
Pré-Publicações do Departamento de Matemática

Universidade de Coimbra

Preprint Number 22�26

POTENTIAL ESTIMATES FOR FULLY NONLINEAR

ELLIPTIC EQUATIONS WITH BOUNDED INGREDIENTS

EDGARD A. PIMENTEL AND MIGUEL WALKER

Abstract: We examine Lp-viscosity solutions to fully nonlinear elliptic equations
with bounded-measurable ingredients. By considering p0 < p < d, we focus on
gradient-regularity estimates stemming from nonlinear potentials. We �nd condi-
tions for local Lipschitz-continuity of the solutions and continuity of the gradient.
We brie�y survey recent breakthroughs in regularity theory arising from (nonlinear)
potential estimates. Our �ndings follow from � and are inspired by � fundamental
facts in the theory of Lp-viscosity solutions, and results in the work of Panagiota
Daskalopoulos, Tuomo Kuusi and Giuseppe Mingione [10].

Keywords: Fully nonlinear equations; Lp-viscosity solutions; potential estimates;
gradient-regularity estimates.
Math. Subject Classification (2020): 35B65; 35J47; 35J60; 31B10.

1. Introduction

We study the regularity of Lp-viscosity solutions to

F
(
D2u,Du, u, x

)
= f in Ω, (1)

where F : S(d) × Rd × R × Ω \ N → R, is a uniformly elliptic operator
with bounded-measurable ingredients, and f ∈ Lp(Ω) for p > p0. Here, Ω ⊂
Rd is an open and bounded domain, N is a null set, S(d) ∼ R

d(d+1)
2 is the

space of symmetric matrices, and d/2 < p0 < d is the exponent such that the
Aleksandrov-Bakelman-Pucci (ABP) estimate is available for elliptic equations
with right-hand side in Lp, for p > p0.
Our contribution is two-fold. From a mathematical viewpoint, we extend

the gradient potential estimates reported in [10] to operators with bounded-
measurable coe�cients depending explicitly on lower-order terms.
We argue by combining well-known facts in the theory of Lp-viscosity solu-

tions, obtaining at once the corpus of results in [10]. That reasoning leads to
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2 E. A. PIMENTEL AND M. WALKER

the second layer of our contribution: the �ndings in the paper attest to the
broad scope, and consequential character, of the developments reported in [10].
The regularity theory for viscosity solutions to (1) is a delicate matter. In-

deed, the �rst result in this realm is the so-called Krylov-Sofonov theory. It
states that, if u ∈ C(B1) is a viscosity solution to

F (D2u) ≤ 0 ≤ G(D2u) in B1 (2)

and F and G are (λ,Λ)-elliptic operators, then u ∈ Cα
loc(B1), for some α ∈

(0, 1) depending only on d, λ and Λ. In addition, one derives an estimate of
the form

‖u‖Cα(B1/2) ≤ C ‖u‖L∞(B1) ,

where C = C(d, λ,Λ) [25]. Indeed, the regularity result in the Krylov-Safonov
theory concerns inequalities of the form

aij(x)∂2
iju ≤ 0 ≤ bij(x)∂2

iju (3)

where the matrices A := (aij)
d
i,j=1 and B := (bij)

d
i,j=1 are uniformly elliptic,

with the same ellipticity constants. The transition of those inequalities to (2)
comes from the fundamental theorem of calculus. Indeed, notice that if F (0) =
G(0) = 0, we get∫ 1

0

d

dt
F (tD2u)dt = F (D2u) ≤ 0 ≤ G(D2u) =

∫ 1

0

d

dt
G(tD2u)dt.

By computing the derivatives above with respect to the variable t and setting

aij(x) :=

∫ 1

0

DMF (tD2u)dt and bij(x) :=

∫ 1

0

DMG(tD2u)dt,

one notices that a solution to (2) also satis�es (3).
If we replace the inequality in (2) with the equation

F (D2u) = 0 in B1 (4)

and require F to be a (λ,Λ)-elliptic operator, solutions become of class C1,α

with estimates. Once again, α ∈ (0, 1) depends only on the dimension and the
ellipticity [43, 4]. Finally, if we require F to be uniformly elliptic and convex

(or concave) viscosity solutions to (4) are of class C2,α, with estimates. This
is known as the Evans-Krylov theory, developed independently in the works of
Lawrence C. Evans [21] and Nikolai Krylov [24].
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The analysis of operators with variable coe�cients, in the context of non-
homogeneous problems �rst appeared in the work of Luis Ca�arelli [3]. In that
paper, the author considers the equation

F (D2u, x) = f in B1 (5)

and requires F (M,x) to be uniformly elliptic. The fundamental breakthrough
launched in [3] concerns the connection of the variable coe�cients operator with
its �xed-coe�cients counterpart. To be more precise, the author introduces an
oscillation measure β(x, x0) de�ned as

β(x, x0) := sup
M∈S(d)

|F (M,x)− F (M,x0)|
1 + ‖M‖

.

