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1. Introduction

Among other seminal contributions, Emmanuele DiBenedetto revolutionised
the analysis of singular and degenerate elliptic and parabolic equations. The
development of intrinsic scaling methods [13, 15, 29, 14], in particular, had a
huge impact in the �eld, with far-reaching applications that resonate to this
day.
In this paper, we study a fully nonlinear Hamilton-Jacobi equation of the

form

F (D2u) +H(Du, x) = f(x) in Ω ⊂ Rd, (1)

where F : S(d) → R is degenerate elliptic, the Hamiltonian H = H(p, x)
satis�es natural growth and continuity conditions, and f ∈ L∞(Ω) is Lips-
chitz continuous. In the superlinear setting, we prove that viscosity solutions
to (1) are locally Lipschitz-continuous. In addition, we examine a two-phase
free boundary problem driven by the operator in (1). In this context, our �nd-
ings include the existence of solutions and regularity estimates across the free
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boundary. The conditions we impose on the structure of the problem are fairly
general and cover important models, such as Bellman and Isaacs equations. An
example of Hamiltonian falling under our assumptions is

H(p, x) := a(x)
(
1 + |p|2

)m
2 + V (x),

provided a, V : Ω→ R are Lipschitz-continuous and bounded from above and
below, and m > 1.
Hamilton-Jacobi (HJ) equations of second-order often relate to stochastic

optimal control problems [16]. In this context, the value function of the op-
timization problem is a viscosity solution of the associated HJ equation. For
developments at the intersection of viscosity solutions, Hamilton-Jacobi equa-
tions and optimal control, we refer the reader to [12, 10, 19, 20, 5, 3]. Recent
results in regularity theory for degenerate problems, both in the variational
and non-variational settings, can be found in [28, 27, 1, 18].
The study of (1) in the case F ≡ Tr appears, for instance, in [22]. In

that paper, the author proves the existence of classical solutions for the prob-
lem under Neumann boundary conditions and natural growth regimes on the
Hamiltonian H. The role of Neumann (or oblique) boundary conditions relates
to state-constrained optimal control problems, as they encode a re�ection at
the boundary; we refer the reader to [23].
An in-depth account of state-constrained optimal control problems is the sub-

ject of [21], where the authors examine (1) in the uniformly elliptic setting. In
addition to establishing local Lipschitz continuity of the solutions, the authors
connect the characterisation of boundary conditions with the growth regime of
the Hamiltonian. Indeed, for sub-quadratic Hamiltonians, solutions blow up as
they approach ∂Ω, requiring a relaxed notion of boundary condition. However,
in the (strictly) superquadratic case, solutions are globally Hölder continuous.
See [7] for related developments.
The regularity theory available for (1) in the degenerate elliptic case ad-

vanced substantially with the contributions in [9]. Among the �ndings in that
paper, we highlight the Hölder continuity of sub-solutions in the presence of
superquadratic Hamiltonians. The remarkable aspect of this result is in the
one-sided requirement entailed by the sub-solution condition. To properly ap-
preciate the minimality of such an assumption, we brie�y recall the Krylov-
Safonov theory. Concerning uniformly elliptic fully nonlinear operators, the
latter implies Hölder continuity provided a two-sided control is available. In-
deed, let P± be the Pucci extremal operators and C > 0 be a constant; if
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u ∈ C(Ω) is a viscosity solution to

P−(D2u) ≤ C in Ω

and
P+(D2u) ≥ −C in Ω,

the Krylov-Safonov theory ensures the Hölder continuity of u. However, if one
of the former inequalities fails to hold, the theory is no longer available; see,
for instance, [8, 24, 25]. We notice the results in [9] also include global Hölder
continuity for sub-solutions and Lipschitz regularity for the solutions of the
homogeneous problem. We also refer the reader to the important contributions
in [4] and [6].
In [2], the authors study (1), considering F (M,x) = Tr(A(x)M), for a degen-

erate elliptic matrix-valued map A : Ω→ Rd2. The �ndings in [2] advance the
general theory of Hamilton-Jacobi equations, as they cover a general maximum
principle, Lipschitz continuity for the solutions of the homogeneous equation
with explicit estimates (in terms of the matrix A and the structure of H), and
state-constrained boundary conditions. We notice the Lipschitz continuity re-
sult in [2] relies on the maximum principle [11, Theorem 3.2] and explores the
connection of the trace operator and eigenvalues.
Our contribution is two-fold. By developing an intrinsically nonlinear argu-

ment, we prove that viscosity solutions to (1) are Lipschitz continuous, with es-
timates. Then we examine a consequence of our regularity result to a two-phase
free boundary problem and prove the existence of solutions, with estimates in
Hölder spaces. Our main result reads as follows.

