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1. Introduction
In this paper we see symbolic dynamical systems, codes, and free profi-

nite monoids in interplay. The following introductory paragraphs provide
a first picture of how these fields come together in this work. Several de-
tails are deferred to later sections or to the bibliography. We indicate the
books [LM95, Fog02] as references for symbolic dynamics; the book [BPR10]
for codes; and the book [ACKP20b] for an introduction to free profinite
monoids and their connections with codes and symbolic dynamics.

When dealing with a subshift S ⊆ AZ, we are often led to decode S into a
new symbolic dynamical system S ′ ⊆ XZ. This decoding is quite often better
understood in terms of sets of finite words. From that viewpoint, we decode
the language F ⊆ A∗ of blocks of elements of S into a language F ′ ⊆ X∗.
An important example is the following: for a positive integer n, and for
Z = An, let F ′ = F ∩ Z∗; then F ′ is the language of blocks of a subshift,
called the n-th higher power of S, over the finite alphabet X = F ∩ Z. Two
subshifts are said to be eventually conjugate if for all sufficiently large n
their n-th higher powers are conjugate. This notion received great attention
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since introduced by Williams, who conjectured that for finite type subshifts
eventual conjugacy coincides with conjugacy [Wil73]. This conjecture was
later disproved by Kim and Roush [KR92, KR99].

We now look at the following key notion in the algebraic theory of codes:
a code Z over the alphabet A is complete if every element of A∗ is the prefix
of some element of Z∗ and the suffix of some element of Z∗. The set Z = An

is an example of a complete bifix code. The 2012 seminal paper [BDFP+12]
prompted a research line giving center stage to the following operation: take a
recurrent subset F of A∗ (that is, F is the language of blocks of an irreducible
subshift of AZ), and a complete bifix code Z, and investigate the properties
of the intersection X = F ∩ Z. For example, in [BDFP+12] it is shown that
X is finite if F is uniformly recurrent (that is, if F is the language of blocks
of a minimal subshift of AZ). Since Z is a code, an element of F ∩ Z∗ can
be seen uniquely as an element of the free monoid over the finite alphabet
X = F ∩ Z, thus making F ∩ Z∗ the language of a symbolic dynamical
system over the alphabet X. The language F ∩ Z∗ is then said to be a
complete bifix decoding of F . In general, the hypothesis that F is uniformly
recurrent does not imply that F ∩Z∗ is recurrent (over the alphabet X), even
in the case where Z = An. One of the main results of [BDFD+15c] states
that if F is a uniformly recurrent dendric language (a class of languages
that includes the famous Sturmian languages and whose precise definition
we recall in Section 3), then every complete bifix decoding of F is also a
uniformly recurrent dendric language. It turns out that in the proof of that
result, one of the most “hairy points” (to borrow the words used by Perrin
in his DLT 2018 survey [Per18]) is showing that the complete bifix decoding
of a uniformly recurrent dendric language is indeed uniformly recurrent.

The application of the free profinite monoid within the line of research
inaugurated by Berstel et al. in the aforementioned paper [BDFP+12] was
first made in [KP17, ACKP20a], in the study of the group of a complete bifix
code. That “profinite” approach is centered around the notion of F -charged
code, a notion whose precise definition involves a maximal subgroup of the
free profinite monoid depending on the recurrent language F . In this paper
we use that approach to significantly extend the property that all complete
bifix decodings of uniformly recurrent dendric languages are also uniformly
recurrent (the aforesaid “hairy point”, for which this paper gives therefore a
new proof). More concretely: we show that the decoding of any uniformly
recurrent language F by an F -charged rational complete bifix code is always
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uniformly recurrent (Theorem 4.5). A similar general result concerning the
preservation of recurrence is obtained in Theorem 4.6.

We now say some more words about the maximal subgroup of the free
profinite monoid briefly mentioned in the previous paragraph. Let S be an
irreducible subshift of AZ. The Schützenberger group of S, denoted G(S), is
a profinite group, introduced by Almeida in [Alm05b], naturally located as a
maximal subgroup of the free profinite monoid over A, with the elements of
G(S) being certain limits of blocks of elements of S. The invariance of G(S)
under conjugacy was first proved in [Cos06]. As an application of our main
result about complete bifix decodings of recurrent languages, applied to the
special case of bifix codes of the form Z = An, we show that G(S) is an
invariant of eventual conjugacy (Theorem 10.10). In [CS21] it is shown that
G(S) is invariant under flow equivalence, a relation coarser than conjugacy.
It’s known that eventual conjugacy of irreducible subshifts of finite type
implies flow equivalence (this is a corollary of the classification of irreducible
subshifts of finite type up to flow equivalence [Fra84, PS75, BF77], as the
reader may check when reading the book of Lind and Marcus [LM95], namely
its Sections 3.4 and 13.6, or when reading Boyle’s expository article [Boy02]).
It is an open question as to whether this implication holds for all subshifts
of finite type.∗ For the whole class of irreducible subshifts, it is unclear when
the implication holds.

Since their introduction, the groups of the form G(S) contributed signifi-
cantly to the study of the structure of free profinite monoids. In [AV06] it
is shown that G(S) is a free procyclic group if S is periodic. The main re-
sult of [CS11] states that if S is a nonperiodic irreducible sofic subshift, then
G(S) is a free profinite group with rank ℵ0; interestingly, the invariance under
conjugacy of G(S) was used in the proof. The case of minimal nonperiodic
subshifts has a much more rich landscape, far from being fully understood.
When S is minimal, then G(S) may be a free profinite group or not. For
example, G(S) is a free profinite group of rank the size of the alphabet when
S is dendric [AC16], but if S is the Thüe-Morse subshift then G(S) is not
free [AC13]. See [GO21, GO22] for criteria helping to decide if G(S) is free
or not, when S is defined by a primitive substitution ϕ. These criteria are
associated to finite algebraic invariants of G(S) that may be easily computed

∗The implication for general subshifts of finite type was stated without proof as a ”difficult
result” in Boyle’s 1997 Temuco lectures [Boy00, Section 3.7.9]. The author withdraws the claim
now [Boy22], as he has not been able to recover or produce a proof.
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from the matrix associated to ϕ (cf. comments at the end of [GO22, Section
4.4]). We now know that these algebraic invariants are invariants of eventual
conjugacy of the dynamical system S.

Finally, we mention that our proof of the invariance under eventual con-
jugacy of G(S) allows, with minimal adaptations, a generalization involving
relatively free profinite monoids (Theorem 10.12).

2. Subshifts, free profinite monoids, and connections be-
tween them

Along this paper, all alphabets are assumed to be nonempty finite sets.

2.1. Subshifts. Consider an alphabet A. A subset F of the free monoid A∗

is said to be factorial if it is closed under taking factors, and is said to be
prolongable if for all u ∈ F there are a, b ∈ A such that au and ub belong
to F .

Let x = (xi)i∈Z ∈ AZ. A word of the form xi · · · xi+n, with i ∈ Z and n ∈ N,
is a block of x. We also allow the empty word to be a block of x. We denote
by B(x) the set of blocks of x. Consider in AZ the product topology, with A
having the discrete topology. Since we are assuming A finite, the space AZ is
compact, by Tychonoff’s theorem. (The Hausdorff property is being included
in the definition of compact space.) Consider the shift map σA : AZ → AZ,
given by σA((xi)i∈Z) = (xi+1)i∈Z. A symbolic dynamical system, or subshift,
of AZ is a nonempty closed subspace S of AZ such that σA(S) = S. Given
F ⊆ A∗, let SF = {x ∈ AZ | B(x) ⊆ F}. The mapping F 7→ SF is a
bijection from the set of nonempty factorial prolongable languages of A∗

to the set of subshifts of AZ, whose inverse maps a subshift S ⊆ AZ to
the language B(S) =

⋃
x∈S B(x). In view of this, we say that a nonempty

factorial prolongable language is a subshift language.
Let F be a subshift language of A∗. One says that F is recurrent (over

the alphabet A) when for every u, v ∈ F there is w ∈ F such that uwv ∈ F .
Also, F is uniformly recurrent (over A) when, for every u ∈ F , there is an
integer N such that u is a factor of every word of F with length at least
N . Every uniformly recurrent language is recurrent. These definitions have
dynamical meaning: a subshift S has a dense positive forward orbit (one says
that such a subshift is irreducible) if and only if B(S) is recurrent; and S is
a minimal subshift for the inclusion (equivalently, every orbit in S is dense
in S) if and only if B(S) is uniformly recurrent.
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We refer to the books [LM95, Fog02] for information about subshifts. The
first book is more focused on subshifts whose language of blocks is rational,
the sofic subshifts (which include the finite type subshifts already mentioned
at the introduction of this paper), while in the second book we find extensive
information about a special class of minimal subshifts, the primitive substitu-
tive subshifts. The two books complement each other, as minimal subshifts
and irreducible sofic subshifts have in common only the periodic subshifts.
Primitive substitutive subshifts may be defined as follows. Let ϕ be an en-
domorphism of A∗, where the finite set A has at least two elements. If there
is a positive integer n such that for every a, b ∈ A, the letter b is a factor
of ϕn(a), then ϕ is called a primitive substitution; in that case the set Fϕ
of factors of words of the form ϕk(a), with k ∈ N and a ∈ A, is indeed a
uniformly recurrent language.

2.2. Profinite monoids and their Green’s relations. For books about
profinite monoids see e.g. [RS09], [ACKP20b], and [RZ10] for profinite groups.
For the sake of fixing terminology and notation, we recall some basic defini-
tions and results. We begin with the Green quasi-orders in a monoid M : for
every x, y ∈M , we have

• x ≤JM y if and only if y is a factor of x (that is, if and only if
x ∈MyM);
• x ≤RM y if and only if y is a prefix of x (that is, if and only if x ∈ yM);
• x ≤LM y if and only if y is a suffix of x (that is, if and only if x ∈My).

The corresponding induced Green’s equivalence relations are JM , RM and
LM . We also consider the intersection HM = RM ∩ LM . The subscript M
in KM may be dropped, for K ∈ {J ,R,L,H}. An HM -class H contains an
idempotent if and only if it is a subgroup of M (that is, a subsemigroup of M
with a group structure), and in fact every subgroup of M is contained in an
HM -class, for which reason such HM -classes are referred to as the maximal
subgroups of M .

A compact monoid is a monoid endowed with a compact topology for which
the multiplication is continuous. If M is a compact monoid, then M is a
stable monoid, meaning that ≤RM ∩JM = RM and ≤LM ∩JM = LM . In
a compact monoid M , all Green’s relations are closed, and so in particular
maximal subgroups are closed subgroups.

A profinite monoid is an inverse limit of finite monoids in the category of
compact monoids (we view finite monoids as compact monoids). All closed
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subgroups of a profinite monoid are profinite groups, that is, inverse limits
of finite groups.

