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Abstract: We present a simple technique for semantic, open logical relations ar-
guments about languages with recursive types, which, as we show, follows from a
principled foundation in categorical semantics. We demonstrate how it can be used
to give a very straightforward proof of correctness of practical forward- and reverse-
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Introduction
Automatic differentiation (AD) computes derivatives in a numerically stable

way that scales efficiently to high-dimensional spaces. Its ubiquity in scientific
computing, statistics and machine learning applications has led to the idea
of differentiable programming: compilers for modern programming languages
should provide good built-in support for AD of any program written in those
languages [22, 26]. It is a non-trivial question how to efficiently and correctly
differentiate arbitrary complex programs, which has led to a booming area of
research.

Dual numbers techniques give very simple forward and reverse mode AD algo-
rithms for expressive ML-family functional languages [27, 6, 13, 21, 16, 29]. The
correctness proofs for these algorithms rely on (open) semantic logical relations
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arguments. These proofs become surprisingly complex, even for simple dual
numbers AD algorithms, when considering AD of languages with partial fea-
tures such as recursion. For example, the authors have given such proofs in the
past (in the preprint [33]), but despite our best efforts they seemed to require
subtle combinations of sheaves (to deal with the surprisingly hard interaction
between partiality and differentiation induced by conditionals on real numbers)
and ω-cpo-structure (required for recursion). The resulting proofs were dissat-
isfying due to their complexity, restricting the audience and obstructing their
generalisation to more advanced AD algorithms like CHAD [35, 19].

The present work is a vast simplification of the arguments in [33] (and, also,
[13]), not requiring any (ω-cpos internal to) sheaves or diffeological spaces and
instead relying on plain ω-cpos. This simplification is desirable if we are to
apply the techniques more generally, such as to the correctness of CHAD [35, 19]
for recursion, and if we want the technique to be more broadly accessible.

The first contribution of this paper lies in the development of very simple but
powerful, semantic logical relations techniques for reasoning about recursive
types. By contrast with the existing techniques of [25, 2], our technique follows
directly from standard category theoretic recipes and applies equally to open
logical relations (sconing along functors G other than Hom (1,−)) [3].

The second contribution is the development of a simple logical relations tech-
nique for reasoning about partially defined differentiable functions, which can
be understood as a particular lifting of the partiality monad to our logical
relations.

Thirdly, we show that the combination of these two techniques suffices to give
a very elegant correctness proof of the practically useful dual-numbers style AD
algorithms of expressive ML-family languages implemented by [29].

Finally, our arguments can be generalised to the correctness argument of the
more advanced AD technique CHAD when applied to languages with partial
features, which motivates a lot of this development.

1. Why we care about differentiating partial programs?
Given the central role that AD plays in modern scientific computing and

machine learning, the ideal of differential programming is emerging [22, 26]:
compilers for general purpose programming languages should provide built-in
support for automatic differentiation of any programs written in the language.
What a correct and efficient notion of derivative is of some popular program-
ming language features might not be so straightforward, however, as they often
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go beyond what is studied in traditional calculus. In this paper we focus on the
challenge posed, in particular, by partial language features: partial primitive
operations, lazy conditionals on real numbers, iteration, recursion and recursive
types.

Partial primitive operations are key: even the basic operations of division
and logarithm are examples. (Lazy) conditionals on real numbers are used to
paste together existing smooth functions, as basic example being the ReLU
function
ReLU(x)

def
= if x then 0 elsex = case (sign x)of {inl_ → 0 | inr_ → x},

which is a key component of many neural networks. They are also frequently
used in probabilistic programming to paste together density functions of dif-
ferent distributions [5]. People have long studied the subtle issue of how one
should algorithmically differentiate such functions with “kinks” under the name
of the if-problem in automatic differentiation [4]. Our solution is the one also
employed by [1]: to treat the functions as semantically undefined at their kinks
(at x = 0 in the case of ReLU(x)). This is justified given how coarse the se-
mantic treatment of floating point numbers as real numbers is already. Our se-
mantics based on partial functions defined on real numbers is sufficient to prove
many high-level correctness properties. However, like any semantics based on
real numbers, it fails to capture many of the low-level subtleties introduced
by the floating point implementation. Our key insight that we use to prove
correctness of AD of partial programs is to construct a suitable lifting of the
partiality monad to a variant of [13]’s category of Rk-indexed logical relations
used to relate programs to their derivatives. This particular monad lifting for
derivatives of partial functions can be seen as our solution to the if-problem in
AD.

Similarly, iteration constructs, or while-loops, are necessary for implementing
iterative algorithms with dynamic stopping criteria. Such algorithms are fre-
quently used in programs that AD is applied to. For example, AD is applied to
iterative differential equation solvers to perform Bayesian inference in SIR mod-
els. This technique played a key role in modelling the Covid19-pandemic [11].
For similar reasons, AD through iterative differential equation solvers is impor-
tant for probabilistic modelling of pharmacokinetics [32]. Other common use-
cases of iterative algorithms that need to be AD’ed are eigen-decompositions
and algebraic equation solvers, such as those employed in Stan [7]. Finally, iter-
ation gives a convenient way of achieving numerically stable approximations to
complex functions (such as the Conway-Maxwell-Poisson density function [12]).
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The idea is to construct, using iteration, a Taylor approximation that termi-
nates once the next term in the series causes floating-point underflow. Indeed,
for a function whose i-th terms in the Taylor expansion can be represented by
a program

i : int, x : real ⊢ t(i, x) : real,

we would define the underflow-truncated Taylor series by

iterate

(
casexof ⟨x1, x2⟩ → let y = t(x1, x2) in
case − c < y < cof {inl_ → inrx2

| inr_ → inl ⟨x1 + 1, x2 + y⟩})

)
fromx = ⟨0, 0⟩,

where c is a cut-off for floating-point underflow.
Next, recursive neural networks [31] are often mentioned as a use case of AD

applied to recursive programs. While basic Child-Sum Tree-LSTMs can also
be implemented with primitive recursion (a fold) over an inductively defined
tree (which can be defined as a recursive type), there are other related models
such as Top-Down-Tree-LSTMs that require an iterative or general recursive
approach [36]. In fact, [15] has shown that a recursive approach is preferable as
it better exposes the available parallelism in the model. In the extended version
of this paper [20], we show some Haskell code for the recursive neural network
of [30], to give an idea of how iteration and recursive types (in the form of
inductive types of labelled trees) naturally arise in a functional implementation
of such neural net architectures. We imagine that many more applications of
AD applied to recursive programs with naturally emerge as the technique made
available to machine learning researchers and engineers. Finally, we speculate
that coinductive types like streams of real numbers, which can be encoded
using recursive types as µα.1 → (real ∗ α), provide a useful API for on-line
machine learning applications [28], where data is processed in real time as it
becomes available.

2. Categorical models for languages with recursive types
We assume familiarity with basic category theory (see, for instance, [8]). We

establish a class of categorical models for call-by-value (CBV) languages with
tuple, variant, function, and recursive types, which we call rCBV models.

The first step is to establish the categorical model of computational λC-
calculus (see [23]). This means that the underlying structure is that of a Freyd-
category, see [18]. Notwithstanding that, we do not need to consider this level of
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generality. We call a pair (V , T ), where V is bicartesian closed and T is a V-
enriched monad, a CBV pair. In this setting, we call V the category of values
and the corresponding Kleisli V-category C the category of computations.

A CBV pair morphism between CBV pairs (V , T ) and (V ′, T ) consists of
a strictly bicartesian closed functor H : V → V ′ such that Hη = η′H and
Hm = m′

H , where η, η′ and m,m′ are the respective units and multiplications
of T , T ′.

