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ON LAX PROTOMODULARITY

FOR Ord-ENRICHED CATEGORIES
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Abstract: Our main focus concerns a possible lax version of the algebraic property
of protomodularity for Ord-enriched categories. Our motivating example is the
category OrdAb of preordered abelian groups; indeed, while abelian groups form a
protomodular category, OrdAb does not.

Having in mind the role of comma objects in the enriched context, we consider
some of the characteristic properties of protomodularity with respect to comma
objects instead of pullbacks. We show that the equivalence between protomodularity
and certain properties on pullbacks also holds when replacing conveniently pullbacks
by comma objects in any finitely complete category enriched in Ord, and propose to
call lax protomodular such Ord-enriched categories. We conclude by studying this
sort of lax protomodularity for OrdAb, equipped with a suitable Ord-enrichment, and
show that OrdAb fulfills the equivalent lax protomodular properties with respect to
the weaker notion of precomma object ; we call such categories lax preprotomodular.

Keywords: preordered abelian groups, protomodular categories, categories en-
riched in the category of preorders.
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Introduction
The category OrdGrp of preordered groups was recently studied in [9], where

the authors exhibited several of their algebraic and homological properties.
This category differs from the category of internal groups in the category Ord
of preorders and monotone maps, since the inversion morphism of the group
structure is not necessarily monotone (it is, in fact, anti-monotone). As a
consequence, many of the nice algebraic properties of groups fail to hold in
that context. Indeed, in [9] it was shown that OrdGrp shares several algebraic
properties with the category Mon of monoids, but fails to share some of the
algebraic properties of the category Grp of groups. Similar observations can
be made for the category OrdAb of preordered abelian groups and Ab of
abelian groups.
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This work focuses on the algebraic property of protomodularity [6], which
in a pointed finitely complete context is equivalent to the validity of the
Split Short Five Lemma. The categories Grp and Ab are protomodular while
OrdGrp and OrdAb are not (see [9]). It is as if the preorder structure works
against protomodularity. This led us to the following question:

Is there an Ord-enrichment of these categories so that protomodularity is
recovered in a lax sense?

The aim of this work is to give a positive answer to this question for OrdAb;
more precisely: there is a preordered structure on morphisms that does work
in favour of lax protomodularity in a sense which we explain next.

A finitely complete category X is protomodular [6] when the pullback func-
tors

α˚ : PtY pXq Ñ PtApXq

are conservative for any morphism α : A Ñ Y . We recall in Theorem 2.1
well-known equivalent conditions expressed by properties on pullbacks which
characterise protomodularity. To obtain a lax version of these equivalences
for a finitely complete Ord-enriched category C with comma objects and
2-pullbacks, we replace pullbacks conveniently with comma objects or 2-
pullbacks and the pullback change-of-base functors with comma object change-
of-base functors. Since comma objects are defined on ordered pairs of morph-
isms, we have two possible change-of-base functors, given a morphism α : AÑ
Y : the vertical comma object functor

Vα : PtY pCq Ñ PtApCq

and the horizontal comma object functor

Hα : PtY pCq Ñ PtApCq.

We show that the lax version of the equivalences in Theorem 2.1 hold for C;
see Theorem 2.5, Corollary 2.6, Theorem 2.11 and Corollary 2.12.

Due to the above characterisations, we propose to call a finitely complete
Ord-enriched category C which admits comma objects and 2-pullbacks lax
protomodular when the comma object functor Vα is conservative for any
morphism α in C. We shall call C colax protomodular when Cco is lax pro-
tomodular, that is, when Hα is conservative for any morphism α in C. The
interplay between the different ingredients encoded on protomodularity is
worked out in Section 2.
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It turns out that OrdAb, equipped with the Ord-enrichment mentioned
above, only admits the weaker notion of precomma objects, not all comma
objects. For this reason it fails to be lax protomodular. However, if we fo-
cus instead on precomma objects, vertical (and horizontal) precomma object
functors and pullbacks, the equivalences above still hold in this weaker con-
text. We call a finitely complete Ord-enriched category C with precomma
objects lax preprotomodular (resp. colax preprotomodular) when the pre-
comma object functor Vα (resp. Hα) is conservative for any morphism α in
C. We show in Section 3 that OrdAb is lax preprotomodular but not colax
preprotomodular.

In addition, we analyse the behaviour of two different factorization sys-
tems in OrdAb, which correspond to (bijective on objects, fully faithful) and
(surjective on objects, monic and fully faithful) factorizations, showing that
they are not pullback-stable, and so OrdAb fails to be Ord-regular.

1. The Ord-enriched change-of-base functors
In the following C denotes a finitely complete category enriched in the

category Ord of preordered sets and monotone maps. Recall that a preorder
is a reflexive and transitive relation. This means that for any objects X and
Y of C, CpX, Y q is equipped with a preorder such that (pre)composition
preserves it. We will denote this preorder of morphisms by ď. If we consider
in C the reverse preorder we obtain again an Ord-enriched category which
we denote, as usual, by Cco.

A morphism f : X Ñ Y is said to be fully faithful when: given morphisms
a, a1 : A Ñ X such that fa ď fa1, then a ď a1; equivalently, fa ď fa1 if and
only if a ď a1.

Given an ordered pair of morphisms

pf : X Ñ Y, g : Z Ñ Y q

in C with common codomain, the (strict) comma object of pf, gq is defined
by an object C and morphisms c1 : C Ñ X, c2 : C Ñ Z such that

(C1) fc1 ď gc2;
(C2) it has the universal property: given morphisms α : A Ñ X and

β : A Ñ Z with fα ď gβ, there exists a unique morphism λ : A Ñ C
such that c1λ “ α and c2λ “ β, as in diagram (1.i);
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(C3) for morphisms α, α1 : A Ñ X, β, β1 : A Ñ Z such that fα ď gβ,
fα1 ď gβ1, α ď α1 and β ď β1, the corresponding unique morphisms
λ, λ1 : AÑ C verify λ ď λ1;

A

α

))

β

��

λ

  
C

c2 //

c1
��

ď

Z

g

��

X
f
// Y.

(1.i)

The comma object of pf, gq will be denoted by f{g, its “projections” by
π1 : f{g Ñ X and π2 : f{g Ñ Z, and the induced morphism as above by λ “
xα, βy. Note that, if C admits 2-products then condition (C3) is equivalent
to the full faithfulness of the morphism xc1, c2y : C Ñ X ˆ Z.