Theorem 1 (Improved regularity of solutions). Let u ∈ C(Ω) be a viscosity

solution to (1) where F : S(d)→ R is degenerate elliptic, Lipschitz-continuous

and positively homogeneous of degree 1, and f ∈ L∞(Ω) is Lipschitz-continuous.
Suppose the Hamiltonian H is superlinear and satis�es natural growth and con-

tinuity conditions, detailed in Section 2. Then u is locally Lipschitz-continuous

in Ω. Moreover, for every Ω′ b Ω, there exists C > 0 such that

|u(x)− u(y)| ≤ C
(

1 + ‖u‖L∞(Ω) + ‖f‖L∞(Ω)

)
|x− y|,

for every x, y ∈ Ω′. The constant C > 0 depends only on Ω′, and the data of

the problem.

The proof of Theorem 1 relies on two building blocks. First, we examine the
superquadratic case, i.e., H(p, x) ∼ C+C|p|m, with m > 2. In this setting, we
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prove that solutions to (1) are γ-Hölder continuous for γ := (m− 2)/(m− 1).
Here we follow closely the strategy put forward in [2, Section 3], adapting its
techniques to the fully nonlinear setting. Then we re�ne the application of the
Ishii-Jensen Lemma to produce Lipschitz regularity in the superlinear setting.
Once Theorem 1 is available we turn to a free boundary problem driven by a

particular instance of the operator in (1). For constants λ+, λ− ∈ R, consider
the problem

Tr(A(x)D2u) +H(Du, x) = λ+χ{u>0} + λ−χ{u<0} in Ω(u), (2)

where Ω(u) := {u > 0} ∪ {u < 0}. We note that (2) holds only in the re-
gion where the solutions do not vanish, and no PDE information is available in
{u = 0}. In many cases, viscosity solutions exist following Perron's method,
when a comparison principle is available, and one can build appropriate sub-
and supersolutions. Meanwhile, the present setting introduces important dif-
�culties. First, the dependence of (2) with respect to the solution implies the
lack of properness. As a consequence, one should not expect a comparison
principle to hold at the level of the equation, which precludes the use of usual
arguments. Also, and perhaps even more important, the growth regime of
the Hamiltonian H requires further compatibility conditions for the boundary
data; see [9].
We argue through a regularization of the right-hand side of (2), removing

the dependence of the equation on zero-order terms. We combine our �ndings
in regularity theory with former results on the existence of solutions for su-
perquadratic Hamilton-Jacobi equations. Then a �xed-point argument ensures
the existence of viscosity solutions to the Dirichlet problem associated with (2).
For a similar approach in the context of free transmission problems, see [26].
The remainder of this paper is organised as follows. Section 2 gathers our

primary assumptions and recalls a few preliminaries. The proof of Theorem
1 is the subject of Section 3. Finally, in Section 4, we prove the existence of
viscosity solutions for the Dirichlet problem associated with (2).

2. Preliminaries

Here we detail the main assumptions used in the paper and collect a few
preliminaries.

2.1. Main assumptions. We proceed with the conditions imposed on the
second-order operator F .



FULLY NONLINEAR HAMILTON-JACOBI EQUATIONS 5

Because we rely on the monotonicity of F in the space of symmetric matrices,
we equip the latter with a partial order relation. ForM,N ∈ S(d), we say that
M ≥ N if M −N is positive semi-de�nite, i.e., for every ξ ∈ Rd, we have

ξT (M −N)ξ ≥ 0.

Our primary condition on F concerns its degenerate ellipticity.

De�nition 1. We say F : S(d)→ R is degenerate elliptic if

F (M) ≤ F (N)

whenever M,N ∈ S(d) are such that M ≥ N .

We continue with an assumption combining degenerate ellipticity and Lips-
chitz continuity for F .

[A1] (Monotonicity and Lipschitz continuity). The operator F : S(d) → R
is monotone non-increasing and Lipschitz continuous. That is, there exists a

constant CF > 0 such that

F (M)− F (N) ≤ CF
∣∣(N −M)+

∣∣ , (3)

for every M,N ∈ S(d).

The condition in (3) is equivalent to requiring F to be degenerate elliptic and
Lipschitz continuous, with constant CF > 0; see Lemma 1. The choice for (3)
stems from our argument since we compare F (M) and F (N) in terms of the
eigenvalues of M and N . We also require F to be positively homogeneous of
degree one.

[A2] (Homogeneity of F ). The operator F is positively homogeneous of degree

1. That is, for every M ∈ S(d) and every s ≥ 0, we have

F (sM) = sF (M).

The typical example of an operator satisfying assumptions [A1] and [A2] is
the Bellman operator. Indeed, let A be a measurable index set and consider a
family of matrices (Aα)α∈A such that

0 ≤ Aα ≤ (CFd
−1)I,

for every α ∈ A. Then the operator

F (M) := inf
α∈A

(−Tr (AαM))

satis�es both [A1] and [A2].
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Now, we turn to the Hamiltonian H and detail the growth and continuity
conditions under which we work.