Let M be a profinite monoid. For every x ∈ M and k ∈ Z, the sequence
(xn!+k)n≥|k| converges to an element of M denoted xω+k, and taking k = 0

we get the idempotent xω = limxn!. An element x in a monoid M is regular
if x ∈ xMx. For K ∈ {J ,R,L}, a KM -class contains a regular element if
and only if it contains only regular elements, if and only if it contains some
idempotent. A KM -class with regular elements is called a regular KM -class.
All maximal subgroups contained in a regular JM -class J are isomorphic
profinite groups, and so they can be identified as the same profinite group,
referred to as the Schützenberger group of J .

2.3. Free profinite monoids. In the following lines, we mostly follow the
notation and approach of [ACKP20b].

If u, v are distinct elements of the free monoid A∗, then there is some ho-
momorphism ϕ : A∗ → N onto a finite monoid N satisfying ϕ(u) 6= ϕ(v).
Let r(u, v) be the smallest possible cardinal for such a monoid N . Con-

sider the completion Â∗ of A∗ under the metric d defined, when u 6= v, by

d(u, v) = 2−r(u,v). The free monoid A∗ embeds as a topological subspace of Â∗.
Moreover, the monoid structure of A∗ extends uniquely to a monoid struc-

ture on Â∗, making Â∗ a compact monoid. In fact, Â∗ is a profinite monoid,
known as the free profinite monoid generated by A because of the following
universal property: for every map ϕ : A → M into a profinite monoid M ,

there is a unique continuous homomorphism ϕ̂ : Â∗ →M extending ϕ.

We view the elements of Â∗ as generalizations of words, for which reason

each element of Â∗ is called a pseudoword over A. The elements of A∗ are

isolated points in Â∗, and they are the only isolated points there, as A∗ is

dense in Â∗. Each element of Â∗ \ A∗ is said to be an infinite pseudoword,

while each word in A∗ is a finite pseudoword. The set Â∗ \ A∗ is an ideal of

Â∗.
We may also consider profinite semigroups, mutatis mutandis. It turns out

that the free profinite semigroup generated by A, denoted Â+, is (isomorphic)

to Â∗ \ {ε}, where ε is the empty word.
The next theorem gives a hint for why free profinite monoids are important.
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Theorem 2.1 (cf. [Alm95, Theorem 3.6.1]). A language L ⊆ A∗ is rational

if and only if its topological closure L in Â∗ is open, if and only if L = K∩A∗
for some clopen subset K of Â∗.

We next refer to some properties of pseudowords necessary along the pa-
per. We begin with a cancellation property going back to [Alm95, Exercise
10.2.10]. A recent proof can be found in [ACKP20b, Solution to Exercise
4.20].

Proposition 2.2. Let N be a positive integer. If u, v ∈ A∗ have length N

and x, y ∈ Â∗ are such that xu = yv or ux = vy, then x = y and u = v.

Therefore, for every N ∈ N, each infinite pseudoword x of Â∗ has a unique
prefix and a unique suffix of length N . In particular, taking N = 1, every
pseudoword which is not the empty word has a unique “first letter” and a
unique “last letter”.

For the sake of simplicity, we may write KA instead of K
Â∗

, whenever K is
one of Green’s relations R,L,J ,H.

Corollary 2.3. Let u be a regular element of Â∗. If the factorization u = vs
is such that s ∈ A∗, then u RA v.

Proof : Let z ∈ Â∗ be such that u = uzu. From u = vs = uzvs and Proposi-
tion 2.2 we get v = uzv, thus u RA v.

Corollary 2.4. Suppose that yx is an idempotent in Â∗, with y ∈ A∗. Then

xy is an idempotent of Â∗ which is JA-equivalent to yx.

Proof : From yx = yxyx and Proposition 2.2 we get x = xyx. Multiplying by
y on the left of both sides of x = xyx, we conclude that xy is idempotent.

Remark 2.5. If x, y are arbitrary elements of a monoid M such that xy is
idempotent, then (yx)2 is idempotent, but in general yx may not be idem-
potent.

Extending what we do for subsets of A∗, we say that a subset K of Â∗

is factorial if it contains the factors of elements of K; that it is prolongable
if for every u ∈ K there are a, b ∈ A such that au and ub ∈ K; and that
K is recurrent if it is factorial, strictly contains the set {ε}, and u, v ∈
K implies the existence of some w ∈ Â∗ such that uwv ∈ K (note that
K is prolongable if K is recurrent). For a proof of the next proposition,
see [ACKP20b, Proposition 5.6.1].
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Proposition 2.6. Let F be a subset of A∗. If F is factorial/prolongable/recurrent

subset of A∗, then F is a factorial/prolongable/recurrent subset of Â∗, respec-
tively.

Let K be a nonempty closed subset of Â∗. Since the relation ≤JA is topo-

logically closed in Â∗ × Â∗ and Â∗ is a compact space, every ≤JA-chain of
elements of K has a lower bound in K, and so, by Zorn’s lemma, the set K
contains ≤JA-minimal elements (that is, elements of K that are minimal for
the restriction of ≤JA to K).

Remark 2.7. For every nonempty closed subset K of Â∗, every element of
K is a factor of a ≤JA-minimal element of K: indeed, if u ∈ K, then the set
Ku = {v ∈ K | v ≤JA u} is itself nonempty and closed, and so it contains
≤JA-minimal elements, which are clearly ≤JA-minimal elements of K.

For a nonempty factorial language F ⊆ A∗, we denote by JA(F ) the set

of ≤JA-minimal elements of F ⊆ Â∗. Note that JA(F ) is contained in F
and is a union of JA-classes, since F is factorial (cf. Proposition 2.6). If the

alphabets A,B satisfy A ⊆ B, then we see Â∗ as a closed submonoid of B̂∗,
and under that perspective we have JA(F ) = JB(F ). Sometimes it will be
convenient to take the smallest alphabet A for which F is a language of A∗.
For a language F ⊆ B∗ containing nonempty words, we refer to the subset
A ⊆ B of letters that are factors of some element of F as the alphabet of F .

If the language F is recurrent over the alphabet A, then JA(F ) is a regular
JA-class [ACKP20b, Exercise 5.25]. If F is uniformly recurrent, then JA(F )
is actually ≤J -maximal among regular J -classes, as seen next. An infinite

pseudoword u in Â∗ is a J -maximal infinite pseudoword if u <JA v implies
v ∈ A∗.
Theorem 2.8. If F ⊆ A∗ is uniformly recurrent, then F = F ∪ JA(F ).
Moreover, the mapping F 7→ JA(F ) is a bijection from the set of uniformly
recurrent languages of A∗ onto the set of JA-classes of JA-maximal infinite

pseudowords of Â∗.

Theorem 2.8 is from [Alm05a]. A proof can be found in [ACKP20b, Propo-
sitions 5.6.12 and 5.6.13].

3. Codes
A code over the alphabet A is a nonempty subset X of A+ that freely gener-

ates a submonoid of A∗. For example, we have the prefix codes (respectively,
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suffix codes), that is, nonempty subsets X of A+ with no two elements u, v
of X such that u is a prefix (respectively, suffix) of v. A bifix code is a code
both prefix and suffix.

For dealing with the topological closure in Â∗ of a rational code X ⊆ A+,
the following proposition is of great help.

Proposition 3.1 ([ACKP20a, Proposition 2.21]). Let X be a rational code

contained in A+. In what follows, u, v, w are arbitrary pseudowords in Â∗.
If X is a code, then the implication

u, vw, uv, w ∈ X∗ =⇒ v ∈ X∗ (3.1)

holds. Moreover, if X is a prefix code, then

u, uv ∈ X∗ =⇒ v ∈ X∗ (3.2)

also holds.

3.1. Complete codes. Consider a language F ⊆ A∗. A subset X of A+ is
right F -complete if every element of F is a prefix of an element of X∗. A
prefix code X contained in F is an F -maximal prefix code if whenever Y is
a prefix code with X ⊆ Y ⊆ F , one has Y = X. Combining the statements
of [BDFP+12, Propositions 3.3.1 and 3.3.2]) we get the following.

Proposition 3.2. Let F ⊆ A∗ be a factorial language and let X be a prefix
code contained in F . Then X is an F -maximal prefix code if and only if it
is right F -complete.

Example 3.3. The Fibonnaci language over {a, b} is the uniformly recurrent
language F = Fϕ induced by the primitive substitution ϕ (the Fibonnaci
substitution) given by ϕ(a) = ab and ϕ(b) = a. The prefix code X = {a, ba}
is right F -complete.

Of course, one has dual definitions of left F -complete set, F -maximal suffix
code, and the corresponding counterpart of Proposition 3.2.

A code X contained in F is F -complete when it is both right F -complete
and left F -complete. A bifix code X contained in the language F ⊆ A∗ is
an F -maximal bifix code if whenever Y is a bifix code with X ⊆ Y ⊆ F , one
has Y = X. It turns out that if F is recurrent, then the rational F -maximal
bifix codes are precisely the rational F -complete bifix codes, as seen next.

Theorem 3.4. Let F be a recurrent language, and let X be a rational bifix
code contained in F . Then the following conditions are equivalent:
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(1) X is an F -maximal bifix code;
(2) X is left F -complete;
(3) X is right F -complete;
(4) X is F -complete.

Theorem 3.4 is from the article [BDFP+12, Theorem 4.2.2]. In that paper
it was assumed more generally that the bifix code X is F -thin, a property
that is satisfied when X is rational (cf. [ACKP20a, Proposition 2.8]).

When it is clear which alphabet A we are talking about, when F = A∗

we may drop the “F -” in the previous definitions, writing simply “maximal
prefix code”, “complete code”, etc..

A group code is a code Z with alphabet A for which the syntactic monoid
of Z∗ is a finite group.† Every group code is a rational maximal bifix code,
see for example [BDFP+12, Proposition 6.1.5].

Example 3.5. For every positive integer n, the language An ⊆ A+ is a group
code.

There is a close connection between complete and F -complete codes.

Theorem 3.6 (cf. [BDFP+12, Theorems 4.2.11 and 4.4.3]). Consider a re-
current language F ⊆ A∗. If Z is a rational complete bifix code of A∗, then
Z ∩ F is an F -complete bifix code. Moreover, if F is uniformly recurrent,
then Z ∩ F is finite.

Remark 3.7. Assume that F ⊆ A∗ is recurrent. By [BPR10, Theorem
6.6.1], every rational bifix code X ⊆ A+ is contained in a rational complete
bifix code Z ⊆ A+. For such Z, the bifix code Z ∩ F is F -complete by
Theorem 3.6, thus an F -maximal bifix code by Theorem 3.4. Therefore, if
X is a rational F -complete bifix code, then X = Z ∩ F for some rational
complete bifix code Z. This fact is a sort of converse to Theorem 3.6.

For L ⊆ A∗, let ηL be the syntactic homomorphism from A∗ onto the
syntactic monoid M(L) of L. If L is rational, then, as M(L) is then finite,

we may consider the unique continuous homomorphism η̂L : Â∗ → M(L)
extending ηL. In this paper we take advantage of the following fact.

