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1. Introduction

The cactus group was originally defined by Henriques-Kamnitzer [HeKaO6] in the
context of coboundary categories defined by Drinfeld [Dr90]. Coboundary categories
are monoidal categories equipped with a commutor, that is, a collection of natural
isomorphisms c4p : A ® B — B ® A satisfying certain properties. The idea of
studying the cactus group was originally due to A. Berenstein and was taken up by
Henriques-Kamnitzer in [HeKa06], who defined it and further showed that it can
be realized as the fundamental group of the moduli space of marked real genus zero
stable curves. The original idea of Berenstein was to construct a commutor in the
category of crystals of a complex, finite-dimensional Lie algebra, by first defining an
involution [€g| { B —{ B| for each crystal [B] which flips the crystal by exchanging highest
weight elements with lowest weight elements. In the case of gl(n, C') with the tableau
model for the highest weight crystal it was known that coincides with the
Schiitzenberger involution on semi-standard Young tableaux of shape A [BerZel96].
See [BuScl7, Sections 4.3, 14.3.3] and the references therein.

Important examples of coboundary categories are the categories of gl(n, C)-crystals
and the category of hives. The latter turned out to be in fact isomorphic [HeKaOG]
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by connecting a modified octahedron recurrence [RR86, KTWO04, [Sp07], the jeu de
taquin and SchA#tzenberger involution procedures on Young tableaux. The axioms of
the coboundary category are in fact related to the octahedron recurrence of Knutson,
Tao and Woodward, as is explained in [KTW04|, and Speyer [Sp07].

The cactus group .J,, is generated by the interval reversing maps on multiple tensor
products of objects in a coboundary category

Jp’qzvl@...@vn_>Vl®...@%_1®%®...®%®%+1®...®Vn (1)

for 1 < p < ¢ < n and subject to certain relations.

Recently [Ha20, [Hal6], Halacheva has defined the cactus group Jg for any finite-
dimensional complex reductive Lie algebra [gl Let [g] be a complex, reductive Lie
algebra with Dynkin diagram X. There is a Dynkin diagram automorphism 6 : X —
X defined by ag(;) = —wpa;, where wy is the longest element of the Weyl group of
gl The cactus group Jgis the group generated by o, where I runs over all connected
sub-Dynkin diagrams of X, subject to the following relations:

U% =1, (2>
oroy =oyorif J C X, JUI is disconnected (3)
oroy = og, oy it JC I (4)

where 67 is the automorphism on I defined by the longest element of the parabolic
group W', Then Halacheva has defined an internal action of the cactus group Jg
on a normal [gl-crystal by partial Schiitzenberger—Lusztig involutions &;. From this
action we know that partial Schiitzenberger—Lusztig involutions satisfy the cactus
group Jg relations [HaKaRyWe20]. Halacheva [Ha20] initiated a combinatorial study
of the cactus group for gl = gl(n,C) by comparing the action of |J,| = Jyu,c) on a
normal gl(n, C)-crystal with that of the Berenstein-Kirillov group on Gelfand-Tsetlin
patterns (or semi-standard Young tableaux) [BerKir95]. Using a different approach,
Chmutov, Glick and Pylyavskyy [CGP16] have also found relationships between those
two groups.

Our results compose a combinatorial study of the cactus group for the symplectic
Lie algebra |[gf = sp(2n,C). There are many models for C,, crystals, De Concini
tableaux [DeCo79|, King tableaux [Ki75|, and Lakshmibai-Seshadri [LakSes91] and
Littelmann paths [Lit95] [Lit97], but we work with Kashiwara-Nakashima tableaux,
for which a rich combinatorial structure exists [KasNak91l, HonKan02, [Lec02, Lec07].
We review the basics in Sections [3] and [l For each connected sub-Dynkin diagram
I of X, we define the explicit action of £&; on a given Kashiwara—Nakashima tableau.
The algorithmic procedure for that action is given by virtualization. In the case when



4 AZENHAS, TARIGHAT FELLER AND TORRES

I forms a Dynkin diagram of type C,,_, it is also given by the I-partial symplectic
reversal, a symplectic analogue of partial reversal on A, 1 tableaux. Thereby we
provide a combinatorial action of the cactus generators o; on the set of Kashiwara-
Nakashima tableaux on the alphabet [C;] This is addressed in Section [§ The case of
I = X has already been developed by Santos in [Sa21al, where he defines an operation
on straight shaped Kashiwara-Nakashima tableaux which is a symplectic analogue of
the Schiitzenberger involution operation, also known as evacuation, on straight shaped
A, 1 semi-standard Young tableaux. This procedure includes the symplectic jeu-de-
taquin defined by Sheats in [Sh99|, and further developed by Lecouvey |[Lec02] using
crystal isomorphisms. This is the content of Section [7]

For I C X such that I forms a Dynkin diagram of type C,_j, we define an al-
gorithm for [I-partial symplectic reversal which generalizes Santos’ algorithm in the
sense that, when I = X, our algorithm is exactly the same. The C),_; symplectic re-
versal extends symplectic C),_j evacuation to arbitrary semi-standard skew tableaux
on the alphabet C,_; whose shift of the entries by k£ are admissible on the alphabet
Cil The C,—, reversal of a such semi-standard skew tableau P on the alphabet C,_y,
is characterized to be the unique skew tableau coplactic equivalent to P and plactic
equivalent to the C,_j evacuation of the symplectic rectification of P.

An important inspiration behind our generalization is the operation of tableau-
switching [BSS96] of Benkart, Sottile and Stroomer on A,_; semi-standard tableaux.
Given an admissible tableau on the alphabet [C,], we start off by freezing the entries
corresponding to nodes not appearing in [, creating at the same time a new Young
tableau U with Young shape defined by the positive frozen entries as well as a skew
tableau P consisting of the non-frozen entries. The tableau pair (U, P), sharing a
common border, pass through each other via symplectic jeu de taquin (SJDT for
short). After performing this procedure, a new pair (R, V') with R the symplectic
rectification of P and V' consisting of the entries of U as well as some new, colored
letters. Each color records a precise instance of the symplectic rectification of P. Our
symplectic colourful tableau switching is reversible since SJDT is reversible. It reduces
to the A,_; tableau switching on tableaux in the alphabet [n]. This work is carried
out in detail in subsections [9.2] and [9.3] of this paper and illustrated in Section [0.4]

For the general case we use the virtualization map defined by Baker [Ba00al, that
is, an injective map

E {KN(\, )| — SSYT(\*, n, n)
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which assigns to the type Cj-crystal [KN(A,n), a subset of the type Ag,_i-crystal
SSYT(A,n, i) in a reversible way. This is discussed in Section [f] We show that

one may apply the map [E] then perform a certain partial Schiitzenberger—Lusztig
involution in the type As,_i-crystal without leaving the image of [E] reverse the vir-
tualization map |E|and obtain our desired result. Additionally, in Definition 3| (Section
@) we define the virtual symplectic cactus group |Jo,| and show that it is a subgroup of
Jay, isomorphic to the symplectic cactus group [Jipenc)l In Theorem [3| Section [§ an
action of the virtual symplectc cactus group on the set[SSYT (A4, n, 71)|is defined. The
subset [E|[KN(A, n)]) is preserved as shown in subsections [9.5.1] and [9.6] In particular,
in Subsection [9.6, we realize such action of the virtual symplectic cactus group on
the virtual images of Kashiwara-Nakashima tableaux and show that it virtualizes the
action of the symplectic cactus group on Kashiwara-Nakashima tableaux. This work
is illustrated in Example [9.7

As an application, (Section , we define symplectic Bender—-Knuth involutions
combinatorially (Definition . We define the symplectic Berenstein—Kirillov group
as the free group generated by the partial symplectic Schiitzenberger-Lusztig
involutions with respect to connected subdiagrams of the type C,, Dynkin diagram of
the form I = [n] modulo the relations they satisfy on Kashiwara-Nakashima tableaux
of any straight shape in the alphabet . These generators of satisfy the re-
lations of the symplectic cactus group. It is shown that symplectic Bender-Knuth
involutions are also generators of BI|

We study relations for |[BK“"| under the virtualization map [El More precisely, we
consider the relations satisfied by the embedding of generators of [BIC"|in |[E(([KN(\, n)
C SSYT (A, n, n); we call this group (Definition [8)) the virtual symplectic Berenstein-
Kirillov group |[BKs,) a subgroup of BICy, satisfying, in particular, the relations of the
virtual cactus group |Jo,l Proposition 12| gives the virtual symplectic Bender-Knuth
involutions generators of |BICo,| which are shown in Theorem [10|to be the virtualization
of the symplectic Bender-Knuth involutions. The virtual image of the group
satisfies the relations of [BKs,. The virtual image of the group |[BA"| satisfies the
relations of |[BICo,l The ones listed in Proposition are obtained by applying the
partial inverse to the virtualization map.
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3. Basics

Let[g|be a finite dimensional, complex, semisimple Lie algebra. Let I be the Dynkin
diagram associated to the root system of[gl A = {a; : i € I} the set of simple roots,
W its Weyl group, generated by the simple reflections {r; : i € I}, and wy € W the
longest Weyl group element. We will use the numbering of the vertices of I given
by [Bo VI|. The Dynkin diagram has an automorphism, a permutation of its nodes
which leaves the diagram invariant, ¢ : I — I defined by ag;y = —wpa;, for any node
© € I, where wy is the longest element of W. We will also denote by A the integral
weight lattice associated to the root system of [gf For a connected sub-diagram of
I, J C I, denote by 6, : J — J the Dynkin diagram automorphism of J, which
satisfies g, ;) = —wja;, for any node j € J, where w; is the longest element of
the parabolic subgroup W7 C W (the Weyl group for |g| restricted to J) [BjBr03|.
When J = I one has the original notation #; = 6. We focus on the cases where
= gl(n,C),sp(2n,C). We will often abuse notation and write a Dynkin diagram [
with n nodes as the interval [n]. The corresponding Weyl groups are the symmetric
group &,, on n letters and the hyperoctahedral group B, respectively, where B,, is

the free group generated by rq,...,7r,_ 1,7, subject to the relations
rf =1,1<171<n, 5)
(rir;)?=1,1<i<j<n,|i—j >1, 6

~
S— N N

(T’iTi+1)3 = 1,1 S 1 S n — 2,
(Tp_1mn)* = 1.
The free group generated by ri,...,r,_1, subject to the relations above, for 1 <
i,j < m, is 6, realized by the simple transpositions r; = (i,7 + 1) on the set [n].

The group B, has 2"n! elements and is realized by the signed transpositions r; =
(4,i+1)(4,i+1),i=1,...,n—1,and r, = (n,m) on theset {1 < -+ <n<n<

(
(
(
(8



SYMPLECTIC CACTI, VIRTUALIZATION AND BERENSTEIN-KIRILLOV GROUPS 7

.-+ < 2 < 1}. That is, we may see B, embedded in &y, by folding {1 < --- <n <
n < --- <2< 1} through a central symmetry. The long element of B, has length n?,
while the long element of &,, has length n(n —1)/2. For instance, r1roriry = roriror
is the long element of By, and r3rorirsrarirsrary is the long element of Bz [BjBr05].

Occasionally, for the sake of clarity, we write wg and w§ for the corresponding
longest elements of G,, and B,, respectively, or simply wy when there is no room for
confusion. Given a vector v € Z", we have that r;, with i € [n — 1], acts on v, rv,
swapping the i-th and the (i + 1)-th entries, and 7, acts on v, r,v, changing the sign

of the last entry. Henceforth, wy reverses v, wi'(vi,...,v,) = (Un,...,v1), and w§
changes the sign of the entries of v, w§'v = —v.

Recall the gl(n, C) simple roots a; = €; —e;41, i € [n—1], and the sp(2n, C) simple
roots o; = €; — €;11, i € [n — 1] and «,, = 2e,, where €;, i € [n], is the R" standard
basis. The A,,_; Dynkin diagram automorphisms above, since —woo; = —(—av,—;) =
i, 18 given by 0(i) = n — ¢, with ¢ € I = [n — 1]. For instance,

R S

//—\\
P S B S
The C, Dynkin diagram automorphisms above, since for wy, € By,
—woa; = —(—a;) = a, is given by (i) = i, with i« € I = [n]. The weight lat-

tices are A = Z" for both Lie algebra gl(n,C) and sp(2n,C).

3.1. Levi sub-algebras. Let [ be a finite Dynkin diagram. A sub-diagram J of [
obtained by deleting from I a subset of its nodes is the Dynkin diagram of a semisimple
Lie algebra g; [ g known as a Levi sub-algebra which is the Levi component of the
reductive Lie sub-algebra of [g] generated by the Chevalley generators associated to
the nodes of J.

Example 1. If we remove the last node (the one labelled by n) from the Dynkin
diagram of type C.,, we obtain a Dynkin diagram of type A,_1 which corresponds to
the Levi sub-algebra sl, of sp(2n,C).
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Example 2. The semisimple Lie algebra sl(3,C) x sp(4,C) is a Levi sub-algebra of
sp(12,C). Note that the semisimple Lie algebra s\, X sly is not a Levi sub-algebra of
sp(2n, C), as its Dynkin diagram of type A,_1 X Ay cannot be obtained from the type
C,, diagram by deleting some of its vertices.

4. Normal gl(n, C), sp(2n,C)-crystals and Levi restrictions

Crystals corresponding to finite-dimensional (quantum group) Uq—representations
belong to a family of crystals called normal crystals [BuScl7, HaKaRyWe20]. In clas-
sical types, these crystals may be realized by a tableau model [KasNak91| and have
nice combinatorial properties. Normal crystals arise as the crystals associated to the
finite-dimensional representations of a quantum group Uq for some Lie algebra
[BuSc17]. These crystals decompose into connected components, one for each irre-
ducible component to the representation at hand. The Levi restriction of a normal
crystal is still a normal crystal, and the union of some connected components of a
normal crystal is also a normal crystal [BuSc17, [HaKaRyWe20]. The crystals that we
deal with are tableau crystals for finite-dimensional representations of U,(gl(n,C))
and U, (sp(2n, C)).

A U,(sp(2n,C))-crystal is a finite set |B| along with maps

wt Z—> Zn, 6¢,fi ZU {0}, €iy Pi Z—> Z,

obeying the following axioms for any b,0’ € Bland i € I,
o I/ =¢;(b) if and only if b = f;(¥'),
o if f;(b) # 0 then wt(f;(b)) = wt(b) — a;
if e;(b) # 0, then wt(e;(b)) = wt(b) + «;, and
o ¢;(b) = max{a € Z>¢ : €!(b) # 0} and ¢;(b) = max{a € Z>¢ : f*(b) # 0}.
o 0i(b) — &i(b) = (wt(b), o),

where oY = 2% _ are the coroots.
t <Oé“Oé,L>

Remark 1. Our abstract Uq-crystals are defined with the additional condition that
they are seminormal [BuScl7].

The crystal graph of [B|is the directed graph with vertices in [B] and edges labelled
by i € I. If f;(b) = ¥ for bt/ € B| then we draw an edge b — V. See Example [4]
Given an arbitrary subset J C I, is defined to be the crystal [B] restricted to the
sub-diagram J of I, the Levi branched crystal. The crystal graph of [B ;| has the same
vertices as [B], but the arrows are only those labelled in J; that is, we forget the maps
ei, fi, i, and g;, for i € J [BuScl7]. The weight map is " A — Ay, where wt is
the weight map of [B], A is the weight lattice of [gl and A is the weight lattice of g ;. If
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we restrict to J = [n — 1], then we obtain a U,(gl(n,C))-crystal. For instance, if we
restrict a U, (sp(2n, C))-crystal to J = [n — 1], then we obtain a U,(gl(n, C))-crystal.
Given b E, B(b) denotes the unique connected component of [B| containing b.

A U,((g))-crystal is normal if it is isomorphic to a disjoint union of the crystals [B(A)]
where[B(A)[is the crystal associated to an irreducible, finite-dimensional Uy (sp(2n, C))-
representation of highest weight X, where A € A is a dominant weight. In this work,
dominant weights in Z" correspond precisely to partitions, that is, weakly decreasing
vectors in Z™ with positive entries. An important property of normal crystals [Blis the
existence of a unique highest weight vertex for each connected component of [B] that
is, an element which is a source in the corresponding crystal graph, whose weight is
dominant. In [B(A), the highest weight vertex x has weight wt(z) = X. Note that
we work solely with highest weight crystals, namely, crystals [Bl wherein there exists a
highest weight element u € B such that for each b € B] there exists a finite sequence
ai, as,...,a; € I such that b= f,, - fo,fa, ().

4.1. Kashiwara-Nakashima tableaux. Let be the irreducible U, (sp(2n, C))-
crystal with highest weight a partition A of at most n parts. We realize as the
crystal of C), tableaux, that is, Kashiwara-Nakashima tableaux [KasNak91]
of shape A on the alphabet

Cl={1<--<n<n<---<1}L

The irreducible U,(gl(n, C))-crystal with highest weight a partition A of at most n
parts is realized as the crystal of semi-standard tableaux of shape A\ on
the alphabet [n]. We also will refer to these tableaux as the A,,_; tableaux of shape
A. The crystal is a connected sub-crystal of KN(X, n)]

Kashiwara-Nakashima tableaux (KN for short) are semi-standard Young tableaux
in the alphabet |C,| which satisfy some extra conditions. They are a variation of De
Concini symplectic tableaux [DeCo79]. A semi-standard Young tableau of any shape

(skew or straight) with entries in |C,|is KN if and only if the following two conditions
hold.

e Fach one of its columns is admissible.
o [ts splitting 1s a semi-standard Young tableau.

Definition 1. Let C' be a semi-standard column in the alphabet|C,] of length at most
n. Let Z = {z1 > ... > z,} be the set of non-barred letters z in |C,| such that both z
and z both appear in C. We say that the column C' is admissible if there exists a set
T =A{t1 > ... >ty} of unbarred letters t that satisfies:
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ot,t ¢ C;
o t1 < z1 and 1s maximal with this property;
o t; < min(t;_1,2;) and is mazimal with this property.

The split of a column is the two-column tableau [CrC where [C' is the column obtained
from C" by replacing z; by t; and possibly re-ordering, and rC' is obtained from C' by
replacing z; by t; and possibly re-ordering. The splitting of a tableau consisting of
admissible columns is the concatenation of the splits of its columns.

Given p C A partitions with at most n parts, KN(A/u,n) denotes the normal C,,
crystal of KN tableaux of skew shape A/u on the alphabet [Lec02, Lemma 6.1.3,
Corollary 6.3.9].

Example 3. Let n = 2. The column 15 admissible, however, % 15 not. Notice
that although each one of its columns is admissible, the tableau ; 2 15 not KN,
because its split,

1212

21|21

18 not semi-standard.

We will mostly use the notation and definitions from [Lec02, LecO7]. We also refer
the reader to the references therein.

Example 4. The U,(sp(4,C)) crystal KN(X,2) for A = (2,1). Each node in the
graph represents an element of the crystal. There is a blue, respectively red, arrow
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connecting an element a to an element b whenever fi(a) = b, respectively fo(a) = b.

111 ‘

1 Q‘ 12‘
9 5
A K -
1] 2] 1] |
2 2 9 2‘
— K A —
1 I‘ 2
— A K
2 2?‘ 22‘
l 3 1
K A
21\ 22\
5 1
2|1 5 z\
1 1
K A
5 i\
1

Remark 2. [Lec02, Remark 2.2.2| The maximal height of an admissible column is
n. Moreover, a column C' is admissible if and only if, for any m € [n], the number
N(m) of letters x in C' such that either v < m or x > m satisfies N(m) < m.
Moreover, if there exists in C' a letter m < n such that N(m) > m, then C contains
a pair (z, z) satisfying N(z) > z.

