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Abstract: We introduce the notion of Kan injectivity in 2-categories and study
its properties. For an adequate 2-category K, we show that every set of morphisms
H induces a KZ-monad on K whose 2-category of pseudoalgebras is the locally
full sub-2-category of all objects (left) Kan injective with respect to H and mor-
phisms preserving Kan extensions. The main ingredient is the construction of a
(pseudo)chain whose appropriate “convergence” is ensured by a small object argu-
ment.
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Introduction
A very classical problem in category theory goes under the name of the

orthogonal subcategory problem. For H a class of maps in a category C, we
ask whether the full subcategory of orthogonal objects H⊥ is reflective in C,
that is, H⊥ is the category of algebras of an idempotent monad.

There are several reasons to study orthogonal subcategories and their re-
flectivity, because many situations in mathematics can be reduced to an
orthogonality class of objects. For example, the set H of maps that spec-
ifies the orthogonality class can be understood as a set of axioms that the
objects in the orthogonality class must satisfy (see [AHS06] for a theoreti-
cal approach to this motto, or [AR94, 1.33] for some practical examples of
how it functions). Thus, orthogonality offers a categorical tool to axiomatise
convenient subcategories.

The orthogonal subcategory problem has a long standing tradition and
was approached by several authors. Peter Freyd and Max Kelly [FK72]
provided what later became a standard reference on the topic. In [Kel80],
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Kelly unified the work of earlier authors, by providing a beautiful solution
for this problem in a broad setting by means of the colimit of a transfinite
sequence. This construction is quite in the same spirit of the celebrated small
object argument. In a more recent account, the work of Jǐŕı Adámek and Jǐŕı
Rosický [AR94, Chap. 1.C] gives a detailed description of the transfinite
sequence in locally presentable categories. Their technique is very influential
for our treatment.

The aim of this paper is to establish a similar result for a 2-dimensional
variation of the orthogonal subcategory problem which captures many rel-
evant constructions of 2-dimensional category theory. We will direct our
study to the interplay between Kan-injectivity and lax-idempotent monads
(i.e KZ-monads). They are natural substitutes for orthogonality and idem-
potent monads when working in 2-categories.

This work generalises the seminal work of [ASV15] and introduces Kan
Injectivity in 2-categories. An object X is (left) Kan injective with respect
to a map h if every f : dom(h) → X can be extended to the codomain of h
through a 2-cell

A A′

X

h

f
f/h

ξf

and such an extension is universal among the possible extensions; more pre-
cisely, (f/h, ξf) is the (left) Kan extension of f along h. Given a class H
of 1-cells, we can form the locally full sub-2-category LInj(H) of all objects
left Kan injective with respect to H and 1-cells preserving the correspond-
ing Kan extensions. There are two natural notions of Kan Injectivity, the
strongest one demanding that ξf is invertible. We will show how they re-
late to each other in subsection 1.2, concluding that both notions give rise
to the same Kan injective sub-2-categories. It is known that some relevant
2-categories can be described via Kan injectivity (Example 1.5). We aim to
push this observation and show that a vast class of interesting 2-categories
can be described via Kan injectivity axioms. To do so, we will link Kan
injective sub-2-categories to KZ-monads.

The concept of KZ-monad in a 2-category (also known as lax-idempotent
monad or KZ-doctrine), presented by Anders Kock in [Koc95] generalises the
one of idempotent monad in ordinary categories. In [BF06] Marta Bunge and
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Jonathan Funk characterised the 2-adjunctions giving rise to KZ-monads.
In [MW12], Francisco Marmolejo and Richard Wood showed that a KZ-
monad in a 2-category and its algebras may be presented in terms of left
Kan extensions. In particular, their results can essentially be summarised as
in Theorem 2.1. This theorem was previously shown for the particular case
of order-enriched categories in [CS11], and is an important tool in the proof
of Theorem 4.3.

Our main result (Theorem 4.3) shows that, in a 2-category K whose
objects satisfy a convenient notion of smallness (see Definition 4.1), for every
set H of morphisms of K the inclusion

LInj(H) ↪→ K
is the right adjoint 2-functor of a KZ-adjunction. To this end, we construct,
for each object X, a transfinite (pseudo)chain (see Construction 3) leading
to the components of the unit of the KZ-adjunction. LInj(H) is then essen-
tially the corresponding category of (pseudo)algebras. This chain generalizes
the Kan injective reflection chain presented in [ASV15] for order-enriched
categories. Here, the main factor allowing us to take off from the locally thin
context of [ASV15] is the use of a special colimit, which we call coequinserter.

The structure of the paper goes as follows. In Section 1 we start by
introducing weak Kan injectivity and Kan injectivity (Definition 1.1). We
put the notions into context, making the due comparison to the literature
and proving the closedness under (bi)limits of LInj(H) (Proposition 1.3), a
soundness result towards the main theorem. In Proposition 1.10, we show
that, in any 2-category with bicocomma objects, for every class of maps H
there exists a class of maps H̄ such that WLInj(H) = LInj(H̄). We also
show that every class of morphisms saturated under Kan-injectivity contains
all lari 1-cells and is closed under composition, bicocomma, bipushouts and
wide bipushouts (Proposition 1.13).

The subsequent three sections build the technology needed to prove our
main theorem. In Section 2, after recalling some results due to Marmolejo
and Wood on the structure of KZ-monads, we formulate the result (Theorem
2.1) which will serve as a basis for the proof of our main theorem. We finish
this section with Corollary 2.5 stating that, for every class of 1-cells H, if
the inclusion LInj(H) ↪→ K is the right part of a KZ-adjunction, then the
2-category of pseudoalgebras of the corresponding KZ-monad is essentially
LInj(H).
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Section 3 gives an explicit construction of a pseudochain (Construction
3.4) which provides the candidate left biadjoint to the forgetful functor
LInj(H) ↪→ K. It is shown that in this pseudochain (xij)i≤j every x0i be-
longs to the Kan injective saturation of H.

Section 4 contains our main theorem, which is the following.

Theorem (4.3). Let K be a 2-category with bicolimits and small objects.
Then, for any set H of 1-cells in K, the inclusion 2-functor LInj(H) ↪→ K is
the right part of a KZ-adjunction. Moreover, LInj(H) is the corresponding
Eilenberg-Moore category, up to equivalence of 2-categories.

Section 5, our last section, applies the machinery developed in the paper
to study a broad class of 2-categories defined over Lex, the 2-category of
categories with finite limits. The main result (Theorem 5.9) of the section
relates Kan injectivity with the theory of lex-colimits by Garner and Lack
[GL12] and offers an alternative characterization of Φ-exactness.