Di�erent smallness conditions on this quantity yield estimates in distinct spaces.
It includes estimates in C1,α, W 2,p and C2,α-spaces. Of course, further con-
ditions on the source term f must hold. In particular, it is critical that
f ∈ Lp(B1), for p > d.
An interesting aspect of this theory concerns the continuity hypotheses on

the data of the problem. For instance, the regularity estimates do not depend
on the continuity of f . Meanwhile, the notion of C-viscosity solution requires f
to be de�ned everywhere in the domain, as it depends on pointwise inequalities
[9, 7, 8]. Hence, asking f to be merely a measurable function in some Lebesgue
space is not compatible with the theory. See the last paragraph before Theorem
1 in [3].
In [5], the authors propose an Lp-viscosity theory, recasting the notion of

viscosity solutions in an almost-everywhere sense. In that paper, the authors
examine (1) and suppose the ingredients of the problem are in Lp, for p > p0.
The quantity d/2 < p0 < d appeared in the work of Eugene Fabes and Daniel
Stroock [22]. It stems from the improved integrability of the Green function
for (λ,Λ)-linear operators.
In [20], and before the formalization of Lp-viscosity solutions, the quantity p0

appeared in the context of Sobolev regularity. In that paper, Luis Escauriaza
resorted to the improved integrability of the Green function from [22] to extend
Ca�arelli's W 2,p-regularity theory to the range p0 < p < d. For that reason,
p0 is referred to in the literature as Escauriaza's exponent.
A fundamental study of the regularity theory for Lp-viscosity solutions to (1)

appeared in [42]. Working merely under uniform ellipticity, the author proves
regularity results for the gradient of the solutions. In case p > d, solutions



4 E. A. PIMENTEL AND M. WALKER

are of class C1,α. Here, the smoothness degree depends on the Krylov-Safonov
exponent, and on the ratio d/p. However, in case p0 < p ≤ d, solutions are
only in W 1,q, where q →∞ as p→ d.
The �ndings in [42] highlight an important aspect of the theory, namely: the

smoothness of Du, in the range p0 < p < d, is a very delicate matter. It is
known that C1,α-regularity is not available in this context.
A program that successfully accessed this class of information is the one in

[10]. Through a modi�cation in the linear Riesz potential, tailored to accommo-
date the p-integrability of the data, the authors produce potential estimates for
the Lp-viscosity solutions to (5). Ultimately, those estimates yield a modulus
of continuity for the gradient of the solutions.
In addition to uniform ellipticity, the results in [10] require an average control

on the oscillation of F (M,x). It also assumes f ∈ Lp(Ω) for p0 < p < d. Under
these conditions, the authors prove a series of potential estimates. Those lead
to local boundedness and (an explicit modulus of) continuity for Du. Also,
a borderline condition in Lorentz spaces follows: if f ∈ Ld,1(Ω), then Du is
continuous. Besides providing new, fundamental developments to the regularity
theory of fully nonlinear elliptic equations, the arguments in [10] are pioneering
in taking to the non-variational setting a class of methods available before only
for problems in the divergence form.
We extend the �ndings in [10] to the case of (1) in the presence of bounded-

measurable ingredients. Our analysis heavily relies on properties of Lp-viscosity
solutions [5, 42]; see also [45].
Our �rst main result concerns the Lipschitz-continuity of Lp-viscosity solu-

tions to (1) and reads as follows.

Theorem 1 (Lipschitz continuity). Let u ∈ C(Ω) be an Lp-viscosity solution

to (1). Suppose Assumptions A1 and A2 are in force. Then, for every q > d,
there exists a constant θ∗ = θ∗(d, λ,Λ, p, q) such that if Assumption A3 holds

with θ ≡ θ∗, one has

|Du(x)| ≤ C

[
Ifp(x, r) +

(∫
Br(x)

|Du(y)|q dy

) 1
q

]
for every x ∈ Ω and r > 0 with Br(x) ⊂ Ω, for some universal constant

C > 0.

The potential estimate in Theorem 1 builds upon �wi¦ch's W 1,q-estimates to
produce uniform estimates in B1/2. In fact, by taking d < q < p∗ in Theorem
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1, with

p∗ :=
pd

d− p
, and d∗ = +∞,

one �nds C = C(d, λ,Λ, p) such that

‖Du‖L∞(B1/2) ≤ C
(
‖u‖L∞(B1) + ‖f‖Lp(B1)

)
.