2.1. Parametric types and type recursion. Let (V , T ) be a CBV pair.
For each n ∈ N, we can model (n+ 1)-variable (V , T )-parametric types as
pairs (EV , EC) of V-enriched functors such that (2.1) commutes, where J is
corresponding universal Kleisli V-functor from V into the Kleisli V-category C.
The 0-variable parametric types (2.3) are identified with objects of V .

(Vop × V)n+1

(Cop × C)n+1

(Jop×J)n+1

OO

V

C
J

OO

(Vop × V)n+1 V
EV

//

(Cop × C)n+1 C
EC //

(2.1)

(Vop × V)n

(Cop × C)n

(Jop×J)n
OO

V

C
J

OO

(Vop × V)n V
νEV

//

(Cop × C)n C
νEC //

(2.2)

We model type recursion in this setting. Let Param (V , T ) be the collec-
tion of all (V , T )-parametric types. A free type recursion for (V , T ) is a pair
ν = (ν, roll), where: (1) ν is an operator that is the identity on 0-variable
parametric types and associates each (n+ 1)-variable parametric type (2.1)
with an n-variable parametric type (2.2); (2) roll is a collection (2.4) of natu-
ral transformations such that (2.5) is invertible: namely, J

(
rollE

)
is a natural

isomorphism.

(
(Vop × V)0 → V , (Cop × C)0 → C

)
(2.3)

roll =
(
rollE

)
E=(EV ,EC)∈Param(V,T )

(2.4)

(Vop × V)n (Vop × V)n+1
(id,νEop

V ,νEV)
//(Vop × V)n

V

νEV

))RR
RRR

RRR
RRR

RRR
RRR

RRR
RRR

RRR
R

(Vop × V)n+1

V

EV

��
VC

J
oo

ks rollE (2.5)

A CBV pair endowed with a free type recursion is our basic definition of model
for our language with tuple, variant, function and recursive types.

Definition 2.1 (rCBV model morphism). An rCBV model is a triple (V , T , ν)
where (V , T ) is a CBV pair and ν is a free type recursion for (V , T ).

An rCBV model morphism between rCBV models (V , T , ν) and (V ′, T ′, ν ′)
consists of a CBV pair morphism H : V → V ′ such that, for each n ∈ N
and each pair (E,E ′) of (n+ 1)-variable parametric types satisfying E ′

V ′ ◦
(Hop ×H)n+1 = H ◦ EV , we have that νE ′

V ′ ◦ (Hop ×H)n = H ◦ νEV and
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H
(
rollE

)
= rollE(Hop×H)

n. We denote by CRBV the category of rCBV models
and rCBV model morphisms.

2.2. Concrete models based on ω-cpos. Herein, for simplicity’s sake, we
avoid the generality of bilimit compact expansions by considering a subclass of
concrete models, the rCBV ωCpo-pairs.∗

Let us write ωCpo for the usual category of ω-complete partial orders and
monotone ω-continuous functions. Recall that it is a complete, cocomplete
cartesian closed category. An ωCpo-category V is ωCpo-cartesian closed if
V has finite ωCpo-products and, moreover, for each object B ∈ V , the ωCpo-
functor (B ×−) has a right ωCpo-adjoint V [B,−].

A morphism j in an ωCpo-category B is full if C (B, j) is a full morphism
in ωCpo for any B ∈ C. Moreover, an embedding-projection-pair (ep-pair)
u : A

↪→
↽ B in an ωCpo-category C is a pair u = (ue, up) consisting of a

C-morphism ue : A → B, the embedding, and a C-morphism up : B → A,
the projection, such that ue ◦ up ≤ id and up ◦ ue = id. A zero object† O
in an ωCpo-category C is an ep-zero object if, for any object A, the pair
ιA = (ιe : O → A, ιp : A → O) consisting of the unique morphisms is an ep-
pair.

Definition 2.2 (rCBV ωCpo-pair). An rCBV ωCpo-pair is a CBV pair
(V , T ) such that, denoting by J : V → C the corresponding universal Kleisli
V-functor,

r1. V is a cocomplete ωCpo-cartesian closed category;‡
r2. the unit of T is pointwise a full morphism (hence, J is a locally full

ωCpo-functor);
r3. C has an ep-zero object O = J (0), where 0 is initial in V ;
r4. whenever u : J(A)

↪→
↽ J(B) is an ep-pair in C, there is one morphism

û : A → B in V such that J (û) = ue.
An rCBV ωCpo-pair morphism from (V , T ) into (V ′, T ′) is an ωCpo-functor
H : V → V ′ that strictly preserves ωCpo-colimits, and whose underlying
functor is a CBV pair morphism. This defines a category of rCBV ωCpo-
pairs, denoted herein by ωCPO-CrBV .

∗See [17, 4.2.2] or [33, Sect. 8] for the general setting of bilimit compact expansions.
†Recall that a zero object is an object that is both initial and terminal.
‡V is, hence, ωCpo-cocomplete as well.
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Every rCBV ωCpo-pair (V , T ) has an underlying rCBV model. Namely,
we have a canonical free type recursion νω =

(
νω, ωroll

E
A

)
where νω is con-

structed out of (bi)limits of chains of ep-pairs (see [20, Section 8], the ex-
tended version of the paper). This construction extends to a functor UrBV :
ωCPO-CrBV → CRBV , which shows how our concrete models are indeed rCBV
models.

2.3. Syntax as freely generated rCBV models. In Section 4, we will
consider the syntax of an ML-family programming language with recursive
types. It is generated from certain primitive types (like a type real for real
numbers) and certain primitive operations op (e.g. mathematical operations
like sin, cos, exp, (+), (∗), etc.). We can consider the syntax of our languages as
rCBV models by taking the types τ of the language as objects and equational
equivalence classes of programs x : τ ⊢ t : σ as morphisms τ → σ. This is a
freely generated rCBV model in the sense that we get a unique rCBV model
morphism to any rCBV model once we fix the image of all primitive types and
operations in a consistent way. We call these freely generated rCBV models
on a language syntactic rCBV models.

3. Subscone
We establish, here, the basic categorical framework underlying the logical

relations (LR) argument. Our general view is that the categorical approach to
semantic logical relations relies on studying principled ways to construct con-
crete categorical semantics out of elementary ones. This construction should be
informed of the desired properties to be proved: so that the resulting semantics
assures us of the property we want to establish in each setting.

The first step is to choose a basic concrete categorical semantics for our
language. For CBV languages with recursive types like ours, a basic concrete
model usually consists of an rCBV ωCpo-pair. We are particularly interested
in the elementary rCBV ωCpo-pair (ωCpon, (−)⊥) = (ωCpo, (−)⊥)

n for
some n ∈ N, where (−)⊥ is the usual partiality ωCpo-monad that freely adds
a least element ⊥ to each ω-cpo.

It is tempting to add or consider more structured semantics and appeal to
more general theories. However, we believe that adding structure beforehand
is an ad hoc anticipation of constructing our semantic logical relations proof,
which is avoidable if we have powerful enough principled techniques.
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Given a chosen basic rCBV ωCpo-pair (V , T ), with a well defined semantics
[[−]] for our language, the second step is to establish the base LR ωCpo-
functors: these are suitable ωCpo-functors G : V → ωCpo such that we can
express the property we want to prove starting from predicates over G (Z) ∈
ωCpo.

In this direction, in the context of semantic open logical relations (and in our
AD setting), we often want to consider the family of ωCpo-functors given by
(V ([[τ ]],−) : V → ωCpo)τ∈Tp

indexed by a subset of types τ of the language.
Given such a family of ωCpo-functors (Gτ : V → ωCpo)τ∈Tp

, we consider
the ωCpo-scone along Gτ (for each τ ): these are the comma ωCpo-categories
ωCpo ↓ Gτ whose definition we recall below.

