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Universidade de Coimbra
Preprint Number 22–23

SOME PROPERTIES OF CONJUNCTIVITY

(SUBFITNESS) IN GENERALIZED SETTINGS

M. ANDREW MOSHIER, JORGE PICADO AND ALEŠ PULTR

Abstract: The property of subfitness used in point-free topology (roughly speak-
ing) to replace the slightly stronger T1-separation, appeared (as disjunctivity) al-
ready in the pioneering Wallman’s [16], then practically disappeared to reappear
again (conjunctivity, subfitness), until it was in the recent decades recognized as
an utmost important condition playing a very special role. Recently, it was also
observed that this property (or its dual) appeared independently in general poset
setting (e.g. as separativity in connection with forcing). In a recent paper [2],
Delzell, Ighedo and Madden discussed it in the context of semilattices. In this
article we discuss it on the background of the systems of meet-sets (subsets closed
under existing infima) in posets of various generality (semilattices, lattices, distribu-
tive lattices, complete lattices) and present parallels of some localic (frame) facts,
including a generalized variant of fitness.
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Introduction

In his pioneering article [16] Wallman, using lattice theoretic techniques
to prove topological results, needed a point-free replacement for the T1-
separation axiom. His disjunctivity axiom did the job excellently. In its
dual form, as conjunctivity1, it can be formulated as follows

if a ≤ b then there is a c such that a ∨ c = 1 6= b ∨ c.
During the early development of point-free topology it was sort of remem-
bered ([14, 15, 8]), but not really paid much attention. Then, in another
pioneering article, Isbell’s [4], it reappeared as subfitness: in this, equivalent,
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represent spaces modelling the behavior of the lattice of open sets.
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condition one required that each open subobject was a join of closed subob-
jects; this property came together with fitness (where each closed subobject
was an intersection of open ones). Since its categorical properties were not
satisfactory (while those of fitness were) it was neglected again, until it turned
out in the recent decades that it was in fact a very important property with
lots of consequences (see, e.g., [10, 12, 1, 3, 13]).

From poset perspective, frames, in the context of which all this has hap-
pened, are very special order structures. But conjunctivity appeared in quite
general partial orders (slightly hidden, and in a dual form again) in connec-
tion with forcing as separativity ([7]): a poset(X,≤) is separative if x � y
implies there is some z ≤ x that is incompatible with y; equivalently,

if a ≤ b then there is a c ≤ a such that {b, c} has no lower
bound.

So one can translate conjunctivity in frames L (or more generally in bounded
join-semilattices) to the condition that Lop r {1} is separative.

Thus, conjunctivity (or, subfitness) is a property the importance of which
reaches far beyond the realm of frame (locale) theory. In the recent article
[2], Delzell, Ighedo and Madden present a thorough study of this concept in
the context of join semilattices. The article also indicates the importance of
the study of this and related conditions relaxing the frame structure. Besides
treating quite general questions, it points out the interest of discussing the
particular situation in the Joyal-Tierney category of

∨
-lattices and the role

of meet-closed subsets as subobjects (see [5]): here, the generalization does
not seem to be very radical, but the absence of the Heyting structure is in
fact quite essential.

The background of our study is the system M(L) of meet-sets (≡ subsets
closed under existing infima) in a poset L which in various contexts is treated
in various generality (semilattice, lattice or complete lattice, distributive lat-
tice). M(L) is easily seen to be a complete lattice. Particularly important
meet-sets are the ↑a = {x | x ≥ a} extending the role of the closed sublo-
cales in frames. Already in the quite general context they associate subfitness
(conjunctivity) with (co)density: a nice subobject that meets each non-trivial
↑a is the whole of L.