Our second main result establishes gradient-continuity for the Lp-solutions
to (1) and provides an explicit modulus of continuity for the gradient. It reads
as follows.

Theorem 2 (Gradient continuity). Let u ∈ C(Ω) be an Lp-viscosity solution

to (1). Suppose Assumptions A1 and A2 are in force. Suppose further that

Ifp(x, r) → 0 as r → 0, uniformly in x. There exists 0 < θ∗ � 1 such that,

if Assumption A3 holds for θ ≡ θ∗, then Du is continuous. In addition, for

Ω′ b Ω′′ b Ω, and any δ ∈ (0, 1], one has

|Du(x)−Du(y)| ≤ C

(
‖Du‖L∞(Ω′)|x− y|α(1−δ) + sup

x∈Ω
Ifp
(
x, 4|x− y|δ

))
,

for every x, y ∈ Ω′, where C = C(d, p, λ,Λ, ω,Ω′,Ω′′) and α = α(d, p, λ,Λ).

The strategy to prove Theorems 1 and 2 combines fundamental facts in Lp-
viscosity theory to show that a solution to (1) also solves an equation of the
form

F̃ (D2u, x) = f̃ in Ω,

where F̃ and f̃ meet the conditions required in [10]. In particular, the Lorentz
borderline condition for gradient-continuity follows as a corollary.

Corollary 1 (Borderline gradient-regularity). Let u ∈ C(Ω) be an Lp-viscosity
solution to (1). Suppose Assumptions A1 and A2 are in force. Suppose further

f ∈ Ld,1(Ω). There exists 0 < θ∗ � 1 such that, if Assumption A3 holds for

θ ≡ θ∗, then Du is continuous.

We organize the remainder of this paper as follows. Section 2 presents some
context on potential estimates, brie�y describing their motivation and men-
tioning recent breakthroughs. We detail our main assumptions in Section 3.1,
whereas Section 3.2 gathers preliminary material. The proofs of Theorems 1
and 2 are the subject of Section 4.
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2. Potential estimates: from the Poisson equation to fully

nonlinear problems

Potential estimates are natural in the context of linear equations for which a
representation formula is available. For instance, let µ ∈ L1(Rd) be a measure
and consider the Poisson equation

−∆u = µ in Rd. (6)

It is well-known that u can be represented through the convolution of µ with
the appropriate Green function. In case d > 2, we have

u(x) = C

∫
Rd

µ(y)

|x− y|d−2
dy, (7)

where C > 0 depends only on the dimension.
Now, recall the β-Riesz potential of a Borel measure µ ∈ L1(Rd) is given by

Iµβ (x) :=

∫
Rd

µ(y)

|x− y|d−β
dy.

Hence, the representation formula (7) allows us to write u(x) as the 2-Riesz
potential of µ. Immediately one infers that

|u(x)| ≤ C |Iµ2 (x)| ,
obtaining a potential estimate for u. By di�erentiating (7) with respect to an
arbitrary direction e ∈ Sd−1, one concludes

|Du(x)| ≤ C |Iµ1 (x)| .
That is, the representation formula available for the solutions to the Poisson
equation yields potential estimates for the solutions.
This reasoning collapses if (6) is replaced with a nonlinear equation lacking

representation formulas. Then a fundamental question arises: it concerns the
availability of potential estimates for (nonlinear and inhomogeneous) problems
for which representation formulas are not available.
The �rst answer to that question appears in the works of Tero Kilpeläi-

nen and Jan Malý [23], and Neil Trudinger and Xu-Jia Wang [44],
where the authors produce potential estimates for the solutions of p-Poisson
type equations. Taking this approach a notch up, and accounting for po-
tential estimates for the gradient of solutions, one �nds the contributions
of Giuseppe Mingione [41, 40, 39, 38], Frank Duzaar and Giuseppe

Mingione [19, 17, 18, 16], and Tuomo Kuusi and Giuseppe Mingione
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[37, 36, 35, 31, 34, 33, 32, 29, 30, 27, 28, 26]. Of particular interest to the present
article is the analysis of potential estimates in the fully nonlinear setting, due to
Panagiota Daskalopoulos, Tuomo Kuusi, and Giuseppe Mingione
[10]. More recent contributions appeared in the works of Cristiana De Fil-
ippis [11] and Cristiana De Filippis and Giuseppe Mingione [12, 13].
See also the works of Cristiana De Filippis and collaborators [15, 14].
In [19] the authors examine an equation of the form