[A3] (Structural conditions). We suppose there exist constants m > 1 and

C1, C2, C3 > 0 such that H = H(p, x) satis�es

− C1 + C2|p|m ≤ H(p, x) ≤ C3 (1 + |p|m) , (4)

for every p ∈ Rd and x ∈ Ω. Also,

|H(p, x)−H(p, y)| ≤ (C3|p|m + C1) |x− y| (5)

for every x, y ∈ Ω, and p ∈ Rd. Finally, we require

|H(p, x)−H(q, x)| ≤ C3 (|p|+ |q|+ 1)m−1 |p− q| , (6)

for every p, q ∈ Rd, and every x ∈ Ω.

The typical example of a Hamiltonian satisfying [A3] is

H(p, x) = a(x)
(
1 + |p|2

)m
2 + V (x),

where a, V : Ω→ R are Lipschitz continuous, with

0 < C∗ ≤ a(x) ≤ C∗ and 0 ≤ V (x) ≤ C∗,

for some �xed constants 0 < C∗ ≤ C∗.

2.2. Preliminary material. We start with the de�nition of viscosity solution.

De�nition 2 (Viscosity solution). We say u ∈ USC(Ω) is a viscosity sub-

solution to (1) if, for every x0 ∈ Ω and every ϕ ∈ C2(Ω) such that u− ϕ has

a local maximum at x0, we have

F (D2ϕ(x0)) +H(Dϕ(x0), x0) ≤ f(x0).

Likewise, we say that u ∈ LSC(Ω) is a viscosity supersolution to (1) if, for

every x0 ∈ Ω and every ϕ ∈ C2(Ω) such that u − ϕ has a local minimum at

x0, we have

F (D2ϕ(x0)) +H(Dϕ(x0), x0) ≥ f(x0).

If u ∈ C(Ω) is simultaneously a viscosity sub-solution and a viscosity superso-

lution to (1), we say it is a viscosity solution to (1).

Next, we recall a maximum principle available for degenerate elliptic opera-
tors, see [11, Theorem 3.2].



FULLY NONLINEAR HAMILTON-JACOBI EQUATIONS 7

Proposition 1 (Ishii-Jensen Lemma). Let Ω be a bounded domain and G, H ∈
C
(
Ω× Rd × S(d)

)
be degenerate elliptic operators. Let u1 be a viscosity sub-

solution of G
(
x,Du1, D

2u1

)
= 0 and u2 be a viscosity supersolution of

H
(
x,Du2, D

2u2

)
= 0 in Ω. De�ne v : Ω× Ω→ R by

v (x, y) := u1(x)− u2(y)

and let ϕ ∈ C2(Ω × Ω). Suppose that (x, y) ∈ Ω × Ω is a local maximum for

v−ϕ. Then for every ε > 0, there exist matrices Xε and Yε in S(d) such that

G (x,Dxϕ (x, y) , Xε) ≤ 0 ≤ H (y,−Dyϕ (x, y) , Yε) .

Moreover, the matrix inequality

−
(

1

ε
+ ‖J‖

)
I ≤

(
Xε 0
0 −Yε

)
≤ J + εJ2

holds true, where J := D2ϕ (x, y).

We use Proposition 1 to prove preliminary regularity results as usual in the
literature. Now, the relevance of estimating F (Xε) − F (Yε) in terms of the
eigenvalues ofXε−Yε becomes clear. Hence, we proceed by verifying that [A1] is
equivalent to supposing that F is degenerate elliptic and Lipschitz continuous.

Lemma 1. Suppose F : S(d) → R satis�es [A1]. Then F is Lipschitz con-

tinuous, with constant CF , and monotone non-increasing. That is, for every

M,N ∈ S(d), we have

|F (M)− F (N)| ≤ CF |N −M | , (7)

and

F (M) ≤ F (N), (8)

provided N ≤ M . Conversely, suppose F satis�es (7) and (8). Then it also

satis�es [A1].

Proof : We start by proving that [A1] implies (7) and (8). Indeed, if M ≥ N
then (N −M)+ = 0 and we immediately get (8). Also, since |(N −M)+| ≤
|N −M |, we get

F (M)− F (N) ≤ CF |N −M | .
Swapping M and N we get

F (N)− F (M) ≤ CF |N −M | ,
and (7) follows.
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Now we prove that (7) and (8) imply [A1]. Fix M,N ∈ S(d) arbitrarily and
recall that M −N = (M −N)+ − (M −N)−. Then

F (M) =F (N + (M −N)) ≤ F (N − (M −N)−) ≤ F (N) + CF |(N −M)+|,

where the �rst inequality follows from (8), and the second one is a consequence
of (7).

3. Interior Lipschitz continuity

We reduce the problem posed in Ω ⊂ Rd to an equation prescribed in the
unit ball, B1 ⊂ Rd. Let Ω′ b Ω. For every r ∈ (0, 1), one can �nd a natural
number n = n(r) ∈ N such that there exists a subset {x1, . . . , xn} ⊂ Ω′, with

Br(xi) ⊂ Ω for every i ∈ {1, . . . , n}. In addition, the family (Br/2(xi))
n
i=1

covers Ω′; that is,

Ω′ ⊂
n⋃
i=1

Br/2(xi).

As a result, we suppose Ω′ = Br/2(x1), with x1 = 0 ∈ Ω′, and prescribe
our problem of interest in open balls. In what follows, we denote with C(d)
any constant depending only on the dimension; this notation refers to possibly
di�erent constants within our arguments.
The next lemma accounts for the Hölder regularity of sub-solutions to (1).

The strategy of the proof yields a modulus of continuity depending explicitly
on the growth regime of H.

Lemma 2 (Hölder continuity for sub-solutions). Let u ∈ USC(B1) be a sub-

solution to (1). Suppose assumptions [A1]-[A2] are in force. Suppose further

H satis�es [A3] with m > 2. Then

|u(x)− u(y)| ≤ K|x− y|γ,

for every x, y ∈ B1/4, where

γ =
m− 2

m− 1
, (9)

and

K := 2
1

m−1

(
4

m
m−1

(
CFC(d)

C2γm

) 1
m−1

+ 4

(‖f‖L∞(B1) + C1

C2γm

) 1
m

)
.
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Proof : Fix x ∈ B1/2 and de�ne the function φ : B1/2(x)→ R as

φ(y) := K

(
1

4
− |y − x|2

)−1

|y − x|γ.

To establish the lemma, it su�ces to show that

w(y) := u(y)− u(x)− φ(y) ≤ 0, (10)

for every y ∈ B1/2(x). Indeed, it would imply that, for every y ∈ B1/4(x),

u(y)− u(x) ≤ φ(y) = K

(
1

4
− |y − x|2

)−1

|y − x|γ ≤ 16

3
K|y − x|γ.

We split the remainder of the proof into three steps.

Step 1 - Here, we prove that w, as de�ned in (10), has no local maximum in
B1/2(x) \ {x}. Suppose otherwise, and let y∗ ∈ B1/2(x) \ {x} be a point of
local maximum for w. Because u is a viscosity sub-solution of (1), De�nition
2 implies

F (D2φ(y∗)) +H(Dφ(y∗), y∗) ≤ f(y∗).

We will produce a contradiction by verifying that φ is also a strict supersolution.

Step 2 - Without loss of generality, set x = 0 and notice that

Dφ(y) = K

(
γ
4 |y|

γ−2 + (2− γ)|y|γ(
1
4 − |y|2

)2

)
y,

and

|Dφ(y)|m ≥ Km

(
1

4
− |y|2

)−2m

|y|γ−2γ
m

4m
, (11)

where the choice of γ in (9) is instrumental. Moreover, a dimensional constant
C(d) > 0 exists such that

|D2φ(y)| ≤ C(d)K

(
1

4
− |y|2

)−3

|y|γ−2.

Because F is Lipschitz continuous and satis�es F (0) = 0, we obtain

− F (D2φ(y)) ≤ CF |D2φ| ≤ CFC(d)K

(
1

4
− |y|2

)−3

|y|γ−2. (12)
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Combining (11) with (12), we get

F (D2φ(y)) +H(Dφ(y), y) ≥ −CFC(d)K

(
1

4
− |y|2

)−3

|y|γ−2 − C1

+ C2K
m

(
1

4
− |y|2

)−2m

|y|γ−2γm

≥ −C1 +

(
−CFC(d)K + C2

γm

4m
Km

)
,

where the last inequality holds because (1/4 − t2)−3tγ−2 > 1, for every t ∈
(0, 1/2) and γ ∈ (0, 1). Finally, the choice of K ensures that(

−CFC(d)K + C2
γm

4m
Km

)
> ‖f‖L∞(B1) + C1;

hence, φ is a supersolution of (1), and we obtain a contradiction. Therefore,
w does not have an interior local maximum point. In the next step, we prove
that w cannot attain its local maximum on ∂B1/2.

Step 3 - To see that w does not attain a local maximum on ∂B1/2, start by
noticing that φ(y) blows up as y → ∂B1/2(x). As a consequence, the supremum

of w in B1/2 has to be attained in B1/2.
Because of Step 2, it cannot be attained inB1/2(x)\{x}; hence, the supremum

of w is attained at x. Because w(x) = 0, we conclude w ≤ 0 in B1/2(x), and
the proof is complete.

In the sequel, we produce a Lipschitz-regularity result for the solutions to
(1). Our argument is based on Proposition 1, and follows closely the reasoning
developed in [2]. The main di�erence stems from the (fully) nonlinear character
of the problem. Here, we resort to assumption [A1] and explore the interplay
between the operator F , the eigenvalues of a given matrix, and the Hamiltonian
H. In what follows, we include the sub-quadratic case 1 < m ≤ 2.
Because the source term f is Lipschitz-continuous and bounded in Ω, we can

absorb it into the Hamiltonian H, at the expense of changing the constants
appearing in (4)-(6) accordingly. In doing so, we are allowed to examine the
homogeneous variant of (1) given by

F (D2u) +H(Du, x) = 0 in B1. (13)

In the sequel we detail the proof of Theorem 1.
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Proof of Theorem 1: We start by setting L as

L = max

{
2

1
m−1

((
CFC(d)

C2γm

) 1
m−1

+

(
C1

C2γm

) 1
m

)
,

2

(
3mCFC(d)

C3

C2

) 1
m−1

,

(
C1

C3

) 1
m

}
.