1. Kan Injectivity
1.1. Left Kan injectivity – weak and strong. Let K be a 2-category,
and f : A → X and h : A → A′ two 1-cells in K. Recall that the left Kan
extension of f along h is defined as a 1-cell f/h : A′ → X together with a
2-cell,

A A′

X

h

f
f/h

ξf (1)

such that for any other 1-cell g : A′ → X with a 2-cell α : f ⇒ g◦h there exists
a unique 2-cell α : f/h⇒ g such that we have the equality α = (ᾱ ◦ h) · ξf :

A A′ A A′

=

X X

h

f

f/h

g g

h

f

ξf
ᾱ α

Of course, such a 1-cell f/h is defined up to isomorphism.
A 1-cell p : X → X ′ preserves the left Kan extension (f/h, ξf) if the

pair (p(f/h), p ◦ ξf) forms a left Kan extension of pf along h, i.e. there is an
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invertible 2-cell (pf)/h ∼= p ◦ f/h satisfying the following equation.

A A′ A A′

X = X

X ′ X ′

h

(pf)/h

p◦f/h

h

f

p

f/h

f

p

ξf

ξpf ∼=

Throughout the paper we will make use of the notion of left Kan injectivity
given below. We also present the notion of weakly left Kan injectivity, which
will be discussed in this section.

Definition 1.1.
(1) An object X ∈ K is weakly left Kan injective with respect to a

family of 1-cells H if, for all h : A→ A′ in H and any f : A→ X in K
the left Kan extension (f/h, ξf) of f along h exists, see (1).

By the general theory of Kan extensions, this amounts to say that
the representable functor K(−, X) : K → Cat maps every 1-cell of H
to a right adjoint 1-cell.

(2) We say that X ∈ K is left Kan injective with respect to H if it is
weakly left Kan injective and, moreover, the 2-cells ξf are invertible.
This amounts to say that the representable functor K(−, X) maps
every 1-cell of H to a rali in Cat (i.e. a right adjoint with invertible
unit).∗

(3) A 1-cell p : X → X ′ of K is (weakly) left Kan injective with
respect to H if its domain and codomain are so and p preserves left
Kan extensions along 1-cells in H.

(4) We can form a locally full sub-2-category WLInj(H) of K with objects
all weakly left Kan injectives with respect to H and 1-cells between
them which preserve left Kan extensions along maps in H. Similarly,
we define

LInj(H)

∗rali stands for right adjoint left inverse; analogously, lari stands for left adjoint right inverse,
i.e. a left adjoint with invertible unit. Similarly, we write lali and rari for left/right adjoints with
invertible counit.
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restricting objects to left Kan injectives with respect to H.

Bunge and Funk [BF99] studied certain KZ-doctrines, called admissible,
and characterised their algebras in terms of weakly left Kan injectivity, con-
sidering pointwise left Kan extensions (see also [Str81]). As we will see in the
next section, we may characterise the algebras of any KZ-doctrine in terms
of left Kan injectivity, and this fact is an important tool in our paper.

Remark 1.2. Consider the diagram below, where X and X ′ are left Kan
injective with respect to h : A → A′, and hX := (−)/h is the left adjoint
of K(h,X). A 1-cell p : X → X ′ preserves left Kan extensions along h if
and only if it satisfies an appropriate Beck-Chevalley condition, namely, the
following square commutes up to isomorphism:

K(A′, X)

K(A′,p) ∼=
��

K(A,X)
hXoo

K(A,p)
��

X

p
��

K(A′, X ′) K(A,X ′)
hX′

oo X ′

This characterization concerning Kan injectivity leads to a nice behaviour
of Kan injective sub-2-categories with respect to bilimits and pseudolimits,
which we describe in the following proposition.

Proposition 1.3. The inclusion 2-functor LInj(H) ↪→ K creates bilimits
and pseudolimits.

Proof : Let us consider a pseudofunctor D : I → LInj(H) (with I a small
2-category) and a weight W : I → Cat (strict 2-functor).

(1) For any object i ∈ I, Di ∈ LInj(H), i.e. K(h,Di) =: hDi
∗ is a rali

(let us denote with hDi a hDi∗ the adjunction).
(2) For any 1-cell u : i→ j ∈ I, Du is Kan injective, i.e.

K(A,Di) K(B,Di)

K(A,Dj) K(B,Dj)

hDi

Du◦− Du◦−

hDj

∼=

Let us note that these isomorphisms make hD− into a pseudonatural
transformation, the composition and the other axioms follow by the
universal property of Kan extensions.
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It is easy to check that also hD−
∗ is a pseudonatural transformation. In

particular we have hD− a hD−∗ in the 2-category [I,Cat] of pseudofunctors,
pseudonatural transformations and modifications (which also makes hD−

∗ a
rali). It is well-known that hom-functors into Cat preserve adjunctions (see
[Gra74, Proposition I,6.3]). Then, setting H := hD− ◦− and H∗ := hD−

∗ ◦−,
we get an adjunction

[I,Cat](W,K(A,D−)) [I,Cat](W,K(B,D−))

H

H∗

⊥ in Cat.

Now, let us assume that the W -weighted bi/pseudolimit of D exists in K,
i.e.

(1) Pseudolimit: There exists an object Lp ∈ K such that

K(A,Lp) ∼= [I,Cat](W,K(A,D−))

is an isomorphism of categories for any A.
(2) Bilimit: There exists an object Lb ∈ K such that

K(A,Lb) ' [I,Cat](W,K(A,D−))

is an equivalence of categories for any A.

Since both isomorphisms and equivalences of categories preserve adjunc-
tions, in both cases we get a lali (for L = Lp or L = Lb)

K(A,L) K(B,L)

h

−◦h

⊥

Let us consider projections liw : L → Di, i.e. the image of the object w ∈
Wi under the i-component of the universal pseudonatural transformation
Wi→ K(L,Di) (the one corresponding to 1L). Let us consider the diagram
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below

K(A,L) K(B,L)

[W,K(A,D−)] [W,K(B,D−)]

K(A,Di) K(B,Di)

hL

liw◦− liw◦−

∼ ∼

hDi

ei,wei,w

H∼= ∼=

(2)

(1)

where ei,w is the functor taking a pseudonatural transformation α : W →
K(A,D−) and evaluates its i-component at the object w ∈ Wi (see below)

ei,w : α 7−→ αi(w) ∈ K(A,Di)

and we wrote [W,K(A,D−)] for the category [I,Cat](W,K(A,D−)). Let us
recall that H sends a pseudonatural transformation α : W → K(A,D−) to

W K(A,D−) K(B,D−).
hD−α

Hence, it is straightforward to check that the diagram (2) commutes and so
the whole diagram above (since diagram (1) commutes by definition of hL).
This shows that each liw is left Kan injective.

All of this reasoning works also when we have −◦h only a left adjoint and
not lali, hence also WLInj(H) is closed under weighted bi/pseudolimit. This
also follows from the fact shown below that every weakly left Kan injective
sub-2-category is left Kan injective (Proposition 1.10).