The closed meet-set ↑a has in M(L) a complement that is also a pseu-
docomplement. This complement is not very interesting, but if our poset
is a (semi)lattice, one has a natural extension of the concepts of open and
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semiopen sublocales, the open resp. semiopen meet-sets o(a) resp so(a), and
the question naturally arises what their relation to the ↑a is. For a com-
plete lattice one has that L is subfit iff so(a) are complements of ↑a and,
moreover, they are under this condition also supplements of ↑a. M(L) is
not distributive and complements are not unique; here we have specified the
interval of complements between the already mentioned pseudocomplement
and this so(a). The last is of a particular interest, also because, if we add
the condition of (plain) distributivity we obtain the so(a) coinciding with the
open o(a).

In the last section we briefly discuss the stronger condition of fitness. The
extension of this property makes sense in any lattice. In distributive lattices
it always implies subfitness, and is characterized by every ↑a being an in-
tersection of open meet-sets. In the complete case, furthermore, hereditary
subfitness implies fitness.

1. Preliminaries

1.1. In a poset (partially ordered set) (X,≤) we write

↑a for {x | x ≥ a} and ↑A = {x | ∃ a ∈ A, x ≥ a}.

The subsets A ⊆ (X,≤) such that ↑A = A will be referred to as up-sets.

We will mostly deal with complete lattices, lattices or semilattices and
denote the joins (suprema) resp. meets (infima) by

∨
A or

∨
a∈A a resp.

∧
A

or
∧

a∈A a (a∨ b resp. a∧ b in the finite case); this notation will be used also
in the general case, where we will always mention that we speak on existing
meets resp. joins.

1.1.1. The least resp. largest element (bottom or top, if it exists) will be
denoted by 0 resp. 1.

A pseudocomplement of a is the largest element x such that x ∧ a = 0. It
may not exist, but if it does then it is uniquely determined; it is then denoted
by a∗. Similarly, the smallest element such that x∨a = 1, if it exists, is called
the supplement of a and denoted by a#.

A complement of a in a lattice is a b such that a ∧ b = 0 and a ∨ b = 1. In
general it is not uniquely determined. In distributive lattices it is (of course
it does not have to exist), but our context will be typically non-distributive.

1.2. As usual, subsets S, T ⊆ (X,≤) are cofinal if for each s ∈ S there is a
t ∈ T such that s ≤ t, and for each t ∈ T there is an s ∈ S such that t ≤ s.
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1.3. Separativeness and conjunctivity. In connection with forcing ([7])
one uses the concept of a separative poset as such that a � b implies that
there is a c ≤ a such that c and b have no lower bound. This formulation
makes sense only in posets without bottom. It is perhaps more transparent
if we formally add 0. Then the formulation transforms to

a � b ⇒ ∃c, 0 6= c ≤ a and inf{b, c} = 0. (sep)

In the special case of (complete) lattices it appeared already in 1938 in Wall-
man’s pioneering article [16] as disjunctivity

a � b ⇒ ∃c, 0 6= c ≤ a and b ∧ c = 0. (disj)

It was used there as a (slightly weaker) replacement of the T1 axiom in the
point-free treatment of topology.

Thus, separativeness is just disjunctivity generalized for posets without
special properties. We will use the term (or, rather, its dual variant, co-
separativity) just to emphasize we have in mind the general context.

1.3.1. Conjunctivity. Disjunctivity was introduced in view of the lattice
of closed sets. During the development of point-free topology it turned out
that the perspective of the lattice of open sets, dual to the previous one, is
more natural, and the concept was replaced by the dual

a � b ⇒ ∃c, b ≤ c 6= 1 and a ∨ c = 1, (conj)

called conjunctivity.2 Because of another pioneering article [4], where it was
introduced independently (in a different form, and as a weaker variant of
another property, fitness), another term, namely subfitness took hold. We
will use “conjunctivity” and “subfitness” interchangeably.

The natural extension in general posets,

a � b ⇒ ∃c, 1 6= c ≥ b and sup{a, c} = 1 (co-sep)

will be referred to as co-separability (in (conj) we have a formally added top).