– The objects of ωCpo ↓ Gτ are triples (D ∈ ωCpo, C ∈ V , j : D →
G(C)) in which j is a morphism of ωCpo;

– a morphism (D,C, j) → (D′, C ′, h) between objects of ωCpo ↓ Gτ is a
pair (3.1) making (3.3) commutative in D;

– if (3.1) and (3.2) are two morphisms in ωCpo ↓ Gτ ((D,C, j) , (D′, C ′, h)),
we have that α ≤ β if α0 ≤ β0 in ωCpo and α1 ≤ β1 in V .

α = (α0 : D → D′, α1 : C → C ′) (3.1)
β = (β0 : D → D′, β1 : C → C ′) (3.2)

D

Gτ(C)

j ��

D D′α0 // D′

Gτ(C
′)

h��

Gτ(C) Gτ(C
′)

Gτ (α1)
//

(3.3)

Provided that Gτ is a right ωCpo-adjoint, the forgetful ωCpo-functor Lτ :
ωCpo ↓ Gτ → ωCpo × V is ωCpo-comonadic and ωCpo-monadic. We
can conclude, then, that it creates (and strictly preserves) ωCpo-colimits and
limits. Moreover, ωCpo ↓ Gτ is ωCpo-bicartesian closed. This is the ωCpo-
enriched version of the results presented in [19, Section 9] (see [20, Appx. C]).

In order to proceed with a proof-irrelevant approach, we consider the sub-
scone: namely, Sub (D ↓ Gτ) is, herein, by definition the full ωCpo-subcategory
of ωCpo ↓ Gτ whose objects are triples (D ∈ V , C ∈ ωCpo, j) where j is a
full morphism. Sub (D ↓ Gτ) is, then, a full reflective and replete ωCpo-
subcategory of ωCpo ↓ Gτ . Moreover, we have that:

Theorem 3.1. Sub (ωCpo ↓ Gτ) is cocomplete and ωCpo-cartesian closed.
Moreover, the forgetful ωCpo-functor Lτ : Sub (ωCpo ↓ Gτ) → V is strictly
ωCpo-colimit preserving, cartesian closed and locally full (hence, faithful).

The reader interested in further considerations on the result above may take
a look at [20, Section 6]. Theorem 3.1 shows how Sub (ωCpo ↓ Gτ) already
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yields a model for the category of values of our language. The remaining step
consists in giving the conditions under which a Sub (ωCpo ↓ Gτ)-monad Tτ
will give us an rCBV ωCpo-pair and an rCBV ωCpo-pair morphism from
(Sub (ωCpo ↓ Gτ) , Tτ) into (V , T ).

3.1. Recursive types for lifted monads. In the context of Theorem 3.1,
there might be canonical/universal liftings of the monad T along Lτ . However,
these are not necessarily the monads we want – since we are assuming that
we started out from a very basic semantics, defined in an rCBV ωCpo-pair
(V , T ). In this scenario, our lifting should be informed with the logical relations
we want for the computations of primitive types.

Let Tτ be a strong Sub (ωCpo ↓ Gτ)-monad that is a lifting of T along
Lτ . This means that Lτ yields a CBV pair morphism (3.4). Assume that
Tτ satisfies the following two properties: (A) for each object (D,C, j) of
Sub (ωCpo ↓ Gτ), the square induced by each component of the unit of Tτ in
ωCpo is a pullback; and (B) Tτ (0, 0, j) is the terminal object in Sub (ωCpo ↓ Gτ).
In this setting, we get that Theorem 3.2 holds (by the main result established
in [20, 8.8]).

Theorem 3.2. (Sub (ωCpo ↓ Gτ) , Tτ) is an rCBV ωCpo-pair. Moreover,
(3.4) yields an rCBV ωCpo-pair morphism.

Lτ : (Sub (ωCpo ↓ Gτ) , Tτ) → (V , T ) (3.4)

In our use case of Theorem 3.2, the remaining step to define the logical
relations is to define a morphism [[op]]τ ∈ Sub (ωCpo ↓ Gτ) for each prim-
itive operation op in a compatible way. This yields an rCBV model mor-
phism [[−]]τ from the free rCBV model on the syntax of our language to
UrBV (Sub (ωCpo ↓ Gτ) , Tτ).

4. Syntax and AD macro for an ML-like language
We establish basic example of languages with type recursion where we can

do automatic differentiation. Since it relates better to the efficient implementa-
tions we have in mind [29], we see automatic differentiation (AD) as a program
transformation between two languages. The target language is a simple exten-
sion of the source language: we add an extra type vect of (co)tangent vectors.

4.1. Source language. For the source language, we consider a standard
(coarse-grain) call-by-value language with ML-style polymorphism and type re-
cursion in the sense of FPC [10]. The language is constructed over a ground type
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real, certain real constants c ∈ Op0, certain primitive operations op ∈ Opn for
each nonzero natural number n ∈ N∗, and sign . We denote Op :=

⋃
n∈N

Opn.

real intends to implement floating point or exact real numbers. Moreover,
for each n ∈ N, the operations in Opn intend to implement partially defined
functions Rn ⇀ R. Finally, sign intends to implement the partially defined
function sign : R ⇀ R defined in R− ∪R+ which takes R− to −1 and R+ to 1.

We will later interpret these operations as morphisms Rn → (R)⊥ in ωCpo
with domains of definition that are (topologically) open in Rn, on which they
are differentiable functions. These operations include, for example, unary oper-
ations on reals like exp, log, ς ∈ Op1 (where we mean the mathematical sigmoid
function ς(x)

def
= 1

1+e−x ), binary operations on reals like (+), (−), (∗), (/) ∈ Op2,
or any other desired partially defined differentiable function Rn → (R)⊥ (see
Sect. 5).

We treat these operations in a schematic way as this reflects the reality of
practical AD libraries, which are constantly being expanded with new primitive
operations. The types τ, σ, ρ, values v, w, u, and computations t, s, r of our
language are as follows - they are standard:
τ, σ, ρ ::= types

| real numbers
| 0 | τ ⊔σ sums
| 1 | τ1× τ2 products

| τ → σ function
| α, β, γ type variables
| µα.τ recursive type

v, w, u ::= values
| x, y, z variables
| c constants
| inl v | inr v inclusions

t, s, r ::= computations
| x, y, z variables
| let t = x in s sequencing
| c constant
| op(t1, . . . , tn) operation
| inl t | inr t inclusions

| case r of { inlx → t
| inr y → s

} sum match

| ⟨ ⟩ | ⟨v, w⟩ tuples
| λx.t abstractions
| roll v recursive intro

| case tof { } sum match
| ⟨ ⟩ | ⟨t, s⟩ tuples
| case sof ⟨x, y⟩ → t product match
| λx.t abstractions
| t s function app.
| sign t sign function
| roll t recursive intro

We use the sugar if r then t else s
def
= case sign r of {_ → t

∣∣ _ → r} for lazy
real conditionals.

The typing rules for computations are standard, with the exception of the
typing of constants and primitive operations which are listed in Fig. 4.1. (We



LOGICAL RELATIONS FOR PARTIAL FEATURES AND AD CORRECTNESS 11

(c ∈ R)

Γ ⊢ c :: real

{Γ ⊢ ti : real}ni=1 (op ∈ Opn)

Γ ⊢ op(t1, . . . , tn) : real

Figure 4.1. The type assignment rules for the primitive type of real.

list the full rules in Fig. B.1 in App. A.) We consider the standard CBV
βη-equational theory (see [23]) for our language (which we list in Fig. B.3).