†The definition of group code in the book [BPR10] is more relaxed. We are following the
definition of group code employed in the seminal paper [BDFP+12]; the same definition is used in
other sources that we cite, such as [ACKP20a, ACKP20b].
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Proposition 3.8. Let F ⊆ A∗. Suppose that X is a rational F -complete

bifix code. If w is an element of F ⊆ Â∗ such that η̂X∗(w) is idempotent,
then w ∈ X∗.

A proof of Proposition 3.8 can be found in [ACKP20b, Solution to Exer-
cise 8.16].‡

3.2. Charged codes. Consider a recurrent language F ⊆ A∗. Since JA(F )

is a regular J -class of Â∗, it contains maximal subgroups, which are all iso-
morphic profinite groups. Let Z ⊆ A+ be a rational complete bifix code.
We say that Z is F -charged if for every maximal subgroup K ⊆ JA(F ) the
image η̂Z∗(K) is a maximal subgroup contained in the minimum ideal of
M(Z∗) (the minimum ideal is the J -class containing all ≤J -minimal ele-
ments). We also say that the rational code X ⊆ A+ is F -complete F -charged
if it is F -complete and there is an F -charged bifix code Z ⊆ A+ such that
X = Z ∩ F .

As a motivation for our main results, we exhibit until the end of this section
examples of F -charged group codes.

We recall some basic notions of profinite group theory, available in [RZ10].
Let H be a formation of finite groups, i.e. a class of finite groups closed
under taking quotients and finite subdirect products, and containing some
nontrivial group. A pro-H group is an inverse limit of groups from H, with
onto connecting morphisms. The class of A-generated pro-H groups has a
free object F̂H(A), the free pro-H group generated by A. If H has nontrivial

groups, then A embeds as a generating subset of the profinite group F̂H(A).

Denote pH the continuous onto homomorphism Â∗ → F̂H(A) that fixes the
elements of A.

Let us say that a recurrent language F with alphabet A is H-charging if
for every maximal subgroup K of JA(F ) (equivalently, for some maximal

subgroup K of JA(F )) the equality pH(K) = F̂H(A) holds. Let us also say
that a code Z is an H-code if its syntactic monoid M(Z∗) belongs to H.

Proposition 3.9. Let F ⊆ A∗ be an H-charging recurrent language. Then
every H-code Z ⊆ A+ is F -charged.

Proof : By the universal property of F̂H(A), the hypothesis M(Z∗) ∈ H im-

plies that η̂Z∗ : Â∗ →M(Z∗) factorizes as η̂Z∗ = η̄Z∗ ◦pH, for some continuous

‡In the statement of [ACKP20b, Exercise 8.16] it is only implicit that the code X is rational.
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onto homomorphism η̄Z∗ : F̂H(A) → M(Z∗). Therefore, if K is a maximal

subgroup of Â∗ contained in JA(F ), then η̂Z∗(K) = η̄Z∗(F̂H(A)) = M(Z∗).

We denote by G the formation of all finite groups. The pro-G groups are
the profinite groups, and the G-codes are the group codes.

Example 3.10. The dendric languages, also known as tree languages, were
introduced in [BDFD+15b]. Their definition is as follows. The extension
graph of a word w in a language F ⊆ A∗ is the bipartite graph GF (w) where
vertices are partitioned into disjoint copies 1⊗ LF (w) and RF (w)⊗ 1 of the
sets LF (w) = {a ∈ A | aw ∈ F} and RF (w) = {a ∈ A | wa ∈ F}, and where
an edge from 1⊗a to b⊗1 is a pair (a, b) ∈ A×A such that awb ∈ F . The set F
is dendric (respectively, connected) if GF (w) is a tree (respectively, connected
graph) for every w ∈ F . In particular, every dendric language is connected.
It turns out that every uniformly recurrent connected language is G-charging,
a property shown in [ACKP20a, Theorem 2.19], basically repeating the proof
in [AC16] for the dendric case.

For exhibiting another meaningful class of charged codes, it is convenient
to introduce some more material about substitutions. Let ϕ be a primitive
substitution over the alphabet A. Let us say that ϕ is stable if there is k ∈ N
such that, for all a, b ∈ A, all factors of length two of ϕk(ab) belong to Fϕ
(equivalently, if x is the last letter of ϕk(a) and y is the first letter of ϕk(b),
then xy ∈ Fϕ).

Example 3.11. The Fibonnaci substitution (Example 3.3) is stable, since
we have ϕ2({a, b}2) ⊆ Fϕ.

We proceed to give in the next lemma a “profinite” characterization of
stable primitive substitutions, which is the characterization we need. We

denote by ϕ̂ the unique continuous endomorphism of Â∗ extending the en-
domorphism ϕ : A∗ → A∗. The monoid of continuous endomorphisms of a
finitely generated profinite monoid is itself a profinite monoid for the point-
wise topology (see [ACKP20b, Sections 3.12 and 3.15] for information about
this result first obtained by Hunter [Hun83]). In particular, the idempotent

continuous idempotent endomorphism ϕ̂ω : Â∗ → Â∗ in the following lemma
makes sense.

Lemma 3.12. A primitive substitution ϕ : A∗ → A∗ is stable if and only if
ϕ̂ω(A+) is contained in J(Fϕ).
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Proof : Suppose ϕ is stable. Let u ∈ A+. We show by induction on the length
of u that ϕ̂ω(u) ∈ J(Fϕ). The base case u ∈ A holds for every primitive
substitution, not necessarily stable ([Alm05a, Theorem 3.7], cf. [ACKP20b,
Section 5.6]).

Proceeding with the inductive step, assume that ϕ̂ω(u) ∈ J(Fϕ). Let b ∈ A.
To show that ϕ̂ω(ub) ∈ J(Fϕ), we use the following criterion: an infinite

pseudoword w ∈ Â∗ belongs to J(Fϕ) if and only if every finite factor of w
belongs to Fϕ ([Alm05a, Corollary 2.8], cf. [ACKP20b, Section 5.6.9]). Take
a finite factor v of ϕ̂ω(ub). Then v is a finite factor of ϕ̂ω(u), or a finite
factor of ϕ̂ω(b), or, if a is the last letter of u, the concatenation of a finite
suffix of ϕ̂ω(a) with a finite prefix of ϕ̂ω(b), as words are placed in products
of pseudowords as in the case of products of finite words (cf. [ACKP20b,
Example 4.4.19]).

We claim that v ∈ Fϕ. If v ∈ ϕ̂ω(u) or v ∈ ϕ̂ω(a), then, by the induction
hypothesis, v is a factor of an element of J(Fϕ). Since the set Fϕ is factorial
and J(Fϕ) ⊆ Fϕ (cf. Proposition 2.6), we immediately obtain v ∈ Fϕ.

It remains to look at the case where v is the concatenation of a finite suffix
of ϕ̂ω(a) with a finite prefix of ϕ̂ω(b). Since ϕ is stable, there is k ∈ N such
that if x is the last letter of ϕk(a) and y is the first letter of ϕk(b), then
xy ∈ Fϕ. Note that ϕω−k(x) is an infinite suffix of ϕω−k(ϕk(a)) = ϕω(a),
and likewise ϕω−k(y) is a infinite prefix of ϕω(b). Therefore, v is a factor of
ϕω−k(xy). As ϕ(Fϕ) ⊆ Fϕ and since xy ∈ Fϕ, we know that ϕω−k(xy) ∈ Fϕ,
and so v ∈ Fϕ, as Fϕ is factorial.

Hence, in all cases, v ∈ Fϕ. We have thus shown that all finite factors
of ϕω(ub) belong to Fϕ, which we already mentioned is the same as having
ϕω(ub) ∈ J(Fϕ). This concludes the inductive proof of the “only if” part of
the statement.

Conversely, suppose ϕ̂ω(A+) ⊆ J(Fϕ). Take a, b ∈ A. Let x and y re-
spectively be the last letter of ϕω(a) and the first letter of ϕω(b). Since Fϕ
is factorial and xy is a factor of ϕω(ab), it follows from our hypothesis that

xy ∈ Fϕ. Because ϕn!(a) → ϕ̂ω(a) and Â∗x is clopen, x is a suffix of ϕn!(a)
for all sufficiently large n. Similarly, y is a prefix of ϕn!(b) for all sufficiently
large n. As xy ∈ Fϕ, this shows that every factor of length two of ϕn!(ab)
belongs to Fϕ for all sufficiently large n and all a, b ∈ A. This establishes
that ϕ is stable.
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A substitution ϕ over the alphabet A is said to be proper if there are
b, c ∈ A such that ϕ(A) ⊆ bA∗ ∩ A∗c. If ϕ is a proper primitive substitu-
tion, then ϕ̂ω(A+) is contained in a maximal subgroup of J(Fϕ) by [AV06,
Proposition 5.3] (and in fact it is a maximal subgroup if ϕ is nonperiodic,
by [AC13, Lemma 6.3]). Therefore, every proper primitive substitution is
stable, according to Lemma 3.12.

For a formation H of finite groups, denote ϕ̂H the unique continuous en-
domorphism of F̂H(A) such that ϕ̂H(a) = pH(ϕ(a)) for every a ∈ A. We say
that ϕ is H-invertible if ϕ̂H is an automorphism, a condition that is equiva-
lent to have (ϕ̂H)ω equal to the identity on F̂H(A) (cf. [ACKP20b, Proposition
3.7.4]).

Proposition 3.13. Let H be a formation of finite groups. Suppose that ϕ is
an H-invertible stable primitive substitution. Then Fϕ is H-charging.

Proof : First notice that, for every u ∈ Â+, the projection pH(uω) is idem-

potent and thus is the neutral element of the group F̂H(A). Hence, we have

pH(Â+) = F̂H(A).

By Lemma 3.12, the set T = ϕ̂ω(Â+) is a closed subsemigroup of Â∗ that is
contained in the regular JA-class J(Fϕ). Therefore, T is a completely simple
profinite semigroup (i.e., JT is the universal relation on T ).

Since the equality pH ◦ ϕ̂ = ϕ̂H ◦ pH holds, so does pH ◦ ϕ̂k = ϕ̂kH ◦ pH for
every k ∈ N, whence pH ◦ ϕ̂ω = ϕ̂ωH ◦ pH. It follows that

pH(T ) = pH(ϕ̂ω(Â+)) = (ϕ̂H)ω(pH(Â+)) = (ϕ̂H)ω(F̂H(A)) = F̂H(A),

where the last equality holds because ϕ is H-invertible. Since pH(T ) = F̂H(A)
and T is completely simple, there is a closed subgroup N contained in T
such that pH(N) = F̂H(A) (cf. [RS09, Lemma 4.6.10]). Therefore, if K is the

maximal subgroup of J(Fϕ) containing N , then pH(K) = F̂H(A).