We call a construction as above the precomma object of pf, gq when only
conditions (C1) and (C2) are required to hold.

Given a comma object diagram as (1.i), if fc1 “ gc2, then it is easy to
check that f{g is the 2-pullback of pf, gq; similarly the precomma object of
pf, gq coincides with the pullback of pf, gq.

From now on, C will denote a finitely complete category enriched in Ord
which admits (pre)comma objects. Our main example OrdAb is such a cat-
egory (see Section 3).

Given an object Y , as usual we denote by C{Y the slice category of C
over Y . Our main change-of-base functors will be defined on points over
Y . Here by point over Y we mean a morphism from the terminal object
1Y : Y Ñ Y into an arbitrary object f : X Ñ Y of C{Y ; that is, a C-
morphism s : Y Ñ X so that fs “ 1Y . Hence a point in C is given by a split
epimorphism f : X Ñ Y with a chosen splitting s : Y Ñ X. We denote by
PtY pCq the category of points over Y in C.

Given a morphism α : A Ñ Y in C, we can define two possible functors

by taking comma objects along points. For a point X
f
// Y

s
oo , we form the
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comma objects

A

1A

**

sα

!!

x1A,sαy

##

A

sα

))

1A

  

xsα,1Ay

  

α{f
π2 //

π1

��
ď

X

f

��

and f{α
π2 //

π1

��
ď

A

α

��

(1.ii) A α
// Y,

s

OO

X
f

// Y.
s

oo (1.iii)

These constructions define respectively the vertical and horizontal comma
objects change-of-base functors :

Vα : PtY pCq ÝÑ PtApCq
Z

γ

""

g

��

X

f

��

Y

s

OO

YY ÞÝÑ α{g
Vαpγq

##

��

α{f

π1
��

A,

ZZ

x1A,sαy

OO

where Vαpγq is induced by the universal property of α{f , and

Hα : PtY pCq ÝÑ PtApCq
Z

γ
  

g

''

X
f

// Y

gg

s
oo

ÞÝÑ g{α

Hαpγq
!! ((

f{α
π2 // A,

hh

xsα,1Ay
oo

where Hαpγq is induced by the universal property of f{α.

As in any Ord-enriched category, the notion of adjoint pair of morphisms
allows us to consider the following special points, that play special roles in
comma objects and consequently in the change-of-base functors, as explained
next. A point pf, sq is called rali (short for right adjoint, left inverse) when
sf ď 1X ; it is called lali (short for left adjoint, left inverse) when 1X ď sf .
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We denote by PtrY pCq (resp. PtlY pCq) the category of rali (resp. lali) points
over Y .

Remark 1.1. It is easy to check that, in diagram (1.ii), with X
f
// Y

s
oo a

rali, also the point α{f
π1 // A

x1A,sαy
oo is a rali since xπ1, π2y : α{f Ñ AˆX is fully

faithful, π1x1A, sαyπ1 “ π1 and π2x1A, sαyπ1 “ sαπ1 ď sfπ2 ď π2. Analog-

ously, if X
f
// Y

s
oo is a lali, in diagram (1.iii) the point f{α

π2 // A
xsα,1Ay
oo is lali.

In particular, for any morphism α : AÑ Y , the point α{1Y
π1 // A

x1A,αy
oo is always

rali, while the point 1Y {α
π2 // A

xα,1Ay
oo is always lali.

Therefore, for any morphism α : A Ñ Y , Vα (co)restricts to a functor on
rali points; similarly, Hα (co)restricts to a functor on lali points.

2. Lax protomodularity
Several algebraic properties in a category X with pullbacks can be expressed

by properties of the pullback functors α˚ : PtY pXq Ñ PtApXq, for morphisms
α : A Ñ Y . One of the key results in this direction is the following (a proof
can be found e.g. in [3]):

Theorem 2.1. For a category X with pullbacks, the following conditions are
equivalent:

(i) the pullback functors α˚ : PtY pXq Ñ PtApXq are conservative for every
α : AÑ Y ;

(ii) for any commutative diagram of points

¨

��

//

A

¨

��

//

B

¨

��
¨

OO

// ¨

OO

// ¨

OO (2.i)

(also commuting with the upward sections) where A and A B are
pullbacks, then B is also a pullback;
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(iii) for any pullback of a point pf, sq along an arbitrary morphism

AˆY X

π1
��

π2 // X

f
��

A

OO

// Y,

s

OO (2.ii)

the pair pπ2, sq is jointly extremally epimorphic.

A finitely complete category X is called protomodular 1 [6] if the equivalent
conditions of the previous theorem hold in X.

Example 2.2. Some examples of protomodular categories are (see [3] for more
examples):

‚ The variety Grp of groups and, more generally, of Ω-groups (the cor-
responding theory has, among its operations, a unique constant and
the group operations). In fact, in [8] the varieties which form a pro-
tomodular category were characterized as those for which there exist
n P N and

– constants e1, . . . , en;
– binary operations α1, . . . , αn such that αipx, xq “ ei for all i “

1, . . . , n;
– an (n` 1)-ary operation θ such that θpα1px, yq, . . . , αnpx, yq, yq “
x.

‚ Any additive category with finite limits.
‚ Setop and, more generally, the dual of any elementary topos.

If, moreover, the category X is pointed, then it is immediate to see that
the conservativeness of all pullback functors α˚ : PtY pXq Ñ PtApXq is implied
by (and hence equivalent to) the conservativeness of the pullback functors
induced by the morphisms whose domain is the zero object. This last prop-
erty is equivalent to the classical Split Short Five Lemma (see, for example,
Proposition 3.1.2 in [3]). Hence, for pointed categories, protomodularity is
equivalent to the validity of the Split Short Five Lemma.

Our goal now is to replace the protomodularity condition with a lax version
of it, where we look at the conservativeness of the comma object functors. We

1The original definition only asks for X to admit the existence of pullbacks of points along
arbitrary morphisms. When X is such, the equivalences of Theorem 2.1 still hold.
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can consider a “vertical” version of Theorem 2.1 where the α˚ are replaced
by Vα and the points are vertical arrows as in diagrams (2.i) and (2.ii). Or
we can consider the “horizontal” case with Hα and where the points appear
horizontally in those diagrams. Despite this distinction, the equivalences
obtained in C in one direction give immediately the corresponding results in
the other direction when applied to Cco.

