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DRUG DELIVERY TO THE ANTERIOR SEGMENT OF
THE EYE ENHANCED BY ULTRASOUND - MODELING

AND SIMULATION

E. AZHDARI, E. EMAMI AND J. A. FERREIRA

Abstract: Transcorneal drug delivery has been used to treat eye diseases of both
segments of the eye: anterior and posterior segments. Due to the low corneal
permeability, this drug administration route has been shown to be very ineffective.
Ultrasound has been used to increase the corneal drug transport.

In this paper we consider a system of partial differential equations (PDEs) defined
by a wave equation to describe the propagation of the pressure wave generated by a
transducer, a convection-diffusion-reaction equation for the drug transport in each
layer of the cornea - epithelium, stroma and endothelium. The last equations are
linked with the acoustic pressure through the diffusion coefficient and the convective
velocity. The system of PDEs is completed with convenient interface conditions,
initial and boundary conditions. The initial boundary value problem is studied from
analytical point of view and the qualitative behaviour is numerically illustrated.
The results confirm the effectiveness of ultrasound as enhancer of the drug delivery
through the cornea.

AMS Subject Classification (2000): 65M20, 65M60.

1. Introduction
Traditionally, topical drops are the most popular drug delivery procedure

to the eye. Drug delivery to the eye is a very difficult task due to the eye
defenses that protect it from the exterior environment. The reflex blinking
and the tear fluid turnover contribute to the loss of 60% of the applied active
agents and, consequently, for the inefficiency of the eye drops as a drug
delivery system ([9]).

The first barrier that drug must face is the cornea due to its low perme-
ability. The cornea is composed by three different layers: the epithelium,
the stroma and the endothelium. These layers present different properties.
The two first layers, epithelium and stroma, contain intracellular compart-
ments and extracellular micro-domains being the first one composed by cells
and the second one by extracellular matrix (ECM). Collagen is the main
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ingredient in the ECM composition which is homogeneously distributed and
is responsible by the transparency and by the organized structure of the
stroma. The endothelium is a single layer of cells ([4]). Due to the lipophilic
nature of the epithelium, the first layer is a barrier to the hydrophilic drugs
while the stroma, due to its hydrophilic nature, is a barrier to the lipophilic
drugs. These features are responsible by the low permeability of the cornea
to lipophilic and hydrophilic drugs.

To increase corneal permeability and, consequently, to enhance the drug
transport, ultrasound has been used. Without being exhaustive we mention
[6], [8], [14], [15], [19], [22] and [23]. The ultrasonic transducer generates
pressure waves that, as they propagate, they change the behaviour of the
microbubbles present in the target tissue. Acoustic pressure waves with fre-
quency higher than the audible limit (approximately 20 kHz) induce the so
called cavitation phenomenon- expansion and contraction of the microbub-
bles. This phenomenon can be stable if the bubbles do not collapse. In this
case, as a result of the shear stress and the microstreaming around bubbles
oscillating, the rupture of the cell membranes can occur. If the bubbles col-
lapse, the cavitation is said inertial, and, in this case, high speed liquid jets
that are able to create pits in the biological tissue appear (see for instance
[8] and [23]).

The waves propagation lead to pressure gradient that, with the oscilla-
tory movement of the microbubbles, induce a convective transport ([11]). It
should be pointed out that, depending on the ultrasound intensity, an in-
creasing on the temperature in the target tissue can be observed ([16], [24]).

In several experiments involving ultrasound, different histological modifi-
cations of the corneal layers were observed depending on the characteristics
of the protocols used. For instance, in [15], [22] and [23], are included exper-
iments where no structural alteration of the stroma and endothelium were
observed. In ([1]) the deliver of macromolecules thought the cornea is stud-
ied and no structural alterations were observed. However, if the ultrasound
protocols lead to significant changes on the temperature, as in high intensity
focused ultrasound, then temporal structural collagen changes take place (see
for instance [20]).

In this paper we consider a reservoir containing a solution, a solvent and
drug, in contact with the epithelium as represented in Figure 1.

In Figure 2 we present a representation of the cornea that will be consid-
ered later. In this figure, the main three corneal layers : epithelium (Ωep),
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Figure 1. A schematic representation of the physical model (see [15]).

stroma (Ωs) and endothelium (Ωe) are highlighted. The boundaries and the
interfaces between the corneal layers are also included. By Ω we represent
the corneal region. The boundary of Ω in contact with the anterior chamber
is denoted by Γe. By Γi,j we represent the interface between the layers Ωi

and Ωj. By Γi,j we denote the left (j = `) and right (j = r) boundaries of
Ωi.

Figure 2. A schematic representation of the spatial domain Ω.

The acoustic pressure waves generated by the transducer (see Figure 1)
propagate through the solution, reach the cornea with a known intensity, and
then propagate through the corneal layers. We consider that the ultrasound
protocol does not lead to a significant increasing on the temperature.

We assume that the intensity of the pressure waves through the corneal
layers is described by the wave equation and, to maintain a general presen-
tation, the waves propagation speed is different in the three corneal layers,
that is

∂2pi
∂t2

= νi∆pi in Ωi × (0, T ], (1)
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for i = ep, s, e. In (1), T is a final time, pi(x, t) denotes the pressure wave
intensity at x ∈ Ωi at time t, and νi represents the pressure wave speed in
Ωi.

In what follows we use the following notation: if u : Ω× [0, T ]→ IR, then,
for t ∈ [0, T ], by u(t) and u(j)(t), j = 1, 2, we represent the following functions

u(t) : Ω→ IR, u(t)(x) = u(x, t), and u(j)(t) : Ω→ IR, u(j)(t)(x) =
∂ju

∂tj
(x, t).