The subgroup of F̂G(A) generated by A is the A-generated free group
FG(A). It is well known that a substitution ϕ : A∗ → A∗ is G-invertible
if and only if the endomorphism of FG(A) extending ϕ has an inverse, if and
only if FG(A) is generated by ϕ(A) [ACKP20b, Proposition 4.6.8]. We use
this in the next example.
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Example 3.14. Consider the alphabet A = {0, 1, 2}, and let ϕ be the proper
(and thus stable) primitive substitution ϕ over A given by

ϕ(0) = 012, ϕ(1) = 0122, ϕ(2) = 0121012.

Then ϕ is G-invertible. Therefore, by Propositions 3.9 and 3.13, every group
code over the alphabet A is Fϕ-charged.

The language Fϕ is not connected: for example, the extension graph of
the letter 1 is disconnected. Indeed, Fϕ ∩ A1A = {012, 210}, since for every
a ∈ A the letter 1 is a factor of ϕ(a) which is neither a prefix nor a suffix of
ϕ(a), and so the elements of Fϕ ∩A1A must be factors of some of the words
ϕ(0), ϕ(1), ϕ(2).

The matrix Mϕ associated to a substitution ϕ : A∗ → A∗ is the matrix
A × A where each entry (a, b) is the number of occurrences of a in ϕ(b).
For a set π of prime numbers, the formation of finite nilpotent π-groups is
denoted Gnil,π. For the next example we take advantage of the fact that ϕ is
Gnil,π-invertible if and only if detMϕ 6≡ 0 (mod p) for every p ∈ π (see the
proof of [Alm02, Corollary 5.3]).

Example 3.15. Let ϕ be the proper primitive substitution over A = {0, 1}
such that ϕ(0) = 01 and ϕ(1) = 0001. As detMϕ = −2, if π is the set of
odd primes, then ϕ is Gnil,π-invertible. Hence, by Propositions 3.9 and 3.13,
every group code Z ⊆ A+ such that the finite group M(Z∗) is nilpotent of
odd order is Fϕ-charged.

In contrast, the group code Z = A2 is not Fϕ-charged: indeed, M(Z∗) =
Z/2Z, and there is a maximal subgroup K contained in the image of ϕ̂

by [AC13, Lemma 6.3], thus η̂Z∗(ϕ̂(Â∗)) = 0 = η̂Z∗(K) as ϕ(0), ϕ(1) have
even length.

Several other examples of F -charged complete bifix codes Z are given
in [ACKP20a], in which Z may not be a group code, or F is recurrent but
not uniformly recurrent.

4. Decoding of languages
From hereon, X is a finite code contained in A+. A coding morphism for

X is an injective homomorphism βX : B∗ → A∗ such that βX(B) = X, for
some alphabet B.
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Example 4.1. Take A = {a, b}, X = A2, and consider the coding morphism
βX : B∗ → A∗ given by βX(z) = ab and βX(t) = ba, where B = {z, t}. Let F
be the set of factors of (ab)∗. Then β−1

X (F ) = z∗ ∪ t∗.

The study of coding morphisms reduces to the case where B = X and βX
is the inclusion X∗ → A∗, since such assumption reflects a mere relabeling of
letters. If βX is indeed the inclusion X∗ → A∗, then β−1

X (F ) is the intersection
F ∩X∗. The set F ∩X∗ is the decoding of F by X. If X is an F -complete
bifix code, then F ∩X∗ is said to be a complete bifix decoding.

Take a factorial language F ⊆ A∗ and a code Z ⊆ A+. Set X = F ∩ Z.
Then the equality

F ∩ Z∗ = F ∩X∗

holds. Therefore, by Theorem 3.6 and Remark 3.7, if F is uniformly recur-
rent, then a set is a complete bifix decoding of F by a finite F -complete bifix
code if and only if it is of the form F ∩ Z∗ for some rational complete bifix
code Z. In symbolic dynamics, the following example of a complete bifix
decoding process is of great importance (cf. [LM95, Section 1.4]).

Example 4.2. Let S be a subshift of AZ. Consider a positive integer n. Then
Z = An is a complete bifix code (actually, a group code). Let F = B(S).
The n-th higher power of S is the subshift Sn of XZ defined by the equality
B(Sn) = F ∩ Z∗.

Margolis, Sapir and Weil obtained the following key result [MSW98].

Theorem 4.3. Let X be a finite code contained in A+. The unique exten-
sion of a coding morphism βX : B∗ → A∗ to a continuous homomorphism

β̄X : B̂∗ → Â∗ is an injective mapping.

Under the assumption that βX is the inclusion, Theorem 4.3 says that, for
every finite code X ⊆ A+, the free profinite monoid over X is identified with

the closed submonoid of Â∗ generated by X∗, that is, the equality

X̂∗ = X∗

holds whenever X is a finite code. The reader should bear in mind this
equality along the paper. Notice also that X̂∗ is a clopen subset of Â∗, by
Theorem 2.1. Therefore, the equality

F ∩X∗ = F ∩ X̂∗
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holds, for every subset F of A∗. (The topological closure in X̂∗ of a subset L

of X̂∗ coincides with the topological closure of L in Â∗, and for that reason
the notation L is not ambiguous.)

Clearly, for every finite code X ⊆ A+, if F is a factorial language over the
alphabet A, then F ∩X∗ is a factorial langage over the alphabet X; and if F
is prolongable over A and X is F -complete, then F ∩X∗ is prolongable over
X. Therefore, if F is a subshift language over A and X is F -complete, then
F ∩X∗ is a subshift language over X.

Example 4.4. Here is an example where F ∩ X∗ is not be prolongable
over X: for the Fibonacci language F and the right F -complete prefix code
X = {a, ba}, we have a2 ∈ F ∩X∗, but there is no x ∈ X such that xa2 ∈ F .

A complete bifix decoding of a uniformly recurrent language may not be
recurrent, as seen in Example 4.1.

If X is a finite F -complete F -charged code, then we say that F ∩X∗ is a
charged complete bifix decoding. In contrast with Example 4.1, we have the
following theorem, one of the main results of this paper.

Theorem 4.5. Every charged complete bifix decoding of a uniformly recur-
rent language is uniformly recurrent.

We defer to Section 8 the proof of Theorem 4.5. We also defer (to Section 9)
the proof of the following analog of Theorem 4.5.

Theorem 4.6. Every charged complete bifix decoding of a recurrent language
is recurrent.

We let `An denote the unique continuous homomorphism Â∗ → Z/nZ such
that `An (a) is the class of 1 modulo n for every letter a ∈ A. For an irreducible
subshift S ⊆ AZ, we let J(S) denote the JA-class JA(B(S)).

Corollary 4.7. Let S be an irreducible subshift of AZ. Let n be a positive
integer, and let X = B(S)∩An. Suppose that for some maximal subgroup H
of J(S) we have `An (H) = Z/nZ. Then the subshift Sn ⊆ XZ is irreducible.
If moreover S is minimal, then Sn is a minimal subshift of XZ.

Proof : Consider the group code Z = An. The syntactic homomorphism of
Z∗ is precisely the restriction `An |A∗ : A∗ → Z/nZ. Since `An (H) = Z/nZ for
a maximal subgroup H ⊆ J(S), the complete bifix code Z is B(S)-charged.
Hence B(S)∩X∗ is a recurrent language over the alphabetX, by Theorem 4.6,
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that is, the subshift Sn ⊆ XZ is irreducible. If moreover S is minimal, then
so is Sn by Theorem 4.5.

5. Finite factors of idempotents of JA(F ) ∩ X̂∗
For each pseudoword v ∈ Â∗, let FinA(v) be the subset of A∗ consisting of

the finite factors in Â∗ of v. Clearly, if v is a factor of w, then FinA(v) ⊆
FinA(w), thus FinA(u) = FinA(v) whenever u JA v.

Lemma 5.1. If e is an infinite idempotent of Â∗, then FinA(e) is a subshift
language of A∗.

Proof : It is trivial that FinA(e) is a nonempty factorial language. Let u ∈
FinA(e). Then we have e = xuy for some x, y ∈ Â∗. Since e is idempotent,
we may suppose that x = ex and y = ye. Therefore, x has a last letter
a, and y has a first letter b, and aub ∈ FinA(e), showing that FinA(e) is
prolongable.

Denote PrefA(v) the set of prefixes of the pseudoword v ∈ Â∗ belonging to
A∗.

Lemma 5.2 (cf. [ACKP20b, Exercise 5.28]). Let F be a recurrent language
over the alphabet A. If v ∈ F , then there is an idempotent e ∈ JA(F ) such
that v ∈ PrefA(e).

For a subshift language F ⊆ A∗, we denote by EA(F ) the set of idempotents

in JA(F ), and by EX(F ) the set of idempotents in JA(F ) ∩ X̂∗.

Proposition 5.3. Let F ⊆ A∗ be a recurrent language, and let X be a finite
code. Then we have the inclusions

F ∩X∗ ⊇
⋃

e∈EX(F )

FinX(e) ⊇
⋃

e∈EX(F )

PrefX(e). (5.1)

Moreover, if X is a finite F -complete bifix code, then F ∩ X∗ is a subshift
language, and the equalities

EX(F ) = EA(F )

and
F ∩X∗ =

⋃
e∈EA(F )

FinX(e) =
⋃

e∈EA(F )

PrefX(e)

hold.
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Proof : For e ∈ EX(F ), it is trivial that PrefX(e) ⊆ FinX(e). Since F is

a factorial subset of Â∗ (cf. Proposition 2.6), we have FinX(e) ⊆ F ∩ X∗,
yielding (5.1).

Suppose that X is a finite F -complete bifix code. By Proposition 3.8, every
idempotent in F belongs to X∗, and so EA(F ) = EX(F ) as JA(F ) ⊆ F .
By (5.1), it remains to establish F ∩ X∗ ⊆

⋃
e∈EA(F ) PrefX(e). Let u ∈

F ∩ X∗. Then there is an idempotent e ∈ EA(F ) with e = uw for some

w ∈ Â∗, by Lemma 5.2. Since EA(F ) = EX(F ) ⊆ X∗, it then follows from
implication (3.2) in Proposition 3.1 that w ∈ X∗. Hence the factorization
e = uw yields u ∈ PrefX(e).

Proposition 5.3 motivates the consideration of the subset FX of F ∩ X∗
given by

FX =
⋃

e∈EX(F )

FinX(e),

where X ⊆ A+ is a finite code and F ⊆ A∗ is a recurrent language. In what
follows, ||X|| is the length of the element of X with greatest length.

Proposition 5.4. Suppose that F is a recurrent language over the alphabet
A and that X is a finite code contained in F . Then, the union

FX =
⋃

e∈EX(F )

FinX(e)

is a finitary union: the set {FinX(e) | e ∈ EX(F )} has at most ||X|| elements.

For the proof of this proposition, we use the following fact.

Lemma 5.5. Let X be a finite subset of A∗. Let ρ = uv be a factorization of
a pseudoword ρ in X∗. Then we have u = µx, v = yν for some pseudowords
µ, ν ∈ X∗, and some x, y ∈ A∗ such that xy ∈ X.