We chose vertical as our “priority case” with detailed proofs and simply
state the equivalences for the horizontal case. Note that an Ord-enriched
category may fulfill the equivalent vertical properties and fail to fulfill the
horizontal ones, or vice-versa. We propose the names lax protomodular cat-
egory for an Ord-enriched finitely complete category C with comma objects
and 2-pullbacks such that the above mentioned equivalences hold in the ver-
tical direction and colax protomodular category with respect to the horizontal
direction (see Definition 2.13).

Replacing pullbacks with comma objects to get similar equivalences as
those in Theorem 2.1 is not straightforward. Properties on pullbacks do not
give similar properties on comma objects; e.g. gluing comma objects together
does not give a comma object in general. However, there are some well-
known properties combining comma objects and 2-pullbacks, whose proof
can be found, for instance, in [14]:

Lemma 2.3. Let C be a finitely complete Ord-enriched category which admits
comma objects. Consider the diagram where the right square is a comma
object and the left square is commutative

P

p1
��

p2 // f{g

π1
��

π2 //

ď

Z

g
��

X 1
x
// X

f
// Y.

The outer rectangle is a comma object if and only if the left square is a
2-pullback.

A similar result holds by stacking squares vertically:

Lemma 2.4. Let C be a finitely complete Ord-enriched category which admits
comma objects. Consider the diagram where the bottom square is a comma
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object and the top square is commutative

P

p1
��

p2 // Z 1

z
��

f{g

π1
��

π2 //

ď

Z

g
��

X
f
// Y.

The outer rectangle is a comma object if and only if the top square is a
2-pullback.

We now prove that when we replace the pullback functor with a comma
object functor and the pullbacks with comma objects we obtain enriched
versions of the equivalence Theorem 2.1 (i) ô (ii).

Theorem 2.5. Let C be a finitely complete Ord-enriched category which ad-
mits comma objects and 2-pullbacks. The following statements are equivalent:

(i) Vα : PtY pCq Ñ PtApCq is conservative for any morphism α : AÑ Y .
(ii) In any diagram where the left square 1 and total rectangle 1 2 are

comma diagrams and the right square 2 is commutative

α{f

ďπ1
��

π2 // X

f

��

χ
// U

g

��

A

i1

OO

α

1
// Y

s

OO

β

2
// V,

t

OO (2.iii)

(απ1 ď fπ2, i1
p1.iiq
“ x1A, sαy, fs “ 1Y , gt “ 1V , βf “ gχ, χs “ tβ),

the right square 2 is a 2-pullback.

Proof : (i) ñ (ii). In the following diagram

α{1Y
ρ2 //

σ

��

ρ1

%%

Y

s

��
1Yα{f

ď

π2

3
//

π1
��

X

f

��

A α

1
// Y
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we get an induced morphism σ : α{1Y Ñ α{f such that the bottom square
and total rectangle are comma objects; thus the top square 3 is a 2-pullback
(Lemma 2.4). Similarly, we get an induced morphism ϕ : α{f Ñ α{1Y

α{f
π2 //

ϕ

��

π1

%%

X

f

��
f

zz

α{1Y

ď

ρ2

5
//

ρ1
��

Y

1Y

A α

4
// Y

such that 5 is a 2-pullback. It is easy to check that ϕσ “ 1α{1Y .
Next we prove that the following diagram

α{1Y
ρ2 //

ρ1
��

ď

Y
β

//

1Y

V

1V

A α

4
// Y

β

6
// V

is a comma object diagram. Indeed:

(C1) βαρ1 ď βρ2;
(C2) if m : M Ñ A and n : M Ñ V are such that βαm ď n, then βαm ď

gtn. We get an induced morphism λ : M Ñ α{f

M
λ

##

m

**

tn

��

α{f

ď

π2 //

π1
��

X

f

��

χ
// U

g

��

A

OO

α

1
// Y

β

2
//

s

OO

V

t

OO

such that π1λ “ m and χπ2λ “ tn. We consider the morphism
ϕλ : M Ñ α{1Y which is such that ρ1ϕλ “ π1λ “ m and βρ2ϕλ “
βfπ2λ “ gχπ2λ “ gtn “ n. To prove the uniqueness of such a morph-
ism, suppose that ξ : M Ñ α{1Y is such that ρ1ξ “ m and βρ2ξ “ n.
Then tβρ2ξ “ tn or, equivalently, χsρ2ξ “ tn, from which we get
χπ2σξ “ tn. Since also, π1σξ “ π1ξ “ m, we conclude that λ “ σξ,
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from the universal property of the comma object of pβα, gq. It follows
that ϕλ “ ϕσξ “ ξ;

(C3) consider morphisms c, c1 : B Ñ A, d, d1 : B Ñ V such that βαc ď d,
βαc1 ď d1, c ď c1 and d ď d1. Let b “ xc, dy, b1 “ xc1, d1y be the
induced morphisms from B to α{1Y . With respect to the comma
object diagram 1 2 , we have morphisms c, c1, td, td1 such that βαc ď

gtd, βαc1 ď gtd1, c ď c1 and td ď td1. Thus the induced morphisms
σb, σb1 : B Ñ α{f are such that σb ď σb1. Then b “ ϕσb ď ϕσb1 “ b1.

In the following diagram

α{f
π2 //

ϕ

��

π1

%%

X
χ

//

f

��

U

g

��

α{1Y ρ2

5
//

ρ1
��

σ

OO

Y
β

2
//

s

OO

V

t

OO

A α

4
// Y

β

6
// V,

the bottom rectangle and the total diagram are comma objects, so that the
top rectangle is a 2-pullback (Lemma 2.4).

Next, we take the 2-pullback of β and g to get the following diagram

α{f
π2 //

ϕ

��

π

++

X
χ

//

f

��

xf,χy

$$

U

g

��

P

β1
::

g1

{{
α{1Y ρ2

//

σ

OO

Y
β

//

s

OO

t1

;;

V.

t

OO

Since the whole rectangle is a 2-pullback, the bottom left quadrangle is a
2-pullback; let us call it 7 . The diagram composed by 4 on the bottom and
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7 on top is a comma object diagram (Lemma 2.4). This is the front face in

α{f

π1

��

π2 //

Vαpxf,χyq“1α{f–

!!