2It is usually presented in the equivalent form

a � b ⇒ ∃c, b ∨ c 6= 1 and a ∨ c = 1

(replace c by c∨ b). The less suggestive form we use here has, however, some technical advantages,
and the relation with the general concept is more straightforward.
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1.4. Adjunction. Monotone maps f : X → Y and g : Y → X between
posets are (Galois) adjoint, f to the left and g to the right, if

f(x) ≤ y ⇐⇒ x ≤ g(y),

equivalently, if fg ≤ id and gf ≥ id. It is standard that

(1) left adjoints preserve all existing suprema and right adjoints preserve
all existing infima,

(2) and if X, Y are complete lattices then each f : X → Y preserving all
suprema is a left adjoint (has a right adjoint), and each g : Y → X
preserving all infima is a right adjoint.

1.5. Frames. A frame is a complete lattice satisfying

(
∨
A) ∧ b =

∨
{a ∧ b | a ∈ A}

for all A ⊆ L and b ∈ L (which – recall 1.4 – induces a Heyting structure
a ∧ b ≤ c iff a ≤ b → c) and frame homomorphisms preserve all joins and
finite meets.

Frames will be in the background of our geometric intuition in investigating
more general posets,

In particular the treatment of special subobjects is motivated by the be-
havior of sublocales, generalized subspaces of frames viewed as spaces.
See e.g. [6, 11].

2. Topology of posets

2.1. Our study is motivated by the general properties of conjunctivity (dual
separativity, subfitness) and related properties. It plays a fundamental geo-
metric role in the context of frames; it is only natural to consider the behavior
of subsets extending the generalized subspaces, in particular the topologically
most important ones: closed and open sublocales. The context will vary in
generality: it will concern

• general posets, or semilattices,
• general lattices,
• distributive lattices,
• complete lattices, and
• distributive complete lattices.

For technical reasons it will be of advantage to assume the existence of max-
imal element (denoted by 1).
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2.2. Subobjects. Motivated by sublocales in frames and the natural gen-
eralization of the category of frames in the category of sup-lattices ([5]) we
will be interested in subsets closed under meets. That is, we will speak about

(1) meet-sets (or
∧

-sets), subsets S ⊆ (X,≤) closed under all existing
meets, and about

(2) adjoint-meet-sets S ⊆ (X,≤) such that the embedding j : S ⊆ X has a
left adjoint.

In case of complete lattices, meet-sets are automatically adjoint-meet-sets.

2.2.1. The complete lattice M(L). Meet-sets of a poset L constitute a
complete lattice

M(L)

with meets resp. joins∧
i

Si =
⋂
i

Si resp.
∨
i

Si = {
∧
M, if it exists | M ⊆

⋃
i

Si}.

In particular we have the void join (bottom element)

O = {1}.

2.3. Closed subobjects. Extending the concept of closed sublocales of
frames we introduce the closed meet-sets ↑a. Note that whenever the infimum∧

i ai in L makes sense we have⋂
i

↑ai = ↑
∧
i

ai.

Thus, in case of a complete lattice L the meets of closed subobjects inM(L)
are always closed, in analogy with the behavior of closed subsets in topolog-
ical spaces.

The lattice M(L) is not distributive, but we have

2.3.1. Proposition. For any system of meet-sets Si in a complete lattice we
have

↑a ∩
∨
i

Si =
∨
i

(↑a ∩ Si).

Proof : ⊇ is trivial. Now let x ∈ ↑a ∩
∨

i Si then x ≥ a and x =
∧
xi with

xi ∈ Si. Then for all i, xi ≥ x ≥ a, hence xi ∈ ↑a∩Si, and x ∈
∨

i(↑a∩Si).
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2.4. Open subobjects. The definition of an open sublocale of á frame can
be extended to a general lattice L. Namely, we have the open subobject
associated with a ∈ L,

o(a) = {u | x ∧ a ≤ u ⇒ x ≤ u}. (open)

(It is a meet-set: if ui ∈ o(a) and u =
∧

i ui exists and if x ∧ a ≤ u then
x ∧ a ≤ ui for all i, hence x ≤ ui for all i, and finally x ≤ u.)