Equation (1) is completed with the following conditions:

(1) Initial conditions:

p′i(0) = pi(0) = 0 in Ωi, (2)

for i = ep, s, e, that means that the ultrasound waves are generated
at the initial time t = 0;

(2) Boundary conditions:
• the acoustic pressure is assumed to be known on the boundary

Γep
pep(t) = pΓep

(t), on Γep, (3)

• the other boundaries do not interfere with the acoustic waves
propagation, that is,

∇p.η = 0 on
( ⋃
j=ep,s,e,q=`,r

Γj,q ∪ Γe
)
× (0, T ], (4)

where η denotes the unitary exterior normal to the boundaries
Γj,q and Γe;

(3) interface condition:
• continuity of p on Γ`,q, ` = ep, s, q = s, e,
•

νep∇pep.ηep + νs∇ps.ηs = 0 on Γep,s × (0, T ], (5)

and

νs∇ps.ηs + νe∇pe.ηe = 0 on Γs,e × (0, T ]. (6)

In (5), ηi is the exterior unitary normal to Ωi on Γi,j.
The three corneal layers are histologically significantly different. Due to the

cavitation phenomenon generated by the propagation of the acoustic pressure
waves, temporary pores arise in the corneal layers. In [6], a mathematical law
to describe the porosity changes that occur in the cornea when the acoustic
pressure waves propagate within it is proposed . If φj denotes the porosity of
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the layer Ωj induced by the acoustic pressure intensity pj defined by (1)-(6),
then

φj = φj0e
βjm(pj−p0), (7)

where φj0 represents the porosity at a reference pressure p0 and βjm is a
normalization constant.

If a drug dispersed in the solution (see Figure 1) enters in the epithelium,
then its transport through the corneal layers is induced by the gradient of
the acoustic pressure and by the gradient of the drug concentration. Then
the drug transport occurs by diffusion and by the active transport due to
the convective field generated by the pressure gradient (see for instance the
general review [17]). In what concerns, the active transport, Darcy’s law
defines the convective velocity vj in each layer

vj = −kj
µ
∇pj, (8)

where µ represents the viscosity, kj represents the permeability of medium
Ωj, j = ep, s, e,. According to [10], the permeability, the porosity and the
tortuosity of the τj are related by the following identity

kj =
φ3
j

Kτ 2
jA

2
j

, (9)

where Aj is the specific surface area and K is the Kozeny coefficient.
Let cj(x, t) denotes the drug concentration in x ∈ Ωj at time t and let

Jj(x, t) be the drug flux

Jj = −Dj∇cj + vjcj. (10)

In what concerns the passive transport, the drug diffusion coefficient Dj in
each layer Ωj, satisfies

Dj = Dj0φj, (11)

where Dj0 represents the molecular diffusion coefficients in the layer Ωj, re-
spectively (see for instance [6, 12]).

Then the dynamic of the drug molecules in the layer Ωj is defined by

∂cj
∂t

+∇.(cjvj) = ∇.(Dj∇cj)− c`acj in Ωj × (0, T ], (12)

for j = ep, s, e. In (12), c`a denotes the drug clearance rate in Ω that we
assume constant.
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The system of partial differential equations (12) is complemented with
initial condition

cj(0) = 0 in Ωj, j = ep, s, e, (13)

and boundary conditions
cep = cR on Γep × (0, T ],
Jep.η = 0 on (∪q=`,rΓep,q)× (0, T ],
Js.η = 0 on (∪q=`,rΓs,q)× (0, T ],
Je.η = 0 on (∪q=`,rΓe,q)× (0, T ],
Je.η = kece on Γe × (0, T ].

(14)

In (14), cR is the drug concentration on Γep given by the drug concentration
in the solute in the reservoir in contact with the cornea. The last equation in
(14) means that the drug that enters in the anterior chamber depends on the
permeability ke of Γe and of the drug that reaches this boundary. Finally, to
complete our mathematical model we need to impose interface conditions

Jep.ηep = kep,s(cep − cs) on Γep,s × (0, T ],
Jep.ηep = −Js.ηs on Γep,s × (0, T ],
Js.ηs = ks,e(cs − ce) on Γs,e × (0, T ],
Js.ηs = −Je.ηe on Γs,e × (0, T ].

(15)

In (15), ki,j represents the mass transfer coefficient between the layers Ωi and
Ωj. The discontinuities on the drug concentration on the interfaces regions are
consequence of the different histological characteristics of the different layers
that determine different ultrasound effects influencing the drug transport.

In what concerns the mathematical modeling of drug delivery enhanced by
ultrasound, we observe that in [7] is studied a system of PDEs composed by
a wave equation for the ultrasound intensity and a convection-diffusion equa-
tion for the drug concentration that can be used to model the drug transport
in a target tissue stimulated by ultrasound. In [6], the authors study the
drug transport through the cornea where ultrasound is used to increase the
corneal porosity. Assuming known acoustic pressure waves intensities, a dif-
fusion equation is used to describe the drug concencentration distribution in
the corneal layers. In the context of drug delivery in solid tumors enhanced
by high intensity focused ultrasound, in [21], a detailed mathematical de-
scription of the drug dynamics is presented. No detailed description of the
acoustic wave propagation is included. Instead, the authors consider a set of
explicit formulas to obtain an approximation for the acoustic pressure waves
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intensities. In [18], the coupling of the drug dynamics in a porous medium
with the acoustic wave propagation induced by high intensity ultrasound
is studied. A third order in time modified Westervelt equation is used to
describe the waves generated by the ultrasound device.