X

f

��

xf,χy

��

α{f

π1

��

π // P

g1

��

A

i1

OO

i1

XX

α
// Y ;

s

WW

t1

OO

the left point being pρ1ϕ, σx1A, αyq “ pπ1, i1q. Note that, Vαpxf, χyq “ 1α{f ,
so that xf, χy is an isomorphism by assumption. This proves that 2 is indeed
a 2-pullback.
(ii) ñ (i). Consider an arbitrary morphism α : A Ñ Y and a morphism
γ : pf, sq Ñ pg, tq in PtY pCq. Suppose that Vαpγq is an isomorphism

α{f

π1

��

π2 //

Vαpγq–

!!

X

f

��

γ

��

α{g

ρ1

��

ρ2 // U

g

��

A α
//

j1

OO

i1

XX

Y ;

s

WW

t

OO

here i1 “ x1A, sαy and j1 “ x1A, tαy. The diagram

α{f

ďπ1
��

π2 // X

f

��

γ
//

˚

U

g

��

A

i1

OO

α
// Y

s

OO

1Y
Y

t

OO
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is of the type (2.iii). The whole rectangle is a comma object diagram because
it is the same as

α{f

π1
��

Vαpγq
– // α{g

ďρ1
��

ρ2 // U

g

��

A
1A

A α
// Y,

where the left commutative square is obviously a 2-pullback (see Lemma 2.3).
By assumption ˚ is a 2-pullback; thus γ is an isomorphism.

The horizontal version of the previous result is stated next.

Corollary 2.6. Let C be a finitely complete Ord-enriched category which ad-
mits comma objects and 2-pullbacks. The following statements are equivalent:

(i) Hα : PtY pCq Ñ PtApCq is conservative for any morphism α : AÑ Y .
(ii) In any diagram where the top square 1 and total rectangle are comma

diagrams and the bottom square 2 is commutative

f{α

ď

π2 //

π1
��

A
i2

oo

α1

��

X
f

//

χ

��

Y

β2
��

s
oo

U
g

// V,
t

oo

(fπ1 ď απ2, i2
p1.iiiq
“ xsα, 1Ay, fs “ 1Y , gt “ 1V , βf “ gχ, χs “ tβ),

the bottom square 2 is a 2-pullback.

Corollary 2.7. Let X be a protomodular category. Then any Ord-enrichment
X of X that admits comma objects and 2-pullbacks fulfills the equivalent con-
ditions of Theorem 2.5 and of Corollary 2.6.

Proof : Note that pullbacks coincide with 2-pullbacks in this setting. Consider
a diagram as in Theorem 2.5.(ii). Following its proof above, we deduce that
5 2 is a (2-)pullback. Since 5 is also a (2-)pullback, we conclude that 2 is
a (2-)pullback from protomodularity (Theorem 2.1).

Remark 2.8. If C is a finitely complete Ord-enriched category C which admits
comma objects, then the equivalences of Theorem 2.5 and Corollary 2.6 still
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hold when in the diagrams (ii) we conclude that 2 is a (1-)pullback. Indeed,
in the proof of the implication (i) ñ (ii) in Theorem 2.5, we can take the
pullback of β and g and still conclude that 7 is a 2-pullback. The rest of
that proof is the same. For (ii) ñ (i) in Theorem 2.5, we get that ˚ is a
pullback and can still conclude that γ is an isomorphism.

In order to prove that the remaining condition defining protomodular cat-
egories is equivalent to the other two, the following well-known fact is used:
the conservativeness property of a left exact functor F is equivalent to its
conservativeness on monomorphisms. A functor F is said to be conservative
on monomorphisms if, for every monomorphism f , if F pfq is an isomorph-
ism, then so is f . Any pullback functor α˚ : PtY pXq Ñ PtApXq preserves finite
limits, as soon as the base category X admits pullbacks along split epimorph-
isms. In the enriched context, such a property fails to hold for the comma
objects functors. In fact, given a morphism α : A Ñ Y and the terminal
object p1Y , 1Y q of PtY pCq, the comma object α{1Y does not necessarily give
rise to the terminal object p1A, 1Aq of PtApCq (nor does 1Y {α). Despite this
setback, we still obtain a similar result with respect to the conservativeness
of Vα and Hα.

Proposition 2.9. Let C be a finitely complete Ord-enriched category which
admits comma objects. The following statements are equivalent:

(i) Vα : PtY pCq Ñ PtApCq is conservative, for any morphism α : AÑ Y .
(ii) Vα : PtY pCq Ñ PtApCq is conservative on monomorphisms, for any

morphism α : AÑ Y .

Proof : (i) ñ (ii). Obvious
(ii) ñ (i). Consider an arbitrary morphism α : A Ñ Y and a morphism
γ : pf, sq Ñ pg, tq in PtY pCq. Suppose that Vαpγq is an isomorphism

α{f

π1

��

π2 //

Vαpγq–

!!

X

f

��

γ

��

α{g

ρ1

��

ρ2 // U

g

��

A α
//

j1

OO

i1

XX

Y ;

s

WW

t

OO
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here i1 “ x1A, sαy and j1 “ x1A, tαy. From Lemma 2.4, the top quadrangle is
a 2-pullback. Taking kernel pairs vertically we obtain a diagram where both
downward squares are 2-pullbacks

α{f
π // Eqpγq

γ1

��

γ2

��

α{f π2
// X;

d

OO

here d “ x1X , 1Xy. Combining the 2-pullback with first projections and the
comma object of pα, fq, we get a comma object (Lemma 2.4) which is the
front face in

α{f

π1

��

π2 //

Vαpdq

X

f

��

!!

d

!!

α{f

π1

��

π // Eqpγq
fγ1

��

A α
//

i1

OO

i1

XX

Y.

s

XX

ds

OO

By assumption, the monomorphism d is an isomorphism. This implies that
γ1 “ γ2 and, consequently, γ is a monomorphism. Applying our assumption
again, we conclude that γ is an isomorphism.

Corollary 2.10. Let C be a finitely complete Ord-enriched category which
admits comma objects. The following statements are equivalent:

(i) Hα : PtY pCq Ñ PtApCq is conservative, for any morphism α : AÑ Y .
(ii) Hα : PtY pCq Ñ PtApCq is conservative on monomorphisms, for any

morphism α : AÑ Y .