Next we list some examples concerning Kan injective sub-2-categories.

Example 1.4 (Categories with finite colimits are weakly Kan Injective). Let
Rex be the 2-category of small categories with finite colimits and functors
preserving them. Define, in Cat,

H = {> : D → 1 | D is a finite category}.
It then follows from [ML13, X.7.1] that Rex ' WLInj(H). Of course,
because finite colimits are generated by finite coproducts and coequalizers,
H can be reduced to three arrows D → 1, with

D = 0, a • •b , • →→ • ,

determining the existence of an initial object, binary coproducts and co-
equalizers, respectively. For any class D of finite categories, using a similar
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argument, we can get the category of categories with any colimit of shape in
D.

Example 1.5 (Categories with finite colimits are Kan Injective). Similarly
to the previous discussion, we will describe Rex as a left Kan injective sub-
2-category of Cat. In order to do so, for all finite categories D, call D̂
the category obtained from D by freely adding a terminal object and call
ιD : D → D̂ the canonical inclusion. Define,

H = {ιD : D → D̂ | D is a finite category}.
It then follows from [Rie17, 3.1.8, 6.3.10] that Rex ' LInj(H). Naturally,

as in the above example, H can be reduced to a class containing only three
arrows.

Example 1.6 (Orthogonality). In the context of ordinary categories, that is,
locally discrete 2-categories, the notion of Kan-injectivity is just the classical
definition of orthogonality. In this case, LInj(H) is the full subcategory of
all objects orthogonal to H usually denoted by H⊥.

Example 1.7 (Fullness). If H is made of lax epimorphisms (i.e. for every
h : A→ A′ in H and every X, the functor K(h,X) : K(A′, X)→ K(A,X) is
fully faithful), then LInj(H) is a full sub-2-category. Indeed, for every map p
between Kan injective objects, from the fact that ((pf)/h)h ∼= pf ∼= p(f/h)h,
it will follow that (pf)/h ∼= p(f/h). A detailed study on lax epimorphisms
may be seen in [NS22].

Example 1.8 (Order enriched categories). Known examples abound in the
2-category of posets and other order enriched categories. For instance, in the
category Top0 of T0 topological spaces and continuous maps, the category
of continuous lattices and maps preserving directed suprema and infima is
RInj(H) for H the class of (topological) embeddings, where RInj referes to
right Kan injectivity in the expected sense. In the category Loc of locales and
localic maps, the category of stably locally compact locales with convenient
maps is LInj(H) for H the class of flat embeddings (see [Joh02]). These and
other examples may be encountered in [ASV15] and [CS17].

Remark 1.9 (A comparison with enriched weakness). In [LR12], Rosicky
and Lack introduce a very interesting notion of injectivity, which is paramet-
ric with respect to a class of maps. Let us recall it and briefly to compare it
with our notion. Let V be a reasonably nice category to enrich on and let E
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be a class of maps in V . Let K be a category enriched over V and H be a
class of 1-cells; then they define

InjE(H)

to be the full subcategory of K of those objects X such that K(−, X) maps
H to E . This definition resonates with ours. Indeed, let us consider the
particular choice V = Cat and E = ra, rali, where ra and rali stand for the
classes of right adjoints and of right adjoint left inverses, respectively.

It is clear that on the level of objects, Injra(H) and Injrali(H) coincide with
our notions of Kan injectives. Yet, there is a huge difference on the choice of
the 1-cells, which, in our case, leads to a, in general, non-full sub-2-category.

1.2. A comparison between weak Kan-injectivity and Kan-injectivity.
The following proposition allows us to restrict to left Kan injectivity without
losing generality.

Proposition 1.10. Let H be a class of maps in a 2-category K with (bi-
)cocomma objects, then there exists a class of mapsH such that WLInj(H) =
LInj(H).

1.11 (The mapping cone trick). Concerning examples 1.4 and 1.5, we can
guess a construction of H from H. Indeed, in that case, from each arrow
> : D → 1 one can obtain the mapping cone ιD : D → D̂ via the (bi-
)cocomma object below.

D 1

D D̂

>

j

ιD

ρ

We show in the proof of Proposition 1.10 that this is an instance of a general
property. A very similar idea and result appears in [Str14, Sec. 2].

Proof of Proposition 1.10: For every map h ∈ H, we construct the mapping
cone C(h) over h as the bi-cocomma object below.

A A′

A C(h)

h

j

ih

ρ



KZ-MONADS AND KAN INJECTIVITY 11

Then, we define H to be the class of all ih with h ∈ H. Let us now show
that an object X is weakly left Kan injective with respect to H if and only
if it is left Kan injective with respect to H. In particular, we will show that
an object X is weakly left Kan injective to a h ∈ H if and only if it is left
Kan injective to ih.

(1) We start by showing that if X is left Kan injective with respect to ih,
then it is weakly left Kan injective with respect to h.

Let f : A→ X be a 1-cell in K. Since X is left injective with respect
to ih, there exists the left Kan extension f/ih with the associated 2-
cell ξihf an isomorphism. Then, we can set f/h := f/ih ◦ j and ξhf as
the pasting diagram below:

A A′

C(h)

X.

j

h

ih

f

f/ih

ρ

ξ
ih
f

Now, we will show that f/h and ξhf defined in this way satisfy the
universal property of the left Kan extension. Let g : A′ → X be a
1-cell in K together with a 2-cell

A A′ = A A′

X A X

h

g
f

f

h

g
β β

By the universal property of the bi-cocomma object, the 2-cell β is
equivalent to

a 1-cell g : C(h)→ X and invertible 2-cells

A′

A C(h) C(h)

X X
f

g

g

ih

j

g

∼=

∼=
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whose pasting with ρ gives β. Then, using the universal property of
the left Kan extension f/ih, we get that these data is equivalent to
have

a 1-cell g : C(h)→ X such that g ◦ j ∼= g and
a 2-cell β : f/ih → g such that

A C(h) A C(h)

=

X C(h) X.

gf/ih

ih

f

ih

gih

f/ih

β

ξ
ih
f

−1

∼=

Let us notice that this means that βih is completely determined by
the universal 2-cell ξihf and the isomorphism f ∼= g ◦ ih. Then, using

the 2-dimensional property of the bi-cocomma object we get that β
corresponds to the two 2-cells βih and βj. Therefore, the data above
corresponds to

a 1-cell g : C(h)→ X with g ◦ j ∼= g and
a 2-cell βj : f/ih ◦ j → g ◦ j such that

A A′ A A′

A C(h) = A C(h) C(h)

C(h) X X

g

ih

f

h

j

ih

f/ih

h

j

ih

f/ih

j

g

βj

ξ
ih
f

−1

∼=

ρ ρ

Putting together all of these steps we get that, given a 1-cell g : A′ →
X and a 2-cell β : f → g ◦ h, there exists a unique 2-cell β̃ : f/h→ g
(with β̃ the composition of β̄j with the isomorphism ḡj ∼= g above)
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such that

A A′ A A′

A = A C(h)

X X.

f

h h

j

ih

f/ih

f

g g

ρ

ξ
ih
f

β̃β

(2) Now we show that if X is weakly left Kan injective with respect to h,
then it is left Kan injective with respect to ih.