4.2. Target language. As mentioned above, our target language is a simple
extension of our source language, introducing a new type vect that plays the
role of (co)tangents. We do so by adding the following syntax, with the typing
rules of Fig. 4.2 (for the full typing rules, see Fig. B.2 in App. B).
τ, σ, ρ ::= types

| . . . as before
v, w, u ::= values

| . . . as before
| ei i-th canonical element
| 0 zero

| vect (co)tangent

| t+ s addition of vectors
| t ∗ s scalar multiplication
| hit proj. handler

t, s, r ::= computations
| . . . as before
| ei canonical element
| 0 zero

| t+ s addition of vectors
| t ∗ s scalar multiplication
| hit proj. handler

(i ∈ N∗)

Γ ⊢ ei : vect Γ ⊢ 0 : vect

Γ ⊢ t : vect Γ ⊢ s : vect

Γ ⊢ t+ s : vect

Γ ⊢ t : vect Γ ⊢ s : real

Γ ⊢ t ∗ s : vect
(i ∈ N∗) Γ ⊢ t : vect

Γ ⊢ hit : real
i

Figure 4.2. The type assignment rules for the vect type of cotangents.

We want
(
vect,+, ∗, 0

)
to implement the vector space

(
Rk,+, ∗, 0

)
, for some

k ∈ N∪{∞}§. In this case: (A) ei should implement the i-th element eki ∈ Rk

of the canonical basis if k = ∞ or if i ≤ k, and 0 ∈ Rk otherwise; (B) hit

§R∞ is the vector space freely generated by the infinite set {ei : i ∈ N∗}. In other words, it is
the infinity coproduct of Ri. In order to implement it, one can use lists/dynamically sized arrays
and pattern matching for the vector addition.
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should implement pk→i : Rk → Ri which denotes the canonical projection if
i ≤ k and the coprojection otherwise.

For short, we say that vect implements the vector space Rk to refer to the
case above. For efficient implementations [29], the operational semantics should
make clever use of the usual distributive law of the scalar multiplication over
the vector addition (aka linear factoring [6]). Although this is negligible from
our semantical viewpoint, we observe that this optimisation is semantically
correct.

4.3. Languages as rCBV models. As stressed in 2.3, we have the syn-
tactic rCBV models given by the freely generated rCBV models on our
source and target languages, respectively denoted herein by rCBV models(
SynV ,SynS , νSyn

)
and

(
Syntr

V ,Syn
tr
S , ν

tr
Syn

)
.

Theorem 4.1 (Universal property of syntax). Let (V , T , ν) be an rCBV
model. Assume that (4.3) and (4.4) are given consistent assignments for each
op ∈ Op, c and i ∈ N∗. There are unique rCBV model morphisms
H :

(
SynV ,SynS , νSyn

)
→ (V , T , ν) respecting (4.3) and

H :
(
Syntr

V ,Syn
tr
S , ν

tr
Syn

)
→ (V , T , ν), where H extends H and respects (4.4).

(H(real) ∈ obV , H(sign ), H(c), H(op)) (4.3)(
H(vect) ∈ obV ,H(0),H (hi) ,H(+),H(∗)

)
(4.4)

4.4. Dual numbers AD code transformation. We define our automatic
differentiation macro by making use of the universal property of the source
language. Let us fix, for all n ∈ N, op ∈ Opn, and 1 ≤ i ≤ n, computations
x1 : real, . . . , xn : real ⊢ ∂iop(x1, . . . , xn) : real, which represent the partial
derivatives of op.

The assignment defined in Fig. 4.6 induces a unique rCBV model morphism
(4.5), which corresponds to the structure preserving macro D on the types and
computations of our language for performing AD defined in Fig. 4.7.

D :
(
SynV ,SynS , νSyn

)
→
(
Syntr

V ,Syn
tr
S ,ν

tr
Syn

)
. (4.5)

5. Semantics of dual numbers AD
Dual numbers AD relies on the interleaving of the function with its deriva-

tive. Semantically, we do so by considering the interleaving morphism between
discrete ω-cpos. We briefly establish the formal definitions in this section.
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D(real) def
= real× vect ∈ obSyntr

V , D(c) def
= (c, 0) ∈ Syntr

V (1, real× vect) ,

D(op) def
=

−→
d op (y1, . . . , yn) ∈ Syntr

V ((real× vect)n,SynS (real× vect)) ,

D(sign )
def
= (sign ◦ π1) ∈ Syntr

V (real× vect,SynS (1 ⊔ 1)) , where
−→
d op (y1, . . . , yn)

def
= case y1 of ⟨x1, x

′
1⟩ → . . . → case yn of ⟨xn, x

′
n⟩ →

let y′ = op(x1, . . . , xn) in
let z1 = ∂1op(x1, . . . , xn) in . . . let zn = ∂nop(x1, . . . , xn) in
⟨y′, x′

1 ∗ z1 + . . .+ x′
n ∗ zn⟩.

Figure 4.6. AD assignment, for each primitive operation op ∈
Opn (n ∈ N) and each constant c ∈ R.

D(α)
def
= α D(µα.τ)

def
= µα.D(τ)

D(real)
def
= real×vect D(0)

def
= 0

D(1)
def
= 1 D(τ ⊔σ)

def
= D(τ)⊔D(σ)

D(τ → σ)
def
= D(τ) → D(σ) D(τ ×σ)

def
= D(τ)×D(σ)

D(x)
def
= x D(letx = t in s)

def
= letx = D(t) inD(s)

D(case r of { }) def
= caseD(r)of { }

D(inl t)
def
= inlD(t) D(case r of { inlx → t

| inr y → s
}) def

=

D(inr t)
def
= inrD(t) caseD(r)of { inlx → D(t)

| inr y → D(s)
}

D(⟨ ⟩) def
= ⟨ ⟩

D(⟨t, s⟩) def
= ⟨D(t),D(s)⟩ D(t r)

def
= D(t)D(r)

D(λx.t)
def
= λx.D(t)

D(case r of ⟨x, y⟩ → t)
def
= caseD(r)of ⟨x, y⟩ → D(t)

D(roll t)
def
= rollD(t) D(case tof rollx → s)

def
= caseD(t)of rollx → D(s)

D(c)
def
= ⟨c, 0⟩

D(op(r1, . . . , rn))
def
= caseD(r1)of ⟨x1, x′1⟩ → . . . → caseD(rn)of ⟨xn, x′n⟩ →

let y = op(x1, . . . , xn) in
let z1 = ∂1op(x1, . . . , xn) in . . . let zn = ∂nop(x1, . . . , xn) in
⟨y, x′1 ∗ z1 + . . .+ x′n ∗ zn⟩

D(sign r)
def
= sign (fstD(r))

Figure 4.7. AD macro D(−) defined on types and computations.
All newly introduced variables are chosen to be fresh.
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Henceforth, unless stated otherwise, the cartesian spaces Rn and its subspaces
are endowed with the discrete ωCpo-structures, i.e. x ≤ y iff x = y, for all
x, y ∈ Rn.

Definition 5.1 (Interleaving function). For each (n, k) ∈ N × (N ∪ {∞}),
denoting by In the set {1, . . . , n}, we define the isomorphism (in ωCpo)

ϕn,k : Rn ×
(
Rk
)n →

(
R× Rk

)n (5.1)
((xj)j∈In, (yj)j∈In) 7→ (xj, yj)j∈In .

For each open subset U ⊆ Rn, we denote by ϕU
n,k : U×

(
Rk
)n → ϕn,k

(
U ×

(
Rk
)n)

the isomorphism obtained from restricting ϕn,k.