Thanks to these facts, we get the following:

Theorem 2.11. Let C be a finitely complete Ord-enriched category which
admits comma objects. The following statements are equivalent:

(i) Vα : PtY pCq Ñ PtApCq is conservative, for any morphism α : AÑ Y .
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(ii) for any comma object of the form

α{f
π2 //

π1
��

ď

X

f
��

A

i1

OO

α
// Y,

s

OO

the pair pπ2, sq is jointly extremally epimorphic; here i1
p1.iiq
“ x1A, sαy.

Proof : (i) ñ (ii). Let m be a monomorphism for which the diagram

M
��
m
��

α{f

p
==

π2
// X Y

σ
__

s
oo

commutes. We get the following diagram

α{f

π1

��

p
//

Vαpmq“1α{f

M

fm

��

��

m

��

α{f

π1

��

π2 // X
f

��

A α
//

i1

OO

i1

XX

Y.

s
OO

σ

WW

Note that the top quadrangle is a 2-pullback, so that the back face is a comma
object diagram (Lemma 2.4). Since m is a monomorphism and mpi1 “ π2i1 “
sα “ mσα, it follows that pi1 “ σα. From the assumption we conclude that
m is an isomorphism.
(ii) ñ (i) Conversely, for any morphism α : A Ñ Y , a diagram as above
gives a factorisation of π2 and s through the monomorphism m, which is
then an isomorphism by assumption. This proves that Vα is conservative on
monomorphisms, which is equivalent to being conservative (Proposition 2.9).

Corollary 2.12. Let C be a finitely complete Ord-enriched category which
admits comma objects. The following statements are equivalent:

(i) Hα : PtY pCq Ñ PtApCq is conservative, for any morphism α : AÑ Y .
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(ii) for any comma object of the form

f{α
π2 //

π1
��

ď

A
i2
oo

α
��

X
f
// Y,

s
oo

the pair pπ1, sq is jointly extremally epimorphic; here i2
p1.iiiq
“ xsα, 1Ay.

Having recovered the lax versions of the equivalences in Theorem 2.1 for
Ord-enriched categories, we can now propose the following:

Definition 2.13. A finitely complete Ord-enriched category C which admits
comma objects and 2-pullbacks is called lax protomodular when the comma
object functor Vα is conservative for any morphism α : AÑ Y in C. We say
that C is colax protomodular when Cco is lax protomodular, that is when the
comma object functor Hα is conservative for any morphism α : AÑ Y in C.

Exactly as in the classical case, it is immediate to see that, in a pointed
Ord-enriched category C with comma objects, the conservativeness of all
comma object funtors Vα is equivalent to the conservativeness of the functors
ViA, where iA : 0 Ñ A is the only arrow from the zero object (and the same
holds for the H’s). Then, in the pointed context, C is lax protomodular if
and only if the following lax version of the Split Short Five Lemma holds:

Theorem 2.14. Let C be a pointed finitely complete Ord-enriched category
which admits comma objects and 2-pullbacks. C is lax protomodular if and
only if, given a commutative diagram of split sequences of the form

0{f

α
��

k // X

β
��

f
// A

γ
��

soo

0{f 1
k // X

f 1
// A1,

s1oo

if α and γ are isomorphisms, then β is, too.

A similar result holds for pointed colax protomodular categories.

Remark 2.15. All the results of this section still hold when replacing comma
objects with precomma objects and when replacing 2-pullbacks with (1-
)pullbacks. We use the same notation Vα and Hα for the precomma ob-
ject functors. A finitely complete Ord-enriched category C which admits
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precomma objects is called lax preprotomodular when the precomma object
functor Vα is conservative for any morphism α in C. We say that C is colax
preprotomodular when Cco is lax preprotomodular.

Example 2.16. (1) According to Corollary 2.7, an Ord-enriched protomod-
ular category with comma objects and 2-pullbacks is both lax and
colax protomodular.

(2) If T is the theory of a protomodular variety, then the category CT

of internal T -algebras in C is also protomodular, and so it is both
lax protomodular and colax protomodular, for any compatible Ord-
enrichment which admits 2-pullbacks and comma objects.

This applies in particular to OrdT . We point out, however, that,
for any algebraic theory T which contains a Mal’tsev operation, the
preorder of any internal T -algebra in Ord is symmetric: if X P OrdT

and p : X3 Ñ X is a monotone Mal’tsev operation, then, for x, y P X
with x ď y one obtains that y “ ppx, x, yq ď ppx, y, yq “ x. This is
the case of every theory T of a protomodular variety since it has a
Mal’tsev operation defined by

ppx, y, zq “ θpα1px, yq, . . . , αnpx, yq, zq

(using the operations described in Example 2.2). Therefore, the obvi-
ous Ord-enrichment inherited from Ord – the pointwise Ord-enrichment
– will be also symmetric.

(3) The former example raises the question

Is there a protomodular category with a non-degenerate Ord-enrichment
with comma objects and 2-pullbacks?

(where by degenerate Ord-enrichment we mean one whose hom-sets
preorders are symmetric).

Since the dual of an elementary topos is protomodular, one can more
specifically ask:

Is there an elementary topos with a non-degenerate Ord-enrichment
admitting cocomma objects and 2-pushouts?

We have put this question to Peter Johnstone, who collected some
interesting results on the subject in [11]. Namely:

– The only poset-enrichment of a localic topos over Set is the dis-
crete one.
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– The Ord-enrichment of a topos for which equalizers and exponen-
tial adjunctions are Ord-enriched is degenerate.

Moreover, in [11] an example of a topos with a non-degenerate Ord-
enrichment is presented, but it does not fulfil our conditions since it
does not have cocomma objects.

(4) In the next section we will study the behaviour of OrdAb equipped with
a suitable Ord-enrichment. It is not an example of a (co)lax proto-
modular category since it does not admit comma objects (although
it admits precomma objects). Hence we pose the more general open
question

Is there any lax protomodular or colax protomodular
non-degenerate Ord-enriched category?

3. The 2-category OrdAb of preordered abelian groups
Both the categories Grp of groups and Ab of abelian groups are protomodu-

lar, while OrdGrp and OrdAb are not (see Theorem 4.6 in [9]). In this section
we introduce an enriched preorder structure on morphisms which does work
in favour of lax protomodularity for OrdAb.