2.4.1. Lemma. 1. o(a ∧ b) = o(a) ∩ o(b).
2. ↑a ∩ o(a) = O.
3. In a distributive lattice,

a ∨ c = 1 iff ↑a ⊆ o(c).

Proof : 1: If a ≤ b and u ∈ o(a) then obviously u ∈ o(b). Hence o(−)
is monotone and we have the inclusion ⊆. Now let u ∈ o(a) ∩ o(b). If
x ∧ a ∧ b ≤ u then x ∧ a ≤ u because u ∈ o(b) and then x ≤ u because it is
also in o(a).

2: If u ≥ a and x ∧ a ≤ u ⇒ x ≤ u consider x = 1. Since 1 ∧ a ≤ u, we
have 1 ≤ u.

3: If ↑a ⊆ o(c) then ↑(a∨ c) = ↑a∩ ↑c ⊆ o(c)∩ ↑c = {1}. Hence a∨ c = 1.
If a∨c = 1 and u ≥ a, if x∧c ≤ u then x = x∧ (a∨c) ≤ a∨ (x∨c) ≤ u.

2.5. (Technical) “supplement” sets, and semiopen subobjects. Set

s(a) = {x | x ∨ a = 1}
and its meet-extension, the semiopen subobject (cf. [10])

so(a) = {inf M if it exists | M ⊆ s(a)}.

2.5.1. Lemma. 1. ↑a ∩ so(a) = O.
2. a ∨ c = 1 iff ↑a ⊆ so(c) iff ↑a ⊆ s(c).
3. In a distributive lattice, so(a) ⊆ o(a).

Proof : 1: Let inf M ≥ a and M ⊆ s(a). Then for every m ∈ M , m ≥ a and
m ∨ a = 1, hence m = 1.

2: Compare with 2.4.1.3; here, distributivity is not needed. If ↑a ⊆ so(c)
then

↑(a ∨ c) = ↑a ∩ ↑c ⊆ so(c) ∩ ↑c = O

and hence a ∨ c = 1; if ↑a ⊆ s(c) then, of course, ↑a ⊆ so(c).
If a ∨ c = 1 then a ∈ s(c) and since s(c) is an up-set, ↑a ⊆ s(c) ⊆ so(c).
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3: Obviously o(a) is closed under meets, hence it suffices to prove that
s(a) ⊆ o(a). If x∨a = 1 and y∧a ≤ x then y = y∧(x∨a) ≤ (y∧x)∨x = x.

2.6. Note. The lattice M(L) is not distributive and hence complements
need not be uniquely defined. In particular, ↑a has the trivial pseudocom-
plement (L r↑a) ∪ {1} which is by far not unique (and also not very in-
teresting). In the conjunctive case there is another, more interesting one,
namely so(a) (which happens to be a supplement: quite a bizzare situation,
distinct pseudocomplement and supplement, both of them complements). In
the distributive conjunctive case, one has a satisfactory open complement.

3. Some simple facts about separativeness
3.1. The proposition below will be formulated in the original setting, that
is, without the formally added 1,

a � b ⇒ ∃c ≥ b such that {a, c} has no upper bound (co-sep)

(the cofinality statements will be simpler).

Note the obvious

3.1.1. Observation. The subset ↑a of any co-separative poset resp. con-
junctive join-semilattice is co-separative resp. conjunctive.

3.2. The left adjoint of the embedding j : S ⊆ X of an adjoint-meet-set
S ⊆ L will be denoted by

νS : L→ S.

Note that for a meet-set in a complete lattice we have

νS(a) =
∧
{s ∈ S | a ≤ s}.

3.3. Proposition. In the following statements about (X,≤) we have (1)⇒(2)⇒(3)⇒(4)⇒(5).

(1) (X,≤) is co-separative.
(2) An adjoint-meet-set S is cofinal in (X,≤) only if S = X.
(3) If S ( X for an adjoint-meet-set S ⊆ (X,≤) then there is a c such that
↑c ∩ S = ∅.