−div a(x,Du) = µ in Ω, (8)

where Ω ⊂ Rd is a Lipschitz domain, and µ ∈ L1(Ω) is a Radon measure with
�nite mass. Here, a : Ω × Rd → Rd satis�es natural conditions, regarding
growth, ellipticity, and continuity. Those conditions involve an inhomogeneous
exponent p ≥ 2, concerning the behaviour of a = a(x, z) on z. An oversimpli-
�cation yields

a(x, z) = |z|p−2z,

for p > 2, turning (8) into the degenerate p-Poisson equation. In that paper,
the authors resort to the Wol� potential Wµ

β,p, de�ned as

Wµ
β,p(x,R) :=

∫ R

0

1

r
d−βp
p−1

(∫
Br(x)

µ(y)dy

) 1
p−1 dr

r
,

for β ∈ (0, d/p]. Their main result is a pointwise estimate for the gradient of
the solutions to (8). It reads as

|Du(x)| ≤ C

[∫
BR(x)

|Du(y)| dy + Wµ
1
p ,p

(x, 2R)

]
, (9)

whenever BR(x) ⊂ Ω, and R > 0 is bounded from above by some universal
quantity depending also on the data of the problem; see [19, Theorem 1.1]. A
remarkable consequence of this estimate is a Lipschitz-continuity criterium for
u obtained solely in terms of the Wol� potential of µ. Indeed, if Wµ

1
p ,p

(·, R)

is essentially bounded for some R > 0, every W 1,p
0 -weak solution to (8) would

be locally Lipschitz continuous. We notice the nonlinear character of the Wol�
potential suits the growth conditions the authors impose on a(x, z), as it scales
accordingly under Lipschitz geometries.
The �ndings in [19] also respect a class of very weak solutions, known as

solutions obtained by limit of approximations (SOLA); see [1, 2]. This class
of solutions is interesting because, among other things, it allows us to consider
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functions in larger Sobolev spaces. Indeed, for 2− 1/d < p < d one can prove
the existence of a SOLA u ∈ W 1,1

0 (Ω) to{
−∆pu = µ in Ω

u = 0 on ∂Ω.

In addition, u ∈ W 1,q
0 (Ω) with estimates, provided q > 1 such that

1 < q <
d(p− 1)

d− 1
.

When it comes to the proof of (9), the arguments in [19] are very involved.
However, one notices a fundamental ingredient. Namely, a decay rate for the

excess of the gradient with respect to its average. Indeed, the authors prove
there exist β ∈ (0, 1] and C ≥ 1 such that∫

Br(x)

|Du(y)− (Du)r,x| dy ≤ C
( r
R

)β∫
BR(x)

|Du(y)− (Du)R,x| dy, (10)

for every 0 < r < R with BR(x) ⊂ Ω. Here,

(Du)ρ,x :=

∫
Bρ(x)

Du(z)dz.

See [19, Theorem 3.1]. An important step in the proof of (10) is a measure
alternative, depending on the fraction of the ball Br in which the gradient is
larger than, or smaller than, some radius-dependent quantity.
Although the Wol� potential captures the inhomogeneous and nonlinear as-

pects of a = a(x, z), a natural question concerns the use of linear potentials in
the analysis of (8).
Indeed, in [39] the author supposes a(x, z) to satisfy

λ|ξ|2 ≤ 〈∂za(x, z)ξ, ξ〉 ,
|∂za(x, z)|+ |a(x, 0)| ≤ C,

|a(x, z)− a(y, z)| ≤ K|x− y|α(1 + |z|),
(11)

for every x, y ∈ Ω, z ∈ Rd, and ξ ∈ Rd, for some C, λ > 0, and α ∈ (0, 1].
Under these natural conditions, he derives a gradient bound in terms of the
(linear) localized Riesz potential Iσβ(x,R), de�ned as

Iσβ(x,R) :=

∫ R

0

1

rd−β

(∫
Br(x)

σ(y)dy

)
dr

r
,



POTENTIAL ESTIMATES FOR FULLY NONLINEAR ELLIPTIC EQUATIONS 9

for a measure σ ∈ L1(Ω), and β ∈ (0, 1], whenever BR(x) ⊂ Ω.
Indeed, the main contribution in [39] is the following: under (11), solutions

to (8) satisfy

|Du(x)| ≤ C

[∫
BR(x)

|Du(y)|dy + Iµ1(x, 2R) +K
(
I|Du|α (x, 2R) +Rα

)]
, (12)

where C > 0 depends on the data in (11). In case a = a(z) does not depend
on the spatial variable, K ≡ 0 and (12) recovers the usual potential estimate.
A further consequence of potential estimates is in unveiling the borderline

conditions for C1-regularity of the solutions to (8). See [17]; see also [6] for
related results. More precisely, the intrinsic connection between Lorentz spaces
and the nonlinear Wol� potentials unlocks the minimal conditions on the right-
hand side µ that ensures continuity of Du.
In [17], the authors impose p-growth, ellipticity, and continuity conditions on

a = a(x, z), and derive minimal requirements on µ to ensure that u ∈ C1(Ω)
[17, Theorem 3]; see also [17, Theorem 9] for the vectorial counterpart of this
fact.
They prove that if µ ∈ Ld,