We start by analysing possible Ord-enrichments for the category OrdGrp
of preordered groups and monotone homomorphisms. We recall that a pre-
ordered group is a (not necessarily abelian) group pX,`, 0q equipped with a
preorder ď such that the group operation is monotone

x ď y, u ď v ñ x` u ď y ` v,

for any elements x, y, u, v P X; their morphisms are the monotone group
homomorphisms. The preorder of a group pX,`, 0q is completely determined
by its positive cone, which is the submonoid of X, closed under conjugation,
given by its positive elements, PX “ tx P X : 0 ď xu.

In OrdGrp the pointwise preorder on morphisms trivializes; that is, if one
defines, for morphisms f, g : X Ñ Y , f ď g if, for all x P X, fpxq ď gpxq,
then also fp´xq ď gp´xq, and consequently, ď is symmetric. So, instead
we use the pointwise order restricted to positive elements, and define, for
morphisms f, g : X Ñ Y of OrdGrp,

f ď g ô @x P PX , fpxq ď gpxq. (3.i)

It is straightforward to check that (pre)composition preserves the preorder
of OrdGrppX, Y q, for any preordered groups X and Y , and so this defines an
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Ord-enriched category OrdGrp.

OrdGrp does not have precomma objects in general. In order to prove this
assertion first note that, if (1.i) is a comma object in OrdGrp, then C is
isomorphic to XˆZ, as a group, and c1, c2 are the product projections. This
follows easily from the following inequality

pX ˆ Z, 0q
πZ //

πX
��

ď

Z

g

��

X
f

// Y

and the universal properties of products and comma objects. So what re-
mains to be studied is the existence of a positive cone for X ˆZ that makes
(1.i) a comma object. Let Y be a preordered group, y P PY and ϕ : Z Ñ Y
with ϕp1q “ y, where Z is the usual ordered group of integers, and assume
that the comma object of pϕ, 1Y q exists in OrdGrp:

pZˆ Y, P q π2 //

π1
��

ď

Y

1Y
��

Z ϕ
// Y.

Then it is easy to check that p1, yq P P , and so, by conjugation, p1, a` y´aq
belongs also to P , for any a P Y . Therefore y “ pϕπ1qp1, a ` y ´ aq ď
π2p1, a` y ´ aq “ a` y ´ a. Since this inequality is not valid in general, we
conclude that the comma object may not exist. As an example of this failure,
consider the group Y of monotone bijective (and therefore continuous) en-
domaps of the real line y : R Ñ R with the operation given by composition,
ordered by y ď y1 if, for every x P R, ypxq ď y1pxq. Then, for instance, for
y, a : R Ñ R defined by ypxq “ x ` 1 and apxq “ x3, y is positive, since, for
every x, x ď ypxq, but y ę a ˝ y ˝ a´1.

To overcome this absence of precomma objects, we focus on its full subcat-
egory OrdAb of preordered abelian groups. Here the preorder of an abelian
group pX,`, 0q is completely determined by a submonoid of X of its positive
elements, PX “ tx P X : 0 ď xu, since closedness under conjugation comes
for free. We consider in OrdAb the Ord-enrichment inherited from OrdGrp.
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Then OrdAb does not admit comma objects in general, but it admits pre-
comma objects. As for OrdGrp, if (1.i) is a (pre)comma object in OrdAb, then
C is isomorphic to X ˆZ, as a group, and c1, c2 are the product projections
as in the diagram below:

f{g “ pX ˆ Z, Pf{gq

π1
��

π2 //

ď

Z

g
��

X
f

// Y.

(3.ii)

The positive cone of f{g “ X ˆ Z must be

Pf{g “ tpx, zq P PXˆZ : fpxq ď gpzqu.

Indeed, if α : A Ñ X, β : A Ñ Z are such that fα ď gβ, then
xα, βy : AÑ XˆZ is monotone: for every a P A, if a ě 0 then both αpaq ě 0
and βpaq ě 0, and, moreover, fαpaq ď gβpaq, hence xα, βypaq P Pf{g.

To check that (3.ii) is not always a comma object, consider f “ g “ 1Z,
where again Z is the usual ordered group of integers, so that
Pf{g “ tpn,mq P Z ˆ Z ; n ě 0,m ě 0, n ď mu. The homomorphisms
t, t1 : Z Ñ Z ˆ Z, defined by tpnq “ pn, 4nq and t1pnq “ p3n, 5nq for every
n P Z, are monotone and such that π1t ď π1t

1 and π2t ď π2t
1, but t ę t1:

tp1q ď t1p1q would imply p2, 1q “ t1p1q ´ tp1q P Pf{g, which is false.
Note that, in the precomma object above, π2 is split by the morphism

x0, 1Zy : Z Ñ X ˆ Z (as usual), while π1 is not split by the group homo-
morphism x1X , 0y : X 99K X ˆ Z, since it is not monotone (denoted 99K to
emphasize it is not a morphism in OrdAb). Actually, pπ2, x0, 1Zyq is a rali
point: for any px, zq P Pf{g, we get p0, zq ď px, zq, because x P PX ; thus
x0, 1Zyπ2 ď 1f{g.

The following result proves the conservativeness of the vertical precomma
object change-of-base functor with respect to the slice category, which implies
the same property with respect to points. Thus OrdAb is a lax preprotomod-
ular category.

Proposition 3.1. For any morphism α : A Ñ Y in OrdAb, the precomma
object functor Vα : OrdAb{Y Ñ OrdAb{A is conservative.
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Proof : We build the diagram

Aˆ Z

ρ1

��

ρ2 //

Vαpγq“1Aˆγ–

##

Z

g

��

γ

��

x0,1Zy
oo

AˆX

π1

��

π2 // X

f

��

x0,1Xy
oo

A α
// Y

(απ1 ď fπ2, αρ1 ď gρ2, fγ “ g)

where the front and back faces are precomma diagrams. Note that the up-
per trapezoid also commutes with the precomma projection splitings, i.e.
x0, 1Xyγ “ Vαpγqx0, 1Zy. If Vαpγqp“ 1Aˆγq is an isomorphism, then γ is also
an isomorphism. The inverse of γ is given by the composite of morphisms
ρ2Vαpγq

´1x0, 1Xy : X Ñ Z, since

γρ2Vαpγq
´1x0, 1Xy “ π2VαpγqVαpγq

´1x0, 1Xy “ π2x0, 1Xy “ 1X
ρ2Vαpγq

´1x0, 1Xyγ “ ρ2Vαpγq
´1Vαpγqx0, 1Zy “ ρ2x0, 1Zy “ 1Z .