(4) If ↑a 6= X then there is a b such that ↑b ∩ ↑a = ∅.
(5) If {a, x} has an upper bound for every x then a is the bottom of (X,≤).

Proof : (1)⇒(2): Let x ∈ X r S. Then x < νS(x) and hence there is a c,
c ≥ x such that there is no upper bound of{ν(x), c}. By cofinality take a
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t ∈ S such that t ≥ c. Then t ≤ x and hence t ≥ ν(x). Consequently,
t ≥ ν(x), c, a contradiction.

(2)⇒(3): Since S 6= X, S is not cofinal in X and hence there is a c such
that s � c for all s with s ∈ S. Thus, ↑c ∩ S = ∅.

(3)⇒(4): Apply (3) for S = ↑a.

(4)⇒(5): (5) is a translation of (4).

3.4. Notes. 1. In frames, (1) is subfitness and (5) is weak subfitness ([10]),
hence we may also speak of weak conjunctivity. Thus the corresponding
statement on meet-semilattices can be formulated as follows.

We have the implications (1)⇒(2)⇒(3)⇒(4)⇒(5) in

(1) L is conjunctive.
(2) For every adjoint-meet-set S ⊆ L, S r {0} is cofinal in L r {1} only if

S = L.
(3) If S ( L for an adjoint-meet-set S ⊆ L then there is a c 6= 1 such that
↑c ∩ S = {0}.

(4) If ↑a 6= L then there is a c 6= 1 such that ↑c ∩ ↑a = {0}.
(5) L is weakly conjunctive.

2. Again, conjunctivity is the same as weak conjunctivity of all the closed
meet-sets.

3. (2) corresponds to the characterization of subfitness as the property
that a congruence trivial on 1 is equality.

4. For frames one has (3)⇒(1), hence the equivalence of the first three
statements. In the next section we will see that this (and more) holds already
for meet-sets in complete lattices (extending the facts about sublocales in
frames).

3.5. A stronger variant of separativity. Let us add a short note on a
stronger variant of separativity which shows that the study of properties akin
to conjunctivity (subfitness) in a general setting is profitable. This property
resp. its dual does not make sense in (co)frames (not even in distributive
lattices – see 3.5.1 below) but applied in the general order context it has a
very useful application (see [9]).
The separativity from 1.3 in the form

a /∈ ↓b ⇒ ∃c, 0 6= c ≤ a such that ↓b ∩ ↓c = {0} (sep)
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was in [9] naturally strengthened, replacing the one-point set {b} by a finite
one, to

for every finite B ⊆ X,

a /∈ ↓B ⇒ ∃c, 0 6= c ≤ a such that ↓B ∩ ↓c = {0} (Sep)

obtaining a characterization of the posets (X,≤) making certain spaces based
on (X,≤) subfit (which in turn was used to construct spaces with desired
properties). For meet-semilattices L with a bottom it makes

for every finite B ⊆ L,

(∀b ∈ B, a � b) ⇒ ∃c, 0 6= c ≤ a s. t. (∀b ∈ B, b ∧ c = 0).
(Sep)

3.5.1. Observation. No distributive lattice L satisfies (Sep), not even with
just two-element sets B.

Proof : First, L cannot be non-trivial linear, because then it would not be
even separative. Thus, there have to be b1, b2 ∈ L such that bi 6= b = b1 ∨ b2,
that is, b � bi and we have a 0 < c ≤ b such that bi ∧ c = 0. Then, however,
c = b ∧ c = (b1 ∨ b2) ∧ c = (b1 ∧ c) ∨ (b2 ∨ c) = 0, a contradiction.

4. Conjunctivity in the category
∨

Lat

4.1. Category
∨

Lat and meet-sets. Recall from [5] the category of sup-
lattices ∨

Lat

with objects complete lattices and morphisms join-preserving maps.

4.2. The background of the geometric intuition: frames. We can
view the category

∨
Lat as an extension of the category Frm of frames.