Let f : A→ X be a 1-cell in K. Since X is weakly left injective with
respect to h, there exists the left Kan extension (f/h, ξhf ). Then, by
the universal property of the bi-cocomma object, there exists a unique
(up-to-isomorphism) f/ih such that

A A′ A A′

A = A C(h)

X X,
f

h h

j

ih

∃!f/ih
f

f/h f/h

ρ

ξ
ih
f

∼=

ξhf

where also ξihf is an isomorphism. Let us prove now that f/ih and ξihf
have the universal property of a left Kan extension.

Let t : C(h) → X be a 1-cell. We want to show that to give a 2-
cell γ : (f/ih)ih ⇒ tih is equivalent to give a 2-cell γ : f/ih ⇒ t with
γ ◦ ih = γ. By the universal property of the bi-cocomma object, to
have a 2-cell γ : f/ih ⇒ t is equivalent to give 2-cells γih(= γ) and γj
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such that

A A′ A A′

A C(h) = A C(h) C(h)

C(h) X X.

h h

j

ih

f/ih

j

ih

t
ih

f/ih

j

t

γj

γih

ρ ρ

We show that this is equivalent to give a 2-cell γ = γih with γih =
γ, by showing that γj is determined by γih. This will complete the
proof that X is left Kan injective with respect to ih. Indeed, pasting
with ξihf , expanding the identity on f/ih ◦ j through the isomorphism

f/ih◦j ∼= f/h, and using the definition of f/ih, we obtain the following
equality

A A′ A A′

A C(h) = A C(h) C(h)

C(h)

X X

h h

j

ih

t

ih

f/ih

j

t

j

f/ih

f/h

f

f

γj

ρ

∼=

γih

ξ
ih
f

ξhf

showing that γj is determined by γ = γih via the universality of the
left Kan extension of f along h.

Finally, using the description of the Kan extensions given above, we can
see the equality for 1-cells as well.

Let p : X → Y be left Kan injective with respect to H. Then, for any
h : A→ A′ ∈ H and f : A→ X ∈ K,

p ◦ f/h ∼= p ◦ f/ih ◦ j (by construction above)
∼= (pf)/ih ◦ j (because p ∈ LInj(H))
∼= (pf)/h (by construction above).
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On the other hand, let us consider p : X → Y ∈WLInj(H). For any ih ∈ H
and any f : A → X ∈ K, through the universal property of the co-comma
object C(h),

p ◦ f/ih corresponds to p ◦ f/h
and (pf)/ih to (pf)/h.

Since p ∈ WLInj(H), we get p ◦ f/h ∼= (pf)/h and therefore p ◦ f/ih ∼=
(pf)/ih.

1.3. Saturated classes. Kan injectivity determines a Galois connection
between locally full sub-2-categories and classes of 1-cells. More precisely,
given a locally full sub-2-category A, denote by ALInj the class of all 1-cells
with respect to which all objects and 1-cells of A are left Kan injective. Then,
we have that A ⊆ B implies BLInj ⊆ ALInj; we also have that H ⊆ I implies
LInj(I) ⊆ LInj(H), and

ALInj ⊆ H if and only if A ⊆ LInj(H).

These considerations justify the definition below.

Definition 1.12 (Hsat). The saturation of H with respect to Kan-injectivity
is defined by,

Hsat := (LInj(H))LInj .

It follows from the previous discussion that we have LInj(Hsat) = LInj(H).
The following proposition shows that Hsat is closed under certain construc-
tions. This result will be used along the paper, in particular, in Lemma 3.5
and Proposition 5.5.

Proposition 1.13. Hsat is closed under the following constructions:

(1) (Laris) Any lari 1-cell l : A→ B belongs to Hsat.
(2) (Isomorphisms) If h ∈ Hsat and there exists an isomorphism h ∼= h′,

then h′ ∈ Hsat.
(3) (Compositions) Given a pair of composable 1-cells f : A → B and

g : B → C, if f, g ∈ Hsat, then gf ∈ Hsat.
(4) (Reflections) If h ∈ Hsat and there are pseudocommutative squares

A B

A′ B′

hs

l1

l2

∼= and

A B

A′ B′

hs

r1

r2

∼= (2)
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where l1 and l2 are laris with right adjoints r1 and r2, respectively,
then s ∈ Hsat.

(5) (Bicocomma objects and bipushouts). If in

A A′

B C

h

h

r s (3)

h ∈ Hsat, then h ∈ Hsat, provided that (3) is a bicocomma object or
an invertible 2-cell forming a bipushout.

(6) (Wide bipushouts). If the diagram

A

h

∼=
��

hi // Ai

di~~
B

represents a wide bipushout of a family of 1-cells hi with all of them
in Hsat, then h ∈ Hsat.

Proof :
(1) Laris: For any X ∈ K and any lari 1-cell l : A→ B, we want to show

that X is Kan injective with respect to l, i.e. K(l, X) is rali. This is
true because the 2-functor K(−, X) send lari 1-cells to rali 1-cells (see
[Gra74, Remark I,6.5]).

(2) Isomorphisms: Clearly, for anyX ∈ K, if h ∼= h′, then alsoK(h,X) ∼=
K(h′, X). Hence, if X is Kan injective with respect to h, then X is
also Kan injective with respect to h′.

(3) Composition: This follows since the composition of ralis is a rali.
(4) Reflections: Let us consider the pseudocommutative squares (2),

and let X be left Kan injective with respect to h, i.e. h∗ := K(h,X)
is a rali. We want to show that K(s,X) is a rali as well. Applying
K(−, X) to the pseudocommutative square with l1 and l2 we get the
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pseudocommutative square below.

K(A,X) K(B,X)

K(A′, X) K(B′, X)

h∗s∗

l1
∗

l2
∗

(−)/h=:h

r1
∗

r2
∗

? ∼= `

>

⊥

We want to find a left adjoint to s∗ with invertible unit. We claim
that r2

∗ ◦ h ◦ l1∗ is the required left adjoint. Let us consider two maps
g : A→ X and g′ : A′ → X, then,

r2
∗ ◦ h ◦ l1∗g −→ g′

hl1
∗g −→ l2

∗g′

l1
∗g −→ h∗l2

∗g′

l1
∗g −→ l1

∗s∗g′

g −→ s∗g′

We note that in this chain of bijections we used two adjunctions, the
isomorphisms l1

∗s∗ ∼= h∗l1
∗ and that since r1 is rari, then l1

∗ is fully
faithfull. Clearly this bijection is natural, so we have left to check only
that the unit of this adjunction is invertible. Setting g′ := r2

∗hl1
∗g,

following the bijections above we obtain

g → s∗r2
∗hl1

∗g ∼= r1
∗h∗hl1

∗g (by r2s ∼= hr1)
∼= r1

∗l1
∗g (by h∗ rali)

∼= g (by r1 rari).

