(0,—) ⊆ h(0,—)

as required.
(ii) =⇒ (i): Since h is uniformly continuous, by Corollary 4.11 there is a
U ∈ U such that h(0,—) and h(—, 1) are U-far. In particular, S and T are
U-far.

Let (L,U) be a (pre)uniform frame and S a sublocale of L with jS : S ↪→ L
the localic embedding of S in L. We denote by j∗S the associated frame
surjection. It is shown in [4, Lemma 2.2] that the system

U
L
S :=

{
j∗S[U] | U ∈ U

}
is a (pre)uniformity in S.

Remark 6.2. Let S be a sublocale of L and T be a sublocale of S.
It is then easy to see thatUL

T =
(
U

L
S

)S

T
.
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Let h ∈ F(S) be uniformly continuous with respect toUL
S . We say that an

h ∈ F(L) is a uniformly continuous extension of h if it is uniformly continuous
with respect toU and the diagram

L(R) h
//

h $$

S(L)op

( jS)−1[−]
��

S(S)op

commutes, where ( jS)−1[T] = T∩S for each T ∈ S(L) (for more information
about the localic preimage we refer to [21, III.4.2]).

Now, we can prove the uniform extension theorem as a corollary of
Theorem 5.4 and of the extension result for dense sublocales proved in [2]:

Theorem 6.3 (Uniform extension theorem). Let (L,U) be a preuniform frame
and S a sublocale of L. Then every bounded uniformly continuous h ∈ F(S) (with
respect to UL

S) has a bounded uniformly continuous extension h ∈ F(L) (with
respect toU).

Proof : First, it was shown in [2, Theorem 7.3] (cf. also the remark after
its proof) that every bounded uniformly continuous function on a dense
sublocale of L has a bounded uniformly continuous extension to L. Since
every sublocale is dense in its closure (cf. [21, Proposition III.8.5]), by
Remark 6.2 it suffices to show the statement for closed sublocales. More
generally, we shall show it for complemented sublocales.

Let S be a complemented sublocale of L, denote by jS : S ↪→ L its localic
embedding and let h ∈ F(S) be bounded and uniformly continuous with
respect toUL

S . Select α, β ∈ Q such that α ≤ h ≤ β and for each r ∈ Q set

Sr :=


O if r < α,
h(r,—) if α ≤ r < β,
L if r ≥ β,

and Tr :=


L if r ≤ α,
h(—, r) if α < r ≤ β,
O if r > β.

For each r < s one has S#
s ∩ Sr = O. Indeed, if r < α or s ≥ β it is trivial

because either S#
s = O or Sr = O. If α ≤ r < s < β then

S#
s ∩ Sr = h(s,—)#

∩ h(r,—) = h(s,—)#
∩ S ∩ h(r,—)

= h(s,—)#S ∩ h(r,—) ⊆ h(—, s) ∩ h(r,—) = O
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by (2.1). Hence {Sr}r∈Q is a descending scale in S(L)op and similarly {Tr}r∈Q is
an ascending scale in S(L)op. Let f , 1 ∈ F(L) be the functions they generate.
From the equalities

f (—, r) =
⋂
p<r

S#
p and 1(—, r) =

⋂
q<r

Tq,

it follows that for each r ∈ Q one has 1(—, r) ⊆ f (—, r) — i.e., f ≥ 1. Indeed,
let r ∈ Q and p < r. We have to check that

⋂
q<r Tq ⊆ S#

p. If p < α or
r > β one has either S#

p = L or
⋂

q<r Tq = O, so the inclusion follows.
Suppose now that α ≤ p < r ≤ β and pick a q′ ∈ Q with p < q′ < r. Then⋂

q<r Tq ⊆ Tq′ = h(—, q′) ⊆ h(p,—)# = S#
p, as desired.

Further, the maps f and 1 satisfy condition (ii) in Theorem 5.4. Indeed,
let δ ∈ Q+. Since h is uniformly continuous there is a U ∈ U such that
h(r,—) and h(—, s) are j∗S[U]-far (as sublocales of S) whenever s − r > 1

δ .
Since oS( j∗S(u)) = S ∩ oL(u) for any u ∈ L, then h(r,—) and h(—, s) are U-far
(as sublocales of L). We claim that f (r,—) and 1(—, s) are U-far whenever
s − r > 1

δ . Clearly it suffices to show the case where α ≤ r < s ≤ β (as
otherwise f (r,—) = O or 1(—, s) = O). Pick r′, s′ ∈ Q with r < r′ < s′ < s and
s′ − r′ > 1

δ . Then f (r,—) =
⋂

r<p Sp ⊆ Sr′ = h(r′,—) and 1(—, s) ⊆ Ts′ = h(—, s′).
The claim thus follows from Remark 4.1 (1).

Moreover, f and 1 are bounded by (2.4). By Theorem 5.4 there is a
uniformly continuous h ∈ F(L) with f ≥ h ≥ 1. Now it follows trivially
from (2.4) and (2.5) that Sr ∩ S = h(r,—) and Tr ∩ S = h(—, r) for each r ∈ Q.
Hence ( jS)−1[−] ◦ f = h = ( js)−1[−] ◦ 1, and so h ≥ ( jS)−1[−] ◦ h ≥ h — i.e., h
is the desired extension of h.
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