Remark 3. In [Lec02|, coadmissible columns are defined as well (see [Lec02), p.301] ).
We will not delve into details, here, however, we remark that there exists a bijection
between admissible and coadmissible columns given by filling in the shape of the given
admissible column C with the unbarred letters of IC' from top to bottom in increasing

order, followed by the barred letters of rC' in the same fashion. We will denote this
bijection by ® and use it in[7.5.
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4.1.1. Levi branching of KN tableau crystals. For J C I, is the restriction
of [KN(A, n)| to the sub-diagram J of I; as a crystal graph it has the same set of
vertices |[KN(A, n)| but only the arrows labelled by J, and it is also a normal crystal.

The highest weight elements of are those C), tableaux in where

the only incoming edges are colored in [n] \ J. See the LHS of Example [5|

Example 5. We have the Levi-branched crystals KN(X,2) 9y and KN(X, 2) ¢y respec-
tively from left to right for A = (2,1).

11‘ 11‘
2 2
21 i
12‘ 11‘ 12‘ 1 1‘
9 5 9 5
1?‘ 12‘ 1?‘ 12‘
9 5 9 5
A B - K -
1] 2] 1] 1] 1] 2] 1] |
2 2 22‘ 2 2 22‘
B A — - K - -
11‘ 2 1 I‘ 2
— A — K
2 2?‘ 22‘ 2 2?‘ 22‘
3 1 l 3 1
2] N 2] |1
21\ 22\ 21\ zi\
5 1 5 1
21\ ié\ 92| 1 ii\
1 1 1 1
IR B B i
5|1 5 i\
1 1

If J =[p,q],1 < p<q<n,thecrystal graph consists of the KN tableaux
of with arrows colored in J. Recall the C), signature rule [KasNak91| Lec02]

BuSc17| to compute the action of the crystal operators on a word in the alphabet .
If ¢ < n, the Levi branched crystal KNy, ;(\,n) is a type A,_p.1 normal crystal.

The Weyl group is W7 = Sy g+1), the symmetric group on the letters {p, ...

,q+ 1}
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and generators 7; = (4,7 + 1)(j,7 + 1), j € J. We say that the entries outside of
[+p, g+ 1] ={p<--<q+1}U{q+1 < --- < p} are frozen, which amounts to
saying that the KN tableaux of the set in the same connected component
of KNp,g(X,n) are stable in the entries over [Cy| \ [£p,q + 1] under the action of
the Kashiwara operators f;, e;, i € [p,q]. That is, if ¢ < n, in the same connected

component of KN, ;1(A, n), the subtableaux consisting of the letters {1 < --- < p—1},

[p—1<---<T}or{g+2<---<n<n<---<q+2} are the same.

If ¢ = n, the Levi branched crystal KNy, (A, n) is isomorphic to a type Cp_pi1
normal crystal. The Weyl group is W/ = By, n) generated by the signed permutations
on the subset {p < -+ < n < f < --- < i}. The entries outside of [+p,n] =
{p<---<n<n<- - <Pp} are frozen; within the same connected component
of KN, (A, n)| the subtableaux either consisting of the letters {1 < --- < p — 1} or
{p—1<--- < T} are the same. In Example [3], since s[(2, C) = sp(2, C), we get two

crystals of types A; = (.

5. Virtualization

In this section we closely follow Baker [Ba00Oal, Section 2| and adopt the notation used
there. In Example [9.7, we present a detailed example of the content in this section.
We include it later rather than earlier because it includes some more information
which is not yet presented up to the end of this section.

5.1. Baker embedding and Baker recording tableau. Let
A=Nwy + -+ \w, € Z"
with w; = Z:l e; € Z" the fundamental weights of type C,,. Let

J
wf:ZeiEZQ”forlngn (9)
i=1
2n—j+1
wflzwfn_jﬂz Z e; €7 for1<j<n (10)
i=1

be the Ay,_; fundamental weights, and the Z" partition

n—1
A A E : A A
=1
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Let [SSYT (M, n,n)| be the type As, 1 crystal of semi-standard Young tableaux in
the alphabet [C,| of shape A4. We will denote the corresponding crystal operators
by flA for i € C,| and consider, for 1 < i < n, the operators ff = flA i—l, 1 < n,
and f£ = (f?)% Let |E|denote the virtualization map defined on type C,, Kashiwara-
Nakashima tableaux defined by Baker [Ba00Oal, Proposition 2.2, Proposition 2.3]. More

precisely, [E]is an injective map

[E { KN, n)] [ SSYT (M, n, ) (11)

such that (fZ(T)) = fZE(T)) for T € KN(\, n), 1 < i <n. We will denote by £~
the restriction of any left inverse of |E| to the image of under [E]

Given an admissible column C' of shape w;, 1 < i < n, denote by (C) its Baker
virtual split [BaOOa, Proposition 2.2], a two column type As, 1 tableau of shape
wit + wsl .. The map 1 is injective and embeds admissible columns of length i into
SSYT(w# + wi ), 1 < i < n. We define ¢y~! analogously to E~'. From [Ba00a,
Proposition 2.3] we know that, if we write T" as a concatenation of its columns, that

is, T'= C}---C}, then

[EXT) = [0 < w((Ch)) = -+ = w(@(C))],

where the word w((C')) of a two-column ¢(C') is given by the Japanese reading of
its two columns (from top to bottom and right to left), and 7' < w is the column
insertion of a word w into a semi-standard Young tableau 7" [Fu97].

Let T E be the highest weight element; that is, T} is the Yamanouchi
tableau of shape and weight A on the alphabet [n]. Then [E|(T)) = T)a is the highest
weight element of [SSYT (A, n,n)| that is, the Ag, 1 Yamanouchi tableau of shape
and weight A\ in the alphabet [C,] The image of KN(), n)| by [F]in [SSYT (A, n, n)|is
the crystal generated by acting with the lowering operators f£ on the highest weight
element T of [SSYT (A, n, )} For T € KN(\, n)|a tableau, where T' = Cj, - - - Cy, we
have

wr = w(Y(Ch)) - - - w(Y(Cr)).
Then wy is a word in[C;], the monoid of words in the alphabet [C,)| and[E[T) = 0 < wy.

We will call the recording tableau of the column insertion of wr, Q(wr), the Baker
recording tableau associated to T'.

Proposition 1. For T' g KN(\,n)|, the Baker recording tableau Q(wr) depends only
on X. From now on, we will denote by Q) the Baker recording tableau associated to

A
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Proof: By abuse of notation, we will denote by the same symbols the type As, 1
crystal operators on |C7] and those on semi-standard Young tableaux in the same
alphabet. Now, we know that there exists a sequence 1 < 74,...,7; < n such that
fir -+ fi(Tn) = T. Therefore f--- fE(E(Ty)) = E(T), where (TA) = T\a, the
highest weight element of SSYT (A, n,7n), and so

5 i (wT,\) = wr

(recall that f¥ = (f4)2) because the connected components of the crystal |C of words
of type Ag,_1 with highest weight elements wy, and w(E|[T))) = w(Tya) have the
same weight A4 and are hence isomorphic. In particular, both wr and wr, belong to
the same connected component of the crystal |C’] of words of type Ag,_1, namely, the
connected component containing the Yamanouchi word wr, of weight A? (recall that
all words wp have the same rectification shape A% and that all As,_; crystal operators
commute with jeu de taquin). Now, we consider a version of the RSK correspondence
[Fu97, [St01] which is a bijection

5 | SSYT(u,n,@) x SYT(u) (12)
f(M)MSZn
w B (P(w), Q(w)) (13)

where SYT (1) is the set of standard Young tableaux of shape u, P(w) = () < w and
Q(w) is the corresponding recording tableau which encodes the sequence of shapes
produced by the column insertion of wy. In particular for each standard Young tableau
Q of shape u the pre-image RSK™!(SSYT (i, n,7) x {Q}) is a crystal isomorphic to
SSYT(u,n,7), and all of these pre-images are disjoint and cover [C;]. In particular this
means that all the words wy for T E are contained in the same connected

component of [C7]

RSK™H(SSYT(A, n, )| x {Q(wr,)}).-
Thereby, Q(wr) = Q(wry) for all T € KN(A, n)] m

Corollary 1. Let A =wp, + -+ wp,, 1 <my < -+ <my, <n, and let

M =g + wﬁ“ +-- 4+ wfn_mk + w;ik c 7>,

2n—myq

Then Qy can be written out of the shape A as a sequence of shapes by adding succes-

swely the columns w;ﬂll, wfln_ml, e ,w;ﬁlk, cufln_mk, whose boxes are filled along columns,



16 AZENHAS, TARIGHAT FELLER AND TORRES

top to bottom with consecutive numbers from 1 to |A\4]:

A A A A A
(Z) C wml C w?nfml + Wy C wmg + w2nfm1 + wml
A A A A
C w2n—m2 + wmg + w2n—m1 + wml
A A A A A
C- - Cwpyy, T T W, T Wiy, T Wy, + Wi,

A A A A A
C Won—my, +wmk+'”+w2n—m1 +wm1 = A"

Given a partition A with at most n parts, and T = Cy---C; € KN(\, n)| let
U(T) = (w(w(Ch)), ..., w(Cy))) € C| (here the word is presented as a k-tuple)
and U~ = (¢!, ... ,47). Then ((T),QA) = RSKU(T) = (P(wr), @) and

-~

k

—1 _ g1 1
B =V R R g « e,
where RSKX{QA} denotes the inverse of RSK restricted to [E|[KN(A, n)) x {Qx}.

Remark 4. Let T g KN(\, n)| and [E(T) € SSYT(\*,n,n)l Then
wi(E((T)) = wi(wr) = (e, ..., an, i, .. ) € 22

18 such that
2wt(T) = (g — aq, ..., — ) € 27 (14)

5.2. The Levi branched crystal and virtualization. Recall that a Levi branched
crystal By, J C I, I a Dynkin diagram, is obtained by ignoring the maps f;, e;, i, €,
for i ¢ J. Let I be the Ay, 1 Dynkin diagram with nodes {1,...,n,7,...,2}.

1 2 3 n—1
— o o — -
D
-2 =3 -4 —n

For each connected sub-diagram J = [p, q] or [k,n] with 1 <p < ¢ <n and k < n,
of [n],let J = [¢+1,p+1] or [n,k + 1], if k < n, be the corresponding connected
sub-diagram of [71,2], and J = () if k = n.

Each connected component of the Levi branched crystal SSYT ;7(A,n) with J =
p,q, [k,n], 1 <p<q<n, k<n,isembedded via[E]into a connected component of
the Levi branched crystal SSYT ;,7(A, n) such that JUJ is a disconnected diagram of
[1,...,n,7,...2]if ¢ < n, and otherwise, JU.J = [k, k + 1] with n + 1 = n. Consider
the Levi branching of the type C), crystal to Aj_pt1,1 <p < q < n, and
Ch—k+1, kK < n. The Levi type A,_,41 Dynkin diagram is obtained via folding from
the Levi subtype A,_p41 X Ay—pt1 of Ag,—1 which is obtained by removing the nodes
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1,....,p—1,g+1,....,n,0,...,q+2,p+2,...,2 from the Ay, ; Dynkin diagram.
The Levi type C,,_r11, k < n, is obtained via folding from the Levi subtype As, k11
of As,_1 obtained by removing the nodes 1,...,k—1,k,...,2 from the Ay, _; Dynkin
diagram [BuSc17].
In [Ba00a, Proposition 2.3 (ii)], it is shown that given b € KN(A, n)| the C,, crystal
length functions &Y, gpl ;1 < it < n, on b, and the Ay, ; crystal length functions
Aed 1<i<n, el and ¢, gp.ATl,l <i<mn, ¢ on (b) are nicely related:

€8, e5—

= c(E[) = 41 (E[1), 1 <i < n, and e (b) = 1/2¢] (E|(b))
and s1m11arly for p%(b), 1 < i < n, where g;(b) = max{k € Zsq : €f(b) # 0} and
@i(b) = max{k € Z=qo : fF(b) # 0}. This means that b is the highest (lowest) weight
element of a connected component U of [KN ;(\, n) m if and only if, for all 2 € J,

A. H—l. b)) =e¥(b) =0, for all i € J\ {n}

+1’

and
e2(E(D)) —0, ifne
Henceforth,
€y =0,ieJecAED)=0icJu
and

P (b)=0,i€J e pE(b)=0,icJUJ.
In other words, because our crystals are seminormal, (b) is the highest weight el-
ement of the connected component V' of SSYT ;,7(\, n) containing [E|(b) and [E|(U
It is therefore unique. A similar statement holds for the lowest weight element. The
next proposition now easily follows.

Proposition 2. Let J C [n] be a connected sub-diagram of the type C, Dynkin
diagram. Let U be a connected component of the Levi branched crystal F
with highest and lowest weight elements u'8" and u' respectively. Then (U) '
contained in a connected component of the Levi branched crystal SSYT ;,7(A,n) with
highest and lowest weight elements (uhigh) and (u/"W) respectively.

Remark 5. Given T € SSYT(u,n,n), with p a partition with at most 2n parts,
T may be decomposed into two disjoint semi-standard tableaux T and T—, T =
TT U T, where T is the semi-standard tableau of shape u+ on the alphabet [n]
defined by the entries of T in [n|, that is, Tt € SSYT(uy,n), called the positive part
of T, and T~ is the semi-standard tableau of skew shape u/py on the alphabet [n, 1]
defined by the entries of T in [n,1], that is, T~ € SSYT(u/ps,n), called the negative
part of T. Provided that we only apply f#, et with i € JU J' disconnected such

i
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that J C [n — 1] and J' C [n,2], respectively, this shape decomposition is preserved.
Those crystal operators preserve the shape decomposition above because, according to
the type As, 1 signature rule, they only change positive (resp. negative) letters into
positive (resp. negative) letters.

For JU J" disconnected, fflfj’-i1 = fﬁff, with j € J, 7 € J. We then write, for
{jlu"' 7j7”} C J and {]17 7];71} C ‘]/;

foe fi - FR (D) = [ [ (T U fh - f(T). (15)

6. The cactus group and its virtualization

Halacheva [Hal6, HaKaRyWe20] has defined the cactus group Jg associated to a
finite-dimensional reductive Lie algebra[g] over C, a generalization of the cactus group
corresponding to Jyi,, c) [HeKa06], in terms of generators and relations.

Definition 2. Let[g| be a finite-dimensional, reductive Lie algebra with Dynkin di-
agram I. The cactus group Jg has generators sj where J runs over the connected
sub-diagrams of the Dynkin diagram I oflg], and relations:

Ig s> =1, forall J C I,
Ja. sysy = sypsy, for all J,J" C I such that J U J' is disconnected,
Ja. sysp = sg,(g87, for all J' C J C 1.

Remark 6. Note that when J' C J, Jg. says that s; commutes with sy by reversing

J" with respect to J. We also have a group epimomorphism Jg— W taking s to wy

([HaKaRyWe20|, [Hal6, Remark 10.0.1]). Together with 3g|, this implies the relations

0(7 / 05(J
wowd wy = wo( ) and wiwy wy = wo"( ),

If I is the A,_1 Dynkin diagram, 6; acts on J by reversing the connected interval
of nodes J, whereas in the C), type it depends on whether J contains the node with
label n or not.

Lemma 1. The cactus group Jymc) is the group with generators sy, where
J runs over all connected sub-diagrams of I = [n — 1], the A,_1 Dynkin diagram,
subject to the relations

1A. s%2=1,J C[n—1],
2A. sysy = spsy, for all J,J' C[n— 1] such that JU J' is disconnected.

FA. Sip Skl = Sipra—tpra—HSpg for [k 1] C[p,ql € [n—1].
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Proof: Relations 1jgl and 2g| translate directly to 1A. and 2A. Consider two nested in-
tervals [k, 1] C [p,q] C [n—1]. The Weyl group WP is the quotient W/ Staby ([1, p—
1U[g+1,n]) and wi(a;) = —apiq—j, j € J. Then by, 4(d) = p+g—dford € [p,q.
After this observation one sees that Relation 3g| translates directly into 3A above.

u

Remark 7. The first and third relations ensure that the n — 1 elements of the form
8[17k], 1 < k <n-— 1, (16)
generate , since any sy j may be written as

Sli,j] = S[1,j]S[Lj—i+1]5[1,j]- (17)

By conjugation with sy ,—1), the elements sj 1,1 <1 < n —1, also form a set of
generators.

Lemma 2. The cactus group is the group with generators sy, where J runs
over all connected sub-diagrams of 1 = [n], the C,, Dynkin diagram I, subject to the
relations

1C. s%=1,J C [n],
2C. sysyp = sypsy, forall J,J" C |n—1] such that J U J' is disconnected,
3C. (1) SppSki) = Stk Sl K5 1] S [pyn] € [0,

(i) SipqlSikt) = Slp+a-Lp+a—kSipa> (K- 1] S [p,q] S [n —1].

Proof: Relations 1lgl and 2g| translate directly to 1A. and 2A. Consider two nested
intervals [k, ] C [p,q]. If [p,q] C [n— 1], we are in type A, hence 3C.(ii) holds, which
is just relation 3A. If ¢ = n, then we are in type C. The Weyl group WP is the
restriction of the hyperoctahedral group B, to the generators r, ..., r,, (as a group
of signed permutations, it is the restriction to the set

[Ep,n] ={p<---<n<n<---<p}),

and wi (o) = —a; for j € J. Therefore 0}, ,(d) = d for d € [k, ] and Relation 3C.
(i) follows directly from 3g|

Remark 8. Note that the elements sy, J C [n—1], subject to the relations above, gen-
erate the cactus group[J,] As in (17), the following are alternative 2n — 1 generators

of Ysp(zn.c)f
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Sy, 1 <y <n—1, (18)
S[j,n]v 1 < j < n. (19)

Remark 9. We may observe that[Jy] is a subgroup of [Jopan,c)| defined by the subset of

generators sy, J C [n— 1], indexed by connected sub-diagrams of the A,_1 connected
sub-diagram [n — 1] of the C,, Dynkin diagram I = [n], subject to the relations above
1.C, 2.C and 3.C, (ii).

Proposition 3. If[g is a finite-dimensional reductive Lie algebra, and | [ g| is a
Levi-sub-algebra, then Jy is a subgroup of Jg

Proof: Let I be the Dynkin diagram corresponding to [gl and J C I the sub-diagram
corresponding to the Levi sub-algebra [. Any connected sub-diagram K of J is also a
connected sub-diagram of I, hence one can define a map on generators by s7. — st..
Here generators of Jg are denoted by s%, and generators of J; by sff Remark @
implies that this map is a morphism of groups. The map is clearly injective because
the generators of Jg are all distinct.

6.1. Embedding of into Jy,. We have observed that [J,| is a subgroup of

Jsp2n,c)} We now show that there is a group embedding of into .Jy, by folding
Ay, 1 through the middle node n:

Do

2n—12n — 22n — 3 n—+1

Why should such an embedding exist? Let us consider the following elements of

Jzni
sfp’q] 1= S[p.q]S[2n—q.2n—p] = S2n—q,2n—p|S[p.g)» O all [p,q] C [n —1].

In Lemma [ we show that these elements together with the generators sy, for
p < n generate a subgroup of J, isomorphic to [Jp@nc) Notice the similarity
between this and the construction of sp(2n,C) as a sub-algebra of sly, by folding
[Kac83, Chapter 8, pp. 89 — 102|. Moreover, the following lemma provides not only
concrete combinatorial motivation for Lemma [, but will also be the main ingredient
in its proof.



SYMPLECTIC CACTI, VIRTUALIZATION AND BERENSTEIN-KIRILLOV GROUPS 21

Lemma 3. The following relations hold in Joy,:

Sp,2n—p|S[k,2n—k] = S[k,2n—k]S[p,2n—p| 1< p < k< n, (20>
Slp.2n—p| {1 = s{k,l]s[p,gn_p}, 1<p<k<l<n, (21)
SEP’Q]SEka” - Sfp+q—l,p+q—k]sl[pm’ l<p<k<li<g<n. (22)

Proof: We have

A3.
S[p,Qn—p]S[k,Qn—k] - S[Qn—(Zn—k),2n—k]3[p,2n—p] - 8[k72n_k]8@72n_p]

for 1 < p < k < n, hence relation holds. Now, for 1 < p < k <l < n we have:

A3.
Sp,2n—p|S[k,1]S[2n—1,2n—k] — S[2n—1,2n—k]S[p,2n—p|S[2n—1,2n—k]

A3.
= S[2n—1,2n—k|S[2n—(2n—k),2n—(2n—1)]S[p,2n—p]

:8[2717&2“*]{;] S[kal] S[p’anp]

which establishes relation (21)). Finally, for 1 < p < k <l < ¢ < n the following
holds:

Sl[p,q]sl[k,l] =S[p,q)S[2n—q,2n—p| S[k,1]| 5[2n—1,2n—k]

A2.