Before we proceed to define the interleaved derivative of a total defined func-
tion, we have two remaining relevant remarks. Firstly, as opposed to the usual,
we also care about the derivative of functions between (possibly infinite) co-
products of open subspaces of various dimensions. We extend the usual defini-
tion for this case in the obvious manner: it is just the corresponding definition
for the free cocompletion of the category of connected spaces under coproducts.
Put differently, we treat derivatives a local operations on functions – they can
be computed restricted to each connected component of the input and glued
together. The second remark is that we are particularly interested in a certain
presentation of the derivative, via the transpose of the derivative (the natural
semantical counterpart of reverse-mode AD). We present the precise definition.

Definition 5.2 (Vectorised derivative). Let g : U →
∐
j∈L

Vj be a map where U

is an open subset of Rn, and, for each i ∈ L, Vi is an open subset of Rmi.
The map g is differentiable if, for any i ∈ L, g−1 (Vi) = Wi is open in Rn and

the restriction g|Wi
: Wi → Vi is differentiable w.r.t the submanifold structures

Wi ⊆ Rn and Vi ⊆ Rmi. In this case, for each k ∈ (N ∪ {∞}), we define the
function Dkg, which we think of as the k-dimensional vectorised derivative:

Dkg : ϕn,k

(
U ×

(
Rk
)n) →

∐
j∈L

(
ϕmj ,k

(
Vi ×

(
Rk
)mi
))

(5.2)

z 7→ ιmj
◦ ϕVj

mj ,k

(
g(x), w̃ · g′(x)t

)
,

whenever ϕ−1
n,k (z) = (x,w) ∈ Wi ×

(
Rk
)n

in which w̃ is the linear transformation Rn → Rk corresponding to the vector w,
· is the composition of linear transformations, ιmi

is the obvious ith-coprojection
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of the coproduct (in the category ωCpo), and g′(x)t is the transpose of the
derivative g′(x) : Rn → Rmi of g|Wi

: Wi → Vi at x ∈ U .

We extend the definition above to the case of partially defined functions.

More precisely, a partially defined function given by hi : Rni →

(∐
j∈L

Rmj

)
⊥

is

differentiable if its domain of definition Ui is open in Rni, and the corresponding
total function defined in Ui is differentiable in the sense of Def. 5.2. Moreover,
in this case, we define the derivative dk (hi) by (5.3). Finally, a partially de-

fined function h :
∐
r∈K

Rnr →

(∐
j∈L

Rmj

)
⊥

if every component hi := h ◦ ιi is

differentiable. In this case, the derivative dk (h) is defined by ⟨dk (hr)⟩r∈K .

dk (hi) :
(
R× Rk

)ni →

∐
j∈L

(
R× Rk

)mj


⊥

(5.3)

z 7→

{
Dkhi (z) , if z ∈ ϕni,k

(
Ui ×

(
Rk
)ni
)
⊆
(
R× Rk

)ni ;

⊥, otherwise.

5.1. Basic semantics for the languages. We give a concrete semantics
for our language, interpreting it in the rCBV ωCpo-pair (ωCpo, (−)⊥):
namely, by Theorem 4.1, we get a unique rCBV model morphism (5.4) de-
fined by the assignment of real and each primitive operation sign , c, op with
the corresponding intended semantics R (with the discrete ωCpo-structure),
[[sign ]] : = sign : R → (1 ⊔ 1)⊥, [[c]] : = c : R → (1 ⊔ 1)⊥, [[op]] : = fop :
Rn → (R)⊥. Moreover, for each k ∈ N ∪ {∞}, we can extend [[−]] into
an rCBV model morphism [[−]]k by interpreting

(
vect,+, ∗, 0

)
as the vector

space
(
Rk,+, ∗, 0

)
it intends to implement, and the handlers as the appropriate

(co)projections. The rCBV model morphism [[−]]k defines the k-semantics for
the target language. We can, then, consider the k-combined semantics of the
product of our languages:

[[−]]× [[−]]k :
(
SynV ,SynS , νSyn

)
×
(
Syntr

V ,Syn
tr
S , ν

tr
Syn

)
→ UBV

(
ωCpo2, (−)⊥

)
(5.4)

We want to prove the semantical correctness of our macro D, defined by D:
namely, denoting by dj (f) the usual j-th partial derivative of f , assuming that
(5.5) holds for any primitive op ∈ Op, we want to get (5.6) for any t between
objects corresponding to data types in our language. It should be noted that,
from (5.5), we already get (5.7).
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[[∂jop(y1, . . . , yn)]] = dj ([[op]]) (5.5) [[D(t)]]k = dk ([[t]]) (5.6) [[D(op)]]k = dk ([[op]])
(5.7)

6. Subscone for partially defined differentiable functions
Henceforth, we assume that vect implements the vector space Rk, and that

(5.7) holds. We establish the categorical framework of our correctness proof.
Since we already established the basic semantics (5.4), we start by establishing
our subscone: more precisely, the family of base LR ωCpo-functors satisfying
the setting of Section 3.

The differentiability and the derivative of a total function g : Rm → C
(where C is some manifold) are fully characterized by the differentiability and
the derivatives of g ◦ α for differentiable maps Rn → Rm (n ∈ N). More
precisely, a total function g : Rm → C is differentiable and ġ = Dkg if and
only if g ◦ α is differentiable and ġ ◦ Dkα = Dk(g ◦ α) for any differentiable
map α : Rn → Rm (and any natural n). One direction of this observation
follows from the chain-rule for derivatives, while the other is trivial since we
can take α = id.

This leads us to consider the family defined by (6.1), which clearly satisfies
the setting of Section 3: hence, we have that, for each n, Sub (ωCpo ↓ Gn) is
an appropriate model for the values of our languages by Theorem 3.1.(

Gn : = ωCpo× ωCpo
((

Rn,
(
R× Rk

)n)
, (−,−)

)
: ωCpo× ωCpo → ωCpo

)
n∈N

(6.1)

We proceed to define a monad lifting satisfying the setting of 3.1 in order
to end up with an rCBV ωCpo-pair and, hence, an rCBV model. We do
that informed of the property that we want to prove. We start by extending
the observation about the characterization of differentiability to the case of

partially defined functions: namely, h : Rni →

(∐
j∈L

Rmj

)
⊥

is differentiable

and ḣ = dk (hi) if and only if: (A) the domain of definition of h is an open
set Ui ⊆ Rni; (B) for any differentiable map α : Rn → Ui and any n ∈ N,
hUi

◦ α is differentiable and, denoting by ḣ the total function corresponding to
ḣ, ḣ ◦Dkα is well defined and equal to Dk(hUi

◦ α).
Informed of this observation and in order to establish the underlying predicate

above, we define, for each U ∈ On, where On is the set of proper open non-
empty subsets of the cartesian space Rn, the object Diff(U,n):

Diff(U,n)
def
=

({(
g : Rn → U,Dkg

)
: g is differentiable

}
,
(
U, ϕn,k

(
U ×

(
Rk
)n))

, incl.
)
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∈ Sub (ωCpo ↓ Gn) .