The natural subobjects of frames are the sublocales, that are the subsets
closed under meets satisfying, moreover, the requirement that s ∈ S implies
that x → s ∈ S for any x.3 Among them, a particular role is played by the
closed and open ones,

c(a) = ↑a and o(a) = {x | a→ x = x} = {a→ x | x ∈ L}
(which precisely correspond to closed resp. open subspaces in the spatial
context) and which we imitate in our more general reasoning.

3The sublocales of a frame L constitute a co-frame S(L) (hence in particular, a distributive
lattice), with meets and joins defined by the formulas (∗) as above again; thus S(L) is a complete
sublattice of M(L).



CONJUNCTIVITY (SUBFITNESS) IN GENERALIZED SETTINGS 11

4.2.1. Thus we have in particular the closed and open meet-sets ↑a, o(a) =
{u | x ∧ a ≤ u ⇒ x ≤ u} and so(a) as in Section 2, and we have (see 2.2.1,
2.4.1, 2.4.2)⋂

i

↑ai = ↑
∨
i

ai, o(a) ∩ o(b) = o(a ∧ b), ↑a ∩ o(a) = O

and in the distributive case also

↑a ∨ ↑b = ↑(a ∧ b) and so(a) ⊆ o(a).

4.3. Proposition. so(a) =
∨
{↑b | ↑b ∩ ↑a = O} =

∨
{↑b | b ∨ a = 1}.

Proof : Of course ↑b ∩ ↑a = O iff b ∨ a = 1. Since s(a) is an up-set, it is the
union

⋃
{↑b | b ∨ a = 1}. Use the definition of join in M(L).

4.4. Proposition. Let S ∈M(L) such that S ∨ ↑a = L. Then so(a) ⊆ S.

Proof : If for S ∈ M(L), S ∨ ↑a = L then for each x ∈ L there are sx ∈ S
and bx ≥ a such that x = bx ∧ sx. Take a

∧
M with M ⊆ s(a). Then for

each m ∈M ,

1 = a ∨ (sm ∧ bm) and hence 1 = a ∨ bm = bm

so that m = sm ∈ S, and finally
∧
M ∈ S.

4.5. Proposition. The following are equivalent for any complete lattice L.

(1) L is conjunctive.
(2) For every meet-set S ⊆ L, S r {1} is cofinal in Lr {1} only if S = L.
(3) If for a meet-set S ⊆ L, S ( L then there is a c 6= 1 such that ↑c ∩ S =
{0}.

(4) For every a ∈ L, ↑a ∨ so(a) = L.

Proof : (1)⇒(2)⇒(3) are in 3.3.

(3)⇒(4): Suppose ↑c ∩ (↑a ∨ so(a)) = O. Then

↑c ∩ ↑a = ↑(a ∨ c) = O

and hence c ∨ a = 0. Considering M = {c} we observe that c ∈ ↑c ∩ so(a);
since also ↑c∩ so(a) = O, c = 1 and hence ↑a∨ so(a) cannot be smaller than
L.

(4)⇒(1): Let a � b. Then so(a) * so(b): indeed, if so(a) ⊆ so(b) we have
by (4) and 3.2,

↑b = ↑b ∩ (↑a ∨ so(a)) = (↑b ∩ ↑a) ∨ (↑b ∩ so(a)) = ↑b ∩ ↑a



12 M. A. MOSHIER, J. PICADO AND A. PULTR

and hence a ≤ b. Hence {x | x ∨ a} * {x | x ∨ b} and there is an x with
x ∨ a = 1 and x ∨ b 6= 1. Set c = x ∨ b.
4.5.1. From 2.4.1. and 2.5.1.3 we now immediately obtain

Corollary. In a distributive complete lattice, o(a) is a complement of ↑a.

4.6. Lemma. Let L be a distributive complete lattice and let c ∈ L. If the
only s ≥ c that is in o(u) is the top then c ≥ u.