= S[p,q]S[k,l]S[Qn—q,2n—p]8[2n—l,2n—k]

3.

= Slp+q—l.p+q—k]5[p.q| 5 [2n—(p+q—k),2n—(p+q—1)] 5[2n—q,2n—p]
A2.

= Slp+q—1,p+q—k]S2n—(p+q—Fk),2n—(p+q—1)] 5 [p,q] 5[2n—q.2n—p]

o /
= Slpta-lpta—k5lpa-
This establishes relation (22)). |

Definition 3. The wvirtual symplectic cactus group |Jo,| is the group with generators
Sy, where J runs over all sub-diagrams of I = [2n — 1], the As,—1 Dynkin diagram,
of the form J = [p,2n — p| for all [p,n] C [n], or J = [p,ql U[2n — q,2n — p] for all
[p,q] C [n— 1] subject to the relations

1A. 8% =1,J C[2n—1],

2A. 5755 = 575, such that J U J' is disconnected with respect to all [p,q] C [n],

W

3121 (Z) §[p,2n—p]g[q,l]u[2n—l,2n—q] - [q,l]U[2n—l,2n—q]§[p,2n—p}7 [%” C [pv n] - [n];
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(ii) for [k,1] C [p,q] C [n — 1],

g[p,q}U[anq,anp]g[k,l]U[anl,ank] -
Slg+p—l,g+p—k]U[2n—p+2n—q—(2n—k)2n—p+2n—q—(2n—1)]Sp,qlU[2n—q,2n—p] =

Slg+p—1,g+p—k|U2n—(p+q)+k,2n—(p+q)+1] 5 [p,q]U[2n—q,2n—p] -

The following are 2n — 1 alternative generators of |[Jo,)

S[Ljlun—jon-1), 1 <J<n—1, (23)
Sijon—j, 1 <7 < n. (24)

Proposition 4. There is an isomorphism |Jon| ™ Jop(2n.c)

Proof: Clearly |Ja,| and |Jgp (2, 0| satisfy the same relations corresponding to all con-
nected sub-diagrams [p, q] C [n]. Furthermore, the maps

Ven(zn.c) Lol

Sip,g] ™ Sp.glu[2n—q,2n—p];

Sipn] 7 Sip,2n—p)s

Jon

Sp,qluzn—q,2n—p] " Sp,q)>

Sp.2n—p] 7 S[p.]

are epimorphisms inverse to each other. This follows directly from the definitions
of [Jan| and |Jep(2s,0)| (Definition |3 and Lemma [2] respectively). Therefore, |Jop(2n.0) =~

Jgn. |

Lemma 4. The following assignment defines a group injection from to Jop:

[: Jsp(2n,(C) — Jon

S[p,q] = Sfp,q]’ 1 S p S q < n,

Slp,n] = S[p2n—p|s 1<p<n.

Proof: We begin by showing that the map induced by I' is indeed a group homomor-
phism. We check the relations 1C. — 3C. from Lemma [2]
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1C. We have that for 1 < p < q < n,

2 Al
2 2 A,

F(S[p,fﬂz) = Sfp,q] = (3[p7q]8[2n*q,2n*p])2 = Sp,q)5[2n—q,2n—p

while for 1 < p < n, we have I'(spp, n]Q) = S%p,?nfp] =1.

2C. For 1 <p<g<mnand1l<k<Il<nsuch that [p,q| U [k,I[] is disconnected,
the sub-diagrams [p, q] U [2n — ¢, 2n — p]|, and [k, [ U [2n — [, 2n — k] of [2n — 1]
are disconnected, hence

A2. A2.
F(S[p,q]s[k,l]) = Sfp,q]sfk,u = Sf/g,Z]S/[p,q} = F(S[k,l]s[p,q])-

Additionally, if ¢ = n, the sub-diagram [k,[] U [p,2n — p] U [2n — [, 2n — k]
in [2n — 1] is disconnected, hence

A2. A2. A2.
L(SpmSied) = Sp2n—pSieg = SySp2n— = L(Sk)Spn)-

3C. (i) We have that for 1 <p <k <nand 1 <p<k <[ < nrespectively:

F(S[p,n]S[k,n]) = S[p2n—p|S[k2n—k] — S[k2n—k|S[p,2n—p] = F(S[k,n]s[p,n})
(21])
L(spnSien) = Sp2n—p)Sk0Sa—120-k = SEa—1.20-k Skl S[p2n—p) = L (S0 S[p.n))-

(73) Let 1 <p < k <l < q<mn. Then
F(S[p,Q]S[k,l]) - Sfp,q]sfk,l] = S/[p+q—l,p+q—k]sl[p,q] = F(S[p+q—l7p+q—k]8[p,Q])'

We have now finished proving that I' is a group morphism. To show that it is injective,
one needs to show that its left inverse defined by the assignment

Pfe}”t : im(F) C Jop — Jsp(2n7(C)
s = Spg, 1 <p<qg<n,
S[p,2n—p] = S[pm)s 1<p<n.

P,4]

is also a group morphism. This however follows from the previous calculations: the
generators of im(T") satisfy the relations from Lemma [2| and there are no more rela-
tions between them (all possible cases have been already covered above). n

Proposition 5. The group |Jo,| is isomorphic to a subgroup of Joy,.

Proof: The map
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J2n — J2n

o /
S[p.glu(2n—q.2n—p] "7 Spq)s
Slp.2n—p] " S[p,2n—p)
is a a group injection. This follows directly after composing the maps from Proposition

4] and Lemma [4].
n

We may also think of |Jo,| as the unfolding of Jyy2,.c) in Joy.

7. Full Schiitzenberger—Lusztig involutions and algorithms

7.1. Full Schiitzenberger—Lusztig involution. Let [B(A)] be the normal [glcrystal
with highest weight A. Let u) and ulow be the highest, respectively lowest, weight
elements of[B(A)} The Schiitzenberger— Lusztig involution is the unique set involution

{B(\)|—{ B(\)| such that, for all b € B(\)], and i € I,

€(0) 0(i) ()
€10) = Eeoi ()
(b)) = wowt(b)
where wy is the long element of the Weyl group W (see [HeKa06l, BuSc17]). The
involution @ acts by wy on the weights and interchanges the action of e; and fy(;). For
A,_1, I acts by reversing the weight and interchanges the action of e; and f,_;; for
Ch, € acts by changing the sign of the weight and interchanges the action of e; and f;.
If B] is a normal [gfcrystal, [B] is the disjoint union of connected components, each
of which is a crystal isomorphic to for some dominant integral weight \. We
define |¢g| on [B| by applying [¢] to each one of its connected components. Each element
of B(\)|is generated by uy (resp. u'¥ ) by applying fi’s (resp. e;’s). Hence the same
sequence of f;’s (resp. e;’s) applies to the highest weight (resp. lowest weight) of any
connected component of [B| isomorphic to [B(A)]
The elements uy and uy™ are the unique elements of [B(\)| of weight A, respectively
woA. Hence, wt(¢{(uy)) = woA, and wt. ow)) = X\, and u?" = {(uy), (u'AOW) = uy.
This implies:

N—"

N—

ul™ = §(un) (ejr cej, (W) = foiy o Foun ™) = foi) -+ Fogn(wn).
Corollary 2. Let b  B(A) and b= f;, - fj,(un). Then
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) = eogiy - eagyun™,  we(gn)) = wowe(d
In particular,

o in type Ay_1, [(0) = enj, - en—jyul®, and wi(g(b)) = rev wt(b), where rev
is the reverse permutation (long element) of &,

o in type Cy, [(b) = ej, - - €, (u™), and wt(g(b)) = —wt(b).
For |g| = gl,, [¢| coincides with the Schiitzenberger involution [Len07), BerZel96] also

known as evacuation (evac for short) on [Fu97, [St01], and as on
the set SSYT(A/u, n) of type A,_1 tableaux of skew-shape A/u in the alphabet [n]
[BSS96].

Let T g B = SSYT(\/u,n) and let B(T) be the connected component of the
crystal SSYT(A/p,n) containing 7. Then B(7T) ~ B(v) for some partition v and
rectification(T") € B(v). Thereby, [{(T") is the unique tableau in B(7') such that

rectification[¢|(1") = evacuation(rectification(T")),

€(T") = arectification(evacuation(rectification(7"))), (25)

where arectification denotes the inverse process of rectification [BSS96, [ACM19|. More
precisely, the rectification (rect for short) procedure is recorded by assigning to the in-
ner shape p of T' a standard tableau S to form the tableau pair (S, T"). The entries of S
govern the jeu de taquin on T' by sliding out all letters in the S filling, from the largest
to the smallest, to get a new tableau pair (rect(T"), S’) where S’ is the skew standard
tableau consisting of the slid letters from S. The anti-rectification procedure, arectifi-
cation, is defined by the reverse jeu de taquin to evacuation(rectification(7") and is gov-
erned by the slid letters in S’ in the tableau pair (evacuation(rectification(7')), S’) from
the smallest to the largest. Eventually one obtains the tableau pair (S]reversal(T'))
where

reversal(T") := arectification(evacuation(rectification(7))). (26)

Next we will discuss [g) = 5P,y

7.2. Lecouvey—Sheats symplectic jeu de taquin, Baker-Lecouvey insertion
and Knuth equivalence. If 7" is a KN tableau, we consider its word w(7T) € C}
obtained by reading the columns of T from rightmost to leftmost, each column read
from top to bottom.
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7.2.1. Lecouvey—Sheats symplectic jeu de taquin. [Sh99, Lec02]

Let T be a punctured KN tableau with two columns C; and C5 and split form
spl(T) = LC1rC1LCyrCy, and let C have the puncture *. Let a be the entry under
the puncture of rC and [ the entry to the right of the puncture of rC',

spl(T) = LCrCUCyrCy = * ; 6 1

where o or 8 may not necessarily exist. The elementary steps of the symplectic jeu
de taquin, or SJDT for short, are the following:

A. If a < B or B does not exist, then the puncture of T" will change its position
with the cell beneath it. This is a vertical slide.

B. If the slide is not vertical, then it is horizontal. We then have o > ( or that «
does not exist. Let C] and C) be the columns obtained after the slide. We have two
subcases, depending on the sign of 5:

1. If B is barred, we are moving a barred letter, 3, from ¢C5 to the punctured box
of r(C', and the puncture will occupy S’s place in £C5. Note that £C5 has the same
barred part as Cy and that rC} has the same barred part as ®(C). Looking at T,
we will have an horizontal slide of the puncture, getting C5 = Cs \ {#} U {*} and
C; = o HP(Cy) \ *U{B}). In a sense, 8 went from Cy to (CY).

2. If B is unbarred, the procedure is similar, but this time g will go from ®(C5) to
C1; hence C] = C1 \ * U {83} and C} = &~ 1(D(Cy) \ {8} U *). However, in this case
it may happen that C{ is no longer admissible. In this situation, if ¢ is the lowest
entry such that ¢, appear in C] and N (i) > i, we erase both 4 and i from the column
and remove a cell from the bottom and from the top of the column, and place all the
remaining cells orderly.

Applying elementary SJDT slides successively, eventually, the puncture will be a cell
such that o and 8 do not exist. In this case we redefine the shape to not include this
cell and the jeu de taquin ends. The SJDT when applied to semi-standard tableaux
in the alphabet [n] reduces to the ordinary jeu de taquin.

The SJDT is reversible, meaning that we can move *, the empty cell outside of p,
to the inner shape v of a skew tableau T' pf shape p/v, simultaneously increasing
both the inner and outer shapes of T' by one cell. The slides work similarly to the
previous case: the vertical slide means that an empty cell is going up, and a horizontal
slide means that an entry goes from ®(C}) to Cy or from C) to ®(C5), depending on
whether the slid entry is barred or not, respectively.
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7.2.2. Symplectic Knuth equivalence and Baker-Lecouvey symplectic insertion. In
this section we gather the necessary tools from [LLT95, Lec02]. For w €C]] let P(w)
be the Kashiwara-Nakashima tableau obtained by performing the Baker-Lecouvey
insertion algorithm on w. We do not need the algorithm in this paper, but refer the
reader to [BaOOb, Lec02| for the original descriptions. A detailed account can also
be found in [Sa21b|. Given wy,ws € Cj| the relation w; ~ wy < P(w;) = P(ws)
defines an equivalence relation on|C;] known as plactic equivalence. It is the analogous
relation defined by Knuth relations in the alphabet [n] [Fu97]. The symplectic plactic
monoid is the quotient ~. Each plactic class is uniquely identified with a KN
tableau.

The plactic monoid C}/ ~ can also be described as the quotient of C by the
following plactic relations (we use the notation from [Lec02]):

R1

yzr = yxz forx <y < z with 2 #
xzy = zay forx <y < zwith 2 # 7

R2
yr—1l(z—1)Z2yrzrand aTy =z — l(x — )y for <z <nandx <y <7

[R3] (Symplectic contraction/dilation relation) w ~ w \ {z,Zz}, where w € C;] and
z € [n] are such that w is a non-admissible column, z is the lowest non-barred
letter in w such that N(z) = 24 1 and any proper factor of w is an admissible
column.

Remark 10. [Sa21a| It can be proven that given a column word w E, any proper
factor is admussible if and only if any proper prefix of w is admissible. Thus, in
order to be able to apply the plactic relation R3] to a non-admissible column word w,
we need only check that all proper prefizes of w are admuissible, instead of all proper
factors. For example,

23443 2 933, 123443 = 1233 = 12. (27)

When Knuth relations are applied to factors of a word, the weight is preserved while
the length may not be. Knuth relations can be seen as jeu de taquin moves on words
or diagonally shaped tableaux, and each symplectic jeu de taquin slide preserves the
Knuth class of the reading word of a tableau [Lec02, Theorem 6.3.8]. The words 23231

and 11133 are Knuth related: 11133 & T1313 = 11331 22 22331 % 23231.
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7.3. Full symplectic reversal.

7.3.1. Symplectic evacuation algorithm. In [Sa21al, Santos introduced a symplectic
evacuation algorithm on tableaux in denoted by evac® which he proved
coincides with the full Lusztig—Schiitzenberger involution on a given U,(sp(2n,C))-
crystal associated to a representation of highest weight A\. The algorithm is
defined on a given tableau T E as follows. First, one complements its
entries, that is, replaces all unbarred i’s by 4’s and all ’s by 4’s (this amounts to
the action of w§ = —id on the entries of the tableau). Second, one performs a
rotation by 7 to obtain a skew tableau. Finally, one performs symplectic rectification
or insertion using Lecouvey—Sheats symplectic jeu de taquin [Sh99l Lec02) Lec07], or
Baker—Lecouvey insertion [Ba00b|, Lec02), Lec07] respectively. The resulting tableau
is defined to be evac®(T). We refer the reader to [Sa2lal, Section 5] for detailed
examples of the algorithm. Santos’ evacuation mimics the Schiitzenberger evacuation
on by replacing the action of the long element of &,, with that of the long
element of B,,.

7.3.2. Full symplectic reversal on KN skew tableauz. The set KN(\/p, m) is a normal
(', crystal whose connected components are isomorphic to KN(v, m) for some parti-
tion v whose number of boxes |v| might be less than |A| — |u|. Let n =m 4+ j — 1,
where 1 < j—1 < n is the number of parts of y and J = [, n]. Shifting the entries of
the skew KN tableaux in KN(A/u, m) by j — 1, we may identify KN(A/u, m) with the
(normal) full sub-crystal B(A, ) c KN (A, n)| consisting of the tableaux in
with entries exclusivelyin 1 < --- < j<j+1<---<j+m<j+m<---<jand
whose sub-tableaux on the alphabet {1,...,7 — 1} is the fixed Yamanouchi tableau
of shape p [Lec02, Lemma 6.1.3]. B(A, p) is stable under the action of fii;_1, €11,
i=1,...,m, and it decomposes into connected components of [KN,;(A,n)l That is,
the crystal operators, f;,e;; © = 1,...,m do not change the skew-shape of a KN
tableau on the alphabet C,,, and KN(A/u, m) decomposes into connected components
that can be identified with the connected components of B(u, ).

In both type A, _1 and type C,,, Kashiwara operators e; and f; commute with SJDT
slides. Let T' € Bl = KN(A\/p,n). An inner corner in 7" is a box of p such that the
boxes below and to the right are not in y; an outer corner in 7" is a box of A such that
the boxes below and to the right are not in A. Let ¢ be a fixed inner/outer corner of
T. An SJIDT slide or a complete SJDT slide to the inner corner ¢ means a slide of
a box from an inner corner to an outer corner, or vice-versa. An SJDT slide to the
inner/outer corner ¢ of T" gives a new KN skew tableau SJDT(T, c), possibly with
fewer /more boxes. Applying an SJDT slide to the same inner corner ¢ in all vertices
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of B(T') defines an isomorphic crystal B(SJDT(T,c)) |[Lec02, Theorem 6.3.8]. The
images of the KN tableaux in the same connected component of KN(\/u, m) under
this crystal isomorphism have the same skew shape [Lec02, Theorem 6.3.8]. Iterating
the SJDT to all inner corners of T rectifies T', producing rect(7) [Sh99, Proposition
9.2], [Lec02, Theorem 6.1.9, Theorem 6.3.9].

At the end of each SJDT slide, the inner corner (outer corner) where the slide
started is filled, or the column where the slide started has 2 fewer (more) boxes [Sh99,
Proposition 9.2], [Lec02, Theorem 6.1.9]. The SJDT step where the tableau loses
two boxes in a column has a previous step where this column is non- admissible
but Knuth equivalent to the new column which is admissible. The step in reverse
SJDT where the tableau gains two boxes in a column is Knuth equivalent to
the previous one which is admissible. Therefore, in each step of SJDT we get crystals
which are isomorphic. This allows, in the vein of reversal for A,,_; skew semi-standard
tableaux, the definition of symplectic reversal, , on type C), skew tableaux
as a coplactic extension of evacuation®".

Lemma 5. Let T € B = KN(\/p,n). Then (T is the unique KN tableau in B(T)
that is symplectic Knuth equivalent to evac®™ rect(T), and

rectification €9 (T) = evacuation® (rectification(T)). (28)

Proof: The crystal B(T) ~ B(v) for some partition v and rectification(7") € B(v).
The full Schiitzenberger-Lusztig involution on KN tableaux of straight shape satisfies
¢Cn (rect(T)) = evacuation®(rect(T)), and crystal operators commute with SJDT
when passing from B(7T") to B(v). Therefore, holds. _

In Subsection we will provide an algorithm for partial symplectic reversal on

KN, (A, n)| with J = [j,n]. An algorithm for full C,, reversal on KN(A/p, n) will result
as a special case by considering the normal full sub-crystal B(u, \) of [KN ;(\, n)|

8. Internal cactus group action on a normal crystal

Partial Schiitzenberger involutions were first studied in the case |[g| = gl(n,C) by
Berenstein and Kirillov [BerKir95| but have been defined by Halacheva in general for
g given J C [ any sub-diagram, the partial Schiitzenberger—Lusztig involution
is defined to be the Schiitzenberger—Lusztig involution g, on the normal crystal
[HaKaRyWe20]. The crystal B,|decomposes into connected components, and we apply
the Schiitzenberger—Lusztig involution to each connected component. Let b € B, and
let uM&" 4" be the highest and lowest weight elements of the connected component

of [B| containing b. Let b = f; --- f;, (u"&"), with j,.---j; € J. Then
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j b = f(‘).}(j)(b)7 .f] = €h,( . b) JEJ (29>
EJ0) = €n,6,) -~ €0, @), wts(€4B)) = wiwts (b). (30)

Remark 11. If J = K U K' C I is disconnected with K and K' connected sub-
diagrams of I, we have the sub-type Dynkin diagram K x K', and the Weyl group is
WHE X WE with longest elements wl' and wlS', respectively, such that wy = wffwl =
wlwl . Then if Ox and Oy are the graph automorphisms defined by wl and w{

in K and K', respectively, 0; = Oglx = 00k is a graph automorphism of the
Dynkin graph K x K’ and hence preserves the connected sub-diagrams K and K’ of
I as defined in Section @ Thanks to [HaKaRyWe20|, pages 2368,2369|, the crystal

operators act componentwise on the normal crystal Bk, and thus
fefw = fufi, ernew = eper, for k € Kk € K,
high
and b= fo -+ fofo, - Jor (™),

(b) = Cox(q) """ COKk(91)COr(ql) """ eoK’(gll)(u
with g,...71 € K, g.,...,91 € K" and

{gga"'agiagl7"'vgl} = {jla"')jr}'

/OW)

This extends to a disconnected sub-diagram with more than two connected sub-diagrams.
Henceforth, from [HaKaRyWe20|, £ and {xr commute

Exér = Exék.

Lemma 6. Let J = K U K' C I be a disconnected sub-diagram of I with K and K’
connected. Then By ts a normal crystal, and the Schitzenberger—Lusztig involu-
tion on Bruk', Exuke Ssatisfies

Sxur' = Exérr = k.

Proof: The result follows from [HaKaRyWe20|, the remark above, and the fact that
Exéir = Ex€k 1s an involution and satisfies the conditions , (30) above. Since
there is only one involution on the set Byyxs satisfying (29), (30), we have that

Exur = ki = ExéK. n

The partial Schiitzenberger—Lusztig involutions [£), for any J C I a connected
Dynkin sub-diagram of I, satisfy the Jg cactus relations.



SYMPLECTIC CACTI, VIRTUALIZATION AND BERENSTEIN-KIRILLOV GROUPS 31

Theorem 1 ([Hal€]). The map sy for all J C I connected Dynkin sub-
diagrams of I, defines an action of the cactus group Jg on the set[B; that is, the
following is a group homomorphism

(I): J — ’:j

Moreover wt;(Eb)) = wiwts(b), b € B

In other words, s; acts on each connected component of [B| by permuting its vertices
via [€)] exchanging highest weight and lowest weight.

Remark 12. (1) The action of Jg factorizes into the braid relations of WE.
(2) The partial Schiitzenberger—Lusztig involutions satisfy the cactus relations, and,
in particular, for[g= gl(n,C), and[gl= gl(n,C),sp(2n,C), it holds that

Anfl Anfl Anfl A n n n
i1 = Smenn Sy L <0<, 5 = 5[?,71]5[0 ]5[1 ap LS1sm,
respectively.

The following corollary motivates what comes in the next section.
Corollary 3. (a) For the gl(n,C)-crystal SSYT(\, n)|, the map
S[j) 7 &) = evacjp, 1 <j <n—1,

where evacjy1 denotes the evacuation on the sub-tableaux of straight shape obtained
by restricting the entries to {1,...,7+ 1} and fixing the remaining ones, defines an

action of the cactus group |J,| on the set|SSYT(A, n),.
(b) For the sp(2n, C)-crystal|[KN(X\, n)|, the map

Sljn] 55,’;1], 1<j<mn, (32)
defines an action of |Jepianc)| on the set [KN(X,n), where fﬁ"n] = O = evacC

g[?}], 1 <35 < n—11s given by the Baker embedding, Theorem@ 5 ’;1

J < n —11s given either by the partial symplectic reversal in Subsection or by
the Baker embedding, Theorem [,
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8.1. The internal action of the virtual symplectic cactus on a gl(2n,C)-
crystal. On A, _; semi-standard tableaux, there is a straightforward algorithm to
compute the action of a partial Schiitzenberger—Lusztig involution |&)| with J a con-
nected A,_; Dynkin sub-diagram. Let I = [n—1]and J =[p,q] C [, 1 <p < g <mn,
be a connected sub-diagram. The J-partial reversal, [reversal;] is the on
ISSYT (A, n)| which means the [reversal| or Schiitzeberger involution || applied to each
connected component of SSYT ;(\,n)l Let T € SSYT (A, n)| then, from and ([20]):

E4(T) reversal {7)

= (Thp—y 7(T[p,q+1} ) Tig+2.n))
= (Tf1,p—1), arectification(evacuation(rectification(7}, 4111))), Tig+2.n]) (33)

where T' = (T[l,p—lbTLp,q+1]aT[q+2,n}) is such that 77, ,_q) is the tableau obtained by
restricting T to the alphabet [1, p—1], T}, ;41] is the skew tableau obtained by restrict-
ing to the alphabet [p,q + 1], and Tj,.o,, is obtained by restricting to the alphabet
[q 4+ 2,n]. Indeed, if J = [1,q], reversal;; 4(T") = evac,41(T"). The case where J is a
disconnected sub-diagram of I will be a consequence of Lemma [6]

To define an internal action of the wvirtual symplectic cactus group |Jo,| on a crystal
SSYT (p, n, ) with p a partitition with at most 2n parts, thanks to Lemmalf], we now
explicitly characterize the partial Schiitzenberger-Lusztig involution on a disconnected
sub-diagram JUJ' of the As, 1 Dynkin diagram such that J C [n—1] and J’ C [n, 2]
are connected sub-diagrams. In the case of the Ay, ; Dynkin diagram, we label its
nodes either in [2n — 1] orin {1,...,n,7n,...,2}.

Theorem 2. Let JU J' be a disconnected sub-diagram of the As,_1 Dynkin diagram
I ={1,....n,n,...,2} such that J C [n — 1] and J C [n,2] are connected sub-
diagrams. Then f;lj”j,l, the Schiitzenberger-Lusztig involution on SSYT juy(p,n,n),

with w a partitition with at most 2n parts, satisfies

A2n—1 _ A2n—1 A2n—1 _ A2n—1 A2n—1
gor =& &y =8 (34)
= reversa/?r"”*lreversa/“}l?"*1 = reversa/‘},z”*lreversa/f;l%*l. (35)
A1 /A2n—1 Agp—1 /AQn—l . .
where & = reversal; and ;""" = reversal ;7" are the Schiitzenberger-Lusztig

involutions on SSYT;(u,n,n) and SSYT (u,n,n), respectively.

Remark 13. This statement is indeed valid for the Schiitzenberger-Lusztig involution
on SSYT up(p,n) where J U J" is a disconnected sub-diagram of the A,y Dynkin
diagram with n odd.
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The cactus group Js, acts on an A, _i-crystal of semi-standard tableaux. We now
conclude that the virtual symplectic cactus |Js,| also does.

Theorem 3. For the gl(2n,C)-crystal of tableaur SSYT(u,2n), with p a partition
with at most 2n parts, the map

Agn 1 A2n 1 A2n 1
S[1,q)u[2n—g,2n—1] '_>5 U[2n—q,2n—1] 5 €2n .2n—1]
—evachevac2nevacq+1evac2n, 1<qg<mn, (36)
~ Agp_1 on—1
Slg2n—a 7 €lgonq) —reversa/‘:’% o 1<qg<n, (37)

defines an action of the virtual symplectic cactus group |Jo,| on the set SSYT(u,2n).
That is, the following is a group homomorphism

(I)g[Qni Jon| — Sp

where B = SSYT(u,2n) and J as in ([36])or :

Proof: Since Ja, acts on SSYT (i, 2n), the partial Schiitzenberger involutions , with
J a connected sub-diagram of the Ay, ; Dynkin diagram I = [2n — 1], satisfy the Jo,
cactus relations. Let J run over all sub-diagrams of the Ay, 1 Dynkin diagram of the
form J = [¢,2n —¢|, [¢,n] C [n], and J = [1,¢] U [2n — ¢,2n — 1], [1,q] C [n — 1].
Then

A2n—1 A2n—1 A2n—1 A2n 1 .

® (€i0tan-gan1)” = (€l ) (€ g y)” = 1, and (5[q2n—q1) =1

e for J U J' disconnected with respect to all [1,q| C [n], (fJQ" 15(?,2"‘1)2 =1,

e for all [1,1],[1,q] C [n],

A2n71 A2n71 A2n71 A2n 1 A2n 1 AQn 1 A2n71

5[1,271—1]5[1,l]u[2n—z,2n—1] :f[l 2n— 1}5 5271 1,2n—1] 5 €2n 1,2n—1]5[1,2n—1]
A n 1
f y U[2n—1,2n— 1]5[1727%—1]'

Aop_1 pAon—1 A2n 1 #Aom—1
Slg2n-aSit20-1 = St.2n—18lg.2nq)

e for [1,]] C[1,q] C [n—1],

Agn—1 Agn—1 A2n 1 A1 Aop—1 ¢ Asn—1
6[1 q|U[2n— q,2n—1]§[1 [JU[2n—1,2n—1] é: €2n q,2n— 15 €2n [,2n—1]
€A2n 1 £A2n 1 €A2n 1
q+1-1,g+1-1)52n—142n—g—(2n—1),2n—14+2n—q—(2n—1)] >[1,q]U[2n—q,2n—1]
£A2n 1 €A2n—1
[g+1-1,g+1—k]U[2n—(p+1)+1,2n—(1+4)+]>[1,qJU[2n—g,2n—1]"
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Therefore, the partial Schiitzenberger involutions [€), with J any connected sub-
diagram of the Ay, ; Dynkin diagram of the form J = [q,2n — ¢|, [¢,n] C [n], or

J=1[1,q]U[2n —q,2n —1], [1,q] C [n — 1], satisfy the virtual symplectic cactus |Jo,
relations.

9. Partial Schiitzenberger—Lusztig involutions and algorithms

For J a connected sub-diagram in the Dynkin diagram I = [n—1] of type A,,_1, the
partial Schiitzenberger involution [£)] coincides with J-partial reversal, that is,
(33). The case wherein J is a disconnected sub-diagram of I has been studied in
Theorem 2] and Remark [13]

So far, there is no known form of tableau-switching for KN tableaux. The algorithm
to compute J-partial symplectic reversal, reversalg”, with J = [p,n] a sub-diagram
in the Dynkin diagram I of type C,,, presented in subsection 9.3] and summarized in
, is inspired by this problem and mimics the type A partial reversal algorithm on
semi-standard tableaux, summarized in (33). The case J = [p,q] C I, p < q¢ < n,
is solved by virtualization in subsection [0.5.1] In fact, all partial symplectic reversals
can be virtualized as shown in subsection [0.5.1]

9.1. J has a sole node and the Weyl group action. If J has a sole node 7 of
I, & = &y, the Schiitzenberger-Lusztig involution to the i-strings (the connected
components) of By;y, agrees with the Kashiwara Crystal reflection operator, originally
studied by Lascoux and Schiitzenberger in the gl(n, C) case |[LSi81] and rediscovered
by Kashiwara for any Cartan type [Kas94].

Theorem 4. [Kas94, Section 7| Fori € I, & defines an action of the Weyl group W
on|B, ri.b=¢&(b), and

(1) ri.wt(b) = wt(&;(D)), for b € B,

(2) ulow = wo.ug'gh.

The i-string of b € B} ¢;(&(b)) = &;(b), or equivalently &;(&;(b)) = ¢i(b)
ei(b) ©i(b)

K3

Proposition 6. (1) For U,(sp(2n,C)): given i € [n — 1], let u~ be a word in the
alphabet {i,i + 1} with length £(u™) = r, and let v be a word in the alphabet
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{i,i+ 1} with length ¢(v*) = s. Then, for allr; € B,, 1 <i<n—1,
uyer *(ug v, r>s
ri.(umvt) =&uTv ) =quvt, r=s : (38)

w0 )ed, 1< s

such that when r > s, v~ = ujuy, with {(uy) = r — s, and when r < s,
v=uv{vS with{(vy)=s—r.
When i = n,
. n’ =&, (') =n'n". (39)

(2) If b § BON)| with b = fj, -+ fj,(w\), and ry---rir; is a reduced word such that

uf\ow =T} Tirjauy, then

€)= eas - - €ai (e - - miryun).
(3) For Uy(sp(2n,C)): the crystal reflection operators &; satisfy the relations of
the Weyl group By, :
egf=11<i<n
® §&i =&, i —jl > 1, 1<4,5 <n,
o (&)’ =1,1<i<n-2,
d (571—1571)4 = 1.

Example 6. From , , the action of & on a KN tableau 1s given by the
signature rule on its reading word [KasNak91l [Lec02]:

(1)
%223§ﬂ 3] |3 +1[113[H—]
_ [2[4[313[1 —[[3[3= —[7[3[31= —[1[3[3=
= T = A= [ AR
1 1 4 1
NERIEIbIRY
4
wt(&(T)) = rowt(T) =1 (—=2,1,—-1,-1) = (1,-2, -1, —1)

The reading word of T is 121212212 and

£ (121212212) = —(+—) — — — +(+—) = —(+—)+ + + + (+—) = 121121212
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2[3[312[1] —[313[H—] —313[+HH —[313[+H2]
S= 44111 — [4H4-= - [4aH- — [d4R2=
412 41+ A+ A+
21313[2[2]
A+
Wt(£1(5)> =" Wt(S) - 7’1(—3, _17 27 _1) = (_17 _37 27 _1)
%;2321\ %AZQZT\ %iZQZﬂ
_ 4313111 _ 41313111 _ 31311
(2)54(T)—£4 451 _54 4§T = éii
4] 4] 4]
witty(T) = rgwt(T) = r4(—=2,1,—1,-1) = (=2,1, -1, 1).

9.2. J has more than one node. The next is a follow-up of the action of the Weyl
group on ¢-strings.

Proposition 7. Let[B(A)| be a type C, crystal, J C I and[By|= Bj(\). Let b E-

The connected component of containing b has highest weight element b € nd
lowest weight element b/"W. Then

(1) bl =r, .. -rd.b/}igh =& fd(bgigh) where rq -+ 1q is a short word for wy €

WY with a,...,deJ, and b= f; - f; (b7€") for some j.,... ji € J.
(2) If J = [p,n], By, is a type C,_pi1 crystal, then

A0y = e e (ra - ra i), wtEfo) = —wes (o)
where wty(x) € Z"P*L, x B, denotes wt(z) € Z" restricted to the entries in

[p,n].
(3)If J=1[p,q, 1 <p<q<mn, Byg is a type Aq_py1, crystal, and

(b> = €qp—jt1 " €qpji41(Ta- Td-bgigh)v WtJ(b)) = reverse(wt; (b)),
where wty(z) € ZP*Y, 1 € B, denotes wt(x) € Z" restricted to the entries in
p.g+1].
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9.3. Dynkin sub-diagram J = [j,n]. On the set KN(\,n)|, & = E”n} coincides
with Santos’ symplectic evacuation evac®" (see[7.3.1|or [Sa2lal Section5|). The partial
Schiitzenberger-Lusztig involution 55%} is the Schiitzenberger—Lusztig involution on

each connected component of KN (A, n).

9.3.1. The action of the Knuth operator R3] on a skew tableau. Given 1 < j < n,
the Levi branched crystal KN(; (A, n) decomposes into connected components. Let
T E, which belongs to some connected component of KNy; (A, n), and let
Tt denote the restriction of T" to the alphabet [£7,n]. T}, ;) is a KN skew tableau
on the alphabet . However, Tj; ,; might have non-admissible columns with respect
to the alphabet |[+7, n]. This means that by doing a shift of —(j — 1) to the entries
of Ti4j,), we might produce a non-admissible skew tableau on the alphabet C,, 1.
We show that under the action of the contractor operator , T4, is symplectic
Knuth equivalent to a KN skew tableau on the alphabet [+j,n]. Consequently, the
connected component containing 7j+;, is symplectc Knuth equivalent to a crystal
connected component of admissible skew tableaux on the alphabet [+j,n] (of the
same skew shape).

Proposition 8. [Lec02, Proposition 2.3.3| Let C4, ..., Cy be admissible columns on
the alphabet [C,l. Then T = C1Cy---Cy is a KN tableau on the alphabet [C,] if and
only if 0(C;) < r(Ciyq), that is, if 6(C;)r(Ciy1) is a type Ag,—1 semi-standard tableau
foro=1,...,k—1.

Lemma 7. Let T € KN(\,n). The restriction of T to the alphabet [£7,n] = [n]\{1 <
e <j—1l<j—1<---<2<1}, Tyjp, is a KN skew tableau on the alphabet
where Ty, might have non-admissible columns with respect to the alphabet [£7, n].

Proof: If a cell of T has a barred letter in [£j — 1], then the cells to the southeast
have barred entries in [+j — 1], and if a cell of T" has a non-barred letter in [+j — 1],
then the cells to the northwest are non-barred and belong to [j — 1]. Therefore, the
non-barred letters of T in [£j — 1] define a partition shape, say p, in T, and the
barred letters in [£7 — 1] define a skew shape A/v where p C v C A. Hence the cells
of T filled in [+j,n]=[n]\{1<--<j—1<j—1<--- <2< 1} define the skew
shape v/ u. u

Lemma 8. Let Cy and Cy be two columns with entries on the alphabet [£j,n] such
that C1Cy is a skew KN tableau on the alphabet [Cl Assume that Cy and Cy have
exactlym > 0 andt > 0 pairs of symmetric entries (x, ), respectively, with N(x) > x
with respect to the alphabet [+j,n]. The columns are admissible on the alphabet
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but not necessarily on the alphabet [+7,n] when 7 > 1. Then Cy has at least m bozes
strictly below the row containing the last box of Cy, and Cs has at least t bozes strictly
above the row containing the top box of column C.

Proof: Consider spl(C1Cy) = £(Cy)r(Cy)¢(Co)r(Cy) in [£n], which is a type Ag,—q
semi-standard tableau on the alphabet [C;] Under the lemma’s assumptions, when
m > 0, C is not-admissible in [+j,n] and has m > 0 pairs of symmetric entries
(e, @;) where the 1CC condition breaks at a;, i = 1,...,m; when ¢t > 0, C5 is not
admissible in [£4, n] and has ¢ > 0 pairs of symmetric entries (5;, 3;) where the 1CC
condition breaks at f3;, i = 1,...,t. Therefore, from the definition of spl(C1C5), the
top box of r(C}) is filled in the interval [£7, n], and the first ¢ entries of £(Cy) are filled
in [j — 1]. Since r(C1)€(Cy) is a type Ag,—1 semi-standard tableau on the alphabet
IC,), it follows that the first ¢ entries of column Cy are strictly above the row containing
the top box of column C. On the other hand, from the definition of spl(C;C%), the
last m boxes of r(C4) are filled in {(j — 1) < --- < 2 < 1}, and the bottom box of
0(Cy) is filled in [£7,n]. Similarly, since 7(C7)¢(Cy) is a type Ag,—1 semi-standard
tableau on the alphabet [C,], it follows that the last m entries of column C} are strictly
below the row containing the bottom box of column Cs. |

Let (R3)™ denote the iteration of the Knuth operator R3], m > 0 times.

Proposition 9. Let Cy, Cy be two columns on the alphabet [+j,n] such that C1Co
is a skew KN tableau on the alphabet [C,] under the conditions of the previous lemma.

Let C4 -E X, where X 1is an admissible column On [:I:j, n]7 and Co . Y, where
Y is an admissible column on [£j,n]. Then C’ng XC’2 XY is a skew KN
tableau on [+j,n].

Proof: Under our assumptions, C; has m > 0 pairs of symmetric entries (o, @;),

where N(o;) > «;, @ = 1,...,m, with respect to the interval [£7,n] (a column is
non- admissible on [+j,n] if m > 0), and the contraction is applied m > 0 times
to Cf, C’l X, where X is admissible on [+j,n]. Henceforth, after applying the
contraction R3] m times to Cj, the relevant m pairs of symmetric entries are deleted,
the top m entries and the bottom m entries of column C; are made empty and the
remaining entries of C are put in order in the remaining |Cy| — 2m boxes of C; to
define the admissible column X on [£j,n|. Similarly, under our assumptions about
Cy, Cy has t > 0 pairs of symmetric entries (5;, 3;) such that N(3;) > B;, i = 1,...,t,
with respect to the interval [£7,n]. After applying the contraction t to (Y, the
relevant ¢ pairs of symmetric entries are deleted, the top ¢ entries and the bottom ¢
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entries of column C5 are made empty and the remaining entries of C'y are put in order
in the remaining |Cy| — 2t boxes of C to define the admissible column Y on [£7, n].
Thus, from Lemma [§] the resulting pair XY of admissible columns has skew shape.

Moreover, XY is a KN skew tableau on the alphabet [£7, n], that is, r(X)¢(Y'), with
entries on the alphabet [+7,n], is a type As, 1 semi-standard tableau. By definition
of spl(X)spl(Y), r(X)¢(Y) has the same skew shape as XY. Note that

r(X)=7r(Cy)\ {ag,...an}tU[Ej —1))

is obtained from r(C}) by emptying the top m boxes and bottom m boxes of r(C}) and
by filling in order the remaining boxes of r(C4) with r(C1) \ ({aq, ... an U [E£5 —1]).
Indeed, from Lemma [§]
r(X) <UC) \ [j -1,
and in particular, r(X)(¢(Cs) \ [j — 1]) is a semi-standard tableau. Recall that the
top box of r(C}) is strictly below the top ¢ boxes of 7(C5) (exactly the ones in ¢(C5)
filled in [7 — 1]), and the bottom box of ¢(Cy) is strictly above the bottom m boxes
of r(Cy) (exactly the ones in r(Cy) filled in (j — 1) < --- < 1).
Finally, note that

(YY) = C)\ (1 — U A{Br, ... B}),
and if r(X)(£(Cy) \ [j — 1]) is a semi-standard tableau, then r(X)(¢(Cs) \ ([j — 1] U
{B1,...,B8:}) = r(X)L(Y) is also a semi-standard tableau. |

9.3.2. Reduced symplectic jeu de taquin. Given T € KN(A/u,n) and j € [n] such
that T has all entries in [£7, n], the following is an algorithm to compute the reduced
symplectic jeu de taquin on T on the interval [£j, n], denoted SJDT};. The skew
tableau T" might not be admissible on the alphabet [, n]. This means that we apply
the SJDT after shifting all entries in T' by —(j — 1) and iterating on 7" the contractor
operator the needed number of times to get an admissible skew tableau on the
alphabet C,,_ ;1. When j = 1, we recover the ordinary SJDT.

Definition 4. Reduced SJDT (SJDT;)

o Let T; be the tableau obtained by replacing each non-barred entry ¢ and barred
entryc m T byc—j5+1 and c — j+ 1, respectively.

o [f T; is not a KN tableau in KN(A/p,n — j + 1), we have some columns
containing pairs of the form b,b such that b € [n — j + 1] is lowest in the
column and N(b) > b. Iteratively, we apply the Knuth contmctor operator
to T; until we make all columns admissible. Define T; to be the resulting
tableau with all admissible columns.
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o Compute SJDT on Tj as usual.
e Replace each non-barred entry m and m in SJIDT(T;) by m + j — 1 and
m — j + 1, respectively.

The reduced rectification to the alphabet [£7, n], denoted rectification; (rect;), of T
is the iteration of the SJDT) to all inner corners in T". Indeed, rect;(T) is the shift
by j — 1 of all entries of rect(7}). When j = 1 we recover the ordinary rectification.

Here is an illustrative example- first, we compute a complete SJDT slide on the

interval [£+1, 3]

2 SJDT
2l 7=

* =

Loled] %
@Iw»—\

Whereas, complete the SJDT; slide, the complete SJDT slide reduced to the inter-

val [£2, 3], is such that:
1
1 = 5 ser B
2]

N[

—>T2:

poloo] %
NEE

Therefore,

* (2
SJgTQ ﬁ .
3]

Another illustration: first we compute an ordinary complete SJDT slide,

3 SJDT
-

3] 2
2 x| .

V] [\

*| sipT
9] °=

ofco

— spl(T) =

LoD *
D] *

2
3
2!

Loleo] %
pojeeleo

On the other hand, a complete SJ DT, slide means:

1]*
—>T2: S‘BT ;L SgT
2] 1]

ks

ofco
* =

FI|[\D —

*
3
3

Therefore,

3| sspm,
%

SJDT,
%

4 =

SIBT: 315

* DN

= recty (7).

2
B
2]

pojeono

*
3
13
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9.3.3. Partial symplectic reversal: colorful symplectic tableau switching. Let T €
and j > 1. Let [B| be the crystal connected component of KN(;,(A,n)
containing T'. [B|is a highest weight crystal and all vertices of |B| are KN tableaux on
the alphabet ) with the letters in [+j — 1] frozen, as the crystal operators in [B| are
indexed by [j,n] and do not act on the entries filled in [+5 — 1].

Let H be the highest weight element of , and let wt(H.;,,)) € Z" 7! be its highest
weight, where Hiy;,, is the restriction of H to the alphabet [£j,n]. The restriction
of H to the alphabet [£j,n] is a skew KN tableau on the alphabet [C;] The entries
of H in [j — 1] define a semi-standard tableau A of shape, say p, and the entries in
[j — 1, 1] define a skew semi-standard tableau A~ of shape A/v, where u C v C .
Hence the cells of H filled in [£j,n] =n]\{l< - <j—-1<j—-1<---<2<1}
define the skew shape v/u, and because the crystal operators in [B| are indexed by
[7,n], they do not change the skew shape v/u either. Therefore, since all the vertices
of [B] are connected to H through those crystal operators, the vertices of [B] restricted
to the alphabet [j, n| have the same skew shape v/p and the same semi-standard
tableaux A and A~ |Lec02, Lemma 6.1.3].

Step I. The sequence of isomorphic crystals from 7}, to its reduced
rectification. I.1- THE C),_;;; CONNECTED CRYSTAL BY CONTAINING Titjn)-

Erase in the vertices of [B| the entries in [+j — 1]; that is, erase the semi-standard
tableaux A and A~. We obtain the connected C),_;;; crystal BY of semi-standard
skew tableaux of shape v/u with entries in the alphabet [£7, n], possibly with some
non-admissible columns, containing 7. ;,. These KN skew tableaux over might
have non-admissible columns over [+7, n]. More precisely, BY is the connected crystal
of words on the alphabet [£j, n], with highest element the word of Hy; .

The set BY bijects the set , with the same crystal graph structure and the same
weight vertices as [Bl Hence, B” and [B] are isomorphic crystals.

1.1.1- THE GREEN INNER STANDARD TABLEAU U, FOR ANY VERTEX OF B.
Define a standard tableau Uy of shape p filled in a completely ordered alphabet of
green letters { } where |p| is the number of boxes of u. Assign the inner

standard tableau U the inner shape of each vertex of BY. Recall 1145, 1s the image
of T in BY; see the tableau pair (U, Ty n)) in Figure .

I.2 - THE C),_;11 CRYSTAL B* OF KN SKEW TABLEAUX [R3| ISOMORPHIC TO B.

Let HY := H +j,n] be the highest weight element of the C), ;1 crystal BY. The
skew tableau HY of shape v/u may have non-admissible columns on the alphabet
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(UovT[j:j,n]) -

T T

[+4,n]

FIGURE 1. T[4, in the crystal BY and the inner tableau Up.

[£j,n]. Let r < s < --- < g <t be the non-admissible columns of H". Then exactly
the same columns in all vertices of B are non-admissible. The Knuth contraction
relation, Subsection [7.2.2] defines a crystal isomorphism; it commutes with the
crystal operators and preserves the weight. Moreover, each time is applied to a
column of some vertex of B, it is also applied to the same column in every vertex of
BY (see [Lec02, Proposition 3.2.4, Corollary 3.2.5|).

In each vertex of B, apply the contraction operation to column i, for i =
r,s,...,q,t, until column ¢ becomes admissible. For ¢+ = r,s,...,q,t, each time we
apply to column i, a pair of entries (k, k) is erased (whenever k € [n] is minimal
for N(k) > k, k and k appear in the column and all prefixes are admissible). Then the
cells from the top and the bottom of the current column ¢ are emptied; the remaining
entries are placed in order in the remaining cells between those erased. We obtain a
new crystal of KN skew tableaux on the alphabet [£7,n] isomorphic to the crystal
BY.

Let x be the total times has to be applied to H°, from column 7 to column ¢ as
explained above, to get a KN skew tableau on alphabet [+7, n]. Denote the resulting
KN skew tableau by H*. Note that for each column of any vertex of BY, the number of
times is applied is the same. We then obtain the sequence of isomorphic crystals

g0 B RS B B po 1 BE | Bpre,
@ L. @ Bx7-+$s+~-~+xq+xt — B®

where x = x, + x4, + -+ + x4 + 2, and z; is the number of times we apply to
column i of HY, for i = r,s,...,q,t. The crystal B, isomorphic to B, is obtained
by applying - x times to each vertex of BY, namely, ; times to column 7, for
i =r,...,q,t, of each vertex of B. Equlvalently, B is the crystal whose highest
weight element is the KN skew tableau H?* of shape v*/u®, where v* C v, u C p*
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and |u”| — |p| = |v| — [v*| = x is the number of times has been applied to HY (or
Tijm)-

I.2.1 - THE PAIR (U,,V,) OF GREEN-PURPLE INNER AND PURPLE OUTER STAN-
DARD TABLEAUX FOR ANY VERTEX OF B”.
Let

{ <p1<p2<"'<p:1:<p;<"'<pl2<pll} (4())

be a completely ordered alphabet of |u| + 2z letters consisting of || green letters and
x unprimed and z primed purple letters.

Define the standard tableau U, of shape u®, where u C p® and |p*| = |u| + =,
to be an extension of Uy filled with the |u| green letters by filling the extra x cells,
the total number of cells made empty at the top of each non-admissible column in
a vertex of B, with the unprimed purple letters {pr < -+ < pe, < o0 < P}
Define the standard tableau V, of shape v/v* by filling the x cells made empty at
the bottom of each non-admissible column in a vertex of BY with the primed purple
letters p), < --- < p|, <--- <p|. The filling rule is as follows.

Fill successively the pair of cells made empty each time is applied, with one
unprimed purple letter and one primed purple letter, pi < p,...,p. < Py D1 <
Do itree s Payiay < Dy tgs- s De < Py, With the unprimed letter at the top of the
column and the primed letter at the bottom of the column. We impose the order

PL <+ <Py < Ppil <00 < Pppga, <00 < Pp <

<Py < <P, < <P <P, <o <L

That is, each time an unprimed purple letter and a primed purple letter are added
to U, and V., respectively, the unprimed letter is strictly larger than any green letter
and any unprimed purple letter already added to U,, and simultaneously, the primed
purple letter is strictly smaller than any primed purple letter already added to V.

By construction, the pair (U, V,) of inner and outer standard tableaux is the same
for any vertex of B*. More precisely, U, of shape u” is the extension of Uy filled with
the alphabet { <pr < py <o <pit; Vyof skew shape v/v" is filled
with the alphabet of primed purple letters p, < -+ < pf ., < <p) ., <
e <l o < plh < oo < pi. Regarding U,, extend the column r of Uy with the z,
unprimed purple letters p; < --- < p, , the column s with the x5 unprimed purple
letters p,, 1 < -+ < ps, 4., and finally the column ¢ with the x; unprimed purple
letters Py, 4quyt1 < * o < Paytota,to, = Do) Tegarding V. of skew shape v/v", start
with the skew shape v/pg, and fill the bottom x, boxes of column r with the alphabet
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of primed purple letters p), < --- < p), the bottom z, of column s with the alphabet
Do yo. < - <Pl 1, and, finally, the bottom x; boxes of column ¢ with the alphabet
pL< e < p;?7~+ms+"'+xq+1' See the triple (U,, H*,V,) in Figure .

FIGURE 2. The triple (U, H*,V,) with H* in gray, V, in purple, and
Up(C U,) in green.

I.3 - RECTIFICATION OF THE C),_j;1 CRYSTAL B* AND REDUCED RECTIFICATION
OF Tigjn)

Consider the triple of tableaux (U,, H*,V,) previously defined. Apply complete
SJDT; slides successively to the cells of U,, from the largest entry to the smallest
one, to rectify H*. At the end of each complete SJDT] slide, we get an outer cell
filled with the letter where the slide started in U,. While H” is being rectified, the
cells of U, are slid to end up as outer corners and added to the skew standard tableau
V.

The rectification of H* does not depend on the choice of the inner corner made in
each step during the rectification process [Lec02, Corollary 6.3.9]. Applying SJDT;
to any corner of U, in an element of B* (recall that for all elements of B*, U, is the
same) gives a crystal isomorphism. This observation is equivalent to the fact that the
rectification does not depend on the filling of U,: U, is a choice to keep track of the
rectification of H* (or of any other vertex of B”). If a complete SJDT] slide applies
to an inner corner of H*, then a complete S.J DT} slide also applies to the same inner
corner in every vertex of the crystal B* and creates the same outer corner filled with
the same letter.

However, if the number of boxes of H*, |H"|, exceeds the minimal number of boxes
of its Knuth class, it will be necessary to apply SJDT; more than |U,| = |u| + =
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times to rectity H*. When H® has the minimal number of boxes of its Knuth class,
only z unprimed purple letters and |u| green letters will slide outwards and join the
outer tableau V.

Let 2y > 0 be the number of boxes of H* that exceeds the minimal number of boxes
of its Knuth class, that is,

2y = |H"| — |rectification;(H")|.

When H” has the minimal number of boxes of its Knuth class, y = 0. Necessarily 2y
boxes of H* will be lost in the SJDT} rectification process. Henceforth, the SJDT}
B.2 case will be applied y times, each application creates a non- admissible column
followed by the application of a contractor operation resulting in the loss of two
boxes.

Remark 14. Theorem 6.1.9 in Lecouvey’s paper [Lec02| says: if the B.2 case appears
with the creation of a non-admissible column when applying complete SJDT to an
inner corner of a KN skew tableau, it has to be at the initial column where the inner
corner was originally contained.

This observation implies that each of the y mentioned non-admissible columns will
only occur in the columns containing the inner corners where the slide started.

The complete SJDTj slides applied successively to the entries of U,, as mentioned,
will transform the crystal B* into an isomorphic crystal of KN skew tableaux, as long
as the SJDT; B.2 case does not create a non-admissible column. Otherwise, one has
an isomorphic crystal where each vertex has a non-admissible column. In this case,
we apply the contractor operator to that column in each vertex, erasing a pair
(k, k) if k € [, n] is the lowest entry such that N(k) > k . Then, as in 1.2 above,
the cells from the top and the bottom of the current column are emptied and the
remaining entries are placed in order. We get a new isomorphic crystal of KN skew
tableaux where each vertex has two fewer boxes. As observed above, this may only
happen in the y columns where SJDT}; was applied, specifically, those containing the
inner corners where the slides started; no other boxes are deleted in the rectification
process of B*.

Eventually, H* is rectified to rectification(H"), as are all vertices of B*, and we get
the crystal R of straight KN tableaux with highest weight element rectification(H?),

BY ~ B* ~ R.
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1.3.1 - THE GREEN-PURPLE-RED STANDARD TABLEAU V OF EVERY VERTEX IN
THE C),_j41 CRYSTAL R CONTAINING RECT;(Tsj ).
Let
71 717_ 72 727_ ) I
Brl gul— Br2 T2~ BTY BV

be the sequence of 2y isomorphic crystals appearing in the rectification process from
B* to R, tracking each complete SJDT; slide which triggers a B.2 case and the
subsequent application of a contractor operator to that non-admissible column.
In particular, for i = 1, ...y, B® is the crystal where for the ¢th time in the complete
SJ DT} slide, the B.2 case appeared to create a non-admissible column in the column
containing the inner corner where the slide started, and B**~ is the crystal obtained
by applying an contractor operator to that non-admissible column.

Fori=1,...,y, let H*" and H®"~ be the pair of highest weight elements of the
crystal pair B®" and B%~, respectively. Each H*' has exactly one non-admissible
column, and H**~ has non-admissible columns.

We have to store 2y new auxiliary letters to record the 2y empty cells created by
the y applications of an contractor as a consequence of the creation of y non-
admissible columns by the complete SJDT} slide where the B.2 case appeared and
created a non-admissible column.

Consider the triple of tableaux (U,, H*,V,) corresponding to the crystal B*. Let
(U1, H', V1) be the triple of tableaux obtained from (U,, H*,V,) by applying
complete SJDTj slides to the entries of U, and transforming the KN skew tableau H*
into H*!', where for the first time in the complete S.JDTj slide, the B.2 case appears
and creates a non-admissible column; that is, %! has a non-admissible column, and
the highest weight elements of all previous crystals obtained from B* had all columns
admissible. After the said complete SJDT] slides to U,, U, is the inner standard
tableau of H*!, and V.1 1s obtained from V, by adding the slid entries from U, to
Vz. Vi1 is indeed a standard tableau because by construction, the entries of U, are
strictly smaller than the primed purple entries of V,,

{ <pr<py <o <py<py <o <pi}
The pair (U,1, V1) of inner and outer standard tableaux is the same for every vertex
of B®!:
Um,l g Uxa V;c,l 2 ‘/x

We have to apply an contractor operator to H%! (and to every vertex of B”’l)
to transform the non-admissible column into an admissible one: a pair of symmetric
entries in each vertex of B! will be deleted, the top and bottom cells of that column
will be emptied and the remaining entries will be placed in order. Let B~ be the
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new crystal of KN skew tableaux isomorphic to B®!, and let H*'~ be its highest
weight element (it two has fewer boxes than H%!). Note the number of the column
where acts is the same for every vertex of B®!. Fill the empty entries with red
letters r1 < 1}, with r; on the top and 7] on the bottom, where in the complete
SJDTj slide, the B.2 case appears and has created a non-admissible column such
that 7 is strictly larger than any entry of U, 1, and 7] is strictly smaller than any
entry of V1. V, i is filled with the entries of U, already slid and with all primed
purple letters. The cell with the red letter r; was the cell of U, where the complete
SJDTj slide started and the B.2 case appeared with the creation of a non-admissible
column.

Let U, 1+ be the standard tableau obtained by adding the red letter 1| to U, ;, and
let V. 1+ be the standard tableau obtained by adding the primed red letter 7} to V; 1
in the manner described,

Uw,l C Ux,17+ - Uxa ‘/x,l,+ 2 Vx,l 2 Vx

We keep applying complete SJDT} slides to entries of U, 4, from the largest to
the smallest, to rectify H*%~ so the cell ; will be the first to slide outwards and
become an outer corner.

Let (U2, H?,V,5) be the triple of tableaux obtained from (U, 1, H*Y", V,1.4)
by applying complete SJ DT} slides to the entries of U, ; 1 and transforming the KN
skew tableau H™!~ into H"? where for the second time in the complete S.JDT}
slide, the B.2 case appears with the creation of a non-admissible column; that is, H*?
has a non-admissible column, and the highest weight elements of all previous crystals
obtained from B®!~ had all columns admissible. After these complete S.J DTj slides
to U1+, Uso is the inner standard tableau of H*?; V, o is obtained from V,; . by
adding the slid entries from U, 1 4 to V; 1 4. V.2 is indeed a standard tableau because
by construction the entries of U, ; 4 are strictly smaller than the entries of V1 4. At
this point, the red letter 7 has already slid from U, ; 4 to V, 2; that is, 71 is no longer
in U, » and instead belongs to Vo,

Ux,2 g Ux,l C U;l:,l,Jr g Uxa VI,Q D) Vx,l,Jr D) V:l:,l 2 Vfr

Let B™? be the crystal with highest weight element H%2. We have to apply the
contractor operator to H*? (and to every vertex of B?) to transform the non-
admissible column into an admissible one: a pair of symmetric entries in each vertex
of B®? will be deleted, the top and bottom cells of that column will be emptied and
the remaining entries will be placed in order. Let B®*~ be the new crystal of KN
skew tableaux isomorphic to B*?, and let H*~ be its highest weight element (it has
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two fewer boxes than H*?). Fill the empty entries with red letters ro < 7, 75 on the
top and r5 on the bottom of the column, where in the complete SJ DT slide, the B.2
case appears and has created a non-admissible column such that o is strictly larger
than any entry of U, o, and 7% is strictly smaller than any entry of U, 5 already slid.
The primed letters are considered to be slid because by the time of their creation,
they are outer corners.

The cell with the red letter 7, was the cell of U, where the complete SJDT;
slide started and the B.2 case appeared with the creation of a non-admissible column.
Let U, 2+ be the standard tableau obtained by adding the red letter 15 to U, 2, and
let V24 be the standard tableau obtained by adding the primed red letter 74 to V.
We keep applying complete SJ DT} slides to the entries of U, 2 4 from the biggest to
the smallest to rectify H*? .

At this point, one has the following relative ordering of the red letters, where
belongs to U, 2 4 and 75, < r; < 1] belong to V, o 1

/ /
ro < Ty <11 < T,

Upo CUpo+ CU1 CU1+ CUyy Vo DVeo DV DV 2 Vi

Continue in this fashion. Let B™Y be the crystal obtained after a complete SJ DT}
slide to an entry of U, 14, where the B.2 case arises and creates a non-admissible
column for the y-th time. Let U, , be the standard tableau obtained from U, , 1 +
after applying the complete SJDT slides to its entries so far. We have to apply the
contractor operator to every vertex of B*Y to transform the non-admissible column
into an admissible one: a pair of symmetric entries in each vertex of B*Y will be
deleted, the top and bottom cells of that column will be emptied and the remaining
entries will be placed in order. Let B®¥™ be the new crystal of KN skew tableaux
isomorphic to B™. Fill the empty entries with red letters r, < r|, as before with r,
on the top and 7“;} on the bottom of that column such that r, is strictly larger than
any entry of U, ,, and r,; is strictly smaller than any entry of U, 1 1 already slid.

The cell with the red letter r, was the cell of U, 1 where the complete SJ DT}
slide started and the B.2 case appeared with the creation of a non-admissible column.
Let U, + be the standard tableau obtained by adding the red letter r, to U, ,,, and let
Vzy.+ be the standard tableau obtained by adding the primed red letter 7 to V., We
keep applying complete SJDT; slides to the entries of U, , 1 from the largest to the
smallest, and eventually, we rectify H*%~ without further recourse of the contractor
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R3] We reach the crystal R, where every vertex is rectified. The crystal R is called
the rectification of BY .
At this point one has the following relative ordering among the 2y red letters:

ry <1y < <Py < Ty < <1y <
and the rectification storing tableaux
@ C Uz,y C U:c,y,Jr - Uz,yfl C---C U:E,Q C Ux,2,+ - Uz,l C U:c,l,+ - Uza

V D ‘/Txaya—’— D ‘/;379 D %7y_1a+ D %ﬂ_l D T D %727—’— D %72 D %71a+ D Vmal 2 Vx,

where V' is the standard tableau obtained by adding to V., 4 via sliding the letters
from U, , . We have the following ordering of all colored letters, green, purple (primed
and unprimed), and red (primed and unprimed) in the skew standard tableau V:

<K<y <y < g << g <rg < < <

<PL< P < < < < P < < << < py <Pl < < P
(41)

We have constructed the following sequence of isomorphic crystals, stored in V' via
the slid colorful letters:
R3]

RO @ ... RB*r @ co BRI TSN BEr s AT - BY (42)
SJDT; K3 SJDT; K3 SJDT; K3
B* '~ ...BW X BT T~ BT A BTET L BT S BT T (43)
SJDT; SJDT;
B~ '~ ... T~ 'R (44)

Remark 15. In our construction, purple letters are larger than all green ones .
However, for the red ones together with the two other colors, we just write (41]).

I.4 - THE SCHUTZENBERGER-LUSZTIG INVOLUTION ON THE C),_;4+1 CRYSTALS BY
AND ITS RECTIFICATION, THE CRYSTAL R, AND THE REVERSAL.

Let L° be the lowest weight element of the C,_;;; connected normal crystal BY.
The crystal R with highest weight element rectification;(H") is the rectification of
the crystal BY and contains rectification;(1}+;,). Let F' be the composition of the
sequence of lowering operators connecting H® to T [+jn] 1D B, F (HY = T +,n]-
The Schiitzenberger-Lusztig involution [¢| in BY gives (T win) = FHLY), where
F~! means the sequence obtained by replacing each lowering operator f; in F with
the corresponding raising operator e;. In each crystal of the sequence , ,
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([44) above, the same sequence F' (F~!) connects the corresponding highest (low-
est) weight element to the corresponding coplactic image of Tiy ;. (€(Z14j)). In
particular, F' connects rectification;(H") to rectification;(T;.,), F(rectification; H%) =
rectification;(1j+; ). By Santos [Sa2la], the Schiitzenberger-Lusztig involution in R
guarantees that

evac®" i+ (rectification;(T1s;,) = F ' (rectification;(L°)
is in R. Thanks to the crystal isomorphisms and Lemma [5

reversalCn—i+! (Tisjn)) = Fﬁl(LO) = arectification; evacc"—j“(rectificationj(T[ij,n])).
(45)

To compute the reversal of T, in BY without using the sequence F' of crystal oper-
ators and the highest /lowest weight elements H°, Lg of BY. we use Santos’ evacuation
on rect;(7Tjy;,) and the rectification sequence of crystals backwards in (42)), (43)),([44)
stored in the standard skew tableau V.

Step II. COMPUTATION OF SYMPLECTIC EVACUATION OF RECT;(T}4;,) IN THE
C)—j+1 CRYSTAL R.

The tableau rect;(7fs;,)) is admissible in the alphabet [£7,n]. Use Santos’ algo-
rithm as follows: take m-rotation and change the sign of rect;(T}.;,); then, apply
SJDT; to obtain evac® i+ (rectification;(T}+;,,))) in the crystal R.

Replace the tableau pair (rectification;(T4;,)), V) with

(evacCn-i+1 (rectification;(T14;,,)), V).

Step III. SYMPLECTIC REVERSAL OF T[4, IN THE C),_j;1 CRYSTAL BY.

Consider the pair of tableaux (evac® =+ (rectification;(Tj4;,1)), V), where V is the
standard tableau consisting of all the slid letters in the rectification sequence (42]),
, on the alphabet of green, purple and red letters.

Apply the reverse SJDTj;, RSJDTj, to the entries of V' from the smallest to the
largest to send evac“ =i+ (rect;(T1sj,)) to reversal(Tiy; ) = F~1(Lo) in the Cjiq
crystal B

When the SJDT); applies to an unprimed red letter r;, i € {1,...,y}, in V, the
letter 7; slides to the top of a column with the cell 7/ on the bottom. At this point, we
have reached the crystal B®. Then we apply the dilation operator to the column
containing the pair (7, 7)) by erasing those entries and adding a pair of symmetric
entries (k, k) so that we get a non-admissible column on the alphabet [+, n]. The
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SJDT); applies now to the next letter bigger than »/. In this complete reverse slide,
the SJDT}; B.2 case occurs.

When the reverse S JDT; slides have been applied to all non-primed purple letters,
we have reached the crystal BY, where the columns r,s,...,t have x; non-primed
purple letters p, +..qn. 41 < -+ < Dyy4..+q, O1 the top and the corresponding primed
letters on the bottom for ¢ = r,s,...,t. Then, for ¢ = ¢t,...,s,r, we apply the
dilation operator to each such column i z; times, and we reach the crystal BY,
where each vertex has non-admissible columns 7, s,...,t. In particular, we obtain
reversal“ = +1(T;,,).

Step IV. PARTIAL SYMPLECTIC REVERSAL OF T, 552 } (T).

Replace Tjy;, with reversaIC"*j“(T[ij,n]) in T'. That is, assign back to the inner

and outer shapes of reversal“n—s+1 (Tt1)n)) the tableaux A and A~ respectively. This
finally gives that from formula (45)), for J = [j,n],

£ (T) = reversaI(Jj"(T) = (A, arectjevaccn—jﬂ(rectj(T[im])),A_). (46)

[7:n]

Remark 16. o [f we put j = 1 in the colorful algorithm, we reduce to Step II
of C,, evacuation.

o If T ¢ SSYT(\,n)| d KN(A,n)|, our colorful tableau switching algorithm re-
duces to just the green color, that s, to the ordinary tableau switching of the
tableau-pair (Uy, T}, 1), with Uy a standard tableau of shape p and Tj; ) a semi-
standard skew tableau of shape \/u on the alphabet [j,n]. The semi-standard
skew-tableau T}, on the alphabet [j,n| is also a C,_j11 admissible tableau.
does not apply, and SJDT} reduces to the ordinary JDT. Therefore, pur-
ple and red colors do not pop up in Step I. This means Step I returns the pair
(rectj(Tijn), V'), with rectj(1};,)) a semi-standard tableaw in the alphabet [j,n]
with |A| — || bozes and V' completely green. Step II computes the symplectic
Cn—j1 evacuation of rect;(1}; ), this step produces a semi-standard tableau of
the same shape on the alphabet [n, j]. Step III applies the ordinary reverse JDT
to evaCC”*J’“reCtj(ﬂj’n]) governed by the green V' and returns a semi-standard
skew tableau of shape N/ on the alphabet [n, 7]. Step IV computes the partial
reversal reversa/?”(T), J = [7,n], by assigning the semi-standard tableau A of
shape 1 back to the inner shape of reversalc”*j“(ﬂjm]).

e The algorithm for the full C,, reversal of a KN skew tableau T € KN(A/u, m)
results from our colorful tableau switching algorithm by considering its image
(A, T) in the full sub-crystal B(pu, \) C KNjjn (A, n), where n =m—+j—1. Let

@ be the crystal connected component of B(u, \) containing (A, T), where A
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1s the Yamanouchi tableau of shape v and T is obtained by increasing each 0f
the entries of T by j — 1. Then, restricting (A, T) to the alphabet [+£j,n], T
is an admissible C),— 1 skew tableau in the Cy,_j11 crystal B. Our algorithm
reduces to Step I with just green and red, Step II and Step II1. Finally, we sub-
tract 7 — 1 from the entries of reversal“n—+1 (T) to get reversal™ (T'). However,
subtraction by j —1 replaces the last step in the reduced SJDT}, and therefore
it is enough to apply SJDT.

This means that the algorithm for the full C,, reversal of the KN skew tableau
T results from our algorithm with BY = B(T) a C,, crystal, x = 0 and applying

SIDT to Uy to get (rect(T),V), where V is a skew standard tableau without
purple letters. RSJDT applied to V' gives

reversal“™(T) = arectification evac™ (rectification(T)).

9.4. Examples of full and partial symplectic reversal.

Example 7. Full reversal of a skew tableau, J = I. In this case, we have no purple

letters,

as no letters are deleted at the beginning.

_12[2]1]
Let T = [2[211] € KN((4,3,2)/(1),3). We compute £%(T) as follows. First,
1
we fill in the empty box in T with a green letter (it defines the one box standard
tableau

corner.

Up), to which we perform symplectic jeu de taquin until it becomes an outer

9121211 sypr (LI1210) sypr [ZII12[T) supor [ZR2[9[T) sipr [Z]2[1]T]
(Uo, T) = 22111 = QRII = RIh — 2RI — 21
L1 1 7] 7] 7]
2[2[1[1] 21211 STSTTTT
SIpT (212 SIOT (212 = rect(T) = 22O v = 7
7] 7] = 7]
r < r
Taking m-rotation and changing the signs of rect(T'), we again apply SJDT to compute
evac® (rect(T)):
¥[k[k[]] SIDT [x|x|][*x]| SIDT |x|x[1[2| SIRT [*x[]1[1]2] SIPT |%|1|1|1
1220 — [dARR — $ERK 7 JIx2F 7 TR
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ST [11]1]2] S/BT [1
7 KREx 2

We replace rect(T) with evac®(rect(T)) in (rect(T), V) and apply reverse SIDT to
V to compute £5(T) = reversal™(T'):

i i 2 = evac®*(rect(T)).

11[1]2] 11[1]2] r{1]1]2] 11[1]2]
(evac®(rect(T)),V) = [2[r RRT o T TR i 22
] 7] r 2]
111]1]2] 1[1]1]2]
RT T MR Rk
2] 2]
111]2] 1[1]2]
LR = (U, eM(T) = €5(T) = 12120
2] 2]
112]2][1]
Example 8. Let P = 2 g ? € KN((4,3,3,1),4).
13

We have wt(P) = (—1,1,-2,,1).
To compute Egil](P) = reversa/g‘f4](P), we freeze the letters 1,1 in P and consider
Pioyg. Puog is not an admissible Cs tableau in the alphabet [£2,4]: the second

column 242 is not an admissible Cs column; 242 SIBL 4 The column reading of

Py is 23242443 934443, We include this non-admissible second column in the
SJDT, sequence to rectify Piioy).

1. Rectification of Py 4

22 ‘SJDT 2 ‘SJDT 213 SJDT: 2/413] |
(Uo, Paoa) = 4%3 =2 4;1,3 e égl,p IDT> 4p,p
13 3 3 El
sor, SHARLT . [2lAR] ] )
_>2 2p,p _>2 %p,p :(reCt2P[:|:2,4]7V):>reCt2P[:|:2’4]: _%_4|3‘7
] i
|
V: ’f’p’p ’T<T/< p<p/
/
]
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2. Computation of evac®® recty(Plioq)). Taking m-rotation and changing the signs
of recty(Pys4)), we again apply SJDT;:

3| s/oT [[3[3] S/BT [3[3[3] S/OT [3

315 317 i A3|2‘ = evacc?’rectgP[ﬂA].

8. Reversal of Puos. Replace recty(Prisy) with evacc?’(reCtQ(P[ﬂA])) in
(recty(Piio)), V') and apply RSJDT; to V.

3 3 = r 3 2 3 2
(evacCB (I’eCtQP ) V) — 4 P RS£T2 3 y% ‘ RS£>)T2 3 ,]29 ‘
[£2,4] /5 rip u 4lp
! ! 2
55 P13
RSIDT, [3 3/12) | RoIRT> 1313131 | RSJRT
D p
Bl 2]
RSJD 5 i
RT3 523 31 = (Uy, reversal™(Plusy)) = reversal™®(Pls ) = i g §
4 2]

4. Replace Py 4 with reversal” *(Po) in P to obtain

1]

2
3
2

e OV] (U8

reversa/[gj‘4](P) = ,Wt[2,4](€[%4](P)) = —wipq(P) = (-1,2,-1).

popfec]—

9.5. Dynkin sub-diagram J = [1, j]. Let fﬁ:}}, 1 < j < n-—1, be the Schiitzenberger—
Lusztig involution on KN jj(A, ). KNp jj(A,n) is a type A; crystal of Kashiwara-
Nakashima tableaux of shape A on the alphabet [+n] with lowering and raising opera-
tors f; and e;, respectively, given by the type C,, signature rule with i € [1, j]. Notice
that the unique crystal operators which change the signs of the entries are f,, and e,,
which are forgotten.

In the next section, we give a computation of fﬁj], 1 < j < n-—1, via virtualization

and bring it back to KNy ;(A, n) by applying E~'. See Theorem [5| below.
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9.5.1. Embedding of a symplectic partial Schiitzenberger—Lusztig involution and back.
Let U be a connected component of the Levi branched crystal with J C [n]
and with highest and lowest weight elements u"8" and u'°¥, respectively. Recall from
Subsection Proposition 2] that each connected component U of the Levi branched
crystal KN (A, n)|is embedded via[E]into a connected component of the Levi branched
crystal SSYT J()\ n) with highest and lowest weight elements ( high) and |E] . low).
respectively.

Note that if J = [p,q], 1 < p < g <n, then KN, q]()\ n) is a type A,_p+1 crystal.
Let T € U. SSYTp, (A4, n,n) and SSYT quH]()\ n,n) are crystal isomorphic
to SSYT(, 4 (A4, n) and SSYT w171 ()\A/)\ n), respectively (recall Remark . We
may then write

S Gt (T) = G (TH U &t (T7). (47)

Theorem 5. Let T' € U, where U is a connected component of the Levi branched
crystal KNpp, (A, n) of type Ap_g41,1 <p < qg<n. Then

o e (D) = &g () o Bty ().

f[i:Lq](T) = F 1reversa/A2” lreversa/AilH]E(T) (48>

Proof: Recall Proposition , Remark [5 I and . Then it follows from Theorem . |

It is now convenient to change the labeling of the A,, 1 Dynkin diagram. Instead of
[k, k + 1], we write [k, 2n— k], and SSYT; 95,1 (A, 2, 7). This relabelling is illustrated
in the picture below.

Moreover,

1 2 n—1

o —0o—

2n—12n —22n — 3 n+1

Theorem 6. Let T' € U, where U is a connected component of the Levi branched
crystal KNy, (A, n) of type Cp_jy1 for some 1 < k < n. Then

ity <T>> = B¢, ().

Moreover, on |SSYT(A, n,n), §A2" L= reversa/Az” 1k], and

f[ktln] =FE reversa/AQ" ' TyE (49)
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Proof: Recall Corollary and that, in the case of the branched -crystal
SSYT i 2n—k) (A, n, 1), 0(i) = 2n — i, for i € [k,2n — k]. Let

T=fi ... fi(u® i, ... 6 €[k n],
EXT) = fA s - S fons (EJu®),in, i € [Ryn),

5[(]’;”71](71) = e ...e; (u").

and

Then, from subsection 5.1,

(g[i?n](T)) (eir e 6y (u|ow)) - 6A6124n ip eﬁeén zl(ulow)

Eivznn (B(T)) = ej, e ﬁ(an 0 oty Eotan—iv) (EW™))
§4n i€ ,- 6271 i z1. low
—cted e “<u'°W> THG,y (1)),
Finally, follows .

and

Remark 17. Both &0, o, and &35 "y act on the set SSYT(M, n, n)|to define
a permutation such that the subset |E) .iKN A, n) 1s preserved. In other words, each of
these involutions defines a permutation on. KN(A, n)) when their action is restricted
to this subset.

9.6. Virtualization of the action of on the crystal KN(A,n). We have

the following commutative diagram corresponding to the crystal embedding [E] and
the partial C,, and As, 1 Schiitzenberger—Lusztig involutions, where [p,q] C [n — 1]
and [p,n] C [n] are connected subintervals of the Dynkin diagram of C,,

A2n 1

2n1

RNOL )~ 2 YT )

Chp Cn Agpq Agpn_1
&l ‘5 ipd sy 15 UL
KNDL 1) - SV T0 7]

Axpq Cy Agp_1 A2n 1¢A2n1
é.[p p+1] E, Eg[]%q 5[pquﬁp—&-l 5 gﬁp—&-l : (50)

Bl
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Theoremand Remark |17 imply that the action of |J5,|on [SSYT (A, n, n)| preserves

the subset |[E|(KN(X, n)| and thus, we have an action of |J5,| on the set |£| KN(\, n)
defined by
T N SERNC )
§ - €A2n 1 € Aon—1 2n 1
[p,q)V[g+1,p+1] Ulg+1.p+1] p.gl  S[g+1,p+1]

o 2n—1
Slp.p+]] = f[p p1]

such that @ (5;) = @q,, (57)ERNER) € SEKNDm)- Let 7§ Jopn,c) = J2d be the
group isomorphism defined by sp ;1 = Sy upzrey 1 < J < n, and s = Sy
1 < j < n, (see Proposition , and ¢ : SgN — SERNL) the group isomorphism
defined by «(0) = EoE~!. The virtualization of the action of |Jy(2,.c)| on the crystal
is then realized from the following commutative diagram

DPop(2n,C)
Vep(zn.0)f ——— CRnma
ZJ ZJ @5[2 1 = 1Pgp(2n,0)
Jonl — = CERN)
Py
2n
From (50))
~ = ~ A2n 1
Oy, Wsp) = %EIQ (31, 'Mmé]) ¢ S
C’n 2n—1
= 1@upn0)(51.3) = 617 = BELE = €% ey
ol 5(8 ) OE (s ) = SAQ"”
gly, “\2 L7 9[2 55 .7+1] U ]+1}

A2n71
9.7. Virtualization example.

Example 9. Consider n = 6, J = [1,5] and the KN tableau T of shape A = 2wg +
Wy + Wy

— o]

. wi(T) = (—1,2,0,0,—1,1)

= ol O

Y| S| (Do
| Al @p]| (@] FEN] )
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From \ we may immediately write M = 2w + 2w + wit + Wi + wil) + Wi, and
from A we write the Baker recording tableau Qy of shape A\ as a sequence of shapes

where we successively fill the boves along columns, top to bottom, from 1 to || =
gt + lwi] + Jwg'] + fwipl + [ws'] = 48,

A A A A A A A A A A A A A A A
wy Cwipgtwy; Cwy f+wjptwy Cw; +wy +wjptwy Cwg +wr +wy +wijp+ws

C 2wé4—|—w§4—|—wg4—|—wﬁ)—|—w§4 C 3w§1+w§4+w?+wﬁ)+w§4 C 4wé4—|—w§4—|—wg4—|—wﬁ)—|—w§4 — )\

3 1318253113143
41141926323844
152027333945
162125344046
172229354147
23303614248
24

EEEEEREEh=

Labelling the columns of T from left to right as Cy, Cs, Cy and Cy, we have:

213

—— 411

111 12 Z‘;’ H

1B 514 e 6

IEE 316 64 i
19(04)— 415 aw(CS)— 65 a¢(02)_ QZ ﬂp(cl)— =
616 513 3 4]

514 i1 £ 3

— 2]

1]

Then[E(T) has shape M\ = dwf + wit + wi + wil) + ws,

wt(E(T)) = wt(wr) = (3,6,4,4,3,5,3,5,4,4,2,5),
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and [E[T) = [0 + wr],

[EXT) = [0 = w(@(Ch)) <= w((Cy)) = w(tp(Cs)) = w(t(Ch))]
1[1]1]2][2[2]4]3
212[2[3[4[5[5[1
3131314161613
41516161615|2

— |6161615]513]1
55[414[301
41
3
2
1

which has recording tableau Q(wr) = Q.
Considering the barred and unbarred parts of (T) separately, we compute the
evacuation, evac, of the unbarred part and the reversal, of the barred part,

yielding:
111]1(2]212]4 111]1/1]1/4/4
2121213]4[5|5 21212]3|315]5
evac |313|3]4|6(6 = |313]4]5]5]6
41516 41516
616 96
and
* |k [k [k | % |x|*%|3 * k[ k k| % |x|*%|F
* |k x| %% |x|x|] |k x| x| x|x|x|9Q
* |k [k | *|%|*|3 | k[ k| *[%|*x|§
% *161615 12 * % *16161612
6 — (XIR61514 1411
reveral E1slalalsn 6l54141212
411 4]1
Bl Bl
2 2
1] 1]

Putting these tableaux together, one obtains

A 1 o
é[1,15]|_|[6,§] (T)) = evac(T)*) Ll reversa (T) ).
Using @y to Peﬁﬂn the reverse column Schensted insertion on the resulting Ay
2

tableau fﬁg]u[@] (T")) provides the image under ¥ of four KN columns C7, C}, CY,
/.

4.
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115
412
1[1 1[1 2 H
2|2 213 65 6
313 415 =1 6
W(C) = Fir5] - ¥(Ch) = 515 0(C) = [6]2] ,v(C) = &
66 ik H
5[6 514 1 1]
614 412 i 13
- 2]
1]
and applying V=1 to each column results in:
111143
213[5]2
CiCi0301 = 12124 = &us(D).
61511
613

Wt[1’5](f[(i5](T)) = reverse(wt(T)) = (1,—1,0,0,2, —1).
This solution has been verified in [SageMath)].

10. The type C, Berenstein-Kirillov group

10.1. The type A Berenstein-Kirillov group. The type A Berenstein—Kirillov
group (or Gelfand-Tsetlin group) [BerKir95] is the free group generated by the
Bender-Knuth involutions [BeKn72| ¢;, i > 0, modulo the relations they satisfy on
semi-standard Young tableaux of any (straight) shape.

Definition 5. The Bender-Knuth involution t;, i« > 1, is an operation that acts on a
semi-standard tableau T of any shape (skew or straight) as follows:

e pairs (i,i+ 1) within each column of T are considered fived, and other occur-
rences of i’s or v+ 1’s are considered free

o if a row within T has k free 1’s followed by | free 1+ 1’s, then we replace these
letters by 1 free is followed by k free i 4+ 1°s.
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The t;’s have many known relations in [BerKir95, [CGP16]:

ti=1, for i > 1 [BerKir95, Corollary 1.1] (51)

tit; = tt;, for |i — j| > 1[BerKir93, Corollary 1.1], (52)

(tigp)' =1, for i > 2 [BerKir95, Corollary 1.1], (53)

(tit2)® =1, [BerKir95, Corollary 1.1], (54)

(tigyjn-1)” = 1, for i+ 1< j <k, [CGP16], (55)

where

q[Li] = tl (tgtl) ce (titi—l st tl), for ¢ > 1, (56)

Qi k—1) = Q=110 k—1901 k—1]» for j < k. (57)

Remark 18. (1) It is not known whether the latter forms a complete set of rela-
tions.

(2) [BerKir95l Section 2| On straight-shaped semi-standard Young tableaux,
qug =&y 02> 1, qr—1 = -1y J <k, (58)
and q;jj = quj19p,049p.,; computes the crystal reflection operator § = & j,

where qp . = &ny = t1, for j > 1. In particular, qu, = &, = evaciy1, the
evacuation restricted to the alphabet [i+1], and qj; ;—1) computes the Schiitzen-
berger evacuation restricted to the alphabet [7, k],

f[j,k—l] = evacpevacy_;ii€evac, for j <k.

(3) Relation implies that in particular, (t;¢;)? =1, j > i+1, which generalizes
the relation (t1qp)* =1 .

(4) For a generic (straight or skew) shaped semi-standard Young tableau T,
wt(t;(T)) = wt(&(t)) = riwt(T), r; € &, for alln > 1. Howewver, t; # &,
fori > 1; ty = & needs only coincide on straight shaped semi-standard Young

tableaux. Moreover, t;, 1 <1 <mn, do not need to satisfy the braid relations of
S,

Let be the subgroup of [BK] generated by t1,...,t,—1.
Proposition 10. [BerKir93, Remark 1.3] As elements of [BK]

1= qn s ti = qui—14qp.q90,i-140,i—-2), fori > 2, qo = 1.
The elements qp 1), - - -, qun-1) are generators of [BIC,|
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The following result is both a consequence of the combinatorial action of the cactus

group via partial Schiitzenberger involutions &3 ;) on the straight-shape tableau
crystal SSYT (A, n)] as defined by Halacheva [Hal6], and the cactus group [J,] relations

satisfied by the generators q; j = §; ;) of when acting on SSYT@ A, ni, as studied
by Chmutov, Glick and Pylyavskyy via the growth diagram approach |[CGP16].

Theorem 7. The following are group epimorphisms from [J] to [BIC,J:
(1) s j1 — qp;) [CGP16, Theorem 1.4],
(2) sp1 5 + qpj) [BerKir95, Remark 1.3], [Hal6l Section 10.2], [Ha20, Remark 3.9].
The group [BK) is isomorphic to a quotient of [T, The generators qu ;- -, qun-1)
of BK..| (and therefore gy j1) satisfy the relations of.

Remark 19. It follows from |[CGP16| that 15 the only known relation which
does not follow from the cactus group|J,| relations. It is in fact equivalent to the braid
relations satisfied by the crystal reflection operators & = &p p—1jt1éin—1], 1 <@ < m,
on a Uy(gl(n,C)) crystal [BerKir95, Proposition 1.4, [Ro21].

Remark 20. We may define the two dual sets of generators
tni = qua—ntiqua-1, 1 <i<n,
called dual Bender-Knuth involutions, and
q.i = n-191,0900-1] = qn—in-1, 1 <1< n,
forBK,). Indeed, from Proposition[1(], one has
fnfl = qn—1,n-1] gnfi = qn—i+1,n-1]9n—in—-1)9n—i+1,n-1)9n—i+2,n—1]s
for2 <i<n, qun-1):=1, and wt(t,_i(T)) = rp_.wt(T) for T € SSYT(\,n)| and
1< n.
The dual generators satisfy a list of relations similar to , , , .'
2 =1, fori>1 59
gn—i{n—j = fn—jfn—ia fO?“ |2 —j‘ > 1, 60
(‘Enflgan)G =1, 61
(Eni@lje—1))’ = (bn-i@ntis1n—j)’ =1, for n—k<n—j<n—i—1, 62

where

(59)
(60)
(61)
(62)

qi = En—l(gnf2gn71) T (gn—ignfzﬁrl T t~n—1>a Jori > 1, (63)

Qk-1] = Qn—k+10—j] = An—k+1,0-19n—k-+jn—1]9n—k+1,n-1]> Jor j < k. (64)



SYMPLECTIC CACTI, VIRTUALIZATION AND BERENSTEIN-KIRILLOV GROUPS 63

10.2. The type C),, Berenstein-Kirillov group and virtualization. Symplectic
Bender-Knuth involutions tZO are not known for KN tableaux. Motivated by the fact
that forn > 1, qu .y, - . ., qun—1) are generators for the Berenstein-Kirillov group
in type A, and that on straight shaped semi-standard tableaux, they coincide with
the action of the partial Schiitzenberger-Lusztig involutions & 7, 1 <@ < n, we use

the action of the partial Schiitzenberger-Lusztig involutions 5[?2]7 1<t1<n-—1,and
5[?’;1] 1 <7 < n, on KN tableaux of any straight shape on the alphabet [C,|to define

the type C), Berenstein—Kirillov group, .
Definition 6. Given n > 1, the symplectic Berenstein—Kirillov group is the

free group generated by the 2n — 1 partial Schiitzenberger-Lusztig involutions
A = 5[172']’ I <i<m,
and
i) = f[iyn]a 1 <1< n,
on straight shaped KN tableauz on the alphabet|C,| modulo the relations they satisfy on
those tableaux. We also define qﬁ”o] = q[%"n] = = 1 and

Cn . Chn Chn Ch :
k-1 = Q-9 k-9 6-1) 1<j<k<n.

Thanks to Theorem ﬁ, and , one has that [BK"|is a quotient of Jop(2n,0)
The generators of B satisfy the cactus group Jop(2n,c)| relations.

q[nT—Li—l,n]

Theorem 8. The following is a group epimorphism from |Jpon.c)| t0 BK|:

Chn . C, .
Syl = aplypy ST <me S 2 4 Lsgs .

BKC"| is isomorphic to a quotient of Jsp(2n,0)

We next define symplectic Bender-Knuth involutions tiC", 1 <1 < 2n—1, on straight
shaped KN tableaux that in turn generate .

Definition 7. The 2n — 1 symplectic Bender-Knuth involutions tic” on KN tableaux
of straight shape on the alphabet[C,| are defined by

Cn P OrL OrL [ Cn On Cn Cn y
0=y 8 e Q- i) 2<isn-1, (65)
tn - q[n,n] - fn ) tnflJri _ q[n—i+1,n]q[n—i+27n]’ 2 St (66)
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Thanks to the |Js 2, 0 relations satisfied by the generators of BKC| qg’}} computes

the symplectic crystal reflection operator 5].0”, for 1 < 7 < n, on KN tableaux (see
Proposition @

Remark 21. The symplectic Bender-Knuth involutions tc“ 1 <i<mn, act on the
weights of the elements in the crystal| KN(A, n), wt(tS(T)) = wt(€5(T)) = ry.wi(T),
1 <4 <n, inducing an action of the Weyl group B,, on these weights, although, as we
shall see, in Subsection[10.5, they do not define an action of the hyperoctahedral group

B, =<r1,...,mp > on the set|KN(A,n)|. Let T € KN(A,n)| and wt(T) = (vy, ..., v,)
e Z", then

wt(tS(T)) = rpwt(T), 1 <i <n,

?

wt(tS(T)) = (v1,. .., —v,) = rp.wi(T)
Wt(tgﬁii(T)) = (V1 ey =iy ooy Un) = Tpe1* TyeiTpTn—i - Tn-1(V1, ..., Vp)
=tp 1 Tp_itpln_i- - tn_1<1}1, . ,Un), 1 << n.

Proposition 11. The symplectic Bender-Knuth involutions tC 1 <i<2n-—-1,
genemte- In particular,

(1) ayy = pSps" - p", 1<i<n, and
Ch c, : .
(2) i n) :t2n—z’"'t7€ , 1 <1 <n,

tcn e tgnt?n

where piC" =t is the symplectic promotion, 1 <1 < 2n — 1.

Proof: (1) We show by induction on i that qﬁ’;] = qﬁ"Z 1}plc" Note that qﬁ"l] = pf" =

tC” Furthermore, for ¢ > 1, q[1 q = q[1Z l]t q[1 i Q]Q[(’;Z 1) Then, assuming that for

some fixed positive integer k, qﬁj} = q[1 P Z for all j € [1,k — 1], our inductive
hypothesis implies

Cn — Cn Cn C Cn C n
A = -t Qr—290k-1 = q[ }tk Q[u; 291 k-2 Pk 1

Cn  4Cn. Cn _ Ch Cy
=4k 1]% Pr’y = dpp—1)Pr "
(2) We proceed by induction on 7 in the statement q[n iin] = tCn Gt As
a base case, when i = 1, we have t&» = q[n Al As an inductive step, we assume the

statement is true for all j € [1, k] for some fixed positive integer k, so
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CTL —_ CTL
tn-i—k-i—l—l - tn-i—k
_ Cy Cy
= Ytk 9n—(k—1),n)
C, Cp _ C,
= tn—i—kq[n—(k—l),n] - q[n—k,n]

Cn _ +Cn 40, Cn
:> Q[n_k7n] — tn+ktn+k71 ¢t tn .

By Theorem , the involutions qf?";.’]l‘l

Jo, relations. Consider the involutions in BICs, ¢

€ B, 1 < i < j < 2n, satisfy the cactus
ﬁii’]“l with their duals cjﬁgﬁ‘l =

Agy . Ao :
q["’;1 })f0r1§z<n(Remark,and q[ié 1<t <n.

n—il

Definition 8. The virtual symplectic Berenstein-Kirillov group |BKC,| is the subgroup
of BICo,, generated by the 2n — 1 involutions

Agyy Ay g Ao Ay, .
q[l?i]uﬁn—ign—l] = q[l,Qi] 19[2;—1'1,271—1} = q[Q:L—il,Qn—l]q[l,?i} K 1 <i<m, (67)
Agyy .
Qi oni) 1<i<n, (68)

modulo the relations they satisfy when acting on semi-standard tableauz of any straight
shape.

Ao - Aoy .
By Theorem , q[li.]ubn_mn_l] coincides 5[1722.]&2”_2.’%_1], 1 <i<n.

Proposition 12. For 1 < i < n, consider the Bender-Knuth involutions t?%‘i with
their duals 152" in BICo,. The group |BICo,| also has the 2n — 1 generators

2n—i
f?]ﬁl[’ziﬂ] = I = 1<i<n,
(69)
Agn— . Ag Agp_ Ao Agp_ .
AT q[nz—zi1,n+z'—1}q[n2—i+12,n+z'—2] = q[niii2,n+i—2]q[niiil,rﬂ-i—l}’ I<i<n.
(70)
where q?fji ln—l] = 1. We call them the virtual symplectic Bender-Knuth tnvolutions.

Proof: The group BICy, satisfies the J, relations and |[BK,,| C BKs,. Hence

Agp—1 Aon-1 _ A Axp—1
914 Qon—i2n-1 = YQen—i2n-1971,

, 1< <n,

and by ,
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A2n71 A2n71 - A2n71 A2n71 N
G- it mri-1)n—i+2mvi-2 = Dn-ivom+i-2qn-i+tpriop L ST

In addition, from Remark 20]in BKCs,,,
t.AanlgAanl Ao Aogp Aopq Aopa

i on—i — i1 i-190,i-2)
qéfzn:izrlﬂnfl]qézn:ilﬂnfl]qéfln:izrlﬁnfl]qé721n:1}+2,2n71]
= qf;lviriil+1,2n—1]qé:l:ilgn—l]qéin:il+1,2n—1]qﬁ,2in: 11}
qﬁ?ﬁflq[l,i—llqﬁn—;} qézzlwzn—u
— gl 1 <<, (71)
Again by Remark 20]in BKy, and (71)), for 1 <1i < n,
qﬁ?ﬁ@ﬁn—mn—l] = qﬁ,zﬁ_lqéfzn—_ilgn—l]
= T
=P T B B
— i ) - (e
- tﬁf&len—u (té]QG[_zln—z]tﬁ]QG[;n—l]) e (t{il]ij[;z—i} B 'té]gﬁ[_zln—2]tﬁ]26{2ln—1])ﬂ
where qﬁ?ﬁ” = pfr""*l e p?zn*l with pfzn*l = tf%*l e th"*ltfz"*l, and
By = qézn—_ilgn—upf%_lqé;n—_il,zn—u = G Byt 1 <i<n,
On the other hand, for 1 < i <n,
Gty = G (@ g )@
qf&i}wﬂ o (q[frll%(i12),n+i—2]q[frlLQLL;Jil,n+i71])
_ Aoy Aony Agn 0 Ao Ao
n,n+1"n—1,n+2"n—2n+3 n—i+2,n+i—1"n—i+1,n+i

Remark 22. If T is an As,_1 semi-standard tableau, Wt(t?ﬁl@ii] (T)) = riron_;.wt(T),
where r; = (i i+ 1) and rop_; = (2n—1 2n—i+ 1) are simple transpositions in Soy,,
for1 <i<n, and wt(t,_is1n+i(T)) = (n—i+1 n+0)wt(T), where (n—i+1 n+1)
is the transposition of Sq, that swapsn —1t+ 1 andn +1i, for 1 <i <n.
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Thanks to Theorem , we have that |BICy,| is a quotient of the virtual

S 67

symplectic

cactus |Jo,l The generators and (68)) of the group |BKo,| satisfy the relations of

the cactus |Ja,}, or equivalently, those of the cactus |Jopon,c)f

Theorem 9. The following is a group epimorphism from an to \BICo,):

~ A2n 1

S[Ljlul2n—j2n—1] ¥ di1 flun—jon—1p L =T <M, Slj2n—j) = Qo 1 =

BICo,| s isomorphic to a quotient of jgn, and via the isomorphism between|Jsp 2 o) and

Jog| that sends sp jj = S jjuen—jon—1], L < 7 <mn, and [, = Sjjon—j, 1 < Jj <n, s

also isomorphic to a quotient of [Jopn.c)

Because the action of |J,|on the set|SSYT (A, n, )| preserves the subset |[E[(KN(), n)

see Remark [I7, we now relate the virtual symplectic and symplectic Bender-Knuth

involutions by embedding the crystal into the crystal SSYT (A, n, 1)

Theorem 10. The symplectic Bender-Knuth involutions tC" 1 <i<

2n — 1,

BK | can be realized by the virtual symplectic Bender-Knuth involutions tAQ“ ’tfi" Z’,
1<i<n, and tfﬁ@jﬁl,nﬂ, 1 <1i<n, n|BKy,) and vice-versa,
t = Bl i g = Bl R, 1<i<n,
Cn 1,42, .
tn—i—z 1= E™ tnzi—i—ll,n—l—iE’ 1 S t S n
Proof: By Theorem [f, for 1 < i < n,
Co _ Cn Cn C Cn  _
G = -0 =
Agn_1 pAgn_ Agn_1 Aoy Agp_ An Agn 1 A
B GuimGa VEE (i i) BE €y VEE (€855 E
1 Amnor A A1 cArnr cArnr g Aan1 pArnr g Ao
:E 1(5[172Z 115 2 15122 11512Z 21 2 1€Zi121£‘ 2 15‘22121)
_ Agn—17A2,1
= E\(t t=1 VE.
. Cy _Cy Cp Cn _ Cn
By Theorem @, for2 <i<m, t;%, = Ui 1,0 i+ 2.0] and t,» = q =& o

Y
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10.3. Symplectic Bender-Knuth involutions, the character of the KN tableau

crystal and the Weyl group action. The Cy Weyl group is By =< 11,79 : r? =
1, (r1r2)4 = 1 > with long element roriror;, and the Cy symplectic Bender-Knuth

involutions are th = 5102, tg2 = 5202, th = 5522] 202 = 52025[?22], and one has
Cy _ 4CayCo 4 4C24CryCryChy _ 1Oy Cy CayCo
§7F =137y F 171" = 17 7y

From Proposition @, , Bs indeed acts on the Cy-crystal KN(A, 2) via th = fo and
157 == ¢52. Therefore, in this case, t2 and t5? define an action of Weyl group B, on
the crystal KN(), 2). However, the action of the Schiitzenberger-Lusztig involution

6522] = ¢% on|KN(X, n)|does not coincide in general with the action of the long element

of the Weyl group Bs, that is, £ # t92452¢245> = 1524924522,

2
2

For instance, considering T' =

1 i Example , despite
we(t52172852472(T)) = (1,0) = wi (—1,0) = we (£, (1)),

the coincidence of the actions of the Schiitzenberger—Lusztig involution and of the
long element of the Weyl group can only be ensured when 7' is the highest weight or
lowest weight element in the crystal , as Proposition (7| ensures. But 7' is not
in that case, and in fact

7’27’1T27“1.T = tg2t102tgztlc’2( g 1‘ )

= e (12 ) = LR ey (1) = 2

In general, for n > 3, the symplectic Bender-Knuth involutions, tf”, ...,t% do not

define an action of the Weyl group B, =< rq,...,r, > on the set KN(A,n)l On the
other hand, contrary to the A,_; case, the Schiitzenberger-Lusztig involution £ is
not given by the long word of B,, in the first n symplectic Bender-Knuth involutions.
One has in fact £ = tg;;_l .- t%  as stated in Proposition .

To show the former claim, it is enough to recall that the first n — 1 generators
of the Weyl group B, =< r1,r9,...,1r, 1,7, > satisfy the braid relations . The
symplectic Bender-Knuth involutions, tlc", tg”, in particular, do not satisfy the braid
relation (1$t5")3 = 1, that is, 1$¢5"1$" # #$t4$". By Theorem [10} to show this
inequality, it is enough to consider the virtual symplectic Bender-Knuth involutions
and the corresponding virtual inequality

Aop_1 74201 3 Aon—17A2n 1 Aop—1 7 A1 Aogp—17Aon—1 3 A1 7A2n—1 1 Aon—1 7AIM—1
tl 2n—1 t? 2n—2 tl t?nfl 7& t2 t2n—2 tl t2n—1 t2 t2n—2 : (72>
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We already know that th"‘ltAQ"‘l = Fhzn-rydon g0, any 7, and we now prove that

2n—1 2n—i 1
Aoy 17421 FAsm—1,A0, 1
tl 2n—2 t2n—2 tl (73>
A27L—1~A27L—1 _ ~A2n—1 A2n—1
t2 2n—1 — t2n—1 t2 : (74>

‘s 7Aon—1 _ fAon—1 Ao Agn—1
From Proposition and Remark , by = &n1 2n—2.2n-1)52n 1 and
~A2n71 A2n 1

to, 1 =&, and indeed
Aoy 17A0n—1 _ fAop_1 pAon—1 Ao Aopn_1 _ FAop_1, A9, 1
B, s = &0 60 1 €y o an1Son1 = lan e

: : AQn—1~A2n—1 AQn—l A2n—l A2n—1 AQn—l A2n—1 A2n—1
Similarly, t; 1 =81 S &1 o =l ity Henceforth,

Aogp—17Aon—1 1 Aon—1 A -1 Aop—1 JA2m—1 _ T Aom—1 g Aopn—17A2n 1, Aon—1 JAIn—1 j Aon 1
tl t2n—1 t2 t2n—2 tl t2n—1 - t2n—1 tl 2n—2 t2 2n—1 tl

o 7 Ao 1 7Asn—1 7 A2 1, Aon—1 JAon—1 , Aon 1
- t2n 1 t2n72 t2n 1 tl t2 tl
and similarly,
Aogp—1 A1 Aon—17A%m—1 , Aon—1 JAIN1 . 7Aon—1 7Asn—1 A2 —1 , Aon—1 ; Aon—1 , Aon 1
t2 t2n72 tl t2n71 t2 t2n72 - t2n72 t2n 1 t2n72 t2 tl t2 :
If we had equality in (72)), then

7Aon—1 7Am—1 JA 1 Aon—1 ;A1 JAon 1 o 7 Ao 1 JAs—1 7 A1, Aon—1 JAon—1 , Aon 1
th—l th—Q th—l tl t2 tl - t2n—2 th—l t2n—2 t2 tl t2

o By T T By = e
Choosing the As, 1 Yamanouchi tableau Y()\A) of shape A4, this identity would

imply

Lo 5 Ty Do o B3 T (V (V) = 1 5 2y = 12 (V (W)

which is absurd unless (¢, t5>"")3 = 1 and (5‘24;2‘11{‘24;’1‘21)3 = 1. The latter identities
do not hold either because the Bender-Knuth involutions tfzn‘l and their duals f‘;j’j‘il,
1 <4 < 2n, do not satisfy the braid relations of G,,.

Despite the fact that the symplectic Bender Knuth involutions tiC”, 1 <1< n,do
not define an action of the Weyl group B,, on the set , similarly to the type
A,_1 case, they can be used to show that the character of the crystal is a
symmetric Laurent polynomial with respect to the action of the Weyl group B,,. Let
£ = Z[a:li, ..., 2E] be the ring of Laurent polynomials on the variables z1,. .., z,
over Z, and let EB» = {f € €& : ri.f = f,r; € B,, 1 < i < n} be the subring of
symmetric Laurent polynomials.

The character of is the symplectic Schur function spy(x) in the sequence

of variables * = (x1,...,x,). Thanks to Remark , wt(t&".b) = r.wt(b) for any
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b € KN(\, n) and 1 <i < n. Therefore, since tl-c", 1 <1 <n, is an involution on the
set [KN(A, n), spa(z) is a symmetric Laurent polynomial

spa(e)= S amO = N g <o,

bk RN
bk

where z® ;= 2" -+ - 20 and (r;.x)* = 2", for a € Z", 1; € B,,.

10.4. Relations for the symplectic Berenstein—Kirilov group |[BKX%"l Thanks
to Theorem [§ and Theorem [9, we now provide the following relations. The relation
below (nontrivial for n > 3 and false for n = 2) is the only one known for |[BK®"
which does not follow from the cactus group relations, equivalently, the virtual

cactus group |Jo,| relations.

Proposition 13. Let n > 3. The symplectic Bender-Knuth involutions satisfy the
following relations:

a)wU —1i—1w”ﬂn—L

(2)(n+z 1n+] 1) =1,1<4j<n.

(3) (t< )—1\z—j\>11<z]<n

(4)( n—i—] ) _1Z<”—J

(5) (t{"t5")0 =

(@@yﬁg})_1z+1<]<k<n
(7)(7520"(]5’;) Li+1<j<n.
(8) (ty, 1a )P = 1,1 <4, j <n.
(9)(77,—1—1 1615:23 1]) =l,n—i+1<j<k<n.

The virtual symplectic Bender-Knuth involutions tA2" ifiten—i EtiC”Efl, 1 <1 <n,

2n—1
and tfﬁ@ﬁl i = EtgﬁiHE U1 < i < n, in|BKy| satisfy the same relations as

those of IBK | by replacmgt " by tAQ“ ’t;‘j"{, 1 <i<mn, and tffﬂ , by tﬁi”i:l,nﬂy

1 <1< n.

Proof: Recall theorems [§ and [9)]
(1) (90 = @53 = L (15 = (§a)? = L For2 < i <, (t0,,)? =

o o
(q[n—i+1,n] Un—i+2.n]

)> = 1 is equivalent to the [Jgp(2n,0)| relation 3C(4).
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For2<:<n-1,

CN2 _ Co  Co Co  Cn  Cn  Cn Co Co  _
(") = Ao - 9n - 90— - 9 = 1

follows from the cactus relation 3C'(i7) and the observations that

Cn Cn _ Cn Cn Cn Cn _ Cy Cn
i-19,i-2) = 42,-191,i-1) i-1092.-1 = Ai-290,i-1)

c, C, c,  Ch
Unpi- = pi-ndp)-

(2) Let @ # j. From 3C(i),

Chn Chn _Cy Cp Cn Cn
thrZ 1tn+] 1 q[n—i—i—l,n]q[n—i—l-Q,n}q[n—j+1,n]q[n—j+2,n]

_ G Cn C, o G 4G
= Qg1 g2 Anit1.m niton] = Untj—1tntio1-

(3) Recall and Remark 20, Then

Cr1CnN\2 1,201 7A2, 1,A90_1 7A%,
(tl- tj ) :(E t2 1t2§ ZlEE t2 1t25 le)

— E ( AQn ltAQn 1) (t22n 1t1247§n]1) E — 17

f0r|z—]\>1, 1<i,7<n—1.
(4) For i < n —j,

C7L C Cn CYL Cn On C"L On
Gt = Ao 9n -0 - D 1, D j+2.m)

—_ n CTL Cn Cn Cn On
= D jr109m—jr2m 91191091191, 2]

due to the [Joy(2n,c)| relation 2C.

(5) Recall (b4 . ) and Remark 20 (61). Then
(t?ntgn)ﬁ — E_l(tl 2n—lg_ 2n—1t2 2n— ltAQn 1) E
=F"

2n— 1tA2n 1tA2n—1tA2n—1)6E
1 -
on—14A2n—1\6  7A2m—17A20—1\6
LT ) (G t3 »E
A2n 1 A2n 1
Donrplonnyo g

A2n1A2nl .
2n— 1t2n 2) E=1.

L
LA
(t;
L

=F
E- 1
=F

71
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(6) Fori+1<j<k<n,

Cp Cn 2 _ 14 A2n 1 7Am— Aon—1 ¢Aon 2
(t; " 1}) = (E7¢t;" 1’522 S EET 5]2 1522 1$+172n—j]E)
A n—1¢Aan—1 JAm—1 ~Aop 2
=L ( ’ 15[3215 i]tZri 115[2721 I{l:+1,2n—j]) E’
for2n —k<2n—j53<2n—1—1,
1, A0 1 ¢ Aon—1 7Agn 1 oAgn Agp 1 ¢ Agn—1 Ao 1 pAgn-
= Et" 15[21@ i]t%f 115[22 /i+1 In— j]ti2 lg[jfk i]t%f zlg[sz /i—l—l,Qn—j]E
].ATL An ATL— ATL A"L A’Vl An A'fL
= B Tyt T T e o k201t €kt 1.20-)
A n—1 ¢Aon_ Aon_1 Ao 2
= Bt ) (B o v on ) B
A n Az, 2 . .
B 2152; l;+172n—j])E:1’ 2n—k<2n—j53<2n—1i—1.

(7) Fori+1<j<mn,

(g = BT iietn goon —i— 1> 20— j > n (53),(62)

[j,2n—]
==’h 5?22”” 1J tA2" 1t2 > 'E, by Theorem []
= ti "
(8) (tfiadp) =1, 1<ij <n.
i = B G 01ty -21 s B
= B iy )€ ) -y B by Theorem [
= q[j,n}tgiz'—l'

1])2:1,n—z'—l—1<j<k§n.

7

(9) (tnﬂ 1‘1[

Ch n A2n 1 Agp_1 Agp1 A1
tn—i—i—lq[j,k—l} =L 5 1),n+(i— 1)]5[ —(i 2),n+(i—2)]f[j,k—l]g[Qn—k—i-l,Qn—j]E
_ E §A2n 1
by Theorem [

_ 1¢A2m—1 Ao Agp Agp
=L gjk‘ 1£2n k+1,2n—j]g[n—(z’—1),n+(i—1)]5[n—(i—2),n+(i—2)]E

by Theorem [9]

Ch
_q[j,k 1]tn+z 1

A2n—1 A2n—1 AQn—l
1),n+(i— 1)]€[j,k—1} S[271—]4:—&—1,271—]']S[n—(z'—2),n—i—(i—2)] L
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10.5. Example: the C'; Bender—Knuth involutions and their virtual images.

Example 10. We illustrate the symplectzc Bender-Knuth involutions th, tQCQ, t02 '
BK % as well their virtual images in BIC4 A =72 and By =< 11,19 >; zf(a b) WA

ri(a,b) = (b,a) and r3(a,b) = (a,b); tc2 = 02, t02 = 202, tc2 = 502 f 51’22]
Using the type Cy signature rule

1,2 — +

2,1 — —

2 =+

2 — —

we compute tlcQT = £1CQT, where

T —

DO
DO
DO

CQ CQ 02
(0T = 68T = Gt Y wii(1)) = (1,-2)
Virtualization of ¢* in A;: 12 = 1§A3t‘143E E~ 1t’143§§43E The shape of T
18 3w1 + dws, and thus the shape Of. and. 2T is 3(w1 + ws3) + 10ws, where
=(1%), 1<k <3,
TITATITI]2]2]2]212]2]212]111]
E(T) = [2121212[2[2[211 1111111111 ;
21111
and
TII[T[I[I[I[I[1][1]2]2]2]2]2]1]1]
(tf?T)(gsz) %%%2222222111 :

Using the As signature rule



74 AZENHAS, TARIGHAT FELLER AND TORRES

1 — + 2 —+ and 2 — +
2 = — 2 —— 1 — -

we compute

TR EEI]
SNE(T) = & RERZREDRIRAIIIIIIL
AN
T[22 2RI .
:%%%2222222111 E(t*T)

Therefore,

13(T) = E7 g ME(T),
Virtualization of t$?: ¢§? = E-1¢E.

_ [I[IPDRREIO
I'= 5p0EAn )
C C
t52(T) = £53(T) = % % % % % 21111]
wt(ts*(T)) = (-2, —1)
Cy A
[Et5>(1)) = &E(T)
152(T) = B E(T)
IIII[I222212121212]111]
ME(T) = &5 2%%2222111111
LI[[I[II]2[2]2]2]2]2]2[2[11T] o
— g%%2222111111 E|(t5(T))

Virtualization of ¢5>: 5> = B¢, (t5°41%) (154511 E.

_ [TI2[2R2A _ (-
T = B3 . wi(T) = (—2,1)

&
SEEEA 2 wiH(T) = (2.1)

ty*(T) = &7 (T) = &3y & (1) =
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[E152(T)) 5 Bl&5255(T)) = &Ry (T) = & evac™E|T) = evac™& E(T),

(52(T) = E'& evac [ET) = E716 0 (101 (565" 1 E(T).

11. Open questions and final remarks

It remains to establish whether or not satisfies additional relations besides
those of |BK o,

Chmutov, Glick and Pylyavskyy [CGP16] have determined relationships between
subsets of relations in the groups and [J,] which yield a presentation for the
cactus group in terms of Bender-Knuth generators. Rodrigues [Ro20, Ro21] has also
introduced a shifted Berenstein-Kirillov group with many parallels with the original
group. Following Halacheva she has defined a cactus group action of via
partial shifted Schiitzenberger—Lusztig involutions (partial shifted reversal) on the
Gillespie-Levibnson-Puhrboo shifted tableau crystal [GLP17]. On the other hand,
with the shifted tableau switching she has defined shifted Bender-Knuth involutions,
and following Chmutov, Glick and Pylyavskyy she has yield a presentation for the
cactus group in terms of shifted Bender-Knuth generators. In the same vein,
it is natural to seek precise relationships between subsets of relations in the two

groups |BIC,,| and the virtual symplectic cactus group J,. It is also natural to seek
a presentation of the virtual symplectic cactus group |Jo,| in terms of the virtual
symplectic Bender-Knuth generators.

Glossary
BKC": The type C,, symplectic Berenstein-Kirillov group. , , , 7 , ,

BIC,: The subgroup of BIC generated by the first n — 1 Bender-Knuth involutions
t1y. .y tn—1. [0IHB3] [79]

BK: The Berenstein—Kirillov group (or Gelfand-Tsetlin group) [BerKir93]. [60] [61],

KN (XA, n): The Levi branched crystal of Kashiwara-Nakashima tableaux obtained by
deleting in KN(\, n) all the arrows not labelled in J C I. [12] [13] [17}, [28] 29}

SSYT (A, n): The U,(gl(n, C))-crystal of semi-standard Young tableaux of shape A
and entries in [n]. [0, 25] 28, B1] B2} (1]

j@: The virtual symplectic cactus group. , , , , , ,

BICs,: The virtual symplectic Berenstein-Kirillov group, a subgroup of BKs, satis-

fying the relations of the virtual symplectic cactus group jgn , , , ,
(Ol
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E: The virtualization map defined by Baker [Ba0Oal, Proposition 2.2, Proposition 2.3]
on type (), Kashiwara-Nakashima tableaux. [5], [[4HI7], G4H59, [67]
Jnt The cactus group Jyn,c)- B} [[8H20} BT} b2} [/

Jspan,c): The symplectic cactus group with generators s; for J any connected sub-
diagram of the C,, Dynkin diagram subject to the relations in Lemma [2] [T}, 2]

B} 19, 20} 22, 23, BT}, [56, 57, [63} [64}, 67}, [70} [7]]

R3: T he symplectic contraction/ dilation relation in the symplectic plactic monoid

Cu/ ~ RTR9
C;:: The monoid of Words in the alphabet Cn.
Cut {l< o <n<n< <I}[i ll@.“....
g: Finite dimensional, Complex, semisimple Lie algebra. [3], [6H9], [18{20] 24} 25| RIH3T],
34

B(A): The normal g-crystal with highest weight A. [2] [9] [24] 28], B5] 36}

B;: The Levi branched normal crystal B, the restriction of B to the sub-diagram J
of 1. [ [0, 29, B, [1G

B: A normal crystal. 2, [§] [0, 24}, 25], 28}, [29], B1], B3], 34}, [36], [A1]

KN(A,n): The U(sp(2n,C)) crystal of Kashiwara—Nakashima tableaux of shape A in

the alphabet C,. 2 |, [5, 9} 1217, 28} BT}, B7, i1}, b1}, 56} b7} [64)

SSYT(\,n,n): The U,(gl(2n, (C)) crystal of semi-standard Young tableaux of shape
M and entries in C,,. 4] [, [14 57, 67

SSYT (A, n): The Levi branched Crystal the restriction of SSYT (A, n) to J C [n—1].

reversal?": J-partial sympclectic reversal, the symplectic reversal KN 7(A,n) with
J C [n] a connected sub-diagram containing the node n.

reversaIC” Combmatorlal procedure to compute the Schutzenberger 1nv01ut1on € on
KN(A, n). 2

reversal;: J-partial reversal, the reversal on SSYT (A, n) with J C [n — 1]. B2

reversal: Combinatorial procedure to compute the Schiitzenberger involution £ on
SSYT(\, n). 25, B2, [0,

¢g: The Schiitzenberger—Lusztig involution on the normal crystal B. [2], [24]

&y: The partial Schiitzenberger—Lusztig involution to the sub- dlagram J C is t
Schiitzenberger-Lusztig involution £z, on the normal crystal .

&: The Schiitzenberger-Lusztig involution on B(A) 24] [25] [32
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