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MACHINE SPACE I: WEAK EXPONENTIALS AND
QUANTIFICATION OVER COMPACT SPACES

PETER F. FAUL AND GRAHAM MANUELL

Abstract: Topology may be interpreted as the study of verifiability, where opens
correspond to semi-decidable properties. In this paper we make a distinction between
verifiable properties themselves and processes which carry out the verification proced-
ure. The former are simply opens, while we call the latter machines. Given a frame
presentation OX = ⟨G | R⟩ we construct a space of machines ΣΣG whose points are
given by formal combinations of basic machines corresponding to generators in G.
This comes equipped with an ‘evaluation’ map making it a weak exponential for ΣX .

When it exists, the true exponential ΣX occurs as a retract of machine space. We
argue this helps explain why some spaces are exponentiable and others not. We
then use machine space to study compactness by giving a purely topological version
of Escardó’s algorithm for universal quantification over compact spaces in finite
time. Finally, we relate our study of machine space to domain theory and domain
embeddings.
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1. Introduction
Topology may be viewed as the logic governing verifiability. A property P is

said to be verifiable if whenever an element satisfies P , this can be established
by finite means. Notably absent are any constraints on elements which do not
satisfy P — that is, you need not be able to verify this fact. This perspective is
due to Smythe in [21, 22] and has been expanded on subsequently in [28] and
various other papers discussed below. In this view open sets are interpreted
as collections of points satisfying verifiable properties — with intersection and
union corresponding to logical conjunction and disjunction, respectively. This
viewpoint motivates the axioms of a topological space and continuous functions.
It is possible to then derive interpretations of various other topological concepts
in terms of verifiability. In this paper we make use of the pointfree approach
which emphasises the verifiable properties P over the collections of points which
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satisfy them. The analogue of topological spaces from this perspective are called
locales, though we will often simply call these ‘spaces’ when speaking intuitively.

It can be instructive to imagine that for each open in a space, there exists
some machine or program which carries out the verification procedure. Each
machine takes points of the space as input and will either halt (in finite time)
or run forever, depending on whether the point belongs to the associated open
or not. Here we see an example of the analogy between verifiability in topology
and semi-decidability in computability theory [21, 5]. This link is also exhibited
by the compactness algorithm, which we discuss later.

We might be tempted to identify machines with opens, which can in turn
be seen to correspond to continuous maps from X into the Sierpiński space Σ.
Since we are thinking of these machines as ‘real things’ we can interact with,
we can expect there to be natural verifiable properties concerning the machines
themselves (for example, does the machine halt on some given point) yielding a
space of machines for each space X . However, if X is not locally compact, the
exponential object ΣX , which we would think of as the space of opens, does
not exist and so we are forced to distinguish between machines and opens —
unlike functions from X to Σ, machines are not extensional. Moreover, since
spaces of machines should always exist, machines are better than opens for some
purposes.

In order the formalise these ideas, we describe an explicit construction of
a space of machines. We replace the (nonexistent) space of opens ΣX with a
certain weak exponential. Our starting point is to fix a presentation for X with
generators G. (From the classical perspective these can be viewed as a set of
subbasic opens G for the space X .) Since G is a set, the space ΣG exists. The
space X embeds naturally into ΣG and so the opens of X are restrictions of
opens in ΣG. We will view distinct opens of ΣG which restrict to the same open
U in X as distinct machines which accept (i.e. halt on) precisely the elements
of U . A crucial point is that the space ΣG is locally compact and we can take
ΣΣG to be the space of machines of X. This space may be thought of as a
reasonably canonical weak exponential associated to X with base Σ. More
concretely, the points of ΣΣG can be thought of as formal joins of formal meets
of the generators, which are represented by certain programs that run the ‘basic
machines’ from G in parallel.

We then relate machine space to ΣX , when the latter exists. Under the
interpretation so far described an open merely represents a verifiable property
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in an abstract sense, whereas a machine is some process that concretely semi-
decides memberships of elements. Given an open and a point in a general space
X there is not an obvious way to verify that the point lies in the open. This
helps explain the fact that for general spaces the collection of opens equipped
with the Scott topology does not have a continuous evaluation map. We could
however expect the evaluation map to be continuous if there were some way
to associate a machine to each open. Indeed, we show that when X is locally
compact the canonical quotient map of machine space onto ΣX always has a
section, allowing a continuous assignment of opens to machines which represent
them.

One way in which machine space is useful is in understanding compactness.
From the perspective of verifiability a compact space is intuitively a space that
can be universally quantified over in finite time [25, 6]. More explicitly, if P
is some verifiable property and K is some compact space then the question
of whether all the members of K satisfy P is verifiable. That it is sometimes
possible to universally quantify over infinite spaces is especially interesting and
captures the intuitive idea that ‘compact spaces behave like finite sets’. This
idea can be formalised using hyperdoctrines [14, 17, 15], but one might also
consider an alternative approach involving the space of opens to have some
appeal.

If K is a compact, locally compact space, then we can check if a verifiable
property holds on all of K and so we should be able to verify whether the
corresponding open in ΣK is equal to the largest element of ΣK , namely K
itself. In other words, K is compact if and only if the singleton {K} is open
in ΣK . See [6]. Of course, this viewpoint is inapplicable outside of the locally
compact case, since the exponential ΣK will not exist.

As might be expected, this can be extended to the general setting by replacing
ΣK with machine space. This perspective on the universal quantification is
essentially due to Escardó [5]. Instead of asking if an open of K equals K,
we ask if an open in ΣG contains K — that is, if the machine accepts all
points of K. By the Hofmann–Mislove theorem [11], there is an associated open
corresponding to all of the machines which cover K, which plays the same role
as the singleton {K} in the previous approach.

Our contribution is obtaining this open via an explicit algorithm for universally
quantifying over a compact space. This is a very general and purely topological
version of Escardó’s algorithm [5, 7] for universal quantification over Cantor
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space. (See also [8] which discusses universal quantification over data types in
the setting of higher type computation.)

Finally, we discuss some links with domain theory, give some concrete examples
and show how the original algorithm for quantification over Cantor space can
be recovered from ours.

In a later paper we intend to explore the links between machine space and
powerlocales.

2. Background
2.1. The verifiable interpretation of topology. We begin by discussing
the interpretation of topology in terms of verifiable properties. For more details,
see [22, 28].

Let X be some collection of points and let us consider what properties the set
OX of verifiable propositions about X should have. Given two proposition U
and V we can verify their conjunction U ∧ V by simply verifying U and V in
turn. Furthermore, the constantly true proposition is trivially verifiable and so
OX is closed under finite conjunctions. Note that this argument does not extend
to infinite conjunctions, since checking infinitely many verifiable propositions
in turn is not achievable via finite means. However, verifiable properties are
closed under disjunctions of arbitrary cardinality: to verify that a disjunction
holds at some point, we need only verify that one disjunct holds, which does
not require any infinite processes. Note in particular that the constantly false
position is verifiable, since we need only verify propositions when they hold.