(14)

It su�ces to prove that, for every x̂ ∈ B1/2,

lim sup
x→x̂

u(x̂)− u(x)

|x̂− x|
≤ L.

We suppose there exists x̂ ∈ B1/2 such that

lim sup
x→x̂

u(x̂)− u(x)

|x̂− x|
> L. (15)

By combining Proposition 1 and Lemma 1 with the conditions in assumptions
[A1]-[A3], we obtain a contradiction and complete the proof. For ease of pre-
sentation, we split the argument into four steps.

Step 1 - Consider �rst an auxiliary function. Let φ : B3/4 → [1,∞) be such
that φ ≡ 1 in B1/2, with φ(x)→∞ as |x| → 3/4. Suppose also

|Djφ(x)| ≤ C(d) (φ(x))jm+(1−j) , (16)

for j ∈ {1, 2}, x ∈ B3/4, and some dimensional constant C(d) > 0. For α > 0,
denote with Ψ : B3/4 ×B3/4 → R the function

Ψ(x, y) := u(x)− u(y)− Lφ(y) |x− y| − 1

2α
|x− y|2 .

For 0 < α� 1 su�ciently small, we claim that there exist xα, yα ∈ B3/4 such
that

Ψ(xα, yα) = sup
x,y∈B3/4

Ψ(x, y) > 0. (17)

In addition, the function φ(y) localizes yα away from the boundary ∂B3/4.

Also, because 0 < α � 1, the term − 1
2α |x− y|

2 ensures that xα is close to
yα and, therefore, also away from ∂B3/4. Finally, xα 6= yα, since otherwise the
supremum in (17) would be zero.
Notice that

1

2α
|xα − yα|2 ≤ oscB3/4

u ≤ 2‖u‖L∞(B3/4).
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Hence by the continuity of u, we get

lim sup
α→0

(
Lφ(yα) |xα − yα|+

1

2α
|xα − yα|2

)
≤ lim sup

α→0
sup

{
u(y)− u(z) : y, z ∈ B3/4, |y − z| ≤

(
2α oscB3/4

u
) 1

2

}
(18)

=0.

In the case m > 2, Lemma 2 yields

Lφ(yα) |xα − yα|+
1

2α
|xα − yα|2 ≤ u(xα)− u(yα) ≤ K̃ |xα − yα|γ ,

where γ = m−2
m−1 and K̃ stands for the constantK in Lemma 2 in the case f ≡ 0.

Thus,

φm−1(yα)|xα − yα| ≤ L1−mK̃m−1. (19)

Next we resort to Proposition 1.

Step 2 - Because (xα, yα) is a maximum point for Ψ and u solves (13), Propo-
sition 1 yields symmetric matrices Xε,α and Yε,α such that(

Xε,α 0
0 −Yε,α

)
≤ Jα + εJ2

α, (20)

for every ε > 0 and α > 0, su�ciently small. Moreover,

F (Xε,α) +H (Pα, xα) ≤ 0 ≤ F (Yε,α) +H (Pα −Qα, yα) , (21)

where

σα :=
xα − yα
|xα − yα|

, Pα :=

(
Lφ(yα) +

|xα − yα|
α

)
σα,

and
Qα := L|xα − yα|Dφ(yα).

Finally, we write Jα as

Jα =
Lφ(yα)

|xα − yα|

(
Z1 −Z1

−Z1 Z1

)
+

1

α

(
I −I
−I I

)
+ L

(
0 Z2

ZT
2 Z3

)
,

with Z1 := I − σα ⊗ σα, Z2 := Dφ(yα)⊗ σα, and
Z3 := −(Z2 + ZT

2 ) +D2φ(yα)|xα − yα|.
In the next step, we estimate F (Yε,α)− sF (Xε,α) from above.
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Step 3 - It follows from [A1] that

F (Yε,α)− F (sXε,α) ≤ CF
∣∣(sXε,α − Yε,α)+

∣∣ . (22)

For s > 0, let As be given by

As =

(
s2I sI
sI I

)
.

Multiply both sides of (20) by As and evaluate the resulting inequality at
vectors of the form (ω, ω) ∈ R2d. As a consequence, one obtains

ωT
(
(s2 + s)Xε,α − (s+ 1)Yε,α

)
ω ≤ L(s+ 1)ωT

(
Z2 + sZT

2 + Z3

)
ω +O(ε).