(5) Bipushouts: Consider the diagram below, we want to show that if X
is Kan injective with respect to h, and the square (3) is a bipushout,
then X is also Kan injective with respect to k. The diagram shows
how to construct the candidate Kan extension of s using the universal
property of the bipushout.
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A • A • A •

A′ • A′ A′ •

X X X

h

f

k

g
s

f

h

s

(sf)/h

kh

f

(sf)/h

s

s/k

∼= ∼=

∼=

∼=

∼=

If we follow this approach to show the univeral property of the Kan
extension the proof would be very technical. Instead, we follow a
more formal approach. In the diagram below, the situation above
is formulated in therms of h∗ having a left adjoint. Recall that the
diagram in the middle must be a bipullback, and we can thus construct
the dashed functor on the right.

K(B,X)

A B K(B′, X) K(B,X) K(B′, X) K(B,X)

A′ B′ K(A′, X) K(A,X) K(A′, X) K(A,X)

h

f

k

g

h∗

k∗

f∗g∗

(−)/h

y

y

id

h∗

f∗

k∗

g∗
(−)/h◦f∗

a

We now want to show that the dashed arrow provides a left adjoint
for k∗. We shall call (−)//k the dashed functor. By the universal
property of the bipullback, we already have the invertible map 1→ k∗◦
(−)//k, which will be our unit. To construct the counit, we consider
the diagram below, and use the 2-dimensional part of the universal
property of the bipullback to obtain the desired 2-cell (−)//k◦k∗ → 1.

K(B′, X) K(B′, X)

K(B,X) K(B,X) K(A′, X) K(B′, X) K(B,X)

K(B′, X) K(B,X) = K(A,X)

K(A′, X) K(A,X) K(B′, X) K(A′, X) K(A,X)

k∗

h∗

f∗

k∗

g∗

k∗

(−)//k

id

k∗

f∗g∗

k∗

g∗

(−)//k

f∗

(−)/h

g∗

h∗

εh◦g∗

h∗

η−1
k ◦k∗

∼=

∼=

Moreover, given a 1-cell p : X → X ′ which is left Kan injective with
respect to h, using the construction above of (−)/k := (−)//k and
Remark 1.2, we conclude that p is also left Kan injective with respect
to k.
Bi-cocomma objects: We follow the same argument of the second
part of Proposition 1.10. Indeed, in the notation of that proposition,
if X was Kan injective with respect to h (as opposed to weak Kan
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injective) the result is true a fortiori. Also, in the proof we never use
the fact that the 1-cell A → A is the identity, it could be any 1-cell.
This delivers the proof.

(6) Wide bipushouts: The proof is completely similar to the one for
bipushouts. Using the left Kan injectivity of X with respect to all hi
by means of the hom-functor K(−, X), we obtain a wide bipullback
and, as a consequence, a left adjoint of K(h,X) making it a rali:

K(Ai, X)
K(hi,X)

// K(A,X)

K(B,X)

K(di,X)
88K(h,X)

ff

K(A,X)

(−)/hi

RR

id

MM

(−)/h

OO

That is, for each s : B → X, the 1-cell s/h is obtained by the univer-
sality of the wide bipushout:

A Ai

B

X

hi

s s/hi

h

s/h

di
∼=

∼= ∼=
(4)

2. KZ-monads presented via Kan-injectivity
Idempotent monads over a category C are precisely those whose categories

of algebras are full reflective subcategories of C. Thus, an idempotent monad
may be presented by orthogonality with respect to the family (δX : X →
X̄)X∈C of reflections into the corresponding reflective subcategory. In this
section, we see that, analogously, a KZ-monad may be presented by left Kan
injectivity with respect to a family of 1-cells (δX : X → X̄)X∈K, where every
X̄ is essentially a pseudoalgebra. These facts will have an important role in
Section 4.

We recall from [Koc95] that a KZ-monad, also known as a lax-idempotent
pseudomonad or KZ-doctrine, can be described as a pseudomonad with unit
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δ and multiplication µ such that µ is a right adjoint to Tδ (and a left adjoint
to δT ) with convenient coherence relations.

As in [BF99], by a KZ-adjunction we mean a pseudoadjunction whose
induced pseudomonad is a KZ-monad.

The following theorem, which, for the particular case of order-enriched
categories, was given in [CS11, Theorem 3.4], is, for the general context,
essentially contained in [MW12], as we explain in the proof.

Theorem 2.1.
(1) Let A be a locally full (and locally replete) sub-2-category of the 2-

category K, and let

dX : X → DX, X ∈ K,

be a family of 1-cells with A ⊆ LInj({dX : X → DX | X ∈ K}) and
such that:
(a) For all X ∈ K, DX ∈ A, and, for every f : X → A with A ∈ A,

f/dX ∈ A.
(b) Every dX is dense, i.e. the left Kan extension of dX along itself is

given by the 1DX and an invertible 2-cell.
Then, the inclusion A ↪→ K is the right part of a KZ-adjunction in K.

(2) Conversely, every KZ-monad D may be induced by the data in (1)
where d : IdK → D is the unit.

Remark 2.2. Under assumption (a), condition (b) is equivalent to the fol-
lowing condition used in [CS11]:

(b′) (fdX)/dX ∼= f for all f : DX → A in A.

Indeed, assuming (b), with f ∈ A, we have that (fdX)/dX ∼= f(dX/dX) ∼= f .

Proof of Theorem 2.1: (1) Recall, from [MW12, Definition 3.1], that a left
Kan pseudomonad D consists of the following data:

(1) for every X ∈ K, a 1-cell

dX : X → DX;

(2) for every 1-cell f : X → DY , a left Kan extension of f along dX

A DA

DB

dA

f
fD

Df

with Df invertible;
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(3) for every f : X → Y and g : Z → DX, (fD ◦ g)D ∼= fD ◦ gD;
(4) every dX is dense.