In summary, the logic of verifiability admits finite conjunctions and arbitrary
disjunctions. Identifying each proposition U with the set of points which satisfy
it recovers the usual notion of a topological space with conjunctions interpreted
as set intersection and disjunctions as set union. Thus, point-set topology
provides one formalisation of the theory of verifiability. Indeed, this perspective
even extends to continuous functions.

Let f : X → Y be some function between spaces, and let U be some verifiable
property on Y . Supposing f is physically realisable, we can verify if f(x) ∈ U or
equivalently if x ∈ f−1(U). Thus, we recover that preimages of open sets must
be open. Note that from this point of view, all physically realisable functions
must necessarily be continuous.

It is instructive to consider why such reasoning cannot be applied to prove
that every physically realisable function f : X → Y is open — that is, that
the image of every open V in X is open in Y . How would we verify that that
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y ∈ f(V )? We would need to semi-decide that y = f(x) for some x ∈ V . But
equality is not verifiable in general and so we are not always able do this. If we
could semi-decide equality, then each singleton {y} would necessarily be open,
which would make Y a discrete space, and indeed, all functions into discrete
spaces are open.

Concrete topological spaces can be fruitfully interpreted from the perspective
of verifiability.

Example 2.1. Consider the case of the real numbers R. We might imagine
having devices that can measure a quantity x, each to some fixed precision
giving us a rational number. Moreover, let us assume that for any precision
there exists a device that is at least that precise.

We can use these to semi-decide if x > a for some given a ∈ R, since if x > a
then there is always some ε such that x− ε > a and so using a device with such
a precision will verify that x is indeed greater than a. By a similar argument,
we can semi-decide if x < b and hence if x ∈ (a, b). On the other hand, it is
not always possible to check if x ≥ a, as in the scenario where x = a we need
infinite precision to be sure that x is not actually very slightly smaller than a
and any given device has only finite precision. This agrees with the familiar
topology on R. △

2.2. Pointfree topology. The logic of verifiability can also be studied purely
through the verifiable propositions themselves, without any regard to the points
which may or may not satisfy these propositions. This is perspective of pointfree
topology, the study of topology through the lattice of open sets. In this section we
introduce some of the basic notation and concepts which will be used throughout
the rest of the paper. See [16, 28] for further details.

We have seen that verifiable properties are closed under finite conjunctions
and arbitrary disjunctions. Identifying logically equivalent propositions and
ordering the equivalence classes by logical entailment we obtain a lattice. This
is the Lindenbaum–Tarski algebra for the logic. For the conjunctions and
disjunctions to behave as expected, we require that this lattice is distributive.
This motivates the following definition.

Definition 2.2. A frame is a complete lattice which satisfies the distributivity
law

u ∧
∨
i∈I

vi =
∨
i∈I

u ∧ vi.
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A locale X is formally the same thing as a frame, but is thought of as being the
abstract space that has the corresponding frame OX as its lattice of opens. △

Of course, the open sets of any topological space form a frame under intersec-
tion and union, though there are also non-spatial examples.

We can also describe continuous functions from this perspective. Since the
preimage of an open is an open, every continuous function induces a function
between the lattices of open sets but in the opposite direction. From set-
theoretic properties of preimages, we see that this map preserves finite meets
and arbitrary joins. Thus, we define a locale morphism as follows.

Definition 2.3. A frame homomorphism f : L → M is a function f : L →
M between frames that preserves finite meets and arbitrary joins. A locale
morphism f : X → Y is a frame homomorphism f ∗ : OY → OX between the
corresponding frames of opens. △

In good situations, a topological space can be recovered from its frame of
open sets. (See [16] for more details.) In particular, we can talk about points
of a locale. As in Top, we can identify points of a locale with maps from the
terminal object 1. These correspond to frame homomorphisms from OX to
O1 ∼= {0, 1}, which can be understood logically as assigning truth values to
each verifiable proposition P corresponding to whether P holds at x.

Since frames are algebraic structures, they can be presented by generators and
relations. In particular, free frames exist. The free frame on G can be described
explicitly as the frame of downsets on the meet-semilattice of finite subsets of G
ordered by reverse inclusion. The finite subsets of G are interpreted as a formal
meets of generators, while the downsets are viewed as formal joins of these.
Note that every formal expression involving frame operators on the generators
can be brought into the form of a join of finite meets by distributivity.

Definition 2.4. A presentation for a frame consists of a set of generators G
and a set of relations R consisting of formal equalities (or inequalities) between
formal combinations of generators — for example, g1 ∧ g2 =

∨∞
i=3 gi ∧ g2.

Explicitly, R can be defined to be a subset of F (G)× F (G) where F (G) is the
free frame on the set G.

The frame ⟨G | R⟩ defined by such a presentation contains elements corres-
ponding to the generators g ∈ G and which satisfy the relations given in R.
Moreover, it is the initial frame satisfying this property: for any frame M and
function f : G → M for which the images of the generators under f satisfy the
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relations from R, there is a unique frame homomorphism f̄ : ⟨G | R⟩ → M
making the triangle commute.

G

⟨G | R⟩

M
f

f̄

Explicitly, the frame ⟨G | R⟩ can be constructed as the quotient of the free
frame F (G) by the congruence relation generated by R.

Note that taking M in the diagram above to be the initial frame {0, 1},
we see that the points of ⟨G | R⟩ are given by specifying the subset of the
generators that are viewed as ‘true’ such that relations become logical formulae.
For example, our relation above becomes g1 ∧ g2 ⇐⇒ ∃i ≥ 3. gi ∧ g2, so g1
and g2 should be true if and only if gi and g2 are true for some gi ≥ 3. △

One particularly important locale is Σ corresponding to Sierpiński space. As
a space this is {⊥,⊤} with the topology generated by the single open {⊤}.
It can be formally defined as the locale corresponding to the free frame on a
single generator (corresponding to {⊤}). Locale maps u : X → Σ correspond
to opens of X by the universal property of the free frame. Spatially, this can be
understood as taking the preimage of {⊤}. From the verifiability perspective
this allows us to interpret the elements of Σ as corresponding to whether the
verification process halts (⊤), or runs forever (⊥).

Note that if G is a set then ΣG is the locale corresponding to the free frame
on G and so a presentation of X can be understood as an equaliser of locales
X ↪→ ΣG ⇒ ΣR. (Recall that locales are dual to frames and so a coequaliser of
frames becomes and equaliser of locales.)

The equaliser morphism from X ↪→ ΣG can be viewed as analogous to
an embedding of topological spaces. Regular subobjects of locales are called
sublocales and correspond to frame quotients.

Another concept we recall here is that of compactness. The usual topological
definition in terms of finite subcovers works equally well in this setting.

Definition 2.5. A locale X is compact if whenever
∨

i∈I ui = 1 there exists a
finite set F ⊆ I such that

∨
i∈F ui = 1. △
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As mentioned before, compactness has a very nice interpretation in terms of
universal quantification of verifiable properties. We will see some instances of
this in later sections.

2.3. The Scott topology and exponentials. The set of opens OX of a
locale X is itself often endowed with the Scott topology.

Definition 2.6. A subset V ⊆ OX is Scott-open if it is upward closed and
if whenever a join

∨
D ∈ V for a directed set D, then some d ∈ D lies in V .

Recall that a set D is directed if every finite subset of D has an upper bound
in D. △

If X is locally compact, then X is exponentiable. In particular, the exponential
locale ΣX exists and coincides with the Scott topology on OX ∼= Hom(X,Σ).
Furthermore, ΣX is itself locally compact. However, if X is not locally compact
the evaluation map (f, x) 7→ f(x) is not continuous with respect to the Scott
topology and the exponential ΣX does not exist.

The Scott topology can actually be defined more generally on dcpos, which
are often used to model data types in programming languages.

Definition 2.7. A poset which admits joins of all directed subsets is called a
dcpo. We will write

∨↑ S for the join of a directed set S. A morphism of dcpos
or a Scott-continuous function is a monotone map which preserves directed
suprema. △

The order on a dcpo can be thought of as a definability order: the least
element (if it exists) corresponds to a purely divergent computation, while
maximal elements are completely defined. For more on this topic see [1, 2, 10].

3. Machine space
In this section we make certain aspects of the verifiable interpretation of

topology more precise, specifically the relationship between opens and the
processes that semi-decide some fact. Our approach makes use of presentations
of frames and inspires a number of purely topological results — many with
interesting interpretations from the point of view of verifiability.

Given a space X with OX = ⟨G | R⟩ we interpret each generator g ∈ G as a
basic black-box machine which takes as input the points of X and either halts
after some finite amount of time, or runs forever. More complicated machines
can be constructed from these basic machines. For instance, we may construct a
composite machine by taking a finite collection of machines and insist that each
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machine halts on the given point before the composite machine is considered to
have halted. We can also construct a further machine by running any number
of these composite machines in parallel and halting on a point if at least one
branch halts. Topologically this corresponds to taking formal joins of finite
formal meets of generators.

Definition 3.1. Given a space X with OX = ⟨G | R⟩, an (idealised) machine
m over X is a formal join of finite formal meets of generators written m =∨

i∈I
∧

j∈Ji gj with each Ji finite. △

A point x ∈ X is accepted by a machine m if there exists some Jk such
that x is accepted by each ‘basic machine’ gj for all j ∈ Jk. In this way each
machine m will define an open on which it halts. Many of these machines will
correspond to the same opens, as described by the relation R, so that each open
in X corresponds to an equivalence class of machines (see Definition 3.5 and
Proposition 3.6).

Note that such relations must be taken as given axiomatically and cannot be
verified to hold. (After all, we cannot show in finite time that two machines halt
on precisely the same points.) It is important to maintain a sharp distinction
between the properties we assume as axioms, which define the spaces under
consideration and cannot be proven empirically, and the properties we observe
about the spaces we describe, which concern unspecified points and must be
verifiable.

In what follows we will formally define the space of machines and it to the
exponential ΣX , when it exists, and to the Scott topology on OX more generally.

3.1. Presentations and weak exponentials. For a general space X the
space of opens ΣX need not exist. However, given a presentation OX = ⟨G | R⟩
there is however always a natural space of machines, whose points are precisely
the machines described above and whose opens have a natural interpretation in
terms of observable properties of machines. We claim that this space is ΣΣG

and will justify this assertion in the paragraphs below.
Recall that ⟨G | R⟩ is a quotient of the free frame on G, which in turn is the

frame of opens of ΣG. The opens of ΣG are precisely the machines mentioned
in Definition 3.1.

The frame quotient ΣG ↠ ⟨G | R⟩ exhibits X as a sublocale of ΣG. The
points of ΣG correspond subsets of G and we can then interpret this inclusion
as sending points of X to the set of generating opens in which they lie. The
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points in the image of this inclusion correspond to the frame homomorphisms
O(ΣG) → O1 which respect the relations. General points of ΣG may then be
interpreted as ‘generalised points’ of X and can be given as input to machines
on X . This perspective will be useful when we study compactness in Section 4.

So machines on X correspond to opens of ΣG. But ΣG is always locally
compact and so we can consider ΣΣG — the space of opens of ΣG. This will
be our space of machines for X. The topology on ΣΣG is that of the double
powerlocale on G (see [29, 31]) and is generated by opens ⊠U for each U ⊆ G
where a machine m =

∨
i∈I

∧
j∈Ji gj lies in ⊠U if and only if there exists some

Jk such that gj ∈ U for each j ∈ Jk. Intuitively this means we can semi-decide
if there exists some parallel branch of a machine m such that each of the
generators that run in that branch are contained in U .

The fact that we have nontrivial verifiable properties indicates that these
machines are not complete black boxes and that there is some information that
leaks while they run. In order to understand this better, let us consider the
following compelling but flawed model of the situation, before showing how to
remedy it. Note that with all such “real-world” models the set of generators is
assumed to be countable.

Model 3.2. Let X be a locale with OX = ⟨G | R⟩. We take each generator
g ∈ G to be a black box which accepts points of X as input and either halts
after some finite time or runs forever. We imagine these generators arranged in
a line on some suitably long table. Also on the table are a number of mobile
robots which themselves accept points of X as input and will roll from generator
to generator testing the point in the following manner.

The robot progresses through different stages. On the ith stage it selects a
group of finitely many generators, writes the number i onto them and (if they
are not already running) runs them with the point as input. The generators
are left to run as the next stage is started. If at any point every generator in a
group has halted, the a light on the robot’s head flashes green indicating that it
accepts the point.

Such a robot instantiates a machine
∨

i∈I
∧

j∈Ji gj where each Ji is the finite
set of generators in group i. △

If we take these robots to be our machines, then we can indeed verify ⊠U
by simply checking that for every machine in some group is contained in U .
However, there are additional questions that we can semi-decide which do not
occur as opens in ΣΣG, such as:
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(1) “is the generator g1 visited before the generator g2?”
(2) “is the generator g ever visited?”
(3) “is the group {g1, g2} selected at least twice?”

The problem is that the robots, as described, do not actually correspond to
points of ΣΣG, rather they are points in a ‘freer’ structure in which ∧ and ∨ are
not assumed to be commutative, idempotent or absorbent. We can eliminate
questions of the first kind by making the robot choose the order of the generators
visited (both within and between groups) nondeterministically. For questions of
the second kind, note that the machine g should be identified with the machine
g ∨ (g ∧ h). So if the robot visits the generators S ⊆ G in a particular branch,
then we should requite it to visit a branch with generators T for all T ⊇ S.
This will ensure that questions of the second form will always be true and hence
trivially verifiable. Finally, we ensure that no group of machines is selected
more than once to render third question trivial in a similar way.

Note that original model already captured associativity and distributivity of
the operations. Distributivity follows the fact that the formal operations are
already reduced the canonical form of a join of meets. These axioms together
are then enough to give a frame, which ensures that no extraneous verifiable
properties of this sort exist.

Of course, if actually implemented in the real world there would almost
certainly be additional questions one could ask pertaining to the specific engin-
eering of the robots, manufacturing defects, and so on. However, we consider
an idealised setting where the only information that can be gleaned is related
to the robot’s interaction with the generators.

We believe this idealised model is still compelling evidence that such a space
of machines is realisable. Thus, the space of machines is a sense more concrete
than the space of opens, even when the latter exists, and it is interesting to see
how we might obtain the space of opens from machine space. We will do this in
Section 3.2.

Notice that ΣΣG by itself contains no information about the behaviour of the
machines on inputs from the locale X with presentation ⟨G | R⟩, as this data
is contained in the relation R. We can represent this data if we equip ΣΣG with
an evaluation map ẽv : ΣΣG ×X → Σ which records whether a point lies in a
machine. This makes ΣΣG a weak exponential as we show below. (Compare the
construction of weak exponentials in Top given in [20].)
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Proposition 3.3. The space ΣΣG together with the evaluation map ẽv : ΣΣG ×
X → Σ given by the composite ΣΣG × X ↪→ ΣΣG × ΣG ev−→ Σ is a weak
exponential with base Σ and exponent X.

Proof : Since X embeds into ΣG via iX : X ↪→ ΣG, the product ΣΣG×X embeds
into ΣΣG × ΣG. But ΣG is locally compact and so we have an evaluation map
ev : ΣΣG × ΣG → Σ. To see that ẽv = ev ◦ (ΣΣG × iX) makes ΣΣG a weak
exponential we consider a morphism u : A × X → Σ and must construct a
morphism v such that u = ẽv ◦ (v ×X). Consider the following diagram.

A×X

A× ΣG

ΣΣΣG × ΣGΣΣG ×X

A× iX

u′

u′ ×X

u′ × ΣG

ΣΣG × iX
ev

u

Observe that u defines an open in A×X . Since A×X is a subspace of A×ΣG,
there exists a (not necessarily unique) open u′ in A×ΣG which restricts to give
u. By the universal property of the exponential ΣΣG, we obtain a morphism
u′ making the bottom right triangle commute. It is not hard to see that the
left-hand trapezium commutes and then a simple diagram chase confirms that
u = ẽv ◦ (u′ ×X).

We arrive at the following definition.

Definition 3.4. Let X be a locale with OX = ⟨G | R⟩. We define the
associated (idealised) machine space to be ΣΣG together with the evaluation
map ẽv : ΣΣG ×X → Σ defined in Proposition 3.3. △

3.2. Relationship between machine space and the space of opens. It is
enlightening to consider how ΣΣG relates to ΣX in the case that the latter does
exist. Intuitively, we expect there to be a quotient map q : ΣΣG → ΣX which
sends a machine to its corresponding open.
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Definition 3.5. Let X be a locally compact locale with OX = ⟨G | R⟩.
We may define the map q of machine space via the universal property of the
exponential ΣX applied to ẽv.

ΣΣG ×X

ΣX ×X ΣΣG × ΣGΣX

ΣΣG

q ×X

ev

ẽvq

Equivalently, q is given by ΣiX where iX is the inclusion of X into ΣG. △

This map behaves in accordance with our intuition. The diagram can be
interpreted as meaning ẽv(m,x) = ev(q(m), x) which is to say that m halts on
x if and only if x lies in q(m). Moreover, it can be shown to be a quotient map.
In fact, it necessarily has a section. (Compare the Σ-split inclusions of Taylor
[24].)

Proposition 3.6. Let X be a locally compact locale with OX = ⟨G | R⟩.
The map q : ΣΣG → ΣX as defined in Definition 3.5 has a section s satisfying
ẽv ◦ (s×X) = ev.

Proof : We define s from the ‘weak’ universal property of the weak exponential
applied to ev.

ΣΣG ×X

ΣX ×X ΣΣG × ΣGΣX

ΣΣG

q ×X s×X

ev

ẽvq s

It is immediate that ẽv ◦ (s ×X) = ev and so all that remains is to prove
that is is a section of q.

By the diagram we have ev ◦ (q × X) ◦ (s × X) = ẽv ◦ (s × X) = ev =
ev ◦ (idΣX ×X). Hence by the uniqueness condition of the universal property
qs = idΣX , as required.
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The section s continuously ‘picks out representatives of the equivalence classes
defined by the quotient’. It can be viewed as sending an open u to a machine
which carries out the procedure of verification for u.

The relationship between machine space and the exponential ΣX may be
fruitfully interpreted from the perspective of verifiability. If one is not careful,
one can be led to believe that the verifiable interpretation of topology implies that
the space of opens ΣX should exist for all spaces X. This deficient reasoning
would go as follows: the collection of opens should have some topological
structure corresponding to the verifiable properties on it. Let us call this space
OX . Given an open u ∈ OX and a point x ∈ X , since u is a verifiable property,
we can verify whether x lies in u. Carrying out this procedure should take a
value in Σ corresponding to whether the process ran forever or halted. Thus,
this procedure represents a physically realisable evaluation map from OX ×X
to Σ which implies that this evaluation map is continuous. It is then not hard
to check this would satisfy the properties of an exponential object, proving that
OX = ΣX .

From the perspective of machine space the error lies in assuming that given
an open and a point, it is possible to semi-decide membership of the point in
the open. An open merely describes the verifiable property under consideration
— it is a machine that actually physically carries out this verification. From this
point of view, the fact that a section of the quotient map exists whenever X is
locally compact perfectly explains why a continuous evaluation map exists for
OX . Given an open u and a point x, one can apply the section to u to acquire
a machine s(u) which can then verify membership of x in u.

On the other hand, when X is not locally compact the argument breaks down
and we will see that no way to continuously assign opens to machines in this
case. Formulating the quotient of machine space for non-locally-compact locales
presents some difficulties in the pointfree setting, so in the following section we
will examine this from the point of view of point-set topology. In Section 3.2.2
we formalise what we can in the pointfree setting. The first section is sufficient
for understanding the intuition, while the second is more technical.

3.2.1. The space of opens as a topological space. Recall that if a locale X is
given by OX = ⟨G | R⟩ then the frame OX is a quotient of O(ΣG) by the
congruence generated from the relations R. Let us call this frame quotient map
q. Note that O(ΣG) equipped with the Scott topology is precisely the machine
space ΣΣG. We can now use q to induce a topology on OX.
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Proposition 3.7. The quotient topology induced on OX by the function
q : ΣΣG

↠ OX is the Scott topology on OX.

Proof : We need to show that U ⊆ OX is Scott-open if and only if q−1(U) is
Scott-open. First suppose U is Scott-open. We start by showing that q−1(U) is
an upset. Take a ∈ q−1(U) and suppose a ≤ b. Then q(a) ≤ q(b) and q(a) ∈ U ,
giving q(b) ∈ U . Hence, b ∈ q−1(U) and q−1(U) is an upset. Now suppose∨↑D ∈ q−1(U). This means q(D) ⊆ U and

∨↑ q(D) ∈ U . But q(D) is also
directed and so, by Scott-openness of U , there is a d ∈ D such that q(d) ∈ U .
Hence, d ∈ q−1(U) and q−1(U) is Scott-open.

Now take U ⊆ OX and suppose q−1(U) is Scott-open. Say a′ ∈ U and
a′ ≤ b′. Now take a to be any element of q−1(a′) and b to be an element of
q−1(b′) lying above a. This is always possible by joining with a as necessary.
Then a ∈ q−1(U), as a′ = q(a) ∈ U . Hence, b ∈ q−1(U), since q−1(U) is
upward closed. Thus, b′ = q(b) ∈ U and so U is an upset. Finally, suppose∨↑D′ ∈ U . Set D = q−1(D′). Note that D is directed, that q(D) = D′ and
that q(

∨↑D) =
∨↑ q(D) =

∨↑D′ ∈ U . Thus,
∨↑D ∈ q−1(U) and so there is

a d ∈ D such that d ∈ q−1(U). Then q(d) is the desired element d′ ∈ D′ with
d′ ∈ U and so U is Scott-open.

Remark 3.8. Note that a similar proof shows this for any Scott-continuous order
quotient between dcpos.

In the case that X is locally compact, this map q agrees with the map q we
previously defined by the universal property.

Lemma 3.9. The map q : ΣΣG → OX is equal to q : ΣΣG → ΣX as defined in
Definition 3.5 whenever X is locally compact.

Proof : We first note that the codomains agree since OX = ΣX for locally
compact X . Now recall that q = ΣiX . The natural transformation (−)iX is the
mate of (−)× iX with respect to the adjunction (−)×X ⊣ (−)X and so we
have the following commutative diagram.

Hom(1,ΣX) Hom(1×X,Σ)

Hom(1,ΣΣG

) Hom(1× ΣG,Σ)

Hom(1,ΣiX) Hom(1× iX ,Σ)
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The map Hom(iX ,Σ) corresponds to the action of the frame map i∗X = q, while
Hom(1,ΣiX) gives the action of ΣiX on points. Thus, we have that ΣiX and q
agree on points and hence they coincide.

The failure of OX with the Scott topology to be an exponential ΣX when
X is not locally compact is due to this quotient map being badly behaved in
general. Indeed, if there were a section to q as in Proposition 3.6 we could
show X to be locally compact after all. (The proofs of the following two results
require us to assume X itself is spatial, but are useful for intuition. We give
pointfree results in Section 3.2.2.)

Proposition 3.10. If q : ΣΣG → OX has a continuous section s : OX → ΣΣG,
then X is locally compact. Moreover, the evaluation map for OX is ẽv◦(s×X).

Proof : Let ev = ẽv ◦ (s×X). On points we have ev(U, x) = ẽv(s(U), x), which
is equal to ⊤ precisely when iX(x) ∈ s(U) in ΣG and hence when x ∈ U in X.
Thus, ev is the evaluation map for exponential of the underlying sets. Moreover,
ev is continuous, since it is a composition of continuous maps. Every continuous
map from Y ×X → Σ factors through ev to give a set-theoretic function from
Y to ΣX . But this map is continuous since OX has the final topology with
respect to q. Thus, OX is indeed the exponential in Top and hence X is locally
compact.

In fact, we can say more. It is known that lack of exponential objects is
related to the fact that quotients are not stable under pullback (see [4]). We
have the following following result.

Proposition 3.11. If q ×X : ΣΣG → OX ×X is a quotient map, then OX
(with the Scott topology) is the exponential ΣX .

Proof : Consider the following diagram.

ΣΣG ×XA×X OX ×X

Σ

evẽv

h′ ×X q ×X

h

h′′ ×X
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Here ev is defined as the evaluation map from the exponential of the underlying
sets. It is continuous since the composite ẽv = ev ◦ (q ×X) is continuous and
q ×X is a quotient map.

If h : A × X → Σ then by the weak universal property of ẽv we have a
map h′ : A → ΣΣG making the diagram commute. Then h′′ = qh′ satisfies the
condition needed for the weak universal property of ev : OX ×X → Σ to hold.
Moreover, it is unique since we have uniqueness on the underlying sets by the
universal property of the exponential in Set. Thus, OX satisfies the universal
property of the exponential ΣX , as required.

3.2.2. Pointfree quotients of machine space. For non-locally-compact locales, it
is not obvious how to define the Scott topology on OX and the corresponding
quotient machine space in a pointfree way. Nonetheless we can still prove some
results that relate retracts of machine space to local compactness and existence
of the exponential ΣX . This section is more technical than previous ones and
can be skipped by readers who are mainly interested in intuition.

We have seen that a section to the quotient q : ΣΣG → ΣX can be used to
recover the evaluation map on ΣX . In fact, even we can say even more. Suplattice
and preframe homomorphisms between frames are known to correspond to
angelically and demonically nondeterministic maps respectively [23, 32, 31] and
it would seem that a nondeterministic choice of representative for each open
would be sufficient to construct the evaluation map.

Quotient maps with nondeterministic sections correspond to certain triquotient
maps. For example, see [27] for how open and proper quotients can be understood
in these terms.

Definition 3.12. A locale map f : X → Y is a triquotient if there exists a
dcpo morphism f# : OX → OY , called a triquotiency assignment, satisfying
f#(a ∧ f ∗(b)) = f#(a) ∧ b and f#(a ∨ f ∗(b)) = f#(a) ∨ b. (The map f# is
automatically a dcpo retraction of f ∗.) △

Triquotients generalise both open and proper quotients and every retraction
is a triquotient where we take the section as the triquotiency assignment. Plewe
has shown in [18] that triquotients are stable under pullback and hence q ×X
is a triquotient whenever q is. We now state a very general result about how to
define the evaluation map (as long as X is locally compact).
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Proposition 3.13. Let X be a locally compact locale and suppose q : ΣΣG → ΣX

is a triquotient. Then ev∗ = t ◦ ẽv∗ where t is any triquotiency assignment of
q ×X.

Proof : From the definition of q we have the following diagram.

O(ΣΣG

)⊕OX

O(ΣX)⊕OX O(ΣΣG

)⊕O(ΣG)

q∗ ⊕OX t

ev∗

ẽv∗

Then t ◦ ẽv∗ = t ◦ (q∗ ⊕OX) ◦ ev∗ = ev∗, as required.

We now consider the situation when X is not necessarily locally compact.
Even without being able to easily define the space of opens in a pointfree way,
we can still provide a kind of converse to Proposition 3.6.

For this we will need the definition of a continuous dcpo.

Definition 3.14. The way-below relation ≪ on a dcpo L is defined so that
a ≪ b if and only if b ≤

∨↑D implies there is some d ∈ D with a ≤ d. We say
L is continuous if for every b ∈ L we have b =

∨↑{a ∈ L | a ≪ b}. △

A locale X is locally compact if and only if its frame of opens OX is continuous.
The result involves a general kind of map that generalises both retractions

and open quotients and is incomparable with triquotients.

Definition 3.15. We say a locale map e : X → Y is a semi-open quotient if e∗
has a suplattice retraction. △

Proposition 3.16. If there is a semi-open quotient map e : ΣΣG → OX (where
OX has the Scott topology) then X is locally compact.

Proof : Every locale of the form ΣY is injective (see [12, Chapter VII]). Thus, in
particular O(ΣΣG

) is a projective frame and hence a retract of a free frame. But
since e is a semi-open quotient, O(OX) is a suplattice retraction of O(ΣΣG

).
Thus, O(OX) is a suplattice retraction of a free frame.

The free frame is constructed as a frame of downsets and is thus construct-
ively completely distributive [9]. But a suplattice retract of a constructively
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completely distributive lattice is constructively completely distributive (see [19])
and hence so is O(OX).

But it is shown in [26] that the points of a completely distributive frame are
a continuous dcpo. Thus, OX is continuous and so X is locally compact.

If we could define the map q : ΣΣG → OX and it were semi-open then this
result would imply that X is locally compact as in Proposition 3.10. It would
be interesting to know if Proposition 3.16 also holds for triquotient maps.

4. Compactness and universal quantification
We believe that machine space also has the potential to be useful in clarifying

other aspects of topology. In this section we use it to study compactness.
Escardó has explained compactness in terms of an algorithm for universal
quantification in the setting of semantics of programming languages [5, 7, 8].
Our approach yields a purely topological version of this algorithm.

4.1. An algorithm for universal quantification. Recall that a locally
compact locale X is compact precisely when {1} is open in ΣX . More generally,
if a X is embedded into a locally compact space Y , then X is compact if and
only if there is an open of ΣY consisting of the opens that cover X (see [11]).
In terms of machine space this says that if OX = ⟨G | R⟩ then X is compact if
and only if there is an open in ΣΣG consisting of the machines which halt on all
of X. From the perspective of verifiability, this means we can semi-decide if
a given machine always halts on X. Indeed, we will provide an algorithm to
carry out this very procedure.

It is important to understand exactly what it is such an algorithm needs to
do. Of course, to give such a procedure we need to know a precise description
of the space X by generators and relations. From this we can mathematically
derive whether a particular formal combination of generators is equal to 1. On
the other hand, recall that ‘the exact composition’ of the machines in machine
space is opaque to us. Indeed, the opens of machine space only allow us to test
very particular properties of the machines. In the first case we are dealing with
discrete syntax, while in the second we are working with abstract machines
which we do not have knowledge about a priori.

We are now ready to consider the algorithm for universal quantification
over a compact locale X with presentation ⟨G | R⟩. (To actually run such
an algorithm we should restrict G to be countable, but we can still imagine
unbounded parallelism in theory.)
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Algorithm 1 Semi-decision procedure for universal quantification over X

∀X : ΣΣG → Σ
function ∀X(m)

for each S ∈ Pfin(Pfin(G)) do ▷ performed in parallel
if

∨
F∈S

∧
g∈F g ∼ 1 with respect to R then

for each F ∈ S do
test(m ∈ ⊠F ) ▷ semi-decides if a branch is contained in F

HALT

Here Pfin(T ) denotes the set of finite subsets of T and test(m ∈ ⊠F ) halts
precisely when m ∈ ⊠F . Recall that a machine m =

∨
i∈I

∧
j∈Ji gj lies in ⊠F

if and only if there exists some Jk such that gj ∈ F for each j ∈ Jk — that is,
if every generator in some branch of m lies in F .

Note that the algorithm itself involves testing whether
∨

F∈S
∧

g∈F g is a
cover of X. This is on the level of syntax and how to test this is determined
mathematically before running the algorithm. The role of the algorithm is to
translate from the level of syntax to the level of opaque machines.

Theorem 4.1. Let X be a compact locale with OX = ⟨G | R⟩. Algorithm 1
semi-decides if the given machine m halts on all of X.

Proof : Let m =
∨

i∈I
∧

j∈Ji gj. First suppose that this covers X so that∨
i∈I

∧
j∈Ji gj = 1 in X. Since X is compact there is a finite I ′ ⊆ I such

that
∨

i∈I ′
∧

j∈Ji gj = 1. Now set S = {Ji | i ∈ I ′} ∈ Pfin(Pfin(G)). This set
S will be considered in some parallel branch of the algorithm and we have∨

F∈S
∧

g∈F g ∼ 1 in R by construction. Note that test(m ∈ ⊠Ji) halts for
each Ji ∈ S, since

∧
Ji ≤ m and hence m ∈ ⊠Ji. Therefore, this branch will

reach HALT and so the entire computation halts.
Conversely, if the computation halts on m. Then there is some S which

provides a finite refinement of the cover given by m which covers X. Hence∨
i∈I

∧
j∈Ji gj covers X and m halts on all of X, as required.

Remark 4.2. The usual way to link compactness to universal quantification
is via the characterisation in terms of closed product projections. Thus, it is
perhaps remarkable that this algorithm instead makes use of the standard open
cover definition.

It is worth discussing test(m ∈ ⊠F ) in more detail. Recall that in general
an open merely suggests the existence of a procedure to semi-decide some
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membership and is not the procedure itself. Hence it is not a priori clear that
there is some uniform way to compute test(m ∈ ⊠F ). However, note that
ΣΣG is locally compact and hence we expect there to be continuous assignment
of opens to machines.

In Model 3.2 the procedure associated to ⊠F is simply the act of observing
the robot and comparing the generators it visits to the finite collection F . It is
clear that this can be done uniformly in F . Alternatively, we might regard a
machine as a program m : ΣG → Σ. To test whether a branch is contained in a
subset F , we simply supply as input the generalised point pF : G → Σ which
halts precisely on the elements of F .

Example 4.3 (Cantor space). Cantor space is the space 2N of infinite binary
sequences. A presentation is given by ⟨zn, un, n ∈ N | zn ∧ un = 0, zn ∨ un = 1⟩.
Intuitively, zn should be thought of as the open consisting of the sequences whose
nth digit is 0 and un the open of sequences with 1 in the nth position. A machine
will be given by a formal expression of the form

∨
i∈I

(∧
j∈Ji zj ∧

∧
k∈Ki

uk

)
.

Note that a we can easily check if a finite join
∨

i∈I

(∧
j∈Ji zj ∧

∧
k∈Ki

uk

)
is a

cover of 2N by distributing the joins over the meets and checking each conjunct
a cover. A conjunct will be a cover if and only if it contains both zi and ui as
disjuncts for some i ∈ N.

The implementation of test(m ∈ ⊠F ) depends on the precise model. In any
case, we arrive at an algorithm which achieves the same ends as that given by
Escardó in [5, 8]. △

We will explore how our approach relates to other representations of spaces
and the link to Escardó’s setting in Section 4.3.

Example 4.4 (The closed interval). Consider the case of the closed real interval
X = [0, 1]. We can take a generating set consisting of the open intervals with
rational end points, G = {(a, b) | a, b ∈ Q, 0 ≤ a < b ≤ 1}. Then in the
computational model, [0, 1] embeds as a subset of partial functions on G and
so a real r corresponds to a function that halts on (a, b) if and only if r ∈ (a, b).
Then for a ‘machine’ m : ΣG → Σ the algorithm halts if m halts on all of the
(functions corresponding to) reals in [0, 1]. It is elementary to compute when a
formal join of rational intervals covers [0, 1]. Finally, test(m ∈ ⊠F}) is given by
simply calling m(pF ) where pF ∈ ΣG is given by pF (g) = ⊤ ⇐⇒ g ∈ F . △
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Another element to discuss further is the process of determining whether∨
F∈S

∧
g∈F g ∼ 1 with respect to R. We must do this by hand in order to

construct the explicit algorithm for a given locale. In concrete examples this is
typically straightforward, but ideally we might hope to have a general algorithm
that does this for us. However, generating a congruence from given relations
involves a transfinite procedure and is hence a computationally nontrivial
process.

Here it is natural to consider links to formal topology, which is a predicative
approach to topology that considers as its primary objects of study structures
which correspond to presentations of locales. Of relevance here are the paper
[3], which discusses inductive generation of topologies, and [30], which covers
compactness and the relation to locale theory. Theorem 15 of [30] gives condi-
tions in terms of the generators for a set of formal finite joins of opens to be the
set of all finite covers of a locale. Moreover, Proposition 11 of the same paper
implies that the presentation of a compact locale may always be given in a way
such that compactness is manifest and in which case it is easy to find the finite
covers algorithmically. In general, a proof of compactness is likely to lead to a
description of the finite covers.

Remark 4.5. Constructively, there is a ‘dual’ notion to compactness called
overtness (see [25, 13]) which has the same relation to existential quantification
as compactness has to universal quantification. One can give an algorithm
for existential quantification that is very similar to Algorithm 1 except that
instead of iterating over covers we iterate over ‘positive’ (classically: non-zero)
elements. Classically, every locale is overt, though the resulting algorithm is still
more subtle than naively searching through every real number in turn. Instead,
it would use the fact that non-trivial open intervals with rational endpoints
form a countable base for R, which has the advantage of avoiding unbounded
parallelism.

4.2. Topological consequences. It is possible to unwind Algorithm 1 to
give an open of ΣΣG. Each expression test(m ∈ ⊠F ) is replaced with the
corresponding open ⊠F . The second for loop takes the meet of these opens,∧

F∈S ⊠F . The first for (together with the if) corresponds to taking the join
over all S ∈ Pfin(Pfin(G)) such that

∨
F∈S

∧
g∈F covers X. Let us denote the

set of such S by C. Thus, the resulting open is
∨

S∈C
∧

F∈S ⊠F . When X is
compact, this is the open of machines which cover X. The following result is
then immediate from Theorem 4.1.
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Corollary 4.6. Let X be a compact locale with OX = ⟨G | R⟩ and let C
the set S ∈ Pfin(Pfin(G)) satisfying

∨
F∈S

∧
g∈F g = 1 in X. Then the open∨

S∈C
∧

F∈S ⊠F contains precisely the machines which cover X.

Note that we can still define this open for non-compact X ; however, in general
it will only contain machines which correspond to covers which have a finite
subcover.

Also note Corollary 4.6 easily generalises to arbitrary compact sublocales K
of a general locale X by simply viewing K as direct sublocale of ΣG.

Remark 4.7. Corollary 4.6 also follows from the Hofmann–Mislove theorem [11].
Moreover, the Hofmann–Mislove theorem also provides a converse giving that
the set of all covering machine of X is Scott-open if and only if X is compact.
(See also [5, Lemma 7.4].) However, we believe restriction to machine space and
the explicit algorithm provide an interesting new perspective on the situation.

Remark 4.8. Of course, in the overt case we can similarly extract an open of all
‘positive’ machines for X from the algorithm mentioned in Remark 4.5.

4.3. Link to domain-theoretic approaches. Escardó approaches his com-
pactness algorithm from the point of view of programming language semantics
and domain theory. It is interesting to consider how our more topological
approach compares to this one. (Until now our pointfree results have been
constructively valid. For simplicity, we will work classically in this section.)

Recall that data types in programming languages can be modelled as certain
kinds of dcpos. The dcpos that arise in denotational semantics are usually
continuous, in which case the Scott topology is particularly well-behaved. We
also note that resulting topological spaces are locally compact.

Escardó considers the data type of infinite binary sequences. We imagine
these are implemented as streams where the terms are computed in order one
by one on demand. Such a data consists not only of infinite sequences, but also
additional elements corresponding to sequences whose first n terms are defined,
but for which accessing later terms in the sequence causes the computation to
hang.

The elements of this data type form a dcpo ordered by definability so that,
for instance, a sequence which hangs after producing 0, 1, 0 is smaller than one
which hangs after 0, 1, 0, 0. Equipping this with the Scott topology we obtain a
space containing Cantor space as the subspace of completely defined sequences.
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Our embedding of a locale X into the space ΣG for a set of generators G
can be thought of as a reasonably canonical way to obtain additional ‘partially
defined’ elements in a similar way. In fact, since the space ΣG is simply the
power set P(G) (which is a continuous dcpo) equipped with the Scott topology,
it can be understood as corresponding to the data type of partial functions from
a discrete data type with |G| elements to the unit type.

In this way our construction is an example of a domain embedding where
a topological space is represented as a subquotient of a dcpo. In the domain
theory literature, there is some desire for spaces to occur as the subspace of
maximal elements of a dcpo, but this not the case for our embedding, and
indeed, this impossible if the space is not T1. However, we can get closer to this
ideal if we take the closure of X as a subspace in P(G). A closed subset of a
dcpo is a downward closed set which is closed under directed joins. Moreover,
a closed subspace of a continuous dcpo is a continuous dcpo and the Scott
topology on the subset agrees with the subspace topology. Thus, the closure
of X in P(G) is a dcpo which contains the points of X and possibly some
‘more undefined’ approximations to them and since this closure is the smallest
Scott-closed set containing X , the points of X lie as close to the top of the dcpo
as possible in some sense.

Example 4.9. Let us consider the case of Cantor space from Example 4.3.
Recall that O(2N) can be expressed as a quotient of O(ΣG) where G = {zn | n ∈
N} ⊔ {un | n ∈ N} by the congruence C = ⟨zn ∧ un = 0, zn ∨ un = 1, n ∈ N⟩.
The closure of such a sublocale corresponds to the congruence generated by the
pairs (0, c) ∈ C. In this case we obtain a the following presentation for the
closure: ⟨zn, un, n ∈ N | zn ∧ un = 0⟩. This describes a dcpo the elements of
which can be thought of as partial functions from N to 2 = {0, 1}. The points
of Cantor space correspond to the total functions, which do appear the maximal
elements of this dcpo. △

In general, the compactness algorithm works equally well if we replace P(G)
with such a continuous dcpo D, or indeed any locally compact sublocale of
machine space which contains X. The algorithm takes an element m of ΣD

as input and simple applies Algorithm 1 to s(m) where s is a section of the
quotient ΣΣG → ΣD from Proposition 3.6.

Note that the only place s(m) appears in the algorithm is at the step where
we run test(s(m) ∈ ⊠F ). Thus, we may replace this step with any equivalent
computation involving m.
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In this setting it is natural to consider an intuitive model of such a dcpo as
a data type in an idealised programming language. If we view ΣΣG from this
perspective recall that test(m ∈ ⊠F ) is given by m(pF ) where pF : G → Σ
halts precisely on the elements of F . Other examples can be handled in a similar
way.

Example 4.9 (Continued). Let us return to the example of Cantor space.
Using the dcpo A of partial functions from N to 2 instead of machine space
we have a compactness algorithm where test(s(m) ∈ ⊠F ) is implemented as
follows: for each E ∈ Pfin(F ) which does not contain both un and zn for any n,
we run m(fE) where

fE(n) =


0 if zn ∈ F ,
1 if un ∈ F ,
⊥ otherwise

and halt if any of these do.
The inclusion i : A → ΣG maps f to a function which halts on zn if f(n) = 0

and halts on un if f(n) = 1. The quotient map q : ΣΣG → ΣA sends m to
a map x 7→ m(i(x)). Note that for a given m ∈ ΣA, the above procedure
test(s(m) ∈ ⊠F ) for F ∈ Pfin(G) can be easily extended to infinite F ∈ ΣG.
This gives the associated section s : ΣA → ΣΣG of q. △

The above representation of Cantor space is not quite the one used by Escardó,
since he views Cantor space not as a function, but as a stream — that is, there
is an ordering on indices so that if the value at i is defined, so are all previous
values. This is related to alternative presentation of Cantor space in terms
prefixes.

Example 4.10. A presentation for 2N can be given with generators ℓp corres-
ponding to sequences with finite prefix p ∈ 2∗. We have

O2N = ⟨ℓp, p ∈ 2∗ | ℓp ∧ ℓq = ℓq for p ≺ q,

ℓp ∧ ℓq = 0 if q ⊀ p and p ⊀ q,

ℓp#0 ∨ ℓp#1 = ℓp for all p⟩
where p ≺ q means p is a prefix of q and # denotes concatenation.

However, taking the closure of this sublocale of Σ2∗ does not yield the correct
the dcpo. This is because it ignores the natural order structure on the prefixes.
The solution is to modify the parent space ΣG, so that instead of taking the
free frame on a set G, we take the free frame on a poset. In this case, we
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equip 2∗ with the reverse of the prefix order. Then O2N is the quotient of this
frame by the congruence generated by the second and third relations above
(since the first relation is already handled by the order structure on G). The
closure of this sublocale then has the presentation ⟨{ℓp : p ∈ (2∗)op} ∈ Pos |
ℓp ∧ ℓq = 0 if q ⊀ p and p ⊀ q⟩. It is not hard to see that this is the locale of
finite and infinite sequences binary sequences. (Indeed, it is the third relation
in the presentation for 2N above that forces all sequences to be infinite.) This is
precisely the dcpo considered by Escardó. (Finite sequences are interpreted as
sequences which hang after some point.)

We can now see how our algorithm reduces to a (non-optimised) version of
Escardó’s algorithm.

Let us first consider how to check if a finite join
∨

i∈I

(∧
p∈Ji ℓp

)
is a cover of

2N. We first compute the finite meets using the first two relations to obtain a
join of basic generators (omitting zeros from the join). Now let N be the length
of the longest prefix. We pad each p in the join with 0s and 1s to obtain all
possible strings of length N with prefix p. The join is a cover if and only if the
resulting set contains every string of length N .

Finally, test(s(m) ∈ ⊠F ) is computed as follows. If
∧

F = 0 there is
nothing to do. Otherwise,

∧
F = ℓp and we run m on the finite sequence p. △

Remark 4.11. The locale corresponding to free frame on a poset P is ΣIP where
I P is the ideal completion of P . In the case above, the ideal completion of
(2∗)op is actually already the desired dcpo. Nonetheless, it is still interesting to
see that this fits into our general approach.
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