1
p−1

loc (Ω), then Du is continuous in Ω. To get this
fact, one �rst derives an estimate for the Wol� potential Wµ

1
p ,p

(x,R) in terms

of the (d, 1/(p− 1))-Lorentz norm of µ. It follows from averages of decreasing
rearrangements of µ. See [17, Lemma 2]. Then one notices that such control
implies

Wµ
1
p ,p

(x,R)→ 0

uniformly in x ∈ Ω, as R→ 0; see [17, Lemma 3].
The previous (very brief) panorama of the literature suggests that whenever

a = a(x, z) satis�es natural conditions � concerning p-growth, ellipticity, and
continuity � potential estimates are available for the solutions to (8). Those
follow through Wol� and (linear) Riesz potentials. Furthermore, this approach
comes with a borderline criterion on µ for the di�erentiability of solutions.
However, these developments appear in the variational setting, closely related
to the notion of weak distributional solutions.
Potential estimates in the non-variational case are the subject of [10]. In that

paper, the authors examine fully nonlinear elliptic equations

F (D2u, x) = f in Ω, (13)
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where F is uniformly elliptic and f ∈ Lp(B1). In this context, the appropriate
notion of solution is the one of Lp-viscosity solution [5]. Technical aspects of
the theory � including its very de�nition � rule out the case where f ∈ L1(Ω),
regardless of the dimension d ≥ 2. Instead, the authors work in the range
p0 < p < d, where d/2 < p0 < d is the exponent associated with the Green's
function estimates appearing in [22].
The consequences of potential estimates for fully nonlinear equations are

remarkable. In fact, if f ∈ Lp(Ω) with p > d, solutions to (13) are known to
be of class C1,α, with α ∈ (0, 1) satisfying

α < min

{
α0, 1−

d

p

}
,

where α0 ∈ (0, 1) is the exponent in the Krylov-Safonov theory available for
F = 0; see [42]. It is also known that C1,α-regularity is no longer available for
(13) in case p < d. The fundamental question arising in this scenario concerns
the regularity of Du in the Escauriaza range p0 < p < d.
In [42], the author imposes an oscillation control on F (M, ·) with respect to

its �xed-coe�cients counterpart and proves regularity estimates for the solu-
tions in W 1,q(Ω), for p0 < p < d, for every

q < p∗ :=
pd

d− p
,

with d∗ := +∞. Meanwhile, the existence of a gradient in the classical sense,
or any further information on its degree of smoothness, was not available in
the p < d setting.
In [10] the authors consider Lp-viscosity solutions to (13), with f ∈ Lp(Ω), for

p0 < p < d. In this context, they prove the local boundedness of Du in terms
of a p-variant of the (linear) Riesz potential. In addition, the authors derive
continuity of the gradient, with an explicit modulus of continuity. Finally, they
obtain a borderline condition on f , once again involving Lorentz spaces. In
fact, if f ∈ Ld,1(Ω), then u ∈ C1(Ω).
The reasoning in [10] involves the excess of the gradient vis-a-vis its average

and a decay rate for this quantity. However, in the context of viscosity solutions,
energy estimates are not available as a starting point for the argument. Instead,
the authors cleverly resort to �wi¦ch's W 1,q-estimates and prove a decay of the
excess at an initial scale. An involved iteration scheme builds upon the natural
scaling of the operator and unlocks the main building blocks of the argument.
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3. Technical preliminaries and main assumptions

This section details our assumptions and gathers basic notions and facts used
throughout the paper. We start by putting forward the former.

3.1. Main assumptions. For completeness, we proceed by de�ning the ex-
tremal Pucci operators P±λ,Λ : S(d)→ R.

De�nition 1 (Pucci extremal operators). Let 0 < λ ≤ Λ. For M ∈ S(d)
denote with λ1, . . . , λd its eigenvalues. We de�ne the Pucci extremal operator

P+
λ,Λ : S(d)→ R as

P+
λ,Λ(M) := −λ

∑
λi>0

λi + Λ
∑
λi<0

λi.