The corresponding horizontal result does not hold for OrdAb, as the next
example shows.

Example 3.2. In the following diagram

pZˆ Z, 0q

1

//

1ZˆZ
��

0oo

��

pZˆ Z, 0ˆ Nq

2

` //

1ZˆZ
��

pZ,Nq

1Z
��

x0,1y
oo

pZˆ Z,Nˆ Nq
` // pZ,Nq,
x0,1y
oo

it is easily checked that both 1 and the outer rectangle are precomma objects.
Indeed the positive cone of Z ˆ Z for both precomma objects is given by
tpz, z1q P Z ˆ Z ; z ě 0, z1 ě 0, z ` z1 ď 0u “ tp0, 0qu. However, 2 is
commutative but it is not a pullback, showing that OrdAb does not satisfy
condition (ii) of Corollary 2.6, that is, OrdAb is not colax preprotomodular.
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With respect to the horizontal precomma object change-of-base functor and
its conservativeness for OrdAb, we can only prove that each Hα is conservative
when applied to rali points. As mentioned above, the top projection of a
precomma object of a pair of morphisms pf : X Ñ Y, g : Z Ñ Y q always
gives rise to a rali point pπ2, x0, 1Zyq. However, taking the precomma object
of pf, gq, when pf, sq is a rali point, gives rise to a point pπ2, xsg, 1Zyq which
is not necessarily rali. For instance, in the precomma object of p1Z, 1Zq,
pπ2, x1Z, 1Zyq is not a rali. So, the functor below goes from rali points to
ordinary points.

Proposition 3.3. For any morphism α : AÑ Y in OrdAb, the functor

Hr
α : PtrY pOrdAbq Ñ PtApOrdAbq

is conservative.

Proof : We build the diagram

Z ˆ A

ρ1

��

ρ2

++

Hr
αpγq“γˆ1A

–
&&

X ˆ A

π1

��

π2 // A

α

��

Z g

++
γ

&&
X

f
// Y

s
oo

t

kk

( fπ1 ď απ2, gρ1 ď αρ2, fγ “ g, γt “ s, sf ď 1X)

where the front and back faces are precomma diagrams. If Hr
αpγqp“ γˆ1Aq is

an isomorphism, then it easily follows that γ is a monomorphism (=injective)
and an epimorphism (=surjective). We cannot proceed as in the previous
proof since the vertical projections of precomma objects need not be split
epimorphisms. To conclude that γ is an isomorphism, it suffices to show that
γ is a regular epimorphism, i.e. that γpPZq Ě PX , which gives γpPZq “ PX .

For x P PX , we get x´ sfpxq P PX , because f is rali, thus px´ sfpxq, 0q P
PXˆA. Since fpx ´ sfpxqq “ 0 ď αp0q, then px ´ sfpxq, 0q P Pf{α. It
follows that ρ1H

r
αpγq

´1px ´ sfpxq, 0q P PZ . We also have tfpxq P PZ . So,
there exists an element z “ ρ1H

r
αpγq

´1px´ sfpxq, 0q ` tfpxq P PZ , such that
γpzq “ x´ sfpxq ` γtfpxq “ x´ sfpxq ` sfpxq “ x.
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Finally one remark that Ord-enriched regularity does not follow from the
corresponding 1-dimensional property. Indeed, as an epireflective subcat-
egory of the regular category OrdGrp (see [9] and [4]), OrdAb is a regular
category in the sense of [2], but OrdAb is not Ord-regular (cf. [5] and [12]),
neither in the case we consider as right factor M of the factorization the
fully faithful morphisms nor the monic and fully faithful morphisms. Indeed,
as we show next, in both cases there is a class of morphisms E such that
pE ,M q is a non-stable orthogonal factorisation system.

Proposition 3.4. Let M (respectively M 1) be the class of (respectively
monic and) fully faithful morphisms in OrdAb and let

E “ th : AÑ B bijective ; for all b P PB, b “ hpa1 ´ aq, for a1, a P PAu, and

E 1 “ th : AÑ B surjective ; for all b P PB, b “ hpa1 ´ aq, for a1, a P PAu.

(1) A morphism f : X Ñ Y in OrdAb belongs to M if, and only if, for
all x, x1 P PX, x ď x1 ô fpxq ď fpx1q; a fully faithful morphism f
belongs to M 1 if, in addition, it is an injective map.

(2) Given a commutative diagram

A

h
��

u // X

f
��

B v
// Y,

(3.iii)

with h P E 1 and f P M 1, there exists a unique morphism d : B Ñ X
such that dh “ u and fd “ v.

(3) Given a commutative diagram (3.iii), with h P E and f P M , there
exists a unique morphism d : B Ñ X such that dh “ u and fd “ v.

(4) Every morphism in OrdAb factors through a morphism in E 1 followed
by a morphism in M 1.

(5) Every morphism in OrdAb factors through a morphism in E followed
by a morphism in M .

(6) pE ,M q and pE 1,M 1q are non-stable factorization systems.

Proof : (1) If f : X Ñ Y is fully faithful and x, x1 P PX are such that
fpxq ď fpx1q, then ϕ, ϕ1 : Z Ñ X defined by ϕp1q “ x and ϕp1q “ x1 are
morphisms in OrdAb such that fϕ ď fϕ1, and so ϕ ď ϕ1, or, equivalently,
x ď x1. Conversely, if for all x, x1 P PX , x ď x1 ô fpxq ď fpx1q and
fg ď fh, for g, h : W Ñ X, then, for every w P PW , fpgpwqq ď fphpwqq and
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so gpwq ď hpwq, that is g ď h.

(2) Given (3.iii) with h P E 1 and f P M 1, since h is surjective and f is in-
jective, we define the homomorphism d : B Ñ X as usual in Ab: dpbq “ upaq
for any a P h´1pbq. Then d is the unique map such that dh “ u and fd “ v.
It remains to show that it is monotone: if b P PB, then b “ hpa1 ´ aq for
some a, a1 P PA, and dpbq “ upa1´ aq. From vpbq “ fpupa1´ aqq P PY , we get
upa1 ´ aq P PX , since f is fully faithful; thus dpbq “ upa1 ´ aq P PX .