Marmolejo and Wood proved in [MW12, Theorem 4.1] that this data in-
duces a KZ-monad D = (D, d,m).† Following the proof of their theorem,
we see that the given D is extended to the endo-pseudofunctor D : K → K,
and d is extended to a strong transformation which is the unit of the pseu-
domonad. It is clear that, under the hypotheses of our Theorem 2.1, the fam-
ily dX , X ∈ K, fulfils the conditions defining a left Kan pseudomonad, where
fD is an existing left Kan extension f/dX . The pseudofunctor D : K → K is
defined on 1-cells by Df = (dY ◦ f)D ∼= (dY ◦ f)/dX , which lies in A. Thus,
D admits a corestriction DA to A. Moreover, from Remark 2.2, for every
f : X → A with A ∈ A, the morphism f/dX : DX → A is the unique 1-cell
of A, up to isomorphism, such that (f/dX) ◦ dX ∼= f . Consequently, the
inclusion functor of A into K is the right 2-functor of a KZ-adjunction

A K
DA

⊥

whose induced pseudomonad is D.

(2) This is Theorem 4.2 of [MW12] (and its proof).

The next theorem describes the category of pseudoalgebras of a KZ-monad
by means of left Kan injectivity.

Theorem 2.3 ([CS11], [MW12], see also [KR77] and [BF99]). The 2-category
of pseudoalgebras and homomorphisms of a KZ-monad is, up to 2-equivalence,
the sub-2-category LInj(U) where U is made of all components of the unit
of the pseudomonad.

Proof : For order-enriched categories, this was proven in [CS11]. For the gen-
eral context it immediatly follows from [MW12], by combining the description
made by Marmolejo and Wood, in Section 3 of that paper, of the category of
algebras D-Alg for D a left Kan pseudomonad, and the fact, given by them in
Section 5, Theorem 5.1, that it is, up 2-equivalence, the category of algebras
of the lax -idempotent pseudomonad determined by D.

We have just seen that the category of pseudoalgebras of a KZ-monad
is essentially a Kan injective sub-2-category of K. A natural question is:

†Marmolejo and Wood studied the dual situation: right Kan and colax-idempotent
pseudomonads.
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When does a Kan injective sub-2-category is 2-equivalent to the category
of pseudoalgebras for a KZ-monad? For ordinary categories this reduces to
the famous Orthogonal Subcategory Problem (introduced in [FK72]) asking
when is an orthogonal subcategory the category of algebras of an idempotent
monad. For order-enriched categories, an answer of the Kan Injective Sub-
category Problem was given in [ASV15]. The next two sections are dedicated
to give an answer in the general 2-dimensional context.

We end this section by showing that a Kan injective sub-2-category of
K whose inclusion into K is the right part of a KZ-adjunction is always
KZ-monadic, that is, the category of pseudoalgebras of the corresponding
KZ-monad, up to 2-equivalence. We will make use of the following lemma
(proved in [CS11, Proposition 2.13] for the particular case of order-enriched
categories), which shows how left injectivity interacts with lali 1-cells.

Lemma 2.4. Every sub-2-category LInj(H) is closed under lalis, that is: for
any pseudocommutative diagram

A B

X Y,

f

g

l1 l2∼=

with f a 1-cell of LInj(H) and l1, l2 lalis, then also g belongs to LInj(H).

Proof : We first show that X belongs to LInj(H). Given any h : C → C ′ in
H and any p : C → X, we need to prove that there exists a Kan extension
p/h with an invertible universal 2-cell. Since A is left Kan injective with
respect to h we can consider the following 2-cell, where l := l1 a r and ε is
the counit of the adjunction (which is an isomorphism since l is lali).

C C ′

X

A

X

h

p

rp

l

(rp)/h

ε−1

ξhrp
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The pasting diagram makes l ◦ (rp)/h a left Kan extension of p along h (with
universal 2-cell invertible, since ξhrp is):

l ◦ (rp)/h ∼= (lrp)/h (since left adjoints preserves left Kan extensions)
∼= p/h (since lr ∼= 1).

Let us now consider the pseudocommutative square (with li a ri for i =
1, 2)

A B

X Y.

f

g

l1 l2∼=

By the first part we already know that X and Y are left Kan injective with
respect to H. We have left to prove that g preserves Kan extensions, i.e. for
any h : C → C ′ in H and any t : C → X, then g ◦ t/h ∼= (gt)/h. Indeed,

g ◦ t/h ∼= g ◦ l1 ◦ (r1t)/h (by (1) applied to X)
∼= l2 ◦ f ◦ (r1t)/h (by the pseudocommutativity of the square)
∼= l2 ◦ (fr1t)/h (because f ∈ LInj(H))
∼= (l2fr1t)/h (bcecause left adjoints preserve Kan extension)
∼= (gl1r1t)/h (by gl1 ∼= l2f)
∼= (gt)/h (by l1r1

∼= 1).

Corollary 2.5. For every class of 1-cells H, if the inclusion LInj(H) ↪→ K
is the right part of a KZ-adjunction, then the 2-category of pseudoalgebras
of the corresponding KZ-monad is 2-equivalent to LInj(H).

Proof : By the two above theorems, and using their notation, we have just to
prove that LInj({dX | X ∈ K}) is contained in LInj(H). We start proving
that, given X ∈ LInj({dX | X ∈ K}), then 1X/dX : X̄ → X is lali, in
particular 1X/dX a dX . We set ε as the inverse of the universal 2-cell

X X̄

X.

dX

1X/dX

∼

Moreover, we can define η : 1X̄ ⇒ dX◦1X/dX using that 1X̄ is a Kan extension
(since dX is dense). More precisely, we define η as the 2-cell corresponding
to
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X X̄

X̄

dX

dX
dX◦1/dX

:=
X X

X X

dX

1/dX

dX

ε−1

One triangle identity follows directly from the definitions of ε and η and the
second one from the (2-dimensional) universal property of 1X/dX .

Then, since X̄ ∈ LInj(H), by Lemma 2.4 we get that also X ∈ LInj(H).
Moreover, given u : X → Y in LInj({dX}), we can consider the diagrams

X Y X̄ Y

X̄ Y X Y

dX

u

u/dX

u/dX

1X/dX

u

∼= ∼=

which are mates. Then, since u/dX ∈ LInj(H), using again Lemma 2.4, we
get that also u ∈ LInj(H).

Remark 2.6. For a KZ-monad, let U be the class of the units. Between the
sub-2-category of all (pseudo)algebras and its full sub-2-category consisting
of all free algebras we may encounter several relevant sub-2-categories. This
is the topic of the paper [HS17], dealing with the order-enriched context.

3. The (pseudo)chain construction
The transfinite chain described here is a 2-dimensional enhancement of the

orthogonal reflection construction [AR94, 1.37]. The Pos-enriched version
analog of this chain was presented in [ASV15, Construction 5.2].

