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1. Introduction
Sums of independent random variables play an important role in different

areas of probability and statistics, as they correspond to any model where
accumulation is meaningful, such as the total amount of claims to an in-
surance company, total amount of input in a storage facility, the lifetime
of a system obtained by replacing failed components with standby ones, to
name a few common examples. Thus, it becomes of interest to address the
stochastic behaviour of such sums of random quantities. We will seek for
characterisations relying on stochastic ordering properties, as these may ex-
press comparisons with respect to size or variability behaviours. We refer the
reader to the books by Shaked and Shantikumar [13] or Marshall and Olkin
[10] for an account on general properties and characterisations of stochastic
ordering notions. In this paper, we focus on the problem of comparing partial
sums of random variables, that is, sums with a different number of addends,
which, in fact, boils down to comparing random variables X and X + Y .
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Intuitively, when summing nonnegative random variables, it is reasonable
to expect that the sum is stochastically increasing with respect to the num-
ber of addends (Shaked and Shantikumar [13], Theorem 1.A.4). On the
other hand, for real valued random variables, one may argue that the sum
gets “riskier”, that is, more variable, or dispersed, when the number of terms
increases. Finally, these two aspects may be combined: sums of random vari-
ables may be compared with respect to size and dispersion, simultaneously,
according to the distributions of the addends. Referring to well known or-
dering notions, size aspects may be measured using the usual stochastic, the
likelihood ratio, hazard rate and reversed hazard rate orders. On the other
hand, variability aspects may be measured using the convex and dispersive
orders, whereas the combination of size–variability aspects may be measured
using the increasing concave or increasing convex orders. As a basic principle,
stronger results may be found by focusing on special parametric families of
distributions, or by adding nonparametric shape restrictions, such as mono-
tone behaviours of the hazard rate or reversed hazard rate, unimodality or
log-concavity, also known as strong unimodality (Marshall and Olkin [10]).
For instance, Block and Savits [3] derive conditions for hazard rate order-
ing of partial sums of random variables with increasing hazard rate (IHR),
while Droste and Wefelmeyer [5] derive conditions for the dispersive order
for partial sums of random variables with log-concave densities.

In section 3, we prove that X + Y dominates X in the reversed hazard
rate order, provided that Y is nonnegative and X belongs to the decreas-
ing reversed hazard rate (DRHR) family, extending the approach of Block
and Savits [3] to models in which X does not necessarily have all moments.
Moreover, if X has a log-concave density, which is a more stringent condi-
tion, we obtain a stronger result, namely that X + Y dominates X in the
likelihood ratio order. With regard to variability aspects, it is known that, if
the random variable Y has zero-mean, then X + Y is more variable than X
in the convex order (Shaked and Shantikumar [13]). In section 4, we estab-
lish a stronger property, showing that, in the symmetric case, the cumulative
distribution functions (CDFs) of X and Y are single-crossing, provided that
X is unimodal. Eventually, we note that scale-invariant variability orders,
such as the star and the Lorenz orders, have a different behaviour with re-
gard to summation. Nevertheless, sufficient conditions for such orders may
be derived for products of random variables, instead of sums.
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2. Preliminaries
Throughout this paper, we will consider X to be a random variable with

CDF FX , probability density function fX , and survival function FX = 1−FX .
We define the hazard rate and the reversed hazard rate of X as hX = fx

FX

and rX = fX
FX

, respectively. We shall use similar notations when referring to
any other random variables. Note that throughout this paper, “increasing”
and “decreasing” are interpreted as “nondecreasing” and “nonincreasing”,

respectively. Moreover, a function g is said to be star-shaped if g(x)
x is in-

creasing.
We start by recalling some nonparametric classes of distributions that will

allow us to establish ordering of partial sums, with respect to the previously
mentioned stochastic orders.

Definition 1. X is said to be

(1) IHR if hX is increasing,
(2) DRHR if rX is decreasing,
(3) log-concave if ln fX is concave.

A random variable X with unimodal distribution is said to be strongly
unimodal if the sum of X with any other unimodal random variable is still
unimodal. It is important to remark that log-concavity is equivalent to strong
unimodality (Ibragimov [6]). Moreover, it is well known that log-concavity
implies the IHR and DRHR conditions (Barlow and Proschan [1]).

The following orders are typically used to compare random variables in
terms of size, or magnitude, of their values (Shaked and Shantikumar [13]).

Definition 2. X is said to be smaller than Y in the

(1) usual stochastic order, denoted by X ≤st Y , if FX(x) ≥ FY (x),
(2) hazard rate order, denoted by X ≤hr Y , if hX(x) ≥ hY (x),
(3) reversed hazard rate order, denoted by X ≤rhr Y , if rX(x) ≤ rY (x),
(4) likelihood ratio order, denoted by X ≤lr Y , if the ratio fY

fX
is increasing.

Define, for x ∈ (0, 1), R(x) = FY (F−1
X (x)), known as the ordinal dominance

curve, and the complementary curve R̃(x) = 1− R−1(1− x). The following
useful characterisations hold.

Proposition 3 (Lehmann and Rojo [8]).

(1) X ≤st Y if and only if R(x) ≤ x, for every x ∈ (0, 1),
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(2) X ≤hr Y if and only if R̃(x) is star-shaped,
(3) X ≤rhr Y if and only if R(x) is star-shaped,
(4) X ≤lr Y if and only if R(x) is convex.

Note that the star-shapedness of R(x), equivalent to X ≤rhr Y , means that
R(0) = 0, hence the left endpoint of the support of X must be smaller or
equal than that of Y . On the other hand, the star-shapedness also implies
that the same inequalities holds for the right endpoints of the supports.
A similar behaviour occurs when X ≤hr Y , by considering R̃(x). Since
convexity of R or R̃(x) implies its star-shapedness, which, in turn, implies

that R and R̃ are dominated by the identity function, it is straightforward
to verify that X ≤lr Y =⇒ X ≤hr Y =⇒ X ≤st Y , and similarly
X ≤lr Y =⇒ X ≤rhr Y =⇒ X ≤st Y .

We will also consider the following stochastic orders, that address variabil-
ity properties.

Definition 4. X is smaller than Y in the

(1) convex (concave) order, denoted by X ≤cx (≤cv)Y , if Eφ(X) ≤ Eφ(Y ),
for every convex (concave) function φ : R → R, provided that the ex-
pectations exist.

(2) increasing convex (concave) order, denoted by X ≤icx (≤icv)Y , if
Eφ(X) ≤ Eφ(Y ), for every increasing convex (concave) function
φ : R→ R, provided that the expectations exist.

(3) Lorenz order, denoted by X ≤L Y , if

1

EX

∫ p

0

F−1
X (u) du ≥ 1

EY

∫ p

0

F−1
Y (u) du,

for p ∈ [0, 1].
(4) dispersive order, denote by X ≤disp Y , if F−1

X (α)−F−1
X (β) ≤ F−1

Y (α)−
F−1
Y (β), for every 0 ≤ α < β ≤ 1.

(5) star order, denoted by X ≤∗ Y , if F−1
Y (FX(x)) is star-shaped, and

FX(0) = FY (0) = 0.

Note that X ≤cx (≤cv)Y means that X exhibits less (more) variability
compared to Y . Differently, X ≤L Y generally has a different interpretation,
that is, X exhibits less “inequality” than Y (Marshall et al. [11]). In fact, it
is also important to remark that the Lorenz order is a scale-free version of the
convex order, in that, if EX = EY , X ≤L Y if and only if X ≤cx Y , or, put
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otherwise, X ≤L Y if and only if X
EX ≤icx

Y
EY . The star order is often used as

a stronger condition to obtain the Lorenz order, since X ≤∗ Y =⇒ X ≤L Y .
Finally, it is easily seen that X ≤st Y =⇒ X ≤icx (≤icv)Y , consequently,
the latter orders may be used to measure size and variability aspects at the
same time.

3. Size results
Given two independent variables X and Y , it is easy to see that X ≤st

X + Y , if Y is nonnegative. We will see that under additional conditions on
the distribution of X, one may obtain stronger order relations.

Block and Savits [3] proved that if X and Y are nonnegative independent
random variables, and X is IHR, then X ≤hr X + Y . By an analogous
approach, it is easily seen that this still holds if we consider that only Y is
nonnegative.

Theorem 5. Let X and Y be independent random variables. If X is IHR
and Y is nonnegative, then X ≤hr X + Y .

Similarly, we may establish that if X is DRHR, X is smaller than X + Y
in the reversed hazard rate order.

Theorem 6. Let X and Y be independent random variables. If X is DRHR
and Y is nonnegative, then X ≤rhr X + Y .

Proof : The reversed hazard rate of X + Y is

rX+Y (t) =
fX+Y (t)

FX+Y (t)
=

∫ +∞
0 fX(t− y)fY (y) dy∫ +∞
0 FX(t− y)fY (y) dy

.

The result follows by proving that, for every t, rX(t) ≤ rX+Y (t), which is
equivalent to rX(t)FX+Y (t) − fX+Y (t) ≤ 0. Since fX(t) = rX(t)FX(t), we
have that,

rX(t)FX+Y (t)− fX+Y (t) =

∫ +∞

0

FX(t− y)fY (y)[rX(t)− rX(t− y)] dy,

which is not positive, since X is DRHR.

Remark 7. The proof of Theorem 6 may suggest that, taking X to have
an increasing reversed hazard rate, one would obtain X + Y ≤rhr X. But
note that this is not possible, because the right-endpoint of the support of
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X + Y is strictly larger than that of X, which is sufficient to conclude that
X + Y 6≤rhr X (in fact, in this case we have X ≤st X + Y ).

Note that Theorem 5 is based on the assumption that X is IHR, which
implies that X must have all moments. Differently, the DRHR condition
does not require existence of moments, and it is compatible with heavy tailed
distributions. From this point of view, our Theorem 6 extends the scope of
applicability of Theorem 5. Differently from Theorem 6, the following result
represents a refinement of that of Theorem 5. In fact, by imposing a stronger
condition on X, namely, log-concavity, we obtain the stronger likelihood ratio
order. The proof is based on a “total positivity” property, recalled below,
which is known to be equivalent to log-concavity (Marshall and Olkin [10]).

Definition 8 (Karlin [7]). A function f : R2 → R is said to be totally
positive of order 2 (TP2) if for every real numbers x1 < x2 and y1 < y2,
f(x1, y2)f(x2, y1) ≤ f(x1, y1)f(x2, y2).

Theorem 9. Let X and Y be independent random variables. If X is log-
concave and Y is nonnegative, then X ≤lr X + Y .

Proof : The result follows by proving that FX+Y (F−1
X (x)) is convex, which is

equivalent to showing that, for every x ≤ y, fX(x)fX+Y (y) ≥ fX(y)fX+Y (x).

Since fX+Y (x) =
∫ +∞

0 fX(x− t)fY (t) dt, this is still equivalent to∫ +∞

0

fY (t)fX(x)fX(y)

[
fX(y − t)
fX(y)

− fX(x− t)
fX(x)

]
dt ≥ 0.

Taking into account 21.B.8 in Marshall and Olkin [10], fX is log-concave if
and only if h(x, t) = f(x − t) is TP2. Therefore, for x ≤ y and 0 ≤ t, we

have that fX(y−t)
fX(y) ≥

fX(x−t)
fX(x) . Hence, the conclusion follows.

One may wonder if Theorem 9 holds under the weaker IHR and DRHR
assumptions, as in Theorem 5 and Theorem 6. In the case of the DRHR
assumption, this is generally not true, as it can be seen by the following
counterexample. Take for instance X =d 2T + W , where T ∼ LL(1, 1),
W ∼ LL(1/2, 1), and LL(a, b) denotes a log-logistic distribution with shape
parameter a and scale parameter b. Take also Y ∼ LL(1, 1), which is DRHR
but not log-concave. The density of the sum X + Y has a closed form ex-
pression (although quite complicated), and it can be seen that the likelihood

ratio fX+Y

fX
is non-monotone (see Figure 1), so that X 6≤lr X + Y . One may
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Figure 1. Likelihood ratio fX+Y

fX
.

expect a similar behaviour in the case when X is IHR but not log-concave,
although we did not find examples of this kind.

As a consequence of the previous theorems, it is easy to derive the hazard
rate, reversed hazard rate and the likelihood ratio orderings between partial
sums of random variables, taking into account that the log-concavity, IHR
and DRHR properties are closed under convolutions (see Proposition 4.B.3
and Theorem 4.C.3 in Marshal and Olkin [10], and Corollary 3.3 in Barlow
et al. [2], respectively).

Corollary 10. Let X1, X2, . . . , Xn be nonnegative independent random vari-
ables. The following hold, for every k ≤ m ≤ n, k,m ∈ N.

(1) If Xi is IHR, for every i = 1, . . . , n, then
∑k

i=1Xi ≤hr

∑m
i=1Xi.

(2) If Xi is DRHR, for every i = 1, . . . , n, then
∑k

i=1Xi ≤rhr

∑m
i=1Xi.

(3) If Xi is log-concave, for every i = 1, . . . , n, then
∑k

i=1Xi ≤lr

∑m
i=1Xi.

4. Variability results
When considering real valued random variables X and Y , it is generally

expected that, by summing Y to X, the variability increases. The following
result shows that this is indeed the case.

Theorem 11. Let X and Y be independent random variables with finite
means. If EY = 0, then X ≤cx X + Y . If EY < 0, then X + Y ≤icv X. If
EY > 0, then X ≤icx X + Y .

Proof : The case EY = 0 coincides with Theorem 3.A.34 in Shaked and
Shantikumar [13]. Consider that EY < 0. Since E(Y − EY ) = 0, it follows



8 I. ARAB, T. LANDO, P.E. OLIVEIRA AND B. SANTOS

from the previous case that X ≤cx X + Y − EY , which is equivalent to
X+Y −EY ≤cv X. Hence, for every increasing concave function φ, Eφ(X) ≥
Eφ(X +Y −EY ) ≥ Eφ(X +Y ). Since X ≤icx Y if and only if −Y ≤icv −X
(see Theorem 4.A.1 in Shaked ans Shantikumar [13]), the case EY > 0
follows immediately.

A similar result to Corollary 10 can be established for the increasing convex
and concave orders.

Corollary 12. Let X1, X2, . . . , Xn be independent random variables with fi-
nite means. The following hold, for every k ≤ m ≤ n, k,m ∈ N.

(1) If EXi = 0, for every i = 1, . . . , n, then
∑k

i=1Xi ≤cx

∑m
i=1Xi,.

(2) If EXi < 0, for every i = 1, . . . , n, then
∑m

i=1Xi ≤icv

∑k
i=1Xi.

(3) If EXi > 0, for every i = 1, . . . , n, then
∑k

i=1Xi ≤icx

∑m
i=1Xi.

The comparison of variability of two distributions can also be achieved
through the study of the number of crossings of the underlying distribution
functions (see for example, Theorems 3.A.44 or 4.A.22 in Shaked and Shan-
tikumar [13]). Single crossing results are particularly meaningful, as they
imply the variability orders discussed, making it possible to control the be-
haviour of the distribution functions in a more precise way. To this end, we
introduce some notation. Given a function V , we denote by S−(V ) = n(σ),
n ∈ N represents the number of sign variations of V , where σ ∈ {+,−}
indicates the starting sign of the function (Karlin [7]). We will be omitting
σ in the cases when we are only interested in the number of sign variations
of the function. The following theorem provides sufficient conditions for es-
tablishing that the CDFs of X and X + Y cross once.

Theorem 13. Let X and Y be independent random variables with symmetric
density functions. If EY = 0 and fX is unimodal, then S−(FX+Y − FX) =
1(+).

Proof : Without loss of generality, we may consider that X has a density
symmetric at 0. Denote by V (x) = FX+Y (x) − FX(x). First, observe that

FX+Y (x) = A(x) + B(x), with A(x) =
∫ 0

−∞ fX(x − t)FY (t) dt and B(x) =∫ +∞
0 fX(x− t)FY (t) dt. Given that Y has a symmetric density at 0, we may

write

A(x) =

∫ 0

−∞
fX(x− t)F Y (−t) dt =

∫ +∞

0

fX(x+ u)F Y (u) du,
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Figure 2. CDFs of FX+Y (solid) and FX (dashed).

by a change of variable. Since B(x) = FX(x) −
∫ +∞

0 fX(x − t)F Y (t) dt,

it follows that V (x) =
∫ +∞

0 F Y (t) (fX(x+ t)− fX(x− t)) dt. Assume that
x ≤ 0. In this case fX is increasing, since X is unimodal and symmetric.
Thus, if x + t ≤ 0, it follows that x + t ≥ x − t, for every x and t ≥ 0.
implying that fX(x + t) ≥ fX(x − t). On the other and, if x + t ≥ 0, then
−x−t ≤ 0, and fX(x+t)−fX(x−t) = fX(−x−t)−fX(x−t) ≥ 0. Therefore,
V (x) ≥ 0, for x ≤ 0. Consider now x ≥ 0. In this case fX is decreasing. If
x − t ≥ 0, it follows that fX(x + t) ≤ fX(x − t), since x − t ≤ x + t, while
if x− t ≤ 0, then −x + t ≥ 0. Hence, by the symmetry of fX at 0, we have
that fX(x + t)− fX(x− t) = fX(x + t)− fX(−x + t) ≤ 0. Thus, V (x) ≤ 0,
for x ≥ 0.

The conclusion of Theorem 13 may be also stated as follows: X+ ≤st (X+
Y )+ and X− ≤st (X + Y )−, where X+ = max(X, 0) and X− = max(−X, 0)
represent the positive and negative parts ofX. This means that both negative
and positive parts of the sum X+Y are stochastically larger when compared
to X.

Note that the symmetry conditions of Theorem 13 are important, since we
cannot ensure the same behaviour without them. Take for instance X =d

Y =d 2T + W , where T ∼ L(−3, 1), W ∼ L(6, 1), and L(a, b) denotes a
logistic distribution with location and scale parameters a and b, respectively.
Clearly, EY = 0, but fX and fY are not symmetric. The CDF of X + Y has
a closed form expression and it can be seen, in Figure 2, that it crosses that
of Y 3 times.
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Chung [4] gave an example that shows that unimodality is not closed un-
der convolutions. However, long-concavity, which is also known as strong
unimodality, makes it possible to preserve unimodality under convolution,
allowing us to extend Theorem 13 to partial sums of random variables.

Corollary 14. Let X1, X2, . . . , Xn be independent random variables, such
that, for every i = 1, . . . , n, n ∈ N, Xi has a log-concave density, symmetric
at 0. Let Tj =

∑j
i=1Xi. Then S−(FTm

− FTk
) = 1(+) for every k ≤ m ≤ n,

k,m ∈ N.

It is interesting to note that log-concavity often plays an important role in
determining sign change properties. In particular, the variation diminishing
property (see Theorem 3.1 in Karlin [7]), implies the folowing result.

Proposition 15. Let Z be a log-concave random variable, independent of X
and Y . If S−(FY − FX) ≤ 1, then S−(FY +Z − FX+Z) ≤ 1.

This property basically establishes that, if the CDFs ofX and Y are at most
single crossing, the same behaviour is preserved after summation with an
independend random “noise” Z, provided that Z is log-concave. This means
that, somewhat surprisingly, one might even have Y 6≤st X but Y + Z ≤st

X + Z. In this regard, it is interesting to note that Pomatto et al. [12]
recently proved that, if EX < EY , there exists some Z independent of X
and Y such that X + Z ≤st Y + Z, that is, S−(FY +Z − FX+Z) = 0(+).

Back to the case of nonnegative random variables, we know from Section
3 that, in general, X + Y is “larger” than X in terms of size. However,
given the dispersion results discussed earlier, it is also natural to wonder if
sums of random variables may exhibit more or less variability, as measured
by the Lorenz order. Contrary to what has been obtained previously, it is
possible to conclude that X ≤L X + Y does not hold in general. In fact,
the Lorenz order is a variability order of different type from those considered
earlier, being scale-independent. As a counterexample, if X is an exponential
random variable, and Y is a Weibull random variable with shape parameter
larger than 1, it can be seen that X and X + Y are not comparable with
respect to the Lorenz order.

Nevertheless, ordering results may be obtained by replacing the sum X+Y
with the product XY . In particular, since X ≤∗ XY implies X ≤L XY , the
following results provide sufficient conditions to derive the Lorenz ordering,
through the star order.
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Proposition 16. Let X and Y be nonnegative independent random variables.
Then X ≤∗ XY if and only if ln(X) is log-concave.

Proof : Taking into account Theorem 4.B.1 in Shaked and Shantikumar [13],
X ≤∗ XY is equivalent to ln(X) ≤disp ln(X) + ln(Y ). The result follows by
Proposition 2 in Droste and Welfemeyer [5].

The following result is an immediate consequence of Proposition 16 and
the closure of log-concavity under convolution.

Corollary 17. Let X1, X2, . . . , Xn be nonnegative independent random vari-
ables, such that ln(Xi) is log-concave, for every i = 1, . . . , n, n ∈ N. Then∏k

i=1Xi ≤∗
∏m

i=1Xi, for every k ≤ m ≤ n, m, k ∈ N.

Similarly, one can obtain the star order between products of random vari-
ables.

Proposition 18. Let X and Y be nonnegative random variables, such that
X ≤∗ Y . Let Z be another nonnegative random variable independent of X
and Y . Then XZ ≤∗ Y Z if and only if the random variable ln(Z) is log-
concave.

Proof : Taking into account Theorem 4.B.1 in Shaked and Shantikumar [13],
X ≤∗ Y if and only if ln(X) ≤disp ln(Y ). Hence, the result follows from
Theorem 7 in Lewis and Thompson [9].

The following result may be established by repeated applications of Theo-
rem 18.

Corollary 19. Let X1, X2, . . . , Xn and Y1, Y2, . . . , Yn be nonnegative inde-
pendent random variables, such that Xi ≤∗ Yi, for i = 1, . . . , n. Then
Πn

i=1Xi ≤∗ Πn
i=1Yi, for every n ∈ N, if ln(Xi) and ln(Yi) are log-concave,

for every i = 1, . . . , n.

Proof : We prove the result by induction. When n = 2, it follows immediately
from Theorem 18 and the transitivity of the star order that X1X2 ≤∗ Y1Y2.
Assume now that Πk

i=1Xi ≤∗ Πk
i=1Yi. Since ln(Xk+1) has log-concave density,

the previous result implies that Πk
i=1XiXk+1 ≤∗ Πk

i=1YiXk+1. Taking into
account that a convolution of random variables with log-concave densities
still has log-concave density, and given that Xk+1 ≤ Yk+1, we may conclude by
Theorem 18 that Πk

i=1YiXk+1 ≤∗ Πk
i=1YiYk+1. Thus, it follows by transitivity

that Πk+1
i=1Xi ≤∗ Πk+1

i=1 Yi.
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