Proof : If the only s ≥ c that is in o(u) is the top then ↑c ∩ o(u) = O. By
4.5.1 in the current text, ↑u ∨ o(u) = L and hence

↑c = ↑c ∩ (↑u ∨ o(u)) = ↑c ∩ ↑u = ↑(c ∨ u),

hence c = c ∨ u.

4.6.1. Proposition. Let a distributive complete lattice L be subfit and let
u ∈ L. Then each o(u) ⊆ L is subfit.

Proof : Let a, b ∈ o(u) and a � b. Then a ∧ u � b and hence there is a c ∈ L
such that (a ∧ u) ∨ c = 1 and b ≤ c 6= 1. Then

(a ∨ c) ∧ (u ∨ c) = 1 and hence in particular u ∨ c = 1.

There has to be a c′ ∈ o(u) with c ≤ c′ 6= 1 since otherwise we would have
by Lemma 4.6 that c = c ∨ u = 1.

4.6.2. Corollary. Let a distributive complete lattice L be subfit and let u ∈ L.
Then each o(u) ⊆ L is a join of closed subobjects (that is, o(u) = so(u)).

(Else so(u) =
∨
{↑b | b ∨ a = 1} ( o(u). Use 4.5(3).)

4.6.3. Remark. It follows from 4.6.2, 4.5.1 and 4.5 that a distributive com-
plete L is conjunctive iff so(u) = o(u) for every u ∈ L.

4.7. Dense and codense maps. Let h : L → M be a sup-lattice homo-
morphism.

4.7.1. Observations. 1. In the following statements about h and its right
adjoint h∗ we have (1)⇔(2)⇔(3) and (4)⇔(5)⇔(6).

(1) h(1) = 1.
(2) h∗(y) = 1 ⇒ y = 1.
(3) h∗[M r {1}] = h∗[M ]r {1}.
(4) h∗(0) = 0.



CONJUNCTIVITY (SUBFITNESS) IN GENERALIZED SETTINGS 13

(5) h(x) = 0 ⇒ x = 0.
(6) h[Lr {0}] = h[L]r {0}.

2. If (1) holds then h∗[M r {1}] is cofinal in Lr {1} iff h(x) = 1 ⇒ x = 1.

3. If (4) holds then h[Lr {0}] is down cofinal in M r {0} iff h∗(y) = 0 ⇒
y = 0.

(⇒: Let y > 0. By the assumption, y ≥ h(x) > 0 for some x ∈ L. Hence
h∗(y) ≥ h∗h(x) ≥ x > 0.
⇐: Let y > 0 in M . Then h∗(y) > 0 and hh∗(y) > 0, hence y ≥ hh∗(y) ∈

h[Lr {0}] = h[L]r {0}.)

4.7.2. h is a dense map if satisfies property (4) above and h[L r {0}] is
down cofinal in M r {0}. Dually, h is codense if (1) holds and h∗[M r {1}]
is cofinal in Lr {1}.

4.7.3. Proposition. A complete lattice L is subfit if and only if each codense
sup-lattice morphism h : L→M is injective.

Proof : ⇒: Let h : L→M be a codense map with L subfit. Then h∗[M ] is a
meet-set of L and by 4.5 h∗ is onto, that is, h is injective.
⇐: Let S ⊆ L be a meet-set such that Sr{1} is cofinal in Lr{1}. By 4.5, it
suffices to show that S = L. But νS : L→ S, the left adjoint to the inclusion
j : S ⊆ L, is a codense sup-lattice homomorphism. Hence it is one-one, that
is, S = j[S] = L.

5. Fitness
5.1. Let us rewrite the standard first order formula for frame fitness avoid-
ing the explicit use of the Heyting operation.
L is fit iff

a � b ⇒ ∃c, a ∨ c = 1 and c→ b � b,

or, equivalently,

(a ∨ c = 1 ⇒ c→ b ≤ b) ⇒ a ≤ b.