Set s := 1 + β|xα − yα|, with β = βφm−1(yα), for β yet to be �xed. It follows
that

ωT (sXε,α − Yε,α)ω ≤ LωT
(
Z2 + sZT

2 + Z3

)
ω +O(ε)

= LωT ((s− 1)σα ⊗Dφ(yα))ω

+ LωT
(
D2φ(yα)|xα − yα|

)
ω +O(ε)

≤ |ω|2L ((s− 1)|Dφ(yα)||xα − yα|)
+ |ω|2L

(
|D2φ(yα)||xα − yα|

)
+O(ε)

≤ |ω|2LC(d)βφ2m−1(yα)|xα − yα|+O(ε).

In conclusion,

F (Yε,α)− sF (Xε,α) ≤ CF
∣∣(sXε,α − Yε,α)+

∣∣
≤ CFC(d)Lβφ2m−1(yα)|xα − yα|+O(ε). (23)

In what follows, we estimate F (Yε,α)− sF (Xε,α) from below.

Step 4 - We start with three auxiliary inequalities. Because of (16), we have

|Qα|
|xα − yα|

≤ C(d)φm−1(yα) ≤ C(d)L1−m|Pα|m. (24)

More generally, for any θ > 0,

|Qα|
|xα − yα|

≤ C(d)L1−θφm−θ(yα)|Pα|θ. (25)

Also,

L|D2φ(yα)| ≤ C(d)L1−mφm−1(yα)|Pα|m. (26)
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In the sub-quadratic case 1 < m ≤ 2, one combines (25) with θ = 1 and (18)
to get

lim
α→0

|Qα|
|Pα|

≤ lim
α→0

C(d)|φ(yα)|m−1|xα − yα| = 0.

For m > 2, in the superquadratic case, (24) builds upon (19) to produce

|Qα| ≤ C(d)L1−mK̃m−1|Pα|.

Hence, in either case, we have |Qα| ≤ |Pα|, for α small enough, since (14)
implies

L ≥ 2
1

m−1

((
CFC(d)

C2γm

) 1
m−1

+

(
C1

C2γm

) 1
m

)
. (27)

Now we use (21) to write

F (Yε,α)− F (sXε,α) ≥ sH(Pα, xα)−H(Pα −Qα, yα)

≥ (s− 1)H(Pα, xα)− C3(1 + 2|Pα|)m−1|Qα|
− (C3|Pα|m + C1)|xα − yα|
≥ (s− 1)(C2|Pα|m − C1)− C3(1 + 2|Pα|)m−1|Qα|
− (C3|Pα|m + C1)|xα − yα|.

We used [A2] in the �rst inequality, whereas |Qα| ≤ |Pα| leads to the second
one. Since |Pα| ≥ L > 1, it follows that 1 + 2|Pα| ≤ 3|Pα|, and from the lower
bound L ≥ (C1/C3)

1/m, we also obtain C3|Pα|m + C1 ≤ 2C3|Pα|m. Thus, we
can further estimate

F (Yε,α)− F (sXε,α)

≥ (s− 1)C2|Pα|m − C3(3|Pα|)m−1|Qα| − 2C3|Pα|m|xα − yα|

≥
(
βC2|Pα|m − C3(3|Pα|)m−1 |Qα|

|xα − yα|

)
|xα − yα|

− 2C3|Pα|m|xα − yα|
≥
(
βC2|Pα|m − C3(3|Pα|)m−1

(
φm−1(yα)|Pα|

))
|xα − yα|

− 2C3|Pα|m|xα − yα|
= |Pα|m

(
βC2 − C33

m−1φm−1(yα)− 2C3

)
|xα − yα|.
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We used (25) with θ = 1 in the last inequality. Because β = βφm−1(yα), we
get

F (Yε,α)− F (sXε,α) ≥|Pα|mφm−1
(
βC2 − C33

m−1 − 2C3φ
1−m(yα)

)
|xα − yα|

≥|Pα|mφm−1|xα − yα|, (28)

provided we set β = C3

C2
(3m−1 + 2).

Combining (28) and (23) we get

|Pα|mφm−1|xα − yα| ≤ CF
(
C(d)Lβφ2m−1(yα)|xα − yα|+O(ε)

)
.

Let ε → 0 and divide both sides of the former inequality by the quantity
|xα − yα|φ2m−1(yα). Then

Lm ≤ |Pα|
m

φm(yα)
≤ CL,

where C = CFC(d)β. This is a contradiction since

L ≥ 2

(
3mCFC(d)

C3

C2

) 1
m−1

.

Therefore we have proven that u is locally Lipschitz continuous, with constant
L given by (14).

Remark 1. The proof of Theorem 1 provides a constructive way to produce the
Lipschitz constant C associated with u. In fact, this is given by L > 0, as
de�ned in (14).

4. A two-phase free boundary problem

Now, we explore a consequence of Lemma 2 in the context of free boundary
problems. It concerns the existence of a viscosity solution to{

−Tr(A(x)D2u) +H(Du, x) = λ+χ{u>0} + λ−χ{u<0} in Ω(u)

u = g on ∂Ω
(29)

where Ω is a C2-domain, A : Ω→ S(d) is degenerate elliptic, 0 < λ− < λ+ are

constants, g ∈ C0,m−2m−1 (∂Ω) is given, and Ω(u) is given by

Ω(u) := {x ∈ Ω |u(x) 6= 0} .
We notice the equation holds only where the solution does not vanish, and
hence, no information is available across the free boundary Γ(u) := ∂{u >
0} ∪ ∂{u < 0}.