Proof : Let (un)n and (vn)n be sequences of elements of A∗ such that un → u
and vn → v. Since X∗ is rational, the set X∗ is an open neighborhood of
ρ = uv. Hence, by taking subsequences, we may as well suppose that unvn ∈
X∗ for all n. We then have factorizations un = µnxn and vn = ynνn with
µn, νn ∈ X∗ and xnyn ∈ X, for every n. Let (µ, x, y, ν) be an accumulation
point of the sequence (µn, xn, yn, νn). Then u = µx, v = yν and, since X is
finite, x, y are words such that xy ∈ X.
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Proof of Proposition 5.4: Given any infinite idempotent f of Â∗, and any
nonnegative integer n, there is a unique prefix y of length n of f , and for such
y, there is a unique suffix f ′ of f with f = yf ′, according to Proposition 2.2.
In what follows, we denote σn(f) the pseudoword f ′y, which is idempotent
by Corollary 2.4.

Fix f ∈ EX(F ). Let e be an arbitrary element of EX(F ). Take p, q ∈ Â∗
such that e = pfq. Since f is idempotent, we may take p and q such that
p = pf and q = fq, so that e = pq. Because e ∈ X∗, applying Lemma 5.5
we obtain p = p′x and q = yq′ for some p′, q′ ∈ X∗ and words x, y such that
xy ∈ X. We claim that we may suppose that x 6= ε: indeed, since p′ is an
infinite pseudoword, we have in fact p′ = p′′x′ for some p′′ ∈ X∗ and x′ ∈ X,
so that if x = ε (and thus y ∈ X) we could then replace x by x′, p′ by p′′,
y by ε, and q′ by q, showing the claim. Throughout the proof, we suppose
that x 6= ε.

From fq = q = yq′ we obtain a factorization f = yf ′ for some (unique) infi-
nite pseudoword f ′, by Proposition 2.2. From yf ′q = fq = yq′ we get f ′q = q′

by cancellation of the finite prefix y, again by Proposition 2.2. Let n = |y|.
Note that

σn(f) = f ′y.

Since x 6= ε, we have n < ||X||. Note also that

p′xy · f ′y = pfy = py = p′xy ∈ X∗ and f ′y · q′ = f ′q = q′ ∈ X∗.

By the implication (3.1) in Proposition 3.1, with u = p′xy, v = f ′y and
w = q′, we conclude that f ′y ∈ X∗, that is f ′y ∈ EX(F ). Hence, in the
factorization

e = py · f ′y · q′ (5.2)

all factors py = p′xy, f ′y and q′ belong to X∗, whence

e ≤JX f ′y. (5.3)

By (5.2) and Corollary 2.4, the pseudoword f ′′ = (f ′y ·q′ ·py)2 is idempotent

(cf. Remark 2.5). Moreover, we have e JA f ′′ JA f ′′ ·f ′y and f ′′ ·f ′y ∈ f ′y ·Â∗ ·
f ′y. Since the monoid Â∗ is stable, we conclude that the pseudoword f ′′ · f ′y
belongs to the maximal subgroup of JA(F ) containing the idempotent f ′y.
It follows that f ′y = (f ′′ · f ′y)ω = (f ′y · q′ · py · f ′y)ω. Then, the next chain
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of equalities holds:

f ′y = f ′y · q′ · (py · f ′y · q′) · py · (f ′y · q′ · py · f ′y)ω−2

= f ′y · q′ · e · py · (f ′y · q′ · py · f ′y)ω−2.

In the former expression, all factors between consecutive dots belong to X∗,
and so, combining with (5.3), we conclude that

σn(f) = f ′y JX e.

This shows that FinX(e) = FinX(σn(f)). Therefore, the equality

FX =
⋃

n≤||X||
σn(f)∈EX (F )

FinX(σn(f)),

holds, and the proposition is established.

The set FX is always a factorial and prolongable language over the alphabet
X (cf. Lemma 5.1), but FX may be empty since EX(F ) may be empty.

Example 5.6. Let F be the Fibonacci language and let X be the bifix code
{aa, bb}. Then F ∩X∗ is finite, as seen in [BDFD+15a, Example 3.12]. Be-
cause FinX(e) is infinite whenever e ∈ EX(F ) (cf. Lemma 5.1), the inclusion
of FX on the finite set F ∩X∗ implies that EX(F ) = ∅ and FX = ∅.

In contrast with Example 5.6, we have the following.

Proposition 5.7. Let F ⊆ A∗ be a recurrent language. If X is a right
F -complete prefix code, then FX is nonempty.

Proof : Let (un)n be a sequence of elements of F converging in Â∗ to u ∈
JA(F ). As X is right F -complete, for each n we have a factorization un =
xnsn with xn ∈ X∗ and sn ∈ A∗ such that sn is a proper prefix of an element
of X. Take an accumulation point (x, s) of (xn, sn). Then u = xs and, since
X is finite, one has s ∈ A∗. It follows from Corollary 2.3 that x ∈ JA(F )∩X∗.
Hence x is regular and x = xe for some idempotent e ∈ JA(F ). Since X is a
prefix code, applying Proposition 3.1 we get e ∈ EX(F ), and so EX(F ) and
FX are nonempty.

Proposition 5.3 guarantees that FX = F∩X∗ when X is a finite F -complete
bifix code. The inclusion FX ⊆ F ∩ X∗ may be strict when X is just a
right F -complete prefix code, as F ∩ X∗ may not be prolongable over X
(cf. Example 4.4).
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6. Relationship between JA(F ) and JX(F ∩X∗)
In this section we seek to clarify the relationship between the JA-class

JA(F ) and the union of JX-classes JX(F ∩X∗) when F is recurrent and X
is a finite F -complet bifix code.

The following lemma helps dealing with factorizations of pseudowords.

Lemma 6.1. Let u, v ∈ Â∗. If the sequence (wn)n converges to uv in Â∗,
then there are factorizations wn = unvn such that un → u and vn → v.

A proof of this lemma appears in [ACKP20b, Exercise 4.20]; the result was
discovered independently in [AC09] and [HRS10] (cf. also [ACCZ19, Section
3]). We apply the lemma in the proof of the next proposition, the bulk of
this section.

Proposition 6.2. Let F be a recurrent language over the alphabet A, and
suppose that X is a finite F -complete bifix code. Then we have the following
properties:

(i) the equality JX(F ∩X∗) = JA(F ) ∩ X̂∗ holds;

(ii) JX(F ∩X∗) is a union of finitely many regular JX-classes of X̂∗;
(iii) for each K ∈ {R,L,H}, the KX-classes contained in JX(F ∩X∗) are

the sets of the form V ∩ X̂∗ that are nonempty and such that V is a
KA-class contained in JA(F );

(iv) the maximal subgroups of X̂∗ contained in JX(F ∩X∗) are the inter-

sections H ∩ X̂∗ in which H is a maximal subgroup of Â∗ contained
in JA(F );

(v) if yX∗x ∩ F ⊆ X∗ whenever xy ∈ X∗, then the maximal subgroups of

X̂∗ contained in JX(F ∩X∗) are isomorphic profinite groups.

Remark 6.3. Proposition 6.2 holds if X = F ∩ An; more generally, if Z
is a group code with Z∗ = η−1

Z∗ (N) for a normal subgroup N of M(Z∗),
then Proposition 6.2 applies to X = F ∩ Z. Indeed, X = Z ∩ F is then
finite F -complete (cf. Theorem 3.6), and xy ∈ Z∗ ⇔ ηZ∗(y)N = ηZ∗(x)−1N ,
yielding

xy ∈ Z∗ ⇒ ηZ∗(yZ
∗x)N = ηZ∗(y)NηZ∗(x)N = N ⇒ yZ∗x ⊆ η−1

Z∗ (N) = Z∗,

and thus yX∗x∩F ⊆ X∗, ensuring that Proposition 6.2(v) holds for such X.
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We proceed with the proof of Proposition 6.2. For showing its item (v)
we adapt the proof that maximal subgroups in a regular J -class of a com-
pact monoid are all isomorphic compact groups, see for instance [ACKP20b,
Proposition 3.6.11].

Proof of Proposition 6.2: Let u ∈ JX(F ∩ X∗). There is a finite set I of

idempotents in EX(F ) = JA(F ) ∩ X̂∗ such that F ∩X∗ =
⋃
e∈I FinX(e), by

Propositions 5.3 and 5.4. Hence, as JX(F ∩ X∗) ⊆ F ∩X∗, there is e ∈ I
with u ∈ FinX(e). Since ≤JX is a closed relation of X̂∗, we have e ≤JX u.

Note that e ∈ F ∩ X̂∗ = F ∩X∗, as JA(F ) ⊆ F . It follows from the JX-
minimality of u as an element of F ∩X∗ that e JX u. This shows (ii), as

well the inclusion JX(F ∩X∗) ⊆ JA(F ) ∩ X̂∗ in (i).

Let u ∈ JA(F ) ∩ X̂∗. Since F is recurrent, the set JA(F ) is a regular JA-
class, and so we may take some idempotent e ∈ JA(F ) that is RA-equivalent

to u. Let s ∈ Â∗ be such that e = us. As X is an F -complete bifix code, we

know that e ∈ X̂∗ by Proposition 3.8, which together with the equality e = us

implies s ∈ X̂∗ by Proposition 3.1. Since we also have u = eu, we deduce that

u RX e. We claim that e ∈ JX(F ∩X∗). Since e ∈ JA(F ) ∩ X̂∗ ⊆ F ∩X∗,
and we already showed that JX(F ∩X∗) is a union of regular JX-classes, we

know that there is some idempotent f ∈ JX(F ∩ X∗) and some x, y ∈ X̂∗

such that f = xey (cf. Remark 2.7). Then the idempotent e′ = (eyx)2 is JX-
equivalent to f and satisfies e′ ≤RX e, whence e′ ≤RA e. Since e, e′ ∈ JA(F )
as the inclusion JX(F ∩ X∗) ⊆ JA(F ) was already established, by stability

of Â∗ we actually have e RA e
′, which means that e = e′e and e′ = ee′, thus

e RX e′. This shows the claim that e ∈ JX(F ∩ X∗). Hence, the above

conclusion that u RX e yields JA(F )∩ X̂∗ ⊆ JX(F ∩X∗), finishing the proof
of (i).

For showing (iii), it suffices to consider K = R, as case K = L is symmetric
and case K = H follows straightforwardly from the other two cases. Since
RX ⊆ RA, it is clear that everyRX-class contained in JX(F∩X∗) is contained

in an intersection V ∩ X̂∗ for some RA-class V , with V ⊆ JA(F ), as we saw
that JX(F ∩X∗) ⊆ JA(F ). Conversely, let V be any RA-class contained in

JA(F ) such that V ∩ X̂∗ 6= ∅. Note that V ∩ X̂∗ ⊆ JX(F ∩ X∗), since we

showed JA(F )∩X̂∗ ⊆ JX(F ∩X∗). Let v, w ∈ V ∩X̂∗, and take s, t ∈ Â∗ such

that v = ws and w = vt. Because X is bifix, we actually have s, t ∈ X̂∗, by
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Proposition 3.1, whence v RX w. Therefore, V ∩X̂∗ is an RX-class contained
in JX(F ∩X∗). This concludes the proof of (iii).