We define Pn (−)⊥ on Sub (ωCpo ↓ Gn) by (6.3) where Pn (D, (C,C ′) , j)⊥ is
the union (6.4) with the full ωCpo-substructure of Gn ((C)⊥ , (C ′)⊥) induced
by the inclusion jX which is defined by the components given in (c.1), (c.2),
and (c.3). (

α0, α1 =
(
β0 : U → C, β1 : ϕn,k

(
U ×

(
Rk
)n)→ C ′

))
7→
(
β0 : Rn → (C)⊥ , β1 :

(
R× Rk

)n → (C ′)⊥

)
(6.2)

Pn (D, (C,C ′) , j)⊥
def
=
(
Pn (D, (C,C ′) , j)⊥, ((C)⊥ , (C ′)⊥) , jX

)
(6.3)

{⊥} ⊔Gn (C,C
′) ⊔

( ∐
U∈On

Sub (ωCpo ↓ Gn)
(
Diff(U,n), (D, (C,C ′) , j)

))
(6.4)

c.1 the inclusion {⊥} → Gn ((C)⊥ , (C ′)⊥) of the least morphism

⊥ :
(
Rn,

(
R× Rk

)n)→ ((C)⊥ , (C ′)⊥)

in ωCpo× ωCpo
((
Rn,

(
R× Rk

)n)
, ((C)⊥ , (C ′)⊥)

)
;

c.2 the inclusion of the total functions Gn (ηC , ηC′) : Gn (C,C
′) → Gn ((C)⊥ , (C ′)⊥);

c.3 for each U ∈ On, the injection

Sub (ωCpo ↓ Gn)
(
Diff(U,n), (D, (C,C ′) , j)

)
→ Gn ((C)⊥ , (C ′)⊥)

defined by (6.2) where β0 and β1 are the respective corresponding canonical exten-
sions.

By lifting the multiplication and unit of (−)⊥, the definition above gives
us a strong monad Pn (−)⊥ on Sub (ωCpo ↓ Gn) that is a lifting of (−)⊥
along the forgetful ωCpo-functor Ln : Sub (ωCpo ↓ Gn) → ωCpo×ωCpo.
Moreover, it is clear that Pn (−)⊥ satisfies the conditions of 3.1. Therefore, by
Theorem 3.2, (Sub (ωCpo ↓ Gn) ,Pn (−)⊥) is an rCBV ωCpo-pair, and Ln

yields an rCBV ωCpo-pair morphism. We have now effectively given a logical
relations reasoning principle for derivatives of partially defined functions.

7. Logical relations for “real” – kickstarting the LR proof
We can, now, establish the logical relations’ assignment. By the observa-

tion on differentiability, it is clear that we want to assign real to the object
(7.1) in Sub (ωCpo ↓ Gn). While for each primitive operation op ∈ Opm of
the syntax,¶ we have that the pair

(
[[op]], [[dk ([[op]])]]k

)
defines a morphism

¶We consider, here, the constants and sign as well.
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[[[op]]]n : [[[real]]]
m

n → Pn

(
[[[real]]]n

)
⊥

in Sub (ωCpo ↓ Gn) by the chain-

rule for derivatives. Analogously, we define compatible morphisms [[[sign ]]]n
and [[[c]]]n by the morphisms in Sub (ωCpo ↓ Gn) defined resp. by the pairs(
sign, dk (sign)

)
and

(
c, dk (c)

)
.

[[[real]]]n
def
=
({

(f : Rn → R, f∗) : f is differentiable, f∗ = Dkf
}
,
(
R,R× Rk

)
, incl.

)
(7.1)

By the universal property of the syntactic rCBV model
(
SynV ,SynS , νSyn

)
,

there is only one rCBV model morphism [[[−]]]n compatible with the assignment
above and, moreover, we can conclude that (7.2) commutes.(

SynV ,SynS ,νSyn

) (
SynV ,SynS ,νSyn

)
×
(
Syntr

V ,Syn
tr
S ,ν

tr
Syn

)(id,D)
//
(
SynV ,SynS ,νSyn

)
×
(
Syntr

V ,Syn
tr
S ,ν

tr
Syn

)
UrBV (ωCpo× ωCpo, (−)⊥)

[[−]]×[[−]]k
��

(
SynV ,SynS ,νSyn

)
UrBV (Sub (ωCpo ↓ Gn) ,Pn (−)⊥)

[[[−]]]n ��
UrBV (Sub (ωCpo ↓ Gn) ,Pn (−)⊥) UrBV (ωCpo× ωCpo, (−)⊥)UrBV (Ln)

//

(7.2)

7.1. AD correctness from logical relations. The first observation is that,
indeed, our definitions give the desired predicate. More precisely, if

(
h, ḣ
)
∈

Pn

(∐
j∈L

[[[real]]]
lj
n

)
⊥

, then h : Rn →

(∐
j∈L

Rlj

)
⊥

is differentiable and ḣ =

dk (h). By the definition of differentiable morphisms between coproducts of
cartesian spaces, we have:

Theorem 7.1. If, for each i ∈ L, the morphism
(
h, ḣ
)

in ωCpo×ωCpo de-

fines the morphism (7.3) in Sub (ωCpo ↓ Gsi), then h :
∐
r∈L

Rsr →

(∐
j∈L

Rlj

)
⊥

is differentiable and ḣ = dk (h).

h :
∐
r∈L

[[[real]]]
sr
si
→ Psi

∐
j∈L

[[[real]]]
lj
si


⊥
(7.3)

(
h ◦ ιRsi , ḣ ◦ ι(R×Rk)

si

)
(7.4)

Proof : For each i ∈ L, we have that (7.4) defines a morphism hi is a morphism
from [[[real]]]

si
si
→ Psi

(∐
j∈L [[[real]]]

lj
si

)
⊥

in Sub (ωCpo ↓ Gsi). This implies
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that (7.4) belongs to Psi

(∐
j∈L

[[[real]]]
lj
si

)
⊥

. By the observed above, this shows

that h ◦ ιRsi is differentiable and ḣ ◦ ι(R×Rk)
si is its derivative. Since this results

holds for every i ∈ L, the proof is complete.

The commutativity of (7.2) implies that, for any morphism t of the syntax
(the category SynV ), we have that the pair ([[t]], [[D (t)]]k) defines a morphism
in [[[t]]]n in Sub (ωCpo ↓ Gn) for every n ∈ N. Therefore, by Theorem 7.1, we
have:

Theorem 7.2. Let t : τ → σ be a morphism of SynV , i.e. a program in our
source language. If there are families (sr)r∈L and (lj)j∈L such that (7.5) and
(7.6) hold for any n ∈ N (where ∼= is just an isomorphism induced by copro-
jections and projections), then [[t]] is differentiable and [[D (t)]]k = dk ([[t]]).

[[[τ ]]]n
∼=
∐
r∈L

[[[real]]]
sr
n (7.5) [[[σ]]]n

∼=
∐
j∈L

[[[real]]]
lj
n (7.6)

Since [[[−]]]n is an rCBV model morphism, the hypothesis of Theorem 7.2
holds for any data types that do not involve function types (including types
built using recursion) by Theorem C.3 of Appendix C. Therefore:

Theorem 7.3. Assume that vect implements the vector space Rk, for some
k ∈ N ∪ {∞}. For any program x : τ ⊢ t : σ where τ, σ are data types not
involving function types in their construction, we have that [[t]] is differentiable
and, moreover, [[D(t)]]k = dk ([[t]]) provided that D is sound for primitives.

8. Forward vs reverse mode AD – choosing k
We have so far been vague about how to choose k and whether we are con-

sidering forward or reverse AD. It turns out that our abstract development is
enough for both AD methods, by choosing k = 1 for forward (no need for vec-
torised AD) and k = ∞ (AD with dynamically sized vectorized tangent types)
for reverse AD. (Here, we remember that a practical implementation of dual
numbers reverse AD like that of [29] would make use of a distributive law as a
runtime optimisation to reach the correct computational complexity.)