The archetype of a transfinite construction of this kind is the one of Quillen’s
Small Object Argument. A deep general study on transfinite constructions of
free algebras on ordinary categories was made in [Kel80]. In the transfinite
construction of [ASV15], besides the conical colimits used in the ordinary
case, coinserters were applied. Here, we use a new ingredient, named co-
equinserter, whose definition (in its strict version) is given next. It is a
special 2-colimit which may be obtained as the composition of a coinserter
with a coequifier.
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Definition 3.1. Given a 2-cell

B

A C,

B

h

h

f

g

γ

a coequinserter of γ consists of a 1-cell i : C → Q and a 2-cell

C

B Q

C

f

g

i

i

φ

such that

B C

A C Q = A B Q

B C

f

g

i

i

φ
hi

h

h

f

g

γ

with the following universal properties:

(a) For any other 1-cell u : C → R and 2-cell ε : uf ⇒ ug such that
uγ = εh, there exists a unique t : Q→ R such that ti = u and tφ = ε.

(b) For any pair of 1-cells u, v : Q→ R and 2-cell θ : ui⇒ vi such that

C C Q

B Q R = B Q R,

C Q C

i

i

u

vg

f i

φ

θ

f

g

i

i

φ

i

u

v

θ

then there exists a unique 2-cell θ : u⇒ v with θi = θ.

Remark 3.2 (Coequinserters from coinserters and coequifiers). In a 2-category
with coinserters and coequifiers, we can construct a coequinserter as follows.
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First, we consider the coinserter of f, g : B → C,

C

B D.

C

f

g

e

e

χ

Then, let q : C → Q be the coequifier of χ ◦ h and e ◦ γ:

B C

A D.

B Cg

e

e◦γ

f

e

h

h

χ◦h

One can check that the coequinserter is given by the 1-cell qe : C → Q and
the 2-cell q ◦ χ : (qe)f ⇒ (qe)g.

Notation 3.3 (Pseudochains). For any limit ordinal i, let i be the ordered
set of all ordinals j ≤ i looked as a locally discrete 2-category. By an i-
pseudochain in a 2-category K we mean a pseudofunctor

X : i→ K .
We denote X(j ≤ k) by Xj

xjk−→ Xk and take xjj = 1Xj
. Analogously, we may

consider a pseudochain indexed by all ordinals, considering a pseudofunctor
from the category Ord.

In a 2-category K with (weighted) bicolimits, given a set of 1-cells H, we
are going to construct, for every object X ∈ K, a pseudochain which will
allow us (in Section 4) to obtain the free (pseudo)algebras of a KZ-monad
induced by the inclusion LInj(H) ↪→ K.

Construction 3.4 (The Kan injective pseudochain). Let K be a 2-category
with weighted bicolimits and let H be a set of 1-cells in K. Given an object
X we construct a pseudochain (see 3.3) of objects Xi (i ∈ Ord). We denote
the connecting maps by xji : Xj → Xi for all j ≤ i (we will omit the subscript
when clear from context).
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The first step is the given object X0 := X. The limit steps Xi, for i a limit
ordinal, are defined by bicolimits of i-pseudochains:

Xi := bicolimj<iXj.

Isoleted steps: given Xi with i even, we define both Xi+1 and Xi+2. The
idea is that the i+ 1 step approximates the 1-dimensional property of a Kan
injective object and the i+ 2 step the 2-dimensional one.

(1) To define Xi+1 and the connecting map xi,i+1 : Xi → Xi+1, consider
all the spans

A A′

Xi

h

f (5)

where h ∈ H and f is arbitrary. We take the conical bicolimit of the
diagram of all spans of the form (5), being Xi a fixed object of the
diagram and with A = dom(h) and A′ = cod(h) running all h ∈ H.
This bicolimit may be obtained as a wide bipushout of all bipushouts
of f along h as in (5).

We set xi,i+1 and f//h the coprojections of the bicolimit, and the
1-cell xi,i+1 is the wanted new connecting map in the pseudochain:

A A′

Xi Xi+1

f

h

f//h

xi,i+1

∼= (6)

(2) Here we define Xi+2 and the connected map xi+1,i+2 : Xi+1 → Xi+2.
For every 2-cell

A A′

Xj Xi+1

h

f g

xj,i+1

γ
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with h ∈ H and j even, we consider the 2-cell

A A′

A′ Xj Xi+1

Xj+1

h

f
g

xj,i+1

xj+1,i+1

h

xj,j+1
f//h

∼=

γ

∼=

and its bi-coequinserter cγ : Xi+1 → Cγ with universal 2-cell

Xj+1 Xi+1

A′ Cγ

Xi+1

g

f//h

xj+1,i+1

cγ

cγ

χγ .

We define the morphism xi+1,i+2 : Xi+1 → Xi+2 through the wide bi-
pushout of all these cγ:

Xi+1 Cγ

Xi+2.

cγ

dγxi+1,i+2

∼= (7)

In the following lemma, which is going to be useful in the proof of Theorem
4.3, we show that, for every ordinal i, x0i belongs to the Kan injectivity
saturation Hsat, see Subsection 1.3.

Lemma 3.5. In the Kan injective pseudochain, for every ordinal i, the sub-
2-category LInj(H) is left Kan injective with respect to x0i : X0 → Xi, i.e.

LInj(H) ⊆ LInj({x0i | X ∈ K}).

This determines, for each p0 : X0 → P with P ∈ LInj(H), a pseudococone
pi : Xi → P such that

pi ∼= p0/x0i.

Proof : The proof is by transfinite induction on ordinals.



KZ-MONADS AND KAN INJECTIVITY 29

Limit step. Assume the property hold for all i < κ, where κ is a limit ordinal.
Then, by construcion of Xκ, there is a unique (up-to-iso) 1-cell pκ : Xκ → P
such that pi ∼= pκxiκ, for all i < κ.

X0 Xi Xκ

P

p0
pκ

x0i xiκ

pi

x0κ

∼= ∼=

∼=

We want to show that pκ ∼= p0/x0κ. Given a 2-cell (r, α) as below, for every
i < κ, since pi ∼= p0/x0i by inductive hypothesis, we have a unique 2-cell
αi : pi ⇒ rxiκ such that

Xi

X0 Xκ X0 Xi Xκ

P P

p0

r

x0i

p0 pi

r

xiκ

x0i xiκ

x0κ

∼= αi

∼=

α

But then, the 2-dimensional aspect of the universality of the bicolimit of the
pseudochain (Xi)i<κ ensures the existence of a unique 2-cell α : pκ ⇒ r, with

αi =
Xi Xκ

P

pi

xiκ

pκ

r

α
∼= for all i < κ and, thus, α =

X0 Xκ

P

p0

x0κ

pκ

r

α
∼= .

The unicity of ᾱ is clear. Consequently, pk ∼= p0/x0κ. Moreover, let us con-
sider u : P → Q in LInj(H) and p : X0 → P in K. By induction hypothesis
we assume that u is left Kan injective with respect to xiκ for all i < k, i.e.
(up)/x0i

∼= u(p/x0i). We want to show that u is also in LInj({x0κ}).
((up)/x0k)xik ∼= (up)κxik ∼= (up)i ∼= (up)/x0i (by part above for up)

∼= u(p/x0i) (by induction hypothesis)
∼= u(p/x0k)xik (by part above for p).