To the best of our knowledge, in the present paper is firstly introduced a
set of PDEs that can be used to describe the drug transport through the
cornea enhanced by ultrasound. In the set of equations, the change of the
porosity induced by the propagation of the pressure waves is taken into ac-
count. Convection-diffusion-reaction equations for the drug concentration in
the different corneal layers are considered. Here, the convective velocity is
given by Darcy’s law where the permeability depends on the acoustic pressure
intensity. In the coupling between different layers, convenient interface con-
ditions for the pressure and concentration are used. From theoretical point
of view, our main interest is to generalize the Conservation Energy Principle,
that holds for the wave equation, to the acoustic pressure waves intensity in
the corneal layers. Energy bounds are also studied as well as their influence
on the energy bounds for the drug concentration. From numerical point of
view, piecewise linear finite element approximations for the acoustic pressure
intensity and for the drug concentration will be studied. These finite ele-
ment approximations preserve the qualitative properties the initial solutions:
acoustic pressure intensity and drug concentration.

The paper is organized as follows. In Section 2, we establish the energy
conservation for the acoustic pressure intensity and the stability of the IBVP
(1)-(6). Taking into account the results of the previous section, in Section 3
we conclude the stability of the IBVP (7)-(15). Section 4 is devoted to the
numerical simulation. The piecewise linear finite element approximations for
the acoustic pressure and drug concentrations will be considered. Numeri-
cal experiments illustrating the behaviour of the acoustic pressure intensity
and the drug concentration are also included. Finally, some conclusions are
presented in Section 5.

2. Energy conservation and stability for the acoustic pres-
sure

We establish in what follows the stability of the IBVP (1)-(6). Let L2(Ωj)
be the usual space where we consider the usual L2 inner product (., .)L2(Ωj)

and the corresponding norm ‖.‖L2(Ωj), for j = ep, s, e.
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Let (pep, ps, pe) ∈ H2(0, T,
∏

i=ep,s,e

L2(Ωi)) ∩ L2(0, T,
∏

i=ep,s,e

H1(Ωi)) be such

that pep = pΓep
on Γep × (0, T ] and∑

i=ep,s,e

(p′′i (t), ui)L2(Ωi) +
∑

i=ep,s,e

νi(∇pi(t),∇ui)[L2(Ωi)]2 = 0, t ∈ (0, T ], (16)

for all (uep, us, ue) ∈ H1
Γep,0

(Ωep)×H1(Ωs)×H1(Ωe), and

p′i(0) = pi(0) = 0 in L2(Ωi), i = ep, s, e. (17)

In (16), H1
Γep,0

(Ωep) = {u ∈ H1(Ωep) : u = 0 on Γep}.
By Ep(t) we denote total energy defined

Ep(t) =
∑

i=ep,s,e

(
‖p′i(t)‖2

L2(Ωi)
+ νi‖∇pi‖2

[L2(Ωi)]2

)
, p ∈ [0, T ], (18)

where ‖p′i(t)‖2
L2(Ωi)

represents the kinetic energy and νi‖∇ωi‖2
[L2(Ωi)]2

the po-

tential energy. In the next result we prove that if the corneal system is
isolated, that is pΓep

= 0, then the energy Ep is constant in time.

Proposition 1. Let (pep, ps, pe) be solutions of the IBVP (16), (17), with
pΓep

= 0, belonging to C2([0, T ],
∏

i=ep,s,e L
2(Ωi))∩C1([0, T ],

∏
i=ep,s,eH

1(Ωi)).
Then

Ep(t) = Ep(0), t ∈ [0, T ]. (19)

Proof: Considering (16) for (pep, ps, pe) and taking ui = p′i(t), i = ep, s, e,
we obtain∑

i=ep,s,e

(
(p′′(t), p′i(t)(t))L2(Ωi) + νi(∇pi(t),∇p′i((t))[L2(Ωi)]2

)
= 0,

that can be written in the following equivalent form

E ′p(t) = 0, t ∈ (0, T ]. (20)

The identity (20) easily leads to (19).

As a corollary we have the following stability results:

Corollary 1. Let (pep, ps, pe) and (p̃ep, p̃s, p̃e) be solutions of the IBVP (16),
(17) belonging to C2([0, T ],

∏
i=ep,s,e L

2(Ωi))∩C1([0, T ],
∏

i=ep,s,eH
1(Ωi)) where

the initial conditions for (p̃ep, p̃s, p̃e) are defined by

p̃′i(0) = ψi, p̃i(0) = φi in L2(Ωi), (21)
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with ψi ∈ L2(Ωi), φi ∈ H1(Ωi), i = ep, s, e.
Then for ωi(t) = pi(t)− p̃i(t), i = ep, s, e, holds the following∑

i=ep,s,e

(
‖ω′i(t)‖2

L2(Ω) + νi‖∇ωi‖2
[L2(Ωi)]2

)
=
∑

i=ep,s,e

(
‖ψi‖2

L2(Ωi)
+ νi‖∇φi‖2

[L2(Ωi)]2

)
, t ∈ [0, T ].

(22)

Moreover, there exists a positive constant CT such that

∑
i=ep,s,e

‖ωi(t)‖2
H1(Ω) ≤ CT

∑
i=ep,s,e

(
‖ψi‖2

L2(Ωi)
+νi‖∇φi‖2

[L2(Ωi)]2

)
, t ∈ [0, T ]. (23)

Proof: The identity (22) follows directly from Proposition 1. To conclude
(23) we remark that there exists a positive constant C such that

‖ωi(t)‖2
L2(Ωi)

≤ C
(∫ t

0

‖ω′i(s)‖2
L2(Ωi)

ds+ ‖ωi(0)‖2
L2(Ωi)

)
, t ∈ [0, T ], i = ep, s, e.

Corollary 2. There exists at most one solution of the IBVP (16), (17) in

C2([0, T ],
∏

i=ep,s,e

L2(Ωi))∩C1([0, T ],
∏

i=ep,s,e

H1(Ωi))∩C0([0, T ],
∏

i=ep,s,e

H2(Ωi)).

Proof If (pep, ps, pe) and (p̃ep, p̃s, p̃e) are solutions of the IBVP (16), (17)
satisfying the required smoothness assumption, then, for ωi(t) = pi(t) −
p̃i(t), i = ep, s, e, we have

ω′i(t) = 0, ∇ωi(t) = 0 a.e. in Ωi, i = ep, s, e.

As ωep(t) = const a.e. in Ωep, ωep(t) = 0 on Γep and, taking into account
that H2(Ωep) is embedded in C(Ωep), ωep(t) ∈ C(Ωep), we obtain ωep(t) = 0
in Ωep, for t ∈ [0, T ]. Analogously, we conclude that ωi(t) = 0 in Ωi, i = s, e,
and t ∈ [0, T ].

The solution of the non homogeneous problem (16), (17) can be obtained
solving a homogeneous one. In fact, let us suppose that we can extend pΓep

to Ω× [0, T ]. Let pex be such extension. Let wi(t) = pi(t)−pex(t), i = ep, s, e.
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We observe that wep(t) ∈ H1
Γep,0

(Ω) we have∑
i=ep,s,e

(
(w′′i (t), ui)L2(Ωi) + νi(∇wi(t),∇ui)[L2(Ωi)]2

)
= −

∑
i=ep,s,e

(p′′ex(t), ui)L2(Ωi) −
∑

i=ep,s,e

νi(∇pex(t),∇ui)[L2(Ωi)]2, t ∈ (0, T ],

(24)
for all (uep, us, ue) ∈ H1

Γep,0
(Ωep)×H1(Ωs)×H1(Ωe), and

w′i(0) = −p′ex(0), wi(0) = −pex(0) in L2(Ωi), i = ep, s, e. (25)

Then pi = pex + wpi, i = ep, s, e.

3. Stability for the drug concentration
The stability for the weak solution of the IBVP (1)-(6) defined by (16),

(17) will be used now to conclude the stability of the weak solution of the
IBVP (7)-(15).

The weak solution of the IBVP (7)-(15) that we study in what follows

is defined by: (cep, cs, ce) ∈ H1([0, T ],
∏

i=ep,s,e

L2(Ωi)) ∩ L2(0, T,
∏

i=ep,s,e

H1(Ωi))

such that cep = cΓep
on Γep × (0, T ] and∑

i=ep,s,e

(
(c′i(t), ui)L2(Ωi) − (vi(t)ci(t),∇ui)[L2(Ωi)]2 + (Di(t)∇ci(t),∇ui)[L2(Ωi)]2

)
= −(kep,s[c(t)], [u])L2(Γep,s) − (ks,e[c(t)], [u])L2(Γs,e) − (kece(t), ue)L2(Γe),

(26)
for all (uep, us, ue) ∈ H1

Γep,0
(Ωep)×H1(Ωs)×H1(Ωe),t ∈ (0, T ], and

ci(0) = 0 in L2(Ωi), i = ep, s, e. (27)

In (26), vi(t) denotes the convective velocity that we assume to be de-
pendent on pi(t),∇pi(t), i = ep, s, e, vi(t) = (vi,1(t), vi,2(t)), with vi,1(t) =

vi,1(pi(t),
∂pi
∂x1

(t)) and vi,2(t) = vi,2(pi(t),
∂pi
∂x2

(t)). Moreover, the following nota-
tions were used:

(kep,s[c(t)], [u])L2(Γep,s) =

∫
Γep,s

kep,s[c(t)][u]dµ

[c(t)] = cep(t)− cs(t), [u] = uep − us on Γep,s,

cep, cs, uep, us on Γep,s are given by Trace Theorem (see for instance Theorem
1, pp. 272 of [5]). In (26), (ks,e[c(t)], [u])L2(Γs,e) is defined analogously.
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A common approach to solve the non homogeneous (26), (27) is to consider
an extension cex of cΓep

to obtain a function in H1(Ω). Then, wi(t) = ci(t)−
cex(t), i = ep, s, e, are such that wep(t) ∈ H1

Γep,0
(Ωep) and

∑
i=ep,s,e

(
(w′i(t), ui)L2(Ωi) − (vi(t)wi(t),∇ui)[L2(Ωi)]2 + (Di(t)∇wi(t),∇ui)[L2(Ωi)]2

)
+(kep,s[w(t)], [u])L2(Γep,s) + (ks,e[w(t)], [u])L2(Γs,e) + (kewe(t), ue)L2(Γe)

=
∑

i=ep,s,e

(
− (c′ex(t), ui)L2(Ωi) + (vi(t)cex(t),∇ui)[L2(Ωi)]2 − (Di∇cex(t),∇ui)[L2(Ωi)]2

)
−(kep,s[cex(t)], [u])L2(Γep,s) − (ks,e[cex(t)], [u])L2(Γs,e) − (kecex(t), ue)L2(Γe),

(28)
for all (uep, us, ue) ∈ H1

Γep,0
(Ωep)×H1(Ωs)×H1(Ωe), for all t ∈ (0, T ], and

wi(0) = −cex(0) in L2(Ωi), i = ep, s, e. (29)

Then, ci(t) = wi(t) + cex(t), t ∈ [0, T ], i = ep, s, e.
In what follows we present the main stability result. To simplify the pre-

sentation we take kep,s = ks,e = 1.

Proposition 2. Let (pep, ps, pe) and (p̃ep, p̃s, p̃e) be solutions of the IBVP
(16), (17) belonging to L2([0, T ],

∏
i=ep,s,eH

1(Ωi)) and let (cep, cs, ce), (c̃ep, c̃s, c̃e) ∈
C1(0, T,

∏
i=ep,s,e L

2(Ωi)) ∩ L2(0, T,
∏

i=ep,s,eH
1(Ωi)) be the corresponding so-

lutions of differential problem (26), (27) where (c̃ep, c̃s, c̃e) satisfies the initial
condition

c̃i(0) = c̃inc,i in L2(Ωi), i = ep, s, e. (30)

If Di(t) ≥ Di,0 > 0 in R × [0, T ], i = ep, s, e, Di, v and ke are Lipschitz
functions with Lipschitz constants LD, Lv and Lk, respectively.
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Let ωp,i = pi− p̃i and ωc,i = ci− c̃i, i = ep, s, e. Then there exists a positive
constant Cs,c, p, p̃, c, c̃ independent, such that

∑
i=ep,s,e

(
‖ωc,i(t)‖2

L2(Ωi)
+

∫ t

0

e

∫ t

s

g(µ)dµ
‖∇ωc,i(s)‖2

[L2(Ωi)]2
ds
)

+

∫ t

0

e

∫ t

s

g(µ)dµ(
‖ωc,e(s)‖2

L2(Γe)
+ ‖[ωc(s)]‖2

L2(Γep,s∪Γs,e)

)
ds

≤ Cs,c

( ∑
i=ep,s,e

e

∫ t

0

g(µ)dµ
‖c̃inc,i‖2

L2(Ωi)
+

∫ t

0

e

∫ t

s

g(µ)dµ
π(ωp(s),∇ωp(s))ds

)
,

(31)
with

g(µ) = max
i=ep,s,e

‖ṽi(µ)‖∞,L∞(Ωi) = max
i=ep,s,e

max
j=1,2
‖vi,j(p̃i(µ),

∂p̃i
∂xj

(µ))‖L∞(Ωi)

and

π(ωp(t),∇ωp(t)) =
∑

i=ep,s,e

‖ωp,i(t)‖2
H1(Ωi)

‖ci(t)‖2
L∞(Ωi)

+‖ωp,i(t)‖2
L∞(Ωi)

‖∇ci(t)‖2
[L2(Ωi)]2

)
+‖ωp,e(t)‖2

L∞(Γe)
‖ce(t)‖2

L2(Γe)

(32)

Proof: From (26), for ωp(t) and ωc(t) we deduce the following∑
i=ep,s,e

(ω′c,i(t), ωc,i(t))L2(Ωi) = −((ke(pe(t))− ke(p̃e(t)))ce(t), ωc,e(t))L2(Γe)

−(ke(p̃e(t)))ωc,e(t), ωc,e(t))L2(Γe)

−‖[ωc(t)]‖2
L2(Γep,s∪Γs,e)

+
4∑
j=1

Sj,

(33)
with

S1 =
∑

i=ep,s,e

(vi(pi(t),∇pi(t))− vi(p̃i(t),∇p̃i(t))ci(t),∇ωc,i(t))[L2(Ωi)]2,

S2 =
∑

i=ep,s,e

(vi(p̃i(t),∇p̃i(t))ωc,i(t),∇ωc,i(t))[L2(Ωi)]2,
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S3 = −
∑

i=ep,s,e

((Di(pi(t))−Di(p̃i(t)))∇ci(t),∇ωc,i(t))[L2(Ωi)]2

and

S4 = −
∑

i=ep,s,e

(Di(p̃i(t)))∇ωc,i(t),∇ωc,i(t))[L2(Ωi)]2.

As v is a Lipschitz function with Lipschitz constant Lv for S1 we get

|S1| ≤
∑

i=ep,s,e

( 1

2ε2i
L2
v

(
‖ωp,i(t)‖2

L2(Ωi)
+ ‖∇ωp,i(t)‖2

[L2(Ωi)]2

)
‖ci(t)‖2

L∞(Ωi)

+ε2i‖∇ωc,i(t)‖2
[L2(Ωi)]2

)
,

(34)
where εi 6= 0, i = ep, s, e, are arbitrary constants.

For S2 we easily obtain

|S2| ≤
∑

i=ep,s,e

1

4β2
i

‖ṽi(t)‖2
∞,L∞(Ωi)

‖ωc,i(t)‖2
L2(Ωi)

+ β2
i ‖∇ωc,i(t)‖2

[L2(Ωi)]2
, (35)

where βi 6= 0, i = ep, s, e, are arbitrary constants.
Considering that Di, i = ep, s, e, are also a Lipschitz functions we deduce

|S3| ≤
∑

i=ep,s,e

1

4γ2
i

L2
D‖ωp,i(t)‖2

L∞(Ωi)
‖∇ci(t)‖2

[L2(Ωi)]2
+ γ2

i ‖∇ωc,i(t)‖2
[L2(Ωi)]2

,

(36)
where γi 6= 0, i = ep, s, e, are arbitrary constants.

Finally, we also have

−((ke(pe(t))− ke(p̃e(t)))ce(t), ωc,e(t))L2(Γe) − (ke(p̃e(t)))ωc,e(t), ωc,e(t))L2(Γe)

≤ 1

4α2
L2
k‖ωp,e(t)‖2

L∞(Γe)
‖ce(t)‖2

L2(Γe)
+ α2‖ωc,e(t)‖2

L2(Γe)
− ‖
√
keωc,e(t)‖2

L2(Γe)
,

(37)
where α 6= 0 is an arbitrary constant, and

S4 ≥ −
∑

i=ep,s,e

Di,0‖∇ωc,i(t)‖2
[L2(Ωi)]2

. (38)
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Inserting the bounds (34)-(38) in (33) we establish

1

2

d

dt

∑
i=ep,s,e

‖ωc,i(t)‖2
L2(Ωi)

+
∑

i=ep,s,e

(Di,0 − β2
i − ε2i − γ2

i )‖∇ωc,i(t)‖2
[L2(Ωi)]2

+‖
√
keωc,e(t)‖2

L2(Γe)
− α2‖ωc,e(t)‖2

L2(Γe)
+ ‖[ωc(t)]‖2

L2(Γep,s∪Γs,e)

≤
∑

i=ep,s,e

1

4β2
i

‖ṽi(t)‖2
∞,L∞(Ωi)

‖ωc,i(t)‖2
L2(Ωi)

+ π̂(ωp(t),∇ωp(t)),

(39)
with

π̂(ωp(t),∇ωp(t)) =
∑

i=ep,s,e

( 1

2ε2i
L2
v

(
‖ωp,i(t)‖2

L2(Ωi)
+ ‖∇ωp,i(t)‖2

[L2(Ωi)]2

)
‖ci(t)‖2

L∞(Ωi)

+ 1
4γ2i
L2
D‖ωp,i(t)‖2

L∞(Ωi)
‖∇ci(t)‖2

[L2(Ωi)]2

)
+ 1

4α2L
2
k‖ωp,e(t)‖2

L∞(Γe)
‖ce(t)‖2

L2(Γe)
.

From (39), fixing conveniently the arbitrary constants βi, εi, γi, i = ep, s, e,
and α, we easily guarantee the existence of a positive constant Cs,c satisfying
(31) with π(ωp(t),∇ωp(t)) defined by (32).

We remark the following:

(1) If (pep, ps, pe) and (p̃ep, p̃s, p̃e) are solutions of the IBVP (16), (17) in

C2([0, T ],
∏

i=ep,s,e

L2(Ωi)) ∩ C1([0, T ],
∏

i=ep,s,e

H1(Ωi)) ∩ C([0, T ],
∏

i=ep,s,e

H2(Ωi)),

by Corollary 1 of Proposition 1, an upper bound for π(ωp(t),∇ωp(t))
is established.

(2) We observe that the coupled problem (16), (17), (26), (27) is nonlinear
in the acoustic pressure pi, i = ep, s, e. Consequently, the stability
holds locally. The stability of the coupled problem (16), (17), (26),
(27) is consequence of Propositions 1 and 2.

(3) To guarantee the stability of the coupled problem (16), (17), (26), (27)
in p and c satisfying the assumptions of Propositions 1 and 2, we need
to impose that∫ T

0

‖ci(µ)‖2
L∞(Ωi)

dµ ≤ C,

∫ T

0

‖∇ci(µ)‖2
[L2(Ωi)]2

dµ ≤ C, i = ep, s, e,
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0

‖ce(µ)‖2
L2(Γe)

dµ ≤ C.

(4) if vi,j, j = 1, 2, i = ep, s, e, are bounded in R2, then there exists a
positive constant C, p, p̃, c, c̃ independent, such that ‖ṽ(µ)‖∞,L∞(Ωi) ≤
C, i = ep, s, e, and the stability follows.

4. Numerical simulation
4.1. Piecewise linear finite element approximations for the acous-
tic pressure and concentration. In what follows we assume that the
boundaries of Ωi, i = ep, s, e, are polygonal lines. Let Ti,h, i = ep, s, e, be
a sequence of admissible triangulations of Ωi, i = ep, s, e, respectively, with
max
∆∈Ti,h

diam(∆)→ 0, i = ep, s, e. We assume that Tep,h and Ts,h are compatible

with respect to Γep,s in the following sense: if ∆1 ∈ Tep,h and ∆2 ∈ Ts,h are
such that ∆̄1 ∩ ∆̄2 6= ∅ and ∆̄1 ∩ Γep,s 6= ∅, ∆̄2 ∩ Γep,s 6= ∅, then ∆̄1 ∩ ∆̄2

is the common side of these two triangles that is contained in Γep,s. We also
assume that Ts,h and Te,h are compatible with respect to Γs,e.

Let Ph be the piecewise linear interpolator operator. By Vi,h we denote the
subspace of H1(Ωi) defined by the piecewise linear functions uh induced by
the triangulation Ti,h for i = ep, s, e.

By (pep,h(t), ps,h(t), pe,h(t)) ∈
∏

i=ep,s,e Vi,h we denote the piecewise linear
approximation for the solution of the IVP (16), (17) defined by: pep,h(t) =
ph,Γep

(t) on Γep × (0, T ] and∑
i=ep,s,e

(
(p′′i,h(t), ui,h)L2(Ωi) + νi(∇pi,h(t),∇ui,h)[L2(Ωi)]2

)
= 0, t ∈ (0, T ], (40)

for all (uep,h, us,h, ue,h) ∈ V (0)
ep,h × Vs,h × Ve,h, and

p′i,h(0) = 0 = pi,h(0) = 0 in L2(Ωi), i = ep, s, e. (41)

In the definition of the piecewise linear approximation for the pressure,

V
(0)
ep,h = {uh ∈ Vep,h : uh = 0 on Γep} and pΓep,h(t) is the piecewise linear

interpolator of pΓep
(t).

Let us consider now the piecewise linear finite element for the concentration

that we introduce in what follows. Let (cep,h(t), cs,h(t), ce,h(t)) ∈
∏

i=ep,s,e

Vi,h
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be such that cep(t) = cΓep,h(t) on Γep and∑
i=ep,s,e

(
∂ci,h
∂t

(t), ui,h)L2(Ωi) +
∑

i=ep,s,e

(Di(t)∇ci,h(t),∇ui,h)[L2(Ωi)]2

=
∑

i=ep,s,e

(vi,h(t)ci,h(t),∇ui,h)[L2(Ωi)]2

−(kep,s[ch(t)], [uh])L2(Γep,s) − (ks,e[ch(t)], [uh])L2(Γs,e)

−(kece,h(t), ue,h)L2(Γe), t ∈ (0, T ],

(42)

for all (uep,h, us,h, ue,h) ∈ V (0)
ep,h × Vs,h × Ve,h, and

ci,h(0) = 0 in L2(Ωi), i = ep, s, e. (43)

In (42), vi,h = (vi,1(pi,h(t),∇pi,h(t)), vi,2(pi,h(t),∇pi,h(t))), with pi,h(t), i =
ep, s, e, given by (40), (41), cΓep,h

(t) is the piecewise linear interpolator of
cΓep

(t) on Γep, and [ch(t)] = cep,h(t) − cs,h(t) on Γep,s and [ch(t)] = cs,h(t) −
ce,h(t) on Γs,e for t ∈ (0, T ], [uh(t)] on Γep,s and on Γs,e is defined analo-
gously.

The stability analysis for the IVP (40), (41), (42) and (43) can be stated
following the proof of Proposition 1 and its corollary 1 and Proposition 2.
In fact, these results can be established for the IVP (40), (41), (42) and (43)
where the corresponding upper bounds depend on the finite element approx-
imations. For instance, the stability upper bound (31) holds for the finite
element solutions pep,h(t), p̃ep,h(t), ci,h(t), c̃i,h(t), i = ep, s, e, defined by (40),
(41), (42) and (43). To guarantee the stability of the coupled finite element
method, we should guarantee that the second member of the inequality (31)
in finite element context is bounded, that is, the term corresponding to (32)
defined by

π̂(ωph(t),∇ωph(t)) =
∑

i=ep,s,e

(
‖ωph,i(t)‖2

H1(Ωi)
‖ci,h(t)‖2

L∞(Ωi)

+‖ωph,i(t)‖2
L∞(Ωi)

‖∇ci,h(t)‖2
[L2(Ωi)]2

)
+‖ωph,e(t)‖2

L∞(Γe)
‖ce,h(t)‖2

L2(Γe)

)
,

(44)

is bounded. In (44), ωp,i(t) = pi,h − p̃i,h(t), i = ep, s, e.
Let us consider a simplified version of our model defined considering the

cornea as a unique domain Ω. Let Th be a quasi-uniform triangulation of Ω
and let Sh be the space of continuous functions in Ω which are linear in each
triangle of Th and null on Γep. To obtain the stability of the corresponding
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Diameter of Ti,h, i = eps, s, e Error in epithelium Error in endothelium.
0.01 5.81813× 10−5 1.11626× 10−6

0.0067 4.36563× 10−5 9.3682× 10−7

0.0034 3.87258× 10−5 8.5983× 10−7

Table 1. Errors (L∞) for concentration in epithelium and endothelium.

Diameter of Ti,h, i = eps, s, e Error in epithelium Error in endothelium.
0.01 0.022579 0.003752
0.0067 0.013645 0.002395
0.0034 0.011248 0.001853

Table 2. Errors (L2) for concentration in epithelium and endothelium.

Diameter of Ti,h, i = eps, s, e Error in epithelium Error in endothelium.
0.01 0.026351 0.003756
0.0067 0.023608 0.003753
0.0034 0.023047 0.003746

Table 3. Errors (H1) for concentration in epithelium and endothelium.

finite element approximation, it is necessary to obtain upper bounds for
the errors ‖p(t) − ph(t)‖H1(Ω) as well as for ‖p(t) − ph(t)‖L∞(Ω) and ‖p(t) −
ph(t)‖L∞(Γe

, ‖c(t)− ch(t)‖2
L∞(Ω) and ‖c(t)− ch(t)‖2

L2(Γe)
. The establishment of

upper bounds for the last errors even in the simplified version need to be
investigated.

4.2. Numerical Results. The numerical results presented in what follows
were obtained using the commercial tool COMSOL 5.3 Multiphysics. Piece-
wise linear finite element space P1 for the concentration and pressure is used
and backward differential formulae with orders between 1 and 2 with a time-
step equal to 0.1s are used to integrate in time.

In what follows we consider the computational mesh illustrated in Figure
3. The adequacy of the mesh has been investigated using convergence tests
considering different meshes and a reference solution computed with hmax =
10−4. The results included in Tables 1, 2 and 3 are computed considering
the maximum in time of the indicated norm of the difference between the
reference solution and the solutions obtained with the triangular meshes with
the indicated hmax. Taking into account these results we conclude that the
numerical results are not sensitive with respect to the meshes used.

The parameters and the corresponding values used in what follows are
given in Tables 4 and 5.
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Figure 3. Computational mesh.

Symbol Numerical value Refs.
Epithelium Stroma Endothelium

Dj0(j = ep, s, e) 6.71× 10−10 6.1× 10−10 11.1× 10−10 [2]
Aj(j = ep, s, e) 10−4 9.8× 10−5 7.2× 10−5 [2]
cla 7.344× 10−6 4.678× 10−5 7.8291× 10−5 [2]

Table 4. Values of the parameters, diffusion coefficient (m2/s),
surface area (m2) and clearance rate(1/s), used in the numerical
experiments.

Symbol Definition Numerical value Refs.
νj(j = ep, s, e) Material sound speed((m/s)2) 2 [7]
φj0(j = ep, s, e) Porosity at a reference pressure 0.25 [3]
βj0(j = ep, s, e) Normalization constant 10−8 [3]
K Kozeny coefficient(1/s) 2 [10]
τj(j = ep, s, e) Tortuosity of the medium(m/s) 1 [10]
µ Viscosity of the medium(kg/m.s) 10−3 [3]
cR Reservoir concentration(mol/m3) 1 -
ki,j Mass transfer coefficient(m/s) 10−4 -
pΓep Acoustic pressure on Γep (Pa) 1 -

Table 5. Values of the other parameters used in the numerical
experiments.

In Figure 4 we illustrate, qualitatively, the effect of the ultrasound on the
drug transport. In the left figure we present the mean drug concentration
in the stroma with and without ultrasound. In the right figure we plot
the corresponding drug mass in the anterior chamber. We observe that the
pressure waves generated by the ultrasound increase the drug concentration
in the cornea and, consequently, the drug mass that will be available in the
anterior chamber also increases. These figures clearly illustrate the effect of
ultrasound on drug transport through the cornea.

In Table 6 we include the average drug concentration in the stroma and
in the anterior chamber for different times. From these results, we conclude
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(a) Stroma (b) Anterior chamber

Figure 4. Time evolution of the average drug concentration in
the stroma ((a)) and of the drug mass in the anterior chamber
((b)) for t = 300s.

stroma anterior chamber
time(s)

with without with without
0 6.0995× 10−9 5.9031× 10−9 1.7530× 10−13 1.7521× 10−13

60 0.066164 0.050252 4.0825× 10−4 3.0068× 10−4

120 0.12066 0.094975 0.0020851 0.0017001
180 0.16462 0.13314 0.0042347 0.0035270
240 0.20195 0.16595 0.0067024 0.0056381
300 0.23370 0.19434 0.0094189 0.0079541

Table 6. Average drug concentration in stroma and in anterior
chamber for different times.

that as time increases, the drug concentration increases in both corneal com-
partments being the drug concentration enhanced by ultrasound greater than
the drug concentration without the enhancer.

The drug transport enhanced by ultrasound has two main contributions:
a Fickian transport and a convective transport. To illustrate the importance
of the convection generated by ultrasound, in Figure 5 we plot the average
drug concentrations in the stroma and in the anterior chamber computed
with and without the convective transport. From these plots, we conclude
that the convective field induced by ultrasound has an important role in the
drug transport.
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(a) Stroma (b) Anterior chamber

Figure 5. Time evolution of the average drug concentration
with and without the convective transport induced by ultrasound
in the stroma ((a)) and in the anterior chamber ((b)) for t = 300s.

Figure 7 illustrates the behaviour of the drug concentration in each corneal
layer when the mass transfer coefficient kep,s between the epithelium and the
stroma changes. As this parameter increases, decreases the drug concentra-
tion in the epithelium and increases the drug concentration in the stroma
and endothelium. In fact, the promotion of the drug transport through Γep,s
is mathematically translated by the increasing of kep,s that leads to an in-
creasing of the drug concentration in the stroma and endothelium and a
decreasing in the epithelium.

To conclude this section devoted to the illustration of the qualitative be-
haviour of the drug concentration in the corneal layers when the drug trans-
port through the cornea is enhanced by ultrasound, we present a comparison
between numerical results and experimental data obtained from [6]. In this
paper, experiments involving the transport of sodium fluorescein through
rabbit corneas enhanced by ultrasound are presented. The results were ob-
tained by exposing the cornea to pressure waves generated from a 800kHz
transducer and intensity equal to 2 W/cm2 during 5 minutes.

In Figure 8 we compare experimental data with simulation results, where
the experimental data are taken from [6] considering the initial time coincid-
ing with t = 103s. We observe a good agrement between both results which
shows the potential of the mathematical model (40), (41), (42) and (43) to
describe the drug transport in the cornea enhanced by ultrasound.
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(a) Epithelium (b) Stroma

(c) Endothelium

Figure 6. Time evolution of the average drug concentration
in the epithelium ((a)), stroma ((b)) and endothelium ((c)) for
different wave propagation speeds in the epithelium.

5. Conclusions
The human eye is a fortress that has a diverse set of defenses that protects

it from surrounding environment. In what concerns the anterior part of the
eye, these defenses include, among others, the reflex blinking, the tear film
(thin transparent fluid layer) and the tear fluid turnover, the nasolacrimal
drainage system as well as the lower permeability of the cornea. When an
eye drop is instilled in the eye, the defense system is responsible by the loss
of a significant amount of drug. Consequently, only 5% of the applied drug
reaches the intraocular tissue.

In the present paper we study, from mathematical and simulation point
of views, the role of pressure waves generated by ultrasound as enhancer
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(a) Epithelium (b) Stroma

(c) Endothelium

Figure 7. Time evolution of the average drug concentration in
the three corneal layers: epithelium ((a)), stroma ((b)) and en-
dothelium ((c)) for different values of the mass transfer coefficient
kep,s.

to increase the drug transport through the corneal layers. The ultrasound
generates pressure waves that increase the porosity of the cornea and, con-
sequently, increase the diffusive and convective drug transports. In fact, the
diffusion coefficients and permeability of the corneal layers depend on the
porosity and by Darcy’s law, the convective velocity also depends on the
pressure waves intensity.

At the best of our knowledge, this is the first study on this subject -
mathematical modeling of the coupling between pressure waves generated
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Figure 8. Experimental data from [6] and average drug con-
centration that reaches the anterior chamber obtained from the
model.

by ultrasound and the drug transport through to the corneal layers consid-
ering the dependence of the diffusion coefficient and the convective velocity
on the porosity induced by the propagation of pressure waves generated by
ultrasound.

From the numerical experiments presented in the last section, the following
conclusions can be stated:

• An increasing in the acoustic pressure on the boundary Γep leads to
an increasing of the drug concentration in the corneal layers and an
increasing of the drug that reaches the anterior chamber (Figure 4 and
Table 6);
• The pressure waves induce a convective flow in the corneal layers and,

consequently, lead to an increasing of the drug concentration in the
corneal layers (Figure 5);
• An increasing in the waves propagation speed in the epithelium leads

to an increasing on the porosity and permeability of the different
corneal layers. Consequently, also lead to a decreasing of the drug
concentration in the first layer and an increasing of the drug concen-
tration in the two last corneal layers (Figure 6).
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From theoretical point of view, the stability of the coupled problem (16),
(17), (26), (27) is established in Propositions 1 and 2. Similar results hold
for the semi-discrete approximation defined by piecewise linear finite element
approximations for the acoustic pressure and for the concentration.
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