16 D. JESUS, E. PIMENTEL AND J. M. URBANO

We prove the existence of a locally Hölder-continuous viscosity solution to
(29) with suitable, estimates. To do that, we introduce an assumption on the
data A : Ω→ S(d) and g : ∂Ω→ R.

[A4]. We suppose A : Ω → S(d) to be degenerate elliptic and bounded from

above. In addition, there exists λ > 0 such that

ν(x)TA(x)ν(x) ≥ λ

for every x ∈ ∂Ω. Also, we suppose g ∈ C0,m−2m−1 (∂Ω), with

|g(x)− g(y)| ≤ K|x− y|
m−2
m−1

for every x, y ∈ ∂Ω, where K > 0 is �xed, though yet to be determined. In

addition, suppose

0 < inf
x∈∂Ω

g(x) < 2λ−.

The importance of [A4] is in unlocking an intermediate step in our analy-
sis, namely [9, Theorem 2.12]. In fact, the superquadratic character of (29)
introduces a number of subtleties in the arguments leading to the existence of
solutions. See the discussion in [9, Section 2.3].

Theorem 2 (Existence of solutions). Let Ω ⊂ Rd be an open, bounded do-

main of class C2. Suppose assumption [A4] is in force. Then there exists

a viscosity solution u ∈ C(Ω) to the problem (29). In addition, we have

u ∈ C
0,m−2m−1
loc (Ω). Finally, for every Ω′ b Ω, there exists a positive constant

C = C
(
m, ‖A‖L∞(Ω), K, λ, diam(Ω), dist(Ω′, ∂Ω)

)
such that

‖u‖
C

0,m−2m−1 (Ω′)
≤ C

(
1 + ‖u‖L∞(Ω) + max{|λ+|, |λ−|}

)
.

The proof of Theorem 2 combines several ingredients. First, we consider a
family of auxiliary equations indexed by a parameter ε > 0. For each equation
in the family, the existence of a (unique) viscosity solution follows from [9,
Theorem 2.12]. Lemma 2 implies estimates independent of ε > 0 and allows
us to apply Schauder's Fixed Point Theorem to conclude the argument. We
proceed by introducing an auxiliary problem.
For v ∈ C(Ω) and 0 < ε < 1, de�ne gvε : Rd → R as

gvε(x) := max

(
min

(
v(x) + ε

2ε
, 1

)
, 0

)
,
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if x ∈ Ω, and gvε ≡ 0 in Rd \ Ω. Now, for x ∈ Ω, let hvε(x) := (gvε ∗ ηε) (x),
where ηε is a standard molli�er. We consider the auxiliary problem{

εu− Tr(A(x)D2u) +H(Du, x) = λ+h
v
ε + λ−(1− hvε) in Ω ⊂ Rd

u = g on ∂Ω.

(30)
Through a �xed-point approach, we show the existence of a solution uε ∈ C(Ω)
to the Dirichlet problem{
εuε − Tr(A(x)D2uε) +H(Duε, x) = λ+h

uε
ε + λ−(1− huεε ) in Ω ⊂ Rd

uε = g on ∂Ω.

(31)
This argument relies on a variant of Lemma 2 applied to (30). By taking the
limit ε→ 0 in (31) and applying Lemma 2 once more, we obtain the existence
of a viscosity solution to (29). The �rst step towards proving Theorem 2 is the
following proposition.

Proposition 2. Let Ω ⊂ Rd be an open, bounded domain of class C2. Sup-

pose assumption [A4] is in force. Then, for every 0 < ε < 1/4, there exists

uε ∈ C(Ω) solving (31) in the viscosity sense. In addition, uε ∈ C
0,m−2m−1
loc (Ω).

Moreover, for every Ω′ b Ω, there exists a positive constant

C = C
(
m, ‖A‖L∞(Ω), K, λ, diam(Ω), dist(Ω′, ∂Ω)

)
such that

‖u‖
C

0,m−2m−1 (Ω′)
≤ C

(
1 + ‖u‖L∞(Ω) + max{|λ+|, |λ−|}

)
. (32)

Proof : For ease of presentation, we split the proof into three steps.

Step 1 - Notice that, given v ∈ C(Ω), we have

|λ+h
v
ε(x) + λ−(1− hvε(x))− λ+h

v
ε(y)− λ−(1− hvε(y))| ≤ ωv,ε(|x− y|),

where ωv,ε(·) is a modulus of continuity depending on v and ε > 0. Hence,
the right-hand side of the equation in (30) is a continuous function up to the
boundary ∂Ω. A straightforward application of [9, Theorem 2.12] ensures the
existence of a unique viscosity solution uvε to (30).
Notice also the proof of Lemma 2 extends to the case of (30). As a conse-

quence, uvε ∈ C
0,m−2m−1
loc (Ω) for every 0 < ε < 1/4 and every v ∈ C(Ω). Moreover,
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for every Ω′ b Ω, there exists a constant C > 0 depending on the data of the
problem and Ω′, but not depending on ε or v, such that

‖uvε‖C0,m−2m−1 (Ω′)
≤ C. (33)

uniformly in v ∈ C(Ω) and ε ∈ (0, 1/4).

Step 2 - We now de�ne K ⊂ C(Ω) as

K :=
{
w ∈ C(Ω) : ‖w‖L∞(Ω) ≤ C0

}
,

where C0 > 0 will be chosen later. Notice that K is closed in C(Ω). In the
sequel, we de�ne a map T : K → C(Ω). For �xed ε ∈ (0, 1/4), take v ∈ K and
denote with uvε the unique solution to (30), whose existence follows from the
previous step. De�ne Tv := uvε and notice that the existence of a �xed point
for T is tantamount to the existence of solutions to (31).
To prove the existence of a �xed point for T , we start by noticing that it is

possible to choose C0 > 0, independent on v and ε, such that T (K) ⊂ K. This
follows from the construction of sub and supersolutions for the problem; see
the proof of [9, Theorem 2.12].
We continue by proving that T (K) is pre-compact. Let (Tvn)n∈N be a se-

quence of elements in T (K). Because |Tvn| ≤ C0, for every n ∈ N, the se-
quence is equibounded. In addition, (33) ensures it is also equicontinuous.
Hence, (Tvn)n∈N converges to an element v∗ ∈ T (K), through a subsequence if
necessary.
Finally, we verify that T is sequentially continuous. Suppose (vn)n∈N ⊂ K

converges to some v ∈ K. We prove that Tvn → Tv, as n → ∞. Indeed,
because T (K) is pre-compact, we infer that (Tvn)n∈N converges, through a
subsequence if necessary, to some w ∈ K. The stability of viscosity solutions
and the uniqueness available for (30) ensure that Tv = w. To conclude that
T is continuous, we must verify the former equality does not depend on the
particular subsequence. Indeed, suppose a di�erent subsequence yields Tvnk →
w′, as k →∞. Since vnk → v as k →∞, we reason as before (resorting to the
stability of viscosity solutions and the uniqueness for (30)) to obtain Tv = w′.

Step 3 - The properties of the subset K and the operator T allow us to apply
the Schauder Fixed Point Theorem, as in [17, Corollary 11.2], to conclude the
existence of uε ∈ K such that Tuε = uε. That is, uε solves (31). Because the

conclusions of Lemma 2 apply, we have uε ∈ C
0,m−2m−1
loc (Ω) and the estimate in

(32) holds.
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Now, we detail the proof of Theorem 2.

Proof of Theorem 2: We take a sequence (εn)n∈N such that εn → 0 as n→∞
and consider the sequence (un)n∈N of solutions to

εnun − Tr(A(x)D2un) +H(Dun, x) = λ+h
un
εn

+ λ−(1− hunεn ) in Ω.

Because the estimate in (32) holds for un, for every n ∈ N, we conclude there
exists u∗ ∈ Cβ

loc(Ω) such that un → u∗ in the Cβ-topology, for every 0 < β <
m−2
m−1 .
Now, let x ∈ {u∗ > 0} and write τ := u∗(x). Suppose u∗ − ϕ has a (strict)

local maximum at x, for ϕ ∈ C2(Ω). There exists a sequence (xn)n∈N such
that xn → x and un−ϕ has a local maximum at xn. On the other hand, there
exists N ∈ N such that

un(xn) >
τ

2
> εn

provided n > N . Hence,

εnun(xn)−Tr(A(xn)D
2ϕ(xn))+H(Dϕ(xn), xn) ≤ λ+h

un
εn

(xn)−λ−(1−hunεn (xn));

by taking the limit n→∞, we obtain

−Tr(A(x)D2ϕ(x)) +H(Dϕ(x), x) ≤ λ+.

Conversely, suppose x ∈ {u∗ < 0} and write σ := u∗(x). If u∗−ϕ has a (strict)
local maximum at x, for ϕ ∈ C2(Ω) we reason as before to conclude

−Tr(A(x)D2ϕ(x)) +H(Dϕ(x), x) ≤ −λ−.
It ensures that u∗ is a sub-solution to (29) in Ω(u). An analogous argument
ensures that u∗ is also a supersolution and completes the proof.

Remark 2. Our proof of Theorem 2 yields further information since it produces
two viscosity inequalities satis�ed by the solution in the region {u = 0}. Indeed,
the viscosity solution to (29), whose existence follows from Theorem 2, satis�es

−|λ−| ≤ −Tr(A(x)D2u) +H(Du, x) ≤ |λ+| in Ω

in the viscosity sense. Besides solving the equation in the positive and negative
phases, it also solves a pair of inequalities in the whole domain.
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