8.1. Correctness of the dual numbers forward AD (k = 1). We assume
that vect implements the vector space R. It is straightforward to see that we
get forward mode AD out of our macro D: namely, for a program x : τ ⊢ t : σ
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(where τ and σ are data types) in the source language, we get a program
x : D(τ) ⊢ D(t) : D(σ) in the target language, which, by Theorem 7.3, satisfies
the following properties: (A) [[t]] :

∐
r∈K Rnr →

(∐
j∈LRmj

)
⊥

is differentiable;
(B) if y ∈ Rni ∩ [[t]]−1 (Rmj) = Wj for some i ∈ K and j ∈ L, we have that,
(8.1) holds, for any w ∈ Rni, where [[t]]′(y) : Rni → Rmj is the derivative of
[[t]]|Wj

: Wj → Rmj at y.

[[D(t)]]1 (ϕni,1 (y, w)) = ϕl,1 ([[t]] (y) , [[t]]
′(y)(w)) (8.1)

8.2. Correctness of the dual numbers reverse AD (k = ∞). The
following shows how our macro encompasses reverse mode AD. We assume
that vect implements the vector space R∞ (representing the case of a type of
dynamically sized array of cotangents).

For each s ∈ N ∪ {∞}, we consider the respective (co)projections p∞→s,
and we define the morphism wraps

def
= (πj, ej)j∈N : reals → (real× vect)s in

Syntr
V . For a program x : reals ⊢ t : reall (where s, l ∈ N∗), we have that, for

any y ∈ [[t]]−1
(
Rl
)
⊆ Rs, (8.2) holds by Theorem 7.3. This gives the transpose

derivative ps→∞[[t]]′(y)t as something of the type vectl. The type can be fixed
by using the handler hs (see [20]).

[[D(t) ◦wraps]]∞ (y) = ϕl,∞
(
[[t]] (y) , ps→∞[[t]]′(y)t

)
(8.2)

By Theorem 7.3, it is straightforward to generalize the correctness statements
above to more general data types σ.

9. Final remarks
This work improved on the proof previously given in [33]: we gave a simple

correctness proof of dual numbers forward and reverse AD for realistic ML-
family languages by making use of nimble new logical relations techniques for
recursive types and partial differentiable functions. In particular, we have
simplified the argument to no longer depend on diffeological or sheaf-structure
and to have it apply to arbitrary differentiable (rather than merely smooth)
operations. We have further simplified the subsconing technique for recursive
types.

Although we can formulate the subsconing technique presented here in more
general settings, such as the setting of bilimit expansions [17], we opted for
a simpler presentation – making use of the rCBV ωCpo-pairs introduced
herein. This approach is enough for semantic (open) logical relations, since we
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usually can interpret CBV languages with recursive types in a simple enough
rCBV ωCpo-pairs. We believe that working with this special case of the
semantics significantly simplifies our presentation. We leave the presentation
of the results in the setting of bilimit expansions for future work (if we find a
useful setting where our current approach does not apply).

The use of subscone instead of the scone was a matter of presentation as
well. Everything we did could be done for the scone (the comma category).
Although it takes more work to establish it, the subscone provides us with
simpler verifications. It also gives the proof-irrelevant approach.

Finally, we hope that our work adds to the existing body of programming
languages literature on automatic differentiation and recursion (and recursive
types). In particular, we believe that it provides a simple, principled denota-
tional explaination of how AD and expressive partial language features should
interact. We plan to use it to generalise and prove correct the more advanced
AD technique CHAD [34, 35, 19] when applied to languages with partial fea-
tures.

10. Related Work
There has recently been a flurry of work studying AD from a programming

language point of view, a lot of it focussing on functional formulations of AD
and their correctness. Examples of such papers are [24, 9, 27, 6, 1, 13, 21, 34, 19,
14, 35, 16, 29]. Of these papers, [24, 1, 21, 29] are particularly relevant as they
also consider automatic differentiation of languages with partial features. Here,
[24] considers an implementation that differentiates recursive programs and the
implementation of [29] even differentiates code that uses recursive types. They
do not give correctness proofs, however.

The present paper can be seen as giving a correctness proof of the techniques
implemented by [29]. [1] does give a denotational correctness proof of AD on a
first-order functional language with (first-order) recursion. The first-orderness
of the language allows the proof to proceed by plain induction rather than
needing logical technique. [21] proves the correctness of basically the same AD
algorithms that we consider in this paper when restricted to PCF with a base
type of real numbers and a real conditional. Their proof relies on operational
semantic techniques. Our contribution is to give an alternative denotational
argument, which we believe is simple and systematic, and to extend it to ap-
ply to languages which, additionally, have the complex features of recursively
defined datastructures that we find in realistic ML-family languages.
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Appendix A.Source language

((x : τ) ∈ Γ)

∆ | Γ ⊢ x : τ

∆ | Γ ⊢ t : σ ∆ | Γ, x : σ ⊢ s : τ

∆ | Γ ⊢ letx = t in s : τ

(c ∈ R)

∆ | Γ ⊢ c : real

{∆ | Γ ⊢ ti : real}ni=1 (op ∈ Opn)

∆ | Γ ⊢ op(t1, . . . , tn) : real

∆ | Γ ⊢ t : 0

∆ | Γ ⊢ case tof { } : τ

∆ | Γ ⊢ t : τ

∆ | Γ ⊢ inl t : τ ⊔σ

∆ | Γ ⊢ t : τ

∆ | Γ ⊢ inr t : τ ⊔σ

∆ | Γ ⊢ r : σ ⊔ ρ ∆ | Γ, x : σ ⊢ t : τ ∆ | Γ, y : ρ ⊢ s : τ

∆ | Γ ⊢ case r of {inlx → t | inr y → s} : τ ∆ | Γ ⊢ ⟨ ⟩ : 1

∆ | Γ ⊢ t : τ ∆ | Γ ⊢ s : σ

∆ | Γ ⊢ ⟨t, s⟩ : τ ×σ

∆ | Γ ⊢ r : σ× ρ ∆ | Γ, x : σ, y : ρ ⊢ t : τ

∆ | Γ ⊢ case r of ⟨x, y⟩ → t : τ

∆ | Γ, x : σ ⊢ t : τ

∆ | Γ ⊢ λx.t : σ → τ

∆ | Γ ⊢ t : σ → τ ∆ | Γ ⊢ s : σ

∆ | Γ ⊢ t s : τ

∆ | Γ ⊢ r : real

∆ | Γ ⊢ sign r : 1⊔1

∆ | Γ ⊢ t : σ[µα.σ/α]

∆ | Γ ⊢ roll t : µα.σ

∆ | Γ ⊢ t : µα.σ ∆ | Γ, x : σ[µα.σ/α] ⊢ s : τ

∆ | Γ ⊢ case tof rollx → s : τ

Figure A.1. Typing rules for the source language, where R ⊆ R
is a fixed set of real numbers containing 0. Types can use type
variables α, β from the kinding context ∆.

letx = v in t = t[v/x]
let y = (letx = t in s) in r = letx = t in (let y = s in r)

case inl v of {inlx → t | inr y → s} = t[v/x] t[v/z]
#x,y
= case v of { inlx → t[inlx/z]

| inr y → t[inr y/z]
}

case inr v of {inlx → t | inr y → s} = s[v/y]

case ⟨v, w⟩of ⟨x, y⟩ → t = t[v/x,
w/y] t[v/z]

#x,y
= case v of ⟨x, y⟩ → t[⟨x,y⟩/z]

(λx.t) v = t[v/x] v
#x
= λx.v x

case roll v of rollx → t = t[v/x] t[v/z]
#x
= case v of rollx → t[rollx/z]

Figure A.2. The standard βη-equational theory for a CBV

language with recursive types. We write #x1,...,xn
= to indicate that

the variables x1, . . . , xn are fresh in the left hand side. In the second
rule, x may not be free in r. Equations hold on pairs of terms of
the same type.