The expression c→ b ≤ b, that is,

x ≤ c→ b ⇒ x ≤ b,

can be rewritten as

x ∧ c ≤ b ⇒ x ≤ b.
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Thus, fitness for (bounded) lattices can be defined by the formula

(a ∨ c = 1 ⇒ (x ∧ c ≤ b ⇒ x ≤ b)) ⇒ a ≤ b, (5.1.1)

or, equivalently,

a � b ⇒ ∃ c, x, a ∨ c = 1 & x ∧ c ≤ b & x � c. (5.1.2)

Using the definition of an open meet-set we finally obtain

(a ∨ c = 1 ⇒ b ∈ o(c)) ⇒ a ≤ b. (fit)

5.1.1. Note. Recall 2.4.3. In a distributive complete lattice the last can be
rewritten as

(↑a ∈ o(c) ⇒ b ∈ o(c)) ⇒ a ≤ b. (fit)

Compare it with the formula for subfitness in the distributive case (2.3.4 used
again):

(↑a ⊆ o(c) ⇒ ↑b ⊆ o(c)) ⇒ a ≤ b. (sfit)

Look at the subtle difference between {b} and ↑b in the first implication of
the two definitions.

Also note that the formula (fit) throws some light on the connection be-
tween the first-order and second order formula for fitness: it is just the first
order formula rewritten, but it somehow includes “closeds as intersections of
opens” one in a straightforward way.

5.2. Proposition. In a (bounded) distributive lattice, fitness implies subfit-
ness.

Proof : Let L be subfit and let a ≤ b. Then there is a d and x such that
a ∨ d = 1, x ∧ d ≤ b and x � b. Set c = b ∨ d. Then c 6= 1 since otherwise
x = x ∧ c = (x ∧ b) ∨ (x ∧ d) ≤ b.

5.3. Fitness and subfitness of meet-sets. .

Proposition. Let L be a distributive complete lattice. If each of its meet-sets
S ⊆ L is subfit then L is fit.

Proof : Let L not be fit. Then there are a � b such that

a ∨ c = 1 ⇒ (x ∧ c ≤ b ⇒ x ≤ b).

Set
S = {y | a ∨ c = 1 ⇒ (x ∧ c ≤ y ⇒ x ≤ y)}.

Obviously S is a meet-set, and b ∈ S.
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Further, we have
↑a ⊆ S. (∗)

Indeed, if y ≥ a and a ∨ c = 1 then y ∨ c = 1 and if x ∧ c ≤ y then
x = x ∧ (y ∨ c) = (x ∧ y) ∨ (x ∧ c) ≤ y and hence y ∈ S.

We will prove that S is not subfit. Suppose it is. Obviously, b ∈ S and by
(∗) also a ∈ S. There has to be a 1 6= c such that the join of a and c in S is
1; by (∗) again, however, this join coincides with a ∨ c = 1 in L. Now since
c ∈ S and a ∨ c = 1, we have

x ∧ c ≤ c ⇒ x ≤ c.

Choosing x = 1 we obtain a contradiction c = 1.

5.4. Theorem. A distributive lattice L is fit iff each ↑a is a meet of open
objects.

Proof : I. Let L be fit. Then trivially

↑a ⊆
⋂
{o(c) | ↑a ⊆ o(c)} =

⋂
{o(c) | a ∨ c = 1}

and if u ∈
⋂
{o(c) | a ∨ c = 1} then

a ∨ c = 1 ⇒ u ∈ o(c)

and by 3, u ∈ ↑a.
II. Let ↑a =

⋃
i o(ci). Then

⋂
{o(c) | a ∨ c = 1} ⊆ ↑a and if a ∨ c = 1

implies b ∈ o(c) then b ∈
⋂
{o(c) | a ∨ c = 1} and hence b ≥ a.

5.5. Corollary. In a fit distributive complete lattice,

↑a =
⋂
{so(c) | ↑a ⊆ so(c)} =

⋂
{so(c) | a ∨ c = 1}.

(By 2.4.1, if a ∨ c = 1, ↑a ⊆ so(c) ⊆ o(c).)
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