Similarly, we de�ne the Pucci extremal operator P− : S(d)→ R as

P−λ,Λ(M) := −Λ
∑
λi>0

λi + λ
∑
λi<0

λi.

A 1 (Structural condition). Let ω : [0,+∞) → [0,+∞) be a modulus of

continuity, and �x γ > 0. We suppose the operator F satis�es

P−λ,Λ(M −N)− γ|p− q| − ω(|r − s|) ≤ F (M, p, r, x)− F (N, q, s, x)

≤ P+
λ,Λ(M −N) + γ|p− q|+ ω(|r − s|),

for every (M, p, r) and (N, q, s) in S(d)×Rd×R, and every x ∈ Ω\N . Also,

F = F (M, p, r, x) is non-decreasing in r and F (0, 0, 0, x) = 0.

Our next assumption sets the integrability of the right-hand side f .

A 2 (Integrability of the right-hand side). We suppose f ∈ Lp(B1), for p > p0,

where d/2 < p0 < d is the exponent such that the ABP maximum principle

holds for solutions to uniformly elliptic equations F = f provided f ∈ Lp, with
p < p0.

We continue with an assumption on the oscillation of F on x. To that end,
consider

β(x, y) := sup
M∈S(d)\{0}

|F (M, 0, 0, x)− F (M, 0, 0, y)|
‖M‖

.

We proceed with a smallness condition on β(·, y), uniformly in y ∈ B1.
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A 3 (Oscillation control). For every y ∈ Ω, we have

sup
Br(y)⊂Ω

∫
Br(y)

β(x, y)pdx ≤ θp,

where 0 < θ � 1 is a small parameter we choose further in the paper.

We close this section with a remark on the modulus of continuity ω appearing
in Assumption A1. For any v ∈ C(B1)∩L∞(B1) we notice that ω(|v(x)|) ≤ C
for some C > 0, perhaps depending on the L∞-norm of v. Hence(∫

B1

ω(|v(x)|)pdx
) 1

p

≤ C.

This information will be useful when estimating certain quantities in Lp-spaces
appearing further in the paper.

3.2. Preliminaries. In the sequel, we introduce the basics of Lp-viscosity
solutions, mainly focusing on the properties we use in our arguments. We start
with the de�nition of Lp-viscosity solutions for (1).

De�nition 2 (Lp-viscosity solution). Let F = F (M, p, r, x) be nondecreasing

in r and f ∈ Lp(B1) for p > d/2. We say that u ∈ C(Ω) is an Lp-viscosity
subsolution to F = f if for every φ ∈ W 2,p

loc (Ω), ε > 0 and open subset U ⊂ Ω
such that

F (D2φ(x), Dφ(x), u(x), x)− f(x) ≥ ε

almost everywhere in U , then u − φ cannot have a local maximum in U . We

say that u ∈ C(Ω) is an Lp-viscosity supersolution to F = f if for every

φ ∈ W 2,p
loc (Ω), ε > 0 and open subset U ⊂ Ω such that

F (D2φ(x), Dφ(x), u(x), x)− f(x) ≤ −ε

almost everywhere in U , then u − φ cannot have a local minimum in U . We

say that u ∈ C(Ω) is an Lp-viscosity solution to F = f if it is both an Lp-sub
and an Lp-supersolution to F = f .

Although the de�nition of Lp-viscosity solutions requires p > d/2, the appro-
priate range for the integrability of the data is indeed p > p0 > d/2, as most
results in the theory are available only in this setting. See, for instance, [5]. For
further reference, we recall a result on the twice-di�erentiability of Lp-viscosity
solutions.
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Lemma 1 (Twice-di�erentiability). Let u ∈ C(Ω) be an Lp-viscosity solution

to (1). Suppose Assumptions A1 and A2 are in force. Then u is twice dif-

ferentiable almost everywhere in Ω. Moreover, its pointwise derivatives satisfy

the equation almost everywhere in Ω.

For the proof of Lemma 1, see [5, Theorem 3.6]. In what follows, we present
a lemma relating Lp-viscosity solutions to F = f with equations governed by
the extremal Pucci operators.

Lemma 2. Suppose Assumption A1 is in force and f ∈ Lp(Ω), with p > p0.

Suppose further that u ∈ C(Ω) is twice di�erentiable almost everywhere in Ω.