Since every idempotent in JA(F ) belongs to X̂∗ by Proposition 3.8, Prop-
erty (iv) follows immediately from Property (iii).

Finally, suppose that xy ⇒ yX∗x ∩ F ⊆ X∗. We claim that

xy ∈ X∗ ⇒ yX̂∗x ∩ F ⊆ X̂∗. (6.1)

Assuming that xy ∈ X∗, let u ∈ yX̂∗x ∩ F . Take v ∈ X̂∗ such that u = yvx
and a sequence (un)n of elements of F converging to u. By Lemma 6.1, for
every n there are factorizations un = ynvnxn such that lim yn = y, lim vn = v

and lim xn = x. Since X̂∗ is a clopen subset of Â∗, we may as well suppose
that the words vn and xnyn belong to X∗ for every n. By hypothesis, xnyn ∈
X∗ implies ynX

∗xn ∩ F ⊆ X∗, whence ynvnxn ∈ X∗ for every n. This shows

that u = yvx ∈ X̂∗, establishing the claim.
Let e, f be idempotents in JX(F ∩ X∗), and let He, Hf be the maxi-

mal subgroups of Â∗ respectively containing e, f . We already saw that

JX(F ∩X∗) ⊆ JA(F )∩ X̂∗. Since F is recurrent, JA(F ) is a regular JA-class.
Therefore, there are x, y ∈ JA(F ) such that e = xy and f = yx. Moreover,
the mappings ϕ : He → Hf and ψ : Hf → He such that ϕ(g) = ygx and
ψ(h) = xhy, for every g ∈ He and h ∈ Hf , are mutually inverse continuous

isomorphisms. In view of (iv) we only need to check that ϕ(He ∩ X̂∗) =

Hf ∩ X̂∗. Since xy = e ∈ X̂∗ and JA(F ) ⊆ F , it follows from (6.1) that

ϕ(He ∩ X̂∗) ⊆ Hf ∩ X̂∗. Similarly, the inclusion ψ(Hf ∩ X̂∗) ⊆ He ∩ X̂∗ also

holds. Hence, ϕ(He ∩ X̂∗) = Hf ∩ X̂∗ indeed holds, concluding the proof
of (v).

7. Decoding of uniformly recurrent languages by finite
codes

For the sake of the proof of Theorem 4.5, we establish in this section some
results concerning the decoding of uniformly recurrent languages by arbitrary
finite codes, not necessarily bifix.

Proposition 7.1. Let F be a uniformly recurrent language over the alphabet
A. Let X be any finite code contained in F . For every e ∈ EX(F ), the set
FinX(e) is a uniformly recurrent language over the alphabet X.



A PROFINITE APPROACH TO COMPLETE BIFIX DECODINGS 25

Proof : Let e ∈ EX(F ). Suppose that u ∈ X̂∗ is an infinite pseudoword such

that e ≤JX u. Take elements x and y of X̂∗ such that e = xuy. Then the

pseudoword f = (u ·yx)2 ∈ X̂∗ is an idempotent such that e JX f . Since u is

an infinite factor of e in Â∗, and F is uniformly recurrent over A, we obtain

from Theorem 2.8 that u JA e. As Â∗ is stable, it follows that u RA f ,
whence

u = f · u = uyxuyx · u = uy︸︷︷︸
∈X∗

· e · xu︸︷︷︸
∈X∗

.

Therefore e JX u, showing that e is a JX-maximal infinite pseudoword of
X∗. This shows that there is a minimal subshift S ⊆ XZ such that e ∈
JX(B(S)), by Theorem 2.8. As B(S) is a factorial subset of X̂∗, all factors
of JX(B(S)) in X∗ belong to B(S), whence FinX(e) ⊆ B(S). Since FinX(e)
is a subshift language (cf. Lemma 5.1), we deduce from the minimality of S
that FinX(e) = B(S), thus showing that FinX(e) is uniformly recurrent.

Corollary 7.2. Let F be a uniformly recurrent language over the alphabet A.
Let X be any finite code contained in F . If FX is recurrent over the alphabet
X, then it is uniformly recurrent over X.

Proof : As seen in Proposition 5.4, the set FX is the union of the finite col-
lection {FinX(e) | e ∈ EX(F )}. By Proposition 7.1, the elements of this
collection are uniformly recurrent languages over X.

It remains to observe that if a union of a finite collection of uniformly
recurrent sets is recurrent, then it is actually uniformly recurrent. We give
a “profinite” proof for this known fact. Suppose that F =

⋃k
i=1 Fi is a

finite union of k distinct sets Fi ⊆ X∗ that are uniformly recurrently over
X, and that F is recurrent over X. For each i, let ui ∈ J(Fi). As F

is recurrent, there are x1, . . . , xk−1 ∈ X̂∗ such that the pseudoword w =
u1x1u2x2 · · ·uk−1xk−1uk belongs to F . Since F =

⋃k
i=1 Fi, we then have

w ∈ Fj for some j. Because Fj is uniformly recurrent, we know that w is an
JX-maximal infinite pseudoword, and so ui JX w for every i ∈ {1, . . . , k}.
But J(Fi) = J(Fj) implies Fi = Fj, and so necessarily k = 1.

Corollary 7.3. If the complete bifix decoding of a uniformly recurrent lan-
guage is recurrent, then it is uniformly recurrent.
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Proof : This is a special case of Corollary 7.2: for a uniformly recurrent lan-
guage F and a finite F -complete bifix code X, we have F ∩ X∗ = FX by
Proposition 5.3.

8. Proof of Theorem 4.5
In this section we prove that every charged complete bifix decoding of

a uniformly recurrent language is uniformly recurrent (Theorem 4.5). The
following fact is needed.

Lemma 8.1. Let F be a factorial language of A∗. If Z is a rational language

of A∗, then the inclusion Z∗ ∩ F ⊆ (Z ∩ F )∗ holds in Â∗.

Proof : Let u ∈ Z∗∩F . Take a sequence (un)n∈N of elements of F converging
to u. Since Z∗ is rational, Z∗ is open, and so there is N ∈ N such that n ≥ N
implies un ∈ Z∗ ∩ F . As F is factorial, we have Z∗ ∩ F = (Z ∩ F )∗, thus

u ∈ (Z ∩ F )∗.

In the next proof, we denote by Hu the H-class of an element u of a monoid
M .

Proposition 8.2. Let F be a recurrent language over the alphabet A. If X
is a finite F -complete F -charged bifix code, then F ∩X∗ = FinX(e) for every
e ∈ EA(F ).

Proof : Let Z ⊆ A+ be an F -charged rational complete bifix code for which we
have X = Z∩F . Let e, f ∈ EA(F ). Recall that e, f ∈ X∗ by Proposition 3.8.
By Proposition 5.3, it suffices to show that e JX f .

As e JA f , we may take x, y ∈ Â∗ such that e = xfy, with x = exf and
y = fye. Since Z is F -charged, the inclusion η̂Z∗(JA(F )) is contained in the
minimum ideal of the syntactic monoid MZ∗, and so

η̂Z∗(x)ω H η̂Z∗(x) R η̂Z∗(e).

Therefore, since η̂Z∗(e) · η̂Z∗(x) = η̂Z∗(x), we know from Green’s Lemma
(cf. [RS09, Lemma A.3.1]) that there is s ∈ Hη̂Z∗(e) such that s · η̂Z∗(x) =
η̂Z∗(x)ω. Because Z is F -charged, we have η̂Z∗(He) = Hη̂Z∗(e) and we may
take some u ∈ He such that s = η̂Z∗(u). Since u = ue = uxfy ∈ JA(F ), we
have ux ∈ F . As η̂Z∗(ux) = η̂Z∗(x)ω is idempotent, applying Proposition 3.8
we conclude that ux ∈ Z∗.

Symmetrically, there is v ∈ He such that yv ∈ Z∗.
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Consider the pseudoword w = ux · f · yv. Because xfy = e and u, v ∈ He,
we have w = uv ∈ He. In particular, the equality

(ux · f · yv)ω−1 · w = e (8.1)

holds. Again by Proposition 3.8, the idempotents e, f belong to Z∗, and
since ux and yv also belong to Z∗, we conclude by the second implication
in Proposition 3.1 that w ∈ Z∗. And since F is factorial, the pseudowords
ux, yv, f , e and w belong to F , and so they belong to X∗ by Lemma 8.1.
Therefore, the equality (8.1) yields e ≤JX f . By symmetry, we also have
f ≤JX e, concluding the proof.

Proof of Theorem 4.5: Combining Propositions 8.2 and 7.1, we immediately
obtain Theorem 4.5.

9. Proof of Theorem 4.6
We proceed to show that every charged complete bifix decoding of a recur-

rent language is recurrent (Theorem 4.6).

Proof of Theorem 4.6: Let F be a recurrent language over the alphabet A,
and let Z be an F -charged rational complete bifix code. Consider the code
X = Z ∩F , and suppose that X is finite. We want to show that F ∩X∗ is a
recurrent language over the alphabet X. Let e ∈ EA(F ). By Proposition 8.2,
what we want to show is that FinX(e) is recurrent. Let u, v ∈ FinX(e). Take
x, z, v, t ∈ X∗ such that e = xuy = zvt. Take a sequence (wn)n∈N of elements
of F converging to e. Applying Lemma 6.1 to the equality

e = x · u · y · z · v · t

in the free profinite monoid X̂∗, we conclude that, for every n ∈ N, there are
factorizations

wn = xn · un · yn · zn · vn · tn
in X∗ such that, in X̂∗, we have

xn → x, un → u, yn → y, zn → z, vn → v, tn → t.

Since u, v ∈ X∗, by taking subsequences we may as well suppose that un = u
and vn = v for every n ∈ N. Because uynznv is a factor of wn ∈ F , and F is
factorial, we know that uynznv belongs to F ∩X∗. By Lemma 5.2, there is
an idempotent f ∈ JA(F ) of the form

f = uynznvr, (9.1)
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for some r ∈ Â∗. Recall that f ∈ X∗ by Proposition 3.8. As uynznv ∈ X∗
and X is a prefix code, applying Proposition 3.1 we conclude that r ∈ X∗.
Therefore, from (9.1) we deduce that uynznv ∈ FinX(f). Since by Proposi-
tion 8.2 the equality FinX(f) = FinX(e) holds, we have thus established that
FinX(e) is a recurrent language over the alphabet X.

10. The Schützenberger group of an irreducible subshift
is invariant under eventual conjugacy

In the category of symbolic dynamical systems, a morphism between a
subshift S of AZ and a subshift T of BZ is a continuous mapping ϕ : S → T
such that σB(ϕ(x)) = ϕ(σA(x)) for every x ∈ S. If there is a map Φ: A→ B
such that ϕ(x) = (Φ(xi))i∈Z for each x ∈ S, then ϕ is said to be a one-block
code with associated letter-to-letter block map Φ.