(3) An analogous argument shows that morphisms in E are orthogonal to
fully faithful morphisms: given (3.iii) with h P E and f P M , since h is
bijective we define d : B Ñ X by dpbq “ upaq, where a is the unique element
of h´1pbq. Monotonicity of d follows from arguments similar to those used
above.

(4) Every morphism g : Z Ñ Y factors as Z
g1
// pgpZq, P 1q

m // Y , where

P 1 “ ty P PY ; y “ gpz1 ´ zq for z, z1 P PZu, with, by construction, the
corestriction g1 of g in E 1 and the inclusion m in M 1.

(5) Analogously, every morphism g : Z Ñ Y factors as Z
1Z // pZ, P q

g̃
// Y ,

where P “ tz P Z; gpzq P PY and z “ z2´z1 for z1, z2 P PZu, with the identity
1Z in E , and g̃ defined as g, which is fully faithful due to the way P is defined.

(6) Since all these classes are closed under composition with isomorphisms,
we may conclude that both pairs are factorization systems in OrdAb (cf. [1,
Definition 14.1]).

To show that they are not stable, we consider the following pullback

pZ, t0uq 1 //

1
��

pZ,´Nq
1
��

pZ,Nq
1
// pZ,Zq,

where pZ,Nq Ñ pZ,Zq belongs to both E and E 1 but pZ, t0uq Ñ pZ,´Nq
does not belong to either of them.
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Remark 3.5. In [10] the category V -Grp of V -groups and V -homomorphisms,
for a commutative and unital quantale V , was studied. (The reader may
want to give a look at [10], and the subsequent paper [13], to know more on
V -groups.)

Very briefly, we point out that what we have done for OrdAb can be gen-
eralized for the category V -Ab of abelian V -groups and V -homomorphisms,
for a commutative and unital quantale V . The Ord-enrichment in V -Ab
is defined, for V -homomorphisms f, g : pX, aq Ñ pY, bq by f ď g if, for all
x P X, ap0, xq ď bpfpxq, gpxqq in V ; as for OrdAb, we denote this Ord-enriched
category by V-Ab. This category has precomma objects: given morphisms
f : pX, aq Ñ pY, bq and g : pZ, cq Ñ pY, bq in V-Ab, the precomma object is
defined as in the following diagram

pX ˆ Z, dq

π1
��

π2 //

ď

pZ, cq

g
��

pX, aq
f

// pY, bq,

where dppx, zq, px1, z1qq “ apx, x1q ^ cpz, z1q ^ bpfpx1 ´ xq, gpz1 ´ zqq, for every
px, zq, px1, z1q P X ˆZ. Since d makes X ˆZ a V -category and it is invariant
under shifting, pX ˆ Z, dq is a V -group by [10, Proposition 3.1]. Moreover,
from the definition of d it follows that the projections π1 and π2 are V -
homomorphisms, and that fπ1 ď gπ2. The universal property of this diagram
is easily checked, that is, conditions (C1) and (C2) are satisfied.

Now it is clear that the inclusion

OrdAb // V -Ab

becomes Ord-enriched and preserves precomma objects, and so we may con-
clude directly that V-Ab does not have comma objects in general.

From the failure of lax preprotomodularity for OrdAbco it follows immedi-
ately that V-Abco is not lax preprotomodular. Still, using exactly the argu-
ments of the proof of Proposition 3.1 and the description of precomma objects
above, it is straightforward to conclude that V-Ab is lax preprotomodular.
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[1] J. Adámek, H. Herrlich, G.E. Strecker, Abstract and Concrete Categories: The Joy of Cats,

Reprint of the 1990 original (Wiley, New York 1990). Repr. Theory Appl. Categ. 17 (2006)
1–507.

[2] M. Barr, P.A. Grillet and D.H. van Osdol, Exact categories and categories of sheaves, Lecture
Notes in Math. 236, Springer-Verlag (1971).

[3] F. Borceux and D. Bourn, Mal’cev, protomodular, homological and semi-abelian categories,
Math. Appl., vol. 566, Kluwer Acad. Publ., 2004.

[4] F. Borceux, M.M. Clementino, M. Gran and L. Sousa, Protolocalisations of homological cat-
egories, J. Pure Appl. Algebra 212 (2008) 1898–1927.

[5] J. Bourke and R. Garner, Two-dimensional regularity and exactness, J. Pure Appl. Algebra
218 (2014) 1346–1371.

[6] D. Bourn, Normalization equivalence, kernel equivalence and affine categories, Springer Lec-
ture Notes in Math. 1488 (1991) 43-62.

[7] D. Bourn, Mal’cev categories and fibration of pointed objects, Appl. Categ. Structures 4 (1996),
307–327.

[8] D. Bourn and G. Janelidze, Characterization of protomodular varieties of universal algebras,
Theory Appl. Categ. 11 (2003) 143–147.

[9] M.M. Clementino, N. Martins-Ferreira, A. Montoli, On the categorical behaviour of preordered
groups, J. Pure Appl. Algebra 223 (2019) 4226–4245.

[10] M.M. Clementino and A. Montoli, On the categorical behaviour of V -groups, J. Pure Appl.
Algebra 225 (2021) 106550.

[11] P.T. Johnstone, Notes on Ord-enrichment of Toposes, manuscript, June 2022.
[12] A. Kurz and J. Velebil, Quasivarieties and varieties of ordered algebras: regularity and exact-

ness, Math. Struct. Comput. Sci. 27 (2017) 1153–1194.
[13] A. Michel, Torsion theories and coverings of V -groups, Appl. Categ. Strutures 30 (2022)

659–684.
[14] V. Aravantinos-Sotiropoulos, The exact completion for regular categories enriched in posets,

J. Pure Appl. Algebra 226 (2022) 106885.

Maria Manuel Clementino
CMUC, Department of Mathematics, University of Coimbra, 3001-501 Coimbra, Portugal

E-mail address: mmc@mat.uc.pt

Andrea Montoli
Dipartimento di Matematica “Federigo Enriques”, Università degli Studi di Milano, Via
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