Then u is an Lp-viscosity subsolution [resp. supersolution] of (1) if and only

if

i. we have

F (D2u(x), Du(x), u(x), x) ≤ f(x)

[resp. F (D2u(x), Du(x), u(x), x) ≥ f(x)]

almost everywhere in Ω, and

ii. whenever φ ∈ W 2,p
loc (Ω) and u−φ has a local maximum [resp. minimum]

at x∗, then

ess lim inf
x→x∗

(
P−
(
D2(u− φ)(x)

)
− γ |D(u− φ)(x)|

)
≥ 0

[resp. ess lim sup
x→x∗

(
P+
(
D2(u− φ)(x)

)
+ γ |D(u− φ)(x)|

)
≤ 0].

For the proof of Lemma 2, we refer the reader to [42, Lemma 1.5]. We are
interested in a consequence of Lemma 2 that allows us to relate the solutions
of F (D2u,Du, u, x) = f with the equation F (D2u, 0, 0, x) = f̃ , for some
f̃ ∈ Lp(Ω). This is the content of the next corollary.

Corollary 2. Let u ∈ C(Ω) be an Lp-viscosity solution to (1). Suppose A1

and A2 hold. De�ne f̃ : Ω→ R as

f̃(x) := F (D2u(x), 0, 0, x).

If f̃ ∈ Lp(Ω), then u is an Lp-viscosity solution of

F (D2u, 0, 0, x) = f̃ in Ω. (14)

Proof : We only prove that u is an Lp-viscosity subsolution to (14), as the case of
supersolutions is analogous. Notice the proof amounts to verify the conditions
in items i. and ii. of Lemma 2.
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Because u solves (1) in the Lp-viscosity sense, Lemma 1 implies it is twice
di�erentiable almost everywhere in Ω. Hence, the de�nition of f̃ ensures

F (D2u(x), 0, 0, x) ≤ f̃(x)

almost everywhere in Ω, which veri�es item i. in Lemma 2.
To address item ii., we resort to Lemma 2 in the opposite direction. Let

φ ∈ W 2,p
loc (Ω) and suppose x∗ ∈ Ω is a point of maximum for u− φ. Since u is

an Lp-viscosity solution to (1), that lemma ensures that

ess lim inf
x→x∗

(
P−
(
D2(u− φ)(x)

)
− γ |D(u− φ)(x)|

)
≥ 0.

Therefore, item ii. also follows and the proof is complete.

We also use the truncated Riesz potential of f . In fact, we consider its
Lp-variant, introduced in [10]. To be precise, given f ∈ Lp(Ω), we de�ne its
(truncated) Riesz potential Ifp(x, r) as

Ifp(x, r) :=

∫ r

0

(∫
Bρ(x)

|f(y)|pdy

) 1
p

dρ.

In case p = 1 we recover the usual truncated Riesz potential.
We proceed by stating Theorems 1.2 and 1.3 in [10].

Proposition 1 (Daskalopoulos-Kuusi-Mingione I). Let u ∈ C(Ω) be an Lp-
viscosity solution to

F (D2u, x) = f in B1.

Suppose Assumptions A1 and A2 are in force. Then there exists θ1 such that,

if Assumption A3 holds for θ ≡ θ1, one has

|Du(x)| ≤ C

[
Ifp(x, r) +

(∫
Br(x)

|Du(y)|q dy

) 1
q

]
for every x ∈ Ω and r > 0 with Br(x) ⊂ Ω, for some universal constant

C > 0.

Proposition 2 (Daskalopoulos-Kuusi-Mingione II). Let u ∈ C(Ω) be an Lp-
viscosity solution to

F (D2u, x) = f in Ω.

Suppose Assumptions A1 and A2 are in force. Suppose further that Ifp(x, r)→
0 as r → 0, uniformly in x. Then there exists θ2 such that, if Assumption A3
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holds for θ ≡ θ2, Du is continuous. In addition, for Ω′ b Ω′′ b Ω, and any

δ ∈ (0, 1], one has

|Du(x)−Du(y)| ≤ C

(
‖Du‖L∞(Ω′′)|x− y|α(1−δ) + sup

z∈{x,y}
Ifp
(
z, 4|x− y|δ

))
,

for every x, y ∈ Ω′, where C = C(d, p, λ,Λ, γ, ω,Ω′,Ω′′) and α = α(d, p, λ,Λ).

For the proofs of Propositions 1 and 2, we refer the reader to [10, Theorem
1.3]. We close this section by including �wi¦ch's W 1,p-regularity result.

Proposition 3 (W 1,q-regularity estimates). Let u ∈ C(Ω) be an Lp-viscosity
solution to (1). Suppose Assumptions A1 and A2 are in force. There exists

0 < θ � 1 such that, if Assumption A3 holds with θ ≡ θ, then u ∈ W 1,q
loc (Ω)

for every 1 < q < p∗, where

p∗ :=
pd

d− p
, and d∗ = +∞.