LOGICAL RELATIONS FOR PARTIAL FEATURES AND AD CORRECTNESS 25

Appendix B.Typing rules for the target language

((x : τ) ∈ Γ)

∆ | Γ ⊢ x : τ

∆ | Γ ⊢ t : σ ∆ | Γ, x : σ ⊢ s : τ

∆ | Γ ⊢ letx = t in s : τ

(c ∈ R)

∆ | Γ ⊢ c : real

{∆ | Γ ⊢ ti : real}ni=1 (op ∈ Opn)

∆ | Γ ⊢ op(t1, . . . , tn) : real

∆ | Γ ⊢ t : 0

∆ | Γ ⊢ case tof { } : τ

∆ | Γ ⊢ t : τ

∆ | Γ ⊢ inl t : τ ⊔σ

∆ | Γ ⊢ t : τ

∆ | Γ ⊢ inr t : τ ⊔σ

∆ | Γ ⊢ r : σ ⊔ ρ ∆ | Γ, x : σ ⊢ t : τ ∆ | Γ, y : ρ ⊢ s : τ

∆ | Γ ⊢ case r of {inlx → t | inr y → s} : τ ∆ | Γ ⊢ ⟨ ⟩ : 1

∆ | Γ ⊢ t : τ ∆ | Γ ⊢ s : σ

∆ | Γ ⊢ ⟨t, s⟩ : τ ×σ

∆ | Γ ⊢ r : σ× ρ ∆ | Γ, x : σ, y : ρ ⊢ t : τ

∆ | Γ ⊢ case r of ⟨x, y⟩ → t : τ

∆ | Γ, x : σ ⊢ t : τ

∆ | Γ ⊢ λx.t : σ → τ

∆ | Γ ⊢ t : σ → τ ∆ | Γ ⊢ s : σ

∆ | Γ ⊢ t s : τ

∆ | Γ ⊢ r : real

∆ | Γ ⊢ sign r : 1⊔1

∆ | Γ ⊢ t : σ[µα.σ/α]

∆ | Γ ⊢ roll t : µα.σ

∆ | Γ ⊢ t : µα.σ ∆ | Γ, x : σ[µα.σ/α] ⊢ s : τ

∆ | Γ ⊢ case tof rollx → s : τ

Figure B.1. Typing rules for the source language, where R ⊆ R
is a fixed set of real numbers containing 0.

(i ∈ N∗)

∆ | Γ ⊢ ei : vect ∆ | Γ ⊢ 0 : vect

∆ | Γ ⊢ t : vect ∆ | Γ ⊢ s : vect

∆ | Γ ⊢ t+ s : vect

∆ | Γ ⊢ t : vect ∆ | Γ ⊢ s : real

∆ | Γ ⊢ t ∗ s : vect
(i ∈ N∗) ∆ | Γ ⊢ t : vect

∆ | Γ ⊢ hit : real
i

Figure B.2. Extra typing rules for the target language, where we
denote N∗ := N− {0}, real1 := real and reali+1 = reali × real.
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letx = v in t = t[v/x]
let y = (letx = t in s) in r = letx = t in (let y = s in r)

case inl v of {inlx → t | inr y → s} = t[v/x] t[v/z]
#x,y
= case v of { inlx → t[inlx/z]

| inr y → t[inr y/z]
}

case inr v of {inlx → t | inr y → s} = s[v/y]

case ⟨v, w⟩of ⟨x, y⟩ → t = t[v/x,
w/y] t[v/z]

#x,y
= case v of ⟨x, y⟩ → t[⟨x,y⟩/z]

(λx.t) v = t[v/x] v
#x
= λx.v x

case roll v of rollx → t = t[v/x] t[v/z]
#x
= case v of rollx → t[rollx/z]

Figure B.3. The standard βη-equational theory for a CBV

language with recursive types. We write #x1,...,xn
= to indicate that

the variables x1, . . . , xn are fresh in the left hand side. In the second
rule, x may not be free in r. Equations hold on pairs of terms of
the same type.

Appendix C.Image of recursive types
While the logical relations for the primitive types are the primitive ones

(defined by the image of each primitive object by [[−]]τ ), we get the logical
relations of more general data types out of the fact that [[−]]τ is structure
preserving. We finish this section establishing the result that underlies the
computation of the logical relations for data types in our setting.

We start by giving the definition corresponding to data/positive types for
any rCBV model with a chosen finite set Tp of objects, playing the role of
the set of primitive types. These are the objects inductively defined by finite
products, finite coproducts and recursion of objects in Tp.

Definition C.1. Let (V , T , ν) be an rCBV model, and Tp a finite set of objects
of V . For each K ∈ Tp, let K, I, O : Vop × V → V be the constant functors
which are, respectively, equal to K, 1 and 0. We define the set Pd

Tp
(V , T , ν)

inductively by (D1), (D2) and (D3).

(D1) The functors K, I, O are in Pd
Tp
(V , T , ν). Moreover, the projection π2 :

Vop × V → V belongs to Pd
Tp
(V , T , ν).

(D2) For each n ∈ N∗, if the functors (C.3) belong to Pd
Tp
(V , T , ν), then the

functors (C.2) and (C.1) are in Pd
Tp
(V , T , ν).

(D3) If E = (EV , EC) ∈ Pd
Tp
(V , T , ν) is such that EV ∈ Pd

Tp
(V , T , ν), then

(νEV) is in Pd
Tp
(V , T , ν).
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We define the set Pd0
Tp
(V , T , ν) of positive types over Tp by (C.4), that is to

say, the subset of the 0-variable parametric types in Pd
Tp
(V , T , ν).

× ◦
(
G×G′) ,⊔ ◦

(
G×G′) : (Vop × V)2n → V (C.1) G ◦ diagn : Vop × V → V (C.2)

G,G′ : (Vop × V)n → V (C.3)
{
A ∈ V : A ∈ Pd

Tp
(V, T , ν)

}
(C.4)

In the case of syntactic rCBV models (see 2.3), taking Tp to be the set of
primitive types, the definition above provides us with a formal definition of
data types in our context. By the universal property of these syntactic rCBV
models, we can establish the semantics and the logical relations as rCBV model
morphisms (as we do in 5.1 and 6). Hence, it is particularly useful to understand
the image of (recursive) data types by rCBV model morphisms. The result
below shows that the image of such a data type is always the coproduct of
finite products of the image of the primitive types by the rCBV model.

Theorem C.2. Let (V , T , ν) be an rCBV model, and Tp a finite set of objects
of V. For each D ∈ Pd0

Tp
(V , T , ν), there is a countable family(

m(j,K) ∈ N
)
(j,K)∈L×Tp

such that, for any rCBV model morphism H : (V , T ) → UrBV (V ′, T ′),

H(D) ∼=
∐
j∈L

∏
K∈Tp

H (K)m(j,K)

 ,

where the isomorphism ∼= is induced by coprojections and projections.‖

Let
(
SynV ,SynS , νSyn

)
be the syntactic rCBV model established in Section

4.3. The positive types over real are precisely those types corresponding to
data types in our source language. Therefore:

Theorem C.3. Let (V , T ) be an rCBV ωCpo-pair. For each τ ∈ SynV

corresponding to a (possibly recursive) data type, there is a countable family
(sr ∈ N)r∈L such that there is an isomorphism

H(τ) ∼=
∐
r∈sr

H (real)sr ,

‖∼= is induced by the universal property – in other words, it is just a reorganization of the involved
coproducts and products.
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induced by coprojections and projections, provided that

H :
(
SynV ,SynS , νSyn

)
→ UrBV (V , T )

is an rCBV model morphism and (V , T ) is an rCBV ωCpo-pair.
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