An isomorphism of subshifts is called a conjugacy, and isomorphic sub-
shifts are conjugate. A one-block conjugacy is a one-block code that is a
conjugacy. It turns out that conjugacy is the equivalence relation generated
by one-block conjugacies. More precisely, the following holds (cf. [LM95,
Proposition 1.5.12]).

Proposition 10.1. If ϕ : S → T is a conjugacy, then there is a subshift R
and one-block conjugacies α : R → S and β : R → T such that ϕ = β ◦ α−1.

Two subshifts S and T are eventually conjugate when there is a positive
integer N such that the higher power shifts Sn and T n are conjugate for
every n ≥ N . If the subshifts S and T are conjugate, then S and T are
eventually conjugate.

10.1. The Schützenberger group of an irreducible subshift and its
higher powers. Let S be an irreducible subshift of AZ. Since the J -class
JA(B(S)) is regular, we may consider its maximal subgroups, and identify
them as a single profinite group G(S), which since [AC13] is called the
Schützenberger group of S. In this section, we show that G(S) is an in-
variant of eventual conjugacy, for any irreducible subshift S. The invariance
of G(S) under conjugacy was first proved in [Cos06].

We next generalize the definition of Schützenberger group of an irreducible
subshift to (possibly not irreducible) higher powers of irreducible subshifts,
as follows. Given an irreducible subshift S of AZ, let F = B(S). For every
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positive integer n and irreducible subshift S ⊆ AZ, the equality B(Sn) =
F ∩ (An)∗ holds. Moreover, by Proposition 6.2:

• the set J(Sn) = JAn(F∩(An)∗) of ≤JAn -minimal elements of F ∩ (An)∗

is a union of regular JAn-classes;
• any two maximal subgroups contained in J(Sn) are isomorphic profi-

nite groups.

We identify the maximal subgroups contained in J(Sn) as a single profi-
nite group, which we call the Schützenberger group of Sn and denote G(Sn).
Note that if Sn is irreducible (which happens if n = 1), then we get the
Schützenberger group of Sn as initially defined, and so we indeed have a
consistent generalization.

To show the invariance under eventual conjugacy of G(S) when S is irre-
ducible, we need to use not only the invariance under conjugacy of G(S), but
the following stronger result.

Theorem 10.2. If S and T are conjugate irreducible subshifts, then G(Sn)
and G(T n) are isomorphic profinite groups, for every n ≥ 1.

Theorem 10.2 is also from [Cos06], where one finds a more general result

concerning the restriction of the quasi-order ≤J to B(S): if S is a (possibly
not irreducible) subshift of AZ, then we have invariance under conjugacy of
the set of isomorphism classes of the maximal subgroups containing idem-
potents that are ≤JA-minimal among the idempotents in B(S) (cf. [Cos06,
Theorem 3.11]).

The free procyclic group on one generator Ẑ is the inverse limit lim←−Z/Zn, in
which Z embeds densely (cf. [RZ10]). For each alphabet A and pseudoword

u in Â∗, the procyclic image of u (with respect to A) is the image of u in Ẑ
by the unique continuous homomorphism `A : Â∗ → Ẑ such that `A(a) = 1
for every a ∈ A. Note that if u ∈ A∗, then `A(u) is just the length of u.
Therefore, the notion of procyclic image of a pseudoword is a generalization
of the notion of word length.

The proof in [Cos06] that G(S) is a conjugacy invariant of irreducible
subshifts gives for free that the procyclic image of the elements of G(S) is
preserved by conjugacy, as seen next.

Theorem 10.3. Suppose that S ⊆ AZ and T ⊆ BZ are conjugate irreducible
subshifts. If H is a maximal subgroup of J(S) and K is a maximal subgroup
of J(T ), then there is an isomorphism of profinite groups ψ : H → K that
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preserves procyclic images, that is to say, such that

`B(ψ(h)) = `A(h)

for every h ∈ H.

Proof : It suffices to assume that there is a one-block conjugacy ϕ : S →
T , by Proposition 10.1. Let Φ: A → B be the associated letter-to-letter
block map. For every maximal subgroup H contained in J(S), the unique

continuous homomorphism Φ̂: Â∗ → B̂∗ extending Φ restricts to a continuous
isomorphism fromH ⊆ J(S) onto a maximal subgroupN ⊆ J(T ), a property

of Φ̂ shown in [Cos06]. (More precisely, applying Proposition 3.10 from

[Cos06] we see that N = Φ̂(H) is a maximal subgroup, and Theorem 3.11

from [Cos06] guarantees that N ⊆ J(T ).) Note that `B(Φ̂(u)) = `A(u) for

every u ∈ Â∗, since that clearly holds when u ∈ A∗.
Finally, let K be any maximal subgroup of B̂∗ contained in J(T ). Then

there are x, y ∈ J(T ) such that xy is the idempotent in N , yx is the idempo-
tent in K, and the mapping λ : N → K given by λ(g) = ygx is a continuous
isomorphism. As xy is idempotent, we have `B(x) = −`B(y). The fact that

Ẑ is Abelian furthermore yields `B(λ(g)) = `B(g) for every g ∈ N . Therefore,

the homomorphism ψ : H → K given by ψ = λ ◦ (Φ̂|H) to H is a continuous
isomorphism such that `B(ψ(h)) = `A(h) for every h ∈ H.

10.2. Proof of the invariance of G(S) under eventual conjugacy.
For each positive integer n, denote ρn the unique continuous homomorphism
Ẑ→ Z/nZ such that ρn(1) is the class modulo n of 1. The composition ρn◦`A
is the homomorphism `An : Â∗ → Z/nZ introduced before Corollary 4.7.

Remark 10.4. The length of a word u over the alphabet A is a multiple of
n if and only if `An (u) = 0. Therefore, by continuity of the homomorphism

`An : Â∗ → Z/nZ, the equality

(`An )−1(0) = (An)∗

holds.

Lemma 10.5. If n and m are relatively prime positive integers, then for

every u ∈ Â∗ such that u ∈ (Am)∗, the equivalence

`An (u) = 0⇔ `A
m

n (u) = 0

holds.
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Proof : Because (An)∗ and (Am)∗ are rational, we have

(An)∗ ∩ (Am)∗ = (An)∗ ∩ (Am)∗.

Since n and m are relatively prime, we also have

(An)∗ ∩ (Am)∗ = (Anm)∗.

Notice also that (Anm)∗ = ((Am)n)∗. Therefore, for every u ∈ (Am)∗, the
chain of equivalences

`An (u) = 0⇔ u ∈ (An)∗ ∩ (Am)∗ ⇔ u ∈ ((Am)n)∗ ⇔ `A
m

n (u) = 0

holds.

Lemma 10.6. Let S be an irreducible subshift of AZ. Let n be a positive
integer. Suppose that the maximal subgroup H of J(S) satisfies `An (H) = 0.
Then H is a maximal subgroup of J(Sn).

Proof : Let X = B(S) ∩ An. By Proposition 6.2, the intersection H ∩ X̂∗
is a maximal subgroup of J(Sn) ⊆ B(S). On the other hand, the equality

`An (H) = 0 gives H ⊆ (An)∗∩B(S). Since (An)∗∩B(S) ⊆ (An)∗ ∩ B(S) = X̂∗,
we are done.

For each positive integer k and closed subgroup H of Â∗, we denote by
H(k) the intersection H ∩ (Ak)∗. In particular, we have H(1) = H.

Remark 10.7. Note that we always have H(nm) ⊆ H(n)∩H(m). Moreover,
the equality H(nm) = H(n)∩H(m) holds whenever m,n are relatively prime.

Note that H(k) = H ∩ (`Ak )−1(0) is a closed normal subgroup of H. Hence,
we may consider for all n,m ≥ 1 the profinite semidirect product H(n) n
H(m) induced by the left action in which xu = xux−1 for all x ∈ H(m) and
u ∈ H(n).

Remark 10.8. For every closed normal subgroup H of Â∗, the semidirect
product H(m)nH(n) is a closed normal subgroup of HnH: it is the kernel
of the continuous homomorphism H n H → Z/mZ × Z/nZ mapping each
(u, x) ∈ H nH to (`Am(u), `An (x)).

The following lemma is crucial for our proof that the Schützenberger group
of an irreducible subshift is invariant under eventual conjugacy. The notation
∼= stands for isomorphism of compact groups.
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Lemma 10.9. Let S be an irreducible subshift of AZ, and let H be a maximal
subgroup contained in J(S). Let m,n be relatively prime positive integers
such that `m(H) = Z/mZ and `n(H) = Z/nZ. Then we have

H ∼= (H(m) nH(n))/(H(mn) nH(mn)).

More precisely, the mapping

ϕ : H(m) nH(n) → H
(u, x) 7→ ux

is a continuous onto homomorphism of profinite groups, and the kernel of ϕ
is the profinite group H(mn) nH(mn).

Proof : The map ϕ is clearly continuous, and it is also straightforward to
see that it is a homomorphism: ϕ((u, x)(v, y)) = ϕ(uxvx−1, xy) = uxvy =
ϕ(u, x)ϕ(v, y).

We proceed to show that ϕ is onto. Let h ∈ H. Since m,n are relatively
prime, there is a natural number k0 such that, for every natural k > k0, there
are natural numbers k1, k2 such that k = k1m + k2n. Therefore, every word
of A∗ of length greater than k0 belongs to (Am)∗ · (An)∗, and so every infinite

pseudoword of Â∗ belongs to (Am)∗ ·(An)∗. In particular, if h ∈ H, then there

are pseudowords u ∈ (Am)∗ and x ∈ (An)∗ such that h = ux. Let e be the
idempotent in H. Then we have h = euxe, whence eu RA h LA xe. Since
J(S) is regular, we may take an idempotent f ∈ J(S) such that eu = euf .

By the Chinese Remainder Theorem, we have Z/mnZ = Z/mZ×Z/nZ and

`mn(w) = (`m(w), `n(w)) for every w ∈ Â∗. Hence, the equalities `m(H) =
Z/mZ and `n(H) = Z/nZ entail `mn(H) = Z/mnZ. In particular, Smn is
irreducible by Corollary 4.7. Therefore, letting X = B(S) ∩ Amn, we may
consider the JX-class J(Smn). Note that `mn(e) = `mn(f) = 0, and thus e, f

belong to B(S) ∩ X̂∗, that is, e, f ∈ B(Smn). It follows from Proposition 6.2

that e, f are both in the JX-class J(Smn). Hence, there are z, t ∈ X̂∗ such
that f = fzetf .

Consider the pseudowords u′ = eufze and x′ = etfxe. We have

u′x′ = eu · fzetf · xe = euf · xe = euxe = h.

Note that u′, x′ are H-equivalent to e. As `mn(X̂∗) = 0 and `m(u) = 0, we
have `m(u′) = `m(eufze) = 0. Similarly, we also have `n(x

′) = 0. Therefore,
the pair (u′, x′) belongs to H(m)nH(n) and ϕ(u′, x′) = h, thus showing that
ϕ is onto.
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It remains to check that kerϕ = H(mn) nH(mn). Take (u, x) ∈ H(m) n
H(n) for which ϕ(u, x) = e. Observe that 0 = `n(ux) = `n(u)+`n(x) = `n(u),
which together with `m(u) = 0 gives `mn(u) = 0, that is, u ∈ H(mn).
Similarly, we also have x ∈ H(mn). We conclude that (u, x) belongs to
H(mn) nH(mn).

We are now ready to show the main result of this section.

Theorem 10.10. If S1 and S2 are eventually conjugate irreducible subshifts,
then G(S1) and G(S2) are isomorphic profinite groups.

Proof : We may consider an alphabet A such that both S1 and S2 are subshifts
of AZ (let A for example be the set of letters appearing in some element of
S1 or S2).

Since S1 and S2 are eventually conjugate, we may fix a positive integer N
such that Sn1 and Sn2 are conjugate for every n ≥ N .

For each i ∈ {1, 2}, take a maximal subgroup Hi of Â∗ contained in J(Si).
Consider the set Qi of prime numbers greater than N and such that `Ap (Hi) =
0.

Lemma 10.11. The sets Q2 \Q1 and Q1 \Q2 have at most one element.

Proof : Suppose the lemma is false. Without loss of generality, suppose that
Q2 \Q1 has two distinct elements p, q. Since `Ap (H1) 6= 0 and p is prime, we

must have `Ap (H1) = Z/pZ. By Corollary 4.7, the subshift Sp1 is irreducible.

Furthermore, the intersection H1 ∩ (Ap)∗ is a maximal subgroup of the JAp-
class J(Sp1) by Proposition 6.2. Because Sp1 and Sp2 are conjugate (as p > N),
the subshift Sp2 is also irreducible. Moreover, since `Ap (H2) = 0, it follows
from Lemma 10.6 that H2 is a maximal subgroup of the JAp-class J(Sp2).
Therefore, by Theorem 10.3, there is a continuous isomorphism ψ : H2 →
H1∩ (Ap)∗ such that `A

p ◦ψ = `A
p|H2

. Hence, applying Lemma 10.5, we have
the chain of equivalences

`Aq (H2) = 0⇔ `A
p

q (H2) = 0 (because H2 ⊆ (Ap)∗, as p ∈ Q2)

⇔ `A
p

q (H1 ∩ (Ap)∗) = 0 (as `A
p ◦ ψ = `A

p|H2
)

⇔ H1 ∩ (Ap)∗ ⊆ ((Ap)q)∗.

Since q ∈ Q2, we indeed have `Aq (H2) = 0, whence

H1 ∩ (Ap)∗ ⊆ H1 ∩ (Aq)∗. (10.1)
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As q /∈ Q1, we may take some h ∈ H1 such that `Aq (h) 6= 0. Because p 6= q,

we must have p`Aq (h) 6= 0, that is, hp /∈ (Aq)∗. But this contradicts (10.1).
To avoid a contradiction, each of the sets Q2 \ Q1 and Q1 \ Q2 must have

at most one element.

We proceed with the proof of the theorem.
Suppose first that at least one of the setsQ1 andQ2 is infinite. ThenQ1∩Q2

is infinite, by Lemma (10.11). Let p ∈ Q1 ∩ Q2. As p > N , the subshifts
Sp1 and Sp2 are conjugate. Since `p(Hi) = 0, it follows from Lemma 10.6
that Hi is a maximal subgroup of the JAp-class of J(Spi ), for each i ∈ {1, 2}.
Applying Theorem 10.2, we conclude that H1

∼= H2, settling the theorem for
this case.

We now consider the remaining case where Q1 and Q2 are finite. Then there
are distinct prime numbers p, q greater than N such that p, q /∈ Q1 ∪ Q2.
Let r ∈ {p, q}. Since r is prime, we must have `r(Hi) = Z/rZ, for each
i ∈ {1, 2}. By Corollary 4.7, the subshift Sri is irreducible and, in view of
Proposition 6.2, the profinite group Hi(r) is a maximal subgroup of the JAr-
class J(Sri ). Therefore, since Sr1 is conjugate to Sr2 (as r > N), it follows from
Theorem 10.3 that there is a continuous isomorphism ψr : H1(r) → H2(r)
such that

`A
r ◦ ψr = `A

r |H1(r) (for each r ∈ {p, q}). (10.2)

Since p, q are distinct primes, for each i ∈ {1, 2} we have

Hi(pq) = Hi(p) ∩Hi(q) = Hi(p) ∩ (Aq)∗.

Therefore, for every h ∈ H1(p), we have

ψp(h) ∈ H2(pq)⇔ ψp(h) ∈ H2(q) = H ∩ (Aq)∗.

⇔ `Aq (ψp(h)) = 0

⇔ `A
p

q (ψp(h)) = 0 (by Lemma 10.5, as ψp(h) ∈ (Ap)∗)

⇔ `A
p

q (h) = 0 (by (10.2))

⇔ `Aq (h) = 0 (by Lemma 10.5, as h ∈ (Ap)∗)

⇔ h ∈ H1(p) ∩ (Aq)∗

⇔ h ∈ H1(pq).

Similarly, for every h ∈ H1(q), the equivalence

ψq(h) ∈ H2(pq)⇔ h ∈ H1(pq)
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holds. Therefore, the isomorphism ψ : H1(p)nH1(q)→ H2(p)nH2(q) given
by the formula ψ(u, x) = (ψp(u), ψq(x)) satisfies

ψ(u, x) ∈ H2(pq) nH2(pq)⇔ (u, x) ∈ H1(pq) nH1(pq).

Since H2(pq)nH2(pq) is a closed normal subgroup of H2(p)nH2(q) (cf. Re-
mark 10.8), it follows that

(H1(p) nH1(q))/(H1(pq) nH1(pq)) ∼= (H2(p) nH2(q))/(H2(pq) nH2(pq)).

Applying Lemma 10.9, we conclude that H1
∼= H2.

10.3. A digression on relatively free profinite monoids. We finish
by explaining how to generalize Theorem 10.10 to relatively free profinite
monoids over certain pseudovarieties. The reader may wish to consult [RS09]
or [Alm05b] for background on pseudovarieties of monoids (or semigroups)
and their relatively free objects. A pseudovariety of monoids V is a class of
finite monoids closed under taking submonoids, homomorphic images, and
finite direct products. If H is a pseudovariety of finite groups, then the
class H of finite monoids whose subgroups belong to H is a pseudovariety
of monoids. A pro-V monoid is an inverse limit of monoids from V, in the
category of compact monoids. The class of A-generated compact monoids
has free objects (as we have done in the rest of the paper, we assume that

A is finite). We let F̂V(A) be the free pro-V monoid generated by A. Note

that for the pseudovariety M of all finite monoids, we have F̂M(A) = Â∗.
Let H be a pseudovariety of finite groups that is extension-closed (i.e.,

closed under taking semidirect products). Roughly speaking, from the view-

point adopted in this paper, F̂H(A) behaves pretty much like Â∗ does.§ For

example, the free semigroup A∗ embeds densely in F̂H(A) and the elements

of A∗ are isolated in F̂H(A). A version of Theorem 2.1 holds, where we replace
“rational languages L ⊆ A∗ ” by “languages L ⊆ A∗ recognized by monoids in
H ”. The hypothesis that H is extension-closed is needed to guarantee that
the analog of Theorem 4.3, which is Corollary 2.2 of the paper [MSW98],

§When checking references in the literature, the reader should bear in mind that H is often viewed
as a pseudovariety of semigroups, namely the pseudovariety of finite semigroups whose subgroups
belong to H. The two perspectives are essentially the same, for the purposes of this paper. As
a pseudovariety of finite semigroups, H is a monoidal pseudovariety of monoids, that is, it is
generated by the monoids in H. In particular, the free profinite semigroup over the pseudovariety
of semigroups H is the free profinite monoid over the pseudovariety of monoids H minus the empty

word, just as we have the equality Â+ = Â∗ \ {ε}.
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holds for codes X ⊆ A+ such that X∗ is recognized by a monoid in H. Also,
roughly speaking, we may say that all the “combinatorics on pseudowords”
used so far in this paper also works in F̂H(A): we have a version of Propo-
sition 2.2 (details may be found in [CS21, Section 2]), and also a version of
Lemma 6.1 (cf. [ACCZ19, Section 3]).

If S is an irreducible subshift of AZ, then we may still consider an analog
of G(S) in F̂H(A), denoted GH(S), which is actually the image of G(S) in

F̂H(A) under the canonical projection Â∗ → F̂H(A). It turns out that GH(S)
is also invariant under conjugacy, a fact observed in [Cos06], and crucially
used to show the main result of [CS11], which states that GH(S) is a free
pro-H group of rank ℵ0 if B(S) is recognized by a monoid from H and H is an
extension-closed pseudovariety of groups containing Z/pZ for infinitely many
primes p. In fact, GH(S) is even invariant under flow equivalence, for every
irreducible subshift S [CS21].

With minimal adaptations, the proof of Theorem 10.10 yields the following
generalization.

Theorem 10.12. Let H be an extension-closed pseudovariety of finite groups
such that H contains Z/pZ for infinitely many primes p. If S1 and S2 are
eventually conjugate irreducible subshifts, then GH(S1) and GH(S2) are iso-
morphic profinite groups.

Proof : Since the language (An)∗ is recognized by Z/nZ for every positive
integer n, our proof that G(S) is invariant under eventual conjugacy also
works in this more general setting. It suffices to pay attention to the following
adaptations.

• We replace the natural projection `A : Â∗ → Ẑ, by the natural projec-
tion `A,H : F̂H(A) → ẐH where ẐH is the inverse limit of cyclic groups
from H;
• For each n ∈ N such that Z/nZ ∈ H, we replace the natural projection

`An : Â∗ → Z/nZ, by the natural projection `A,Hn : F̂H(A)→ Z/nZ;
• We use only positive integers n such that Z/nZ ∈ H. In particular, the

set Qi used in the proof of Lemma 10.11 is now the set of all primes
p such that Z/pZ ∈ H and `A,Hp (Hi) = 0. This requirement explains
why we need that H contains Z/pZ for infinitely many primes p: it
is to ensure that the proof of Theorem 10.10 works in the case where
Q1 and Q2 are finite, more precisely to guarantee that if Q1 and Q2
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are finite, then there are distinct prime numbers p, q not belonging to
Q1 ∪ Q2 and greater than the threshold N such that both Z/pZ and
Z/qZ belong to H.

All arguments adapted from the proof of Theorem 10.10 rely on the aforemen-
tioned generalizations/adaptations of Theorem 2.1, Proposition 2.2, Lemma 6.1
and Theorem 4.3, which entail transparent generalizations of the results of
the previous sections on which Theorem 10.10 depends.
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