Also, for Ω′ b Ω, there exists C = C(d, λ,Λ, γ, ω, q, diam(Ω′), dist(Ω′, ∂Ω))
such that

‖u‖W 1,q(Ω′) ≤ C
(
‖u‖L∞(∂Ω) + ‖f‖Lp(Ω)

)
.

The former result plays an important role in our argument since it allows
us to relate the operator F (M, p, r, x) with F (M, 0, 0, x). In what follows, we
detail the proofs of Theorems 1 and 2.

4. Proof of Theorems 1 and 2

In the sequel, we detail the proofs of Theorems 1 and 2. Resorting to a
covering argument, we work in the unit ball B1 instead of Ω. As we described
before, the strategy is to show that Lp-viscosity solutions to (1) are also Lp-
viscosity solutions to

G(D2u, x) = g in B1.

Then verify that G : S(d) × B1 \ N → R and g ∈ Lp(B1) are in the scope of
[10]. More precisely, satisfying the conditions in Theorems 1.2 and 1.3 in that
paper. We continue with a proposition.

Proposition 4. Let u ∈ C(B1) be an Lp-viscosity solution to (1). Suppose

Assumptions A1 and A2 are in force. Suppose further that Assumption A3
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holds with θ ≡ θ, where θ is the parameter from Proposition 3. Then u is an

Lp-viscosity solution for

F (D2u, 0, 0, x) = f̃ in B9/10,

where f̃ ∈ Lploc(B1) and there exists C > 0 such that∥∥f̃∥∥
Lp(B9/10)

≤ C
(
‖u‖L∞(B1) + ‖f‖Lp(B1)

)
.

Proof : We split the proof into two steps.

Step 1 - We start by applying Proposition 3 to the Lp-viscosity solutions to
(1). By taking θ in Assumption A3 such that θ ≡ θ, we get u ∈ W 1,q

loc (B1) and

‖Du‖Lq(B9/10) ≤ C
(
‖u‖L∞(∂B1) + ‖f‖Lp(B1)

)
, (15)

for some universal constant C > 0. Moreover, because u is an Lp-viscosity
solution to (1), Lemma 1 ensures it is twice-di�erentiable almost everywhere
in B1. De�ne f̃ : B1 → R as

f̃(x) := F (D2u(x), 0, 0, x).

Step 2 - Resorting once again to Lemma 1, we get that

f̃(x) = F (D2u(x), 0, 0, x)− F (D2u(x), Du(x), u(x), x) + f(x),

almost everywhere in B1. Ellipticity implies∣∣f̃(x)
∣∣ ≤ γ |Du(x)|+ ω (|u(x)|) + |f(x)| ,

for almost every x ∈ B1. Using (15), and noticing that one can always take
q > p, we get f̃ ∈ Lploc(B1), with∥∥f̃∥∥

Lp(B9/10)
≤ C

(
‖u‖L∞(B1) + ‖f‖Lp(B1)

)
,

for some universal constant C > 0, also depending on p. A straightforward
application of Corollary 2 completes the proof.

Proposition 4 is the main ingredient leading to Theorems 1 and 2. Once it is
available, we proceed with the proof of those theorems.



POTENTIAL ESTIMATES FOR FULLY NONLINEAR ELLIPTIC EQUATIONS 17

Proof of Theorem 1: For clarity, we split the proof into two steps.

Step 1 - Because of Proposition 4, we know that an Lp-viscosity solution to
(1) is also an Lp-viscosity solution to

F̃ (D2u, x) = f̃ in B9/10,

where
F̃ (M,x) := F (M, 0, 0, x),

and f̃ is de�ned as in Proposition 4. To conclude the proof, we must ensure
that F̃ satis�es the conditions in Proposition 1.

Step 2 - One easily veri�es that F̃ satis�es a (λ,Λ)-ellipticity condition, in-
herited from the original operator F . It remains to control the oscillation of
F̃ (M,x) vis-a-vis its �xed-coe�cient counterpart, F̃ (M,x0), for x0 ∈ B9/10.
Because

F̃ (M,x)− F̃ (M,x0) = F (M, 0, 0, x)− F (M, 0, 0, x0),

one may take θ ≡ θ1 in Assumption 3 to ensure that F̃ satis�es the conditions
in Proposition 1. Taking

θ∗ := min
(
θ1, θ

)
and applying Proposition 1 to u, the proof is complete.

The proof of Theorem 2 follows word for word the previous one, except for
the choice of θ∗ := min

(
θ2, θ

)
, and is omitted.
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