Hence, by the universal property of the bicolimit, (up)/x0k
∼= u(p/x0k).

Isolated step. Let i be an even ordinal such that every x0j with j ≤ i be-
longs to the Kan injective saturation of H. We treat the two cases of the
construction separately.
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i+ 1. As seen in the construction of the pseudochain, xi,i+1 : Xi → Xi+1 is a
wide bipushout of bipushouts of morphisms along 1-cells of H. Then,
by Proposition 1.13, P is Kan injective with respect to xi,i+1. Here
we see in detail how to obtain pi+1

∼= pi/xi,i+1. Combining this with
the inductive hypothesis on x0i, we get that pi+1

∼= pi/xi,i+1.
Recall the bicolimit diagram (6) used in the construction of the

pseudochain. By its universality, we obtain pi+1 : Xi+1 → P as below:

ξhpif =

A

f ∼=
��

h // A′

f//h
�� (pif)/h

∼=

��

Xi

pi 11

xi,i+1

// Xi+1
pi+1

∼= ""
P

(8)

We want to show that the bottom triangle forms a left Kan extension
of pi along xi,i+1, that is, pi+1

∼= pi/xi,i+1.
To do so, consider a 2-cell (r, α) as in the diagram below, and let α̃

be the pasting of the invertible 2-cell pi+1xi,i+1 ⇒ pi with α:

α̃ =

Xi
xi,i+1

∼=||
pi

��

xi,i+1
// Xi+1

r
α

=⇒

xx

Xi+1

pi+1 ""
P
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Moreover, for every span (h, f), let ᾱhf be the unique 2-cell for which
we have the following equality, determined by the universality of ξhpif ,

A
h //

f ∼=
��

A′

(pif)/h

}}

f//h

ᾱhf
=⇒ ��

Xi

pi
��

Xi+1

r
vv

P

=

A

f ∼=
��

h // A′

f//h
��

Xi

pi α
=⇒
��

xi,i+1
// Xi+1

r
||

P

and put

α̃hf =

Xi+1
pi+1

""
A′

f//h

∼=

<<

f//h

⇓ᾱhf

""

(pif)/h
// P

Xi+1.
r

<<

The 2-cells α̃ and α̃hf obey to the conditions under which we can apply
the two dimensional aspect of the universality of the bicolimit given
by (6). Consequently, there is a unique ᾱ : pi+1 ⇒ r with ᾱxi,i+1 = α̃
and ᾱ(f//h) = α̃hf .

Hence, pasting with isomorphisms and using the property of αhf ,
we see that α satisfy also the following equation.

Xi Xi+1

α =

P

pi+1

r

xi+1

pi
α

∼=

and that it is unique.



32 I. DI LIBERTI, G. LOBBIA AND L. SOUSA

Concerning 1-cells, let u : P → Q be in LInj(H) and set q := up.
Adding u to diagram (8), we have (upi)/h ∼= u(pi/h) and, upi ∼=
qi. Thus upi+1 and qi+1 take isomorphic values when composed with
xi,i+1 and f//h. Consequently, qi+1

∼= upi+1, that is, (up)/x0,i+1
∼=

u(p/x0,i+1).
i+ 2. Let γ be a 2-cell with j even and j ≤ i as below.

A A′

A′ Xj+1 Xi+1

h

h

f//h

x

s
γ

Since pj+1(f//h) ∼= (pjf)/h is a left Kan extension, see diagram (8),
there exists a unique 2-cell γ̄ : pj+1(f//h)⇒ pi+1s such that

A A′

Xj A′

Xj+1 Xi+1

P

h

h

f//h

x

s

pi+1

pj+1

f

xj,j+1

∼=

pj

γ

∼=

∼=

=

A A′

Xj Xj+1 Xi+1

P

s

pj+1

pi+1

f//h

h

γ

f

xj,j+1

pj

∼=

∼=

(9)

Therefore, by the 1-dimensional aspect of the universality of the bi-
coequinserter, there is a unique (up-to-iso) 1-cell pγ : Cγ → P such
that pγcγ ∼= pi+1 and
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Xj+1 Xi+1

A′ Cγ P

Xi+1

s

f//h

x

cγ

cγ

pγ

pi+1

pi+1

χγ

∼=

∼=
=

Xj+1 Xi+1

A′ P

Xi+1

x

pi+1pj+1

pi+1s

f//h

γ

∼=

Having these for all the possible 2-cells γ gives rise to a unique (upt-
to-iso) morphism pi+2 : Xi+2 → P making the following diagram pseu-
docommutative.

Xi+1 Cγ

Xi+2

P

pi+1

cγ

pγ

dγ

pi+2

∼=

∼=

∼=

We now would like to conclude that pi+2
∼= p0/x0,i+2, and to do so,

consider any 2-cell (r, µ) as below,

X0 Xi+2 X0 Xi+2

P P

pi+2

p0

x0i x0i

p0
r

µ∼=

Since pi+1
∼= p0/x0,i+1, there is a unique 2-cell µ : pi+1 ⇒ rxi+1,i+2

such that
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X0 Xi+1

Xi+2

P

x0,i+1

xi+1,i+2x

p0

r

∼=

µ =

X0 Xi+1

Xi+2

P

x0,i+1

xi+1,i+2

p0

r

pi+1

∼=
µ

So, for every γ as in the beginning of this step, we obtain a 2-cell µ̃
defined as the pasting diagram below.

µ̃ :=

Cγ

Xi+1 P

Cγ Xi+2

cγ

cγ

pγ

pi+1

r

dγ

xi+1,i+2

∼=

µ̄

∼=

We want to show that µ̃ satisfies the required condition for the 2-
dimensional universal property of the bi-coequinserter, i.e. to prove
that the two pasting diagrams below are equal.

A′ Xi+1

Xi+1 Cγ

Cγ P

cγ

cγ
pγ

rdγ

x(f//h)

s
cγ

µ̃

χγ

A′ Xi+1 Cγ

Xi+1 Cγ P

cγ

cγ
pγ

rdγcγ

x(f//h)

s µ̃χγ

Since these two 2-cells have as domain

pγcγxj+1,i+1(f//h) ∼= pi+1xj+1,i+1(f//h) ∼= pj+1(f//h) ∼= (pjf)/h
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which is a left Kan extension, then to show that they are equal it
sufficies to show that precomposing with h we obtain the same 2-cell.
Indeed, the next three pasting diagrams give all the same 2-cell, by
the definition of χγ applied twice:

A B Xi+1

Xi+1 Cγ

Cγ P

cγ

cγ

rdγ

pγ

h

cγ

x◦f//h

s

µ̃

χγ

A Xj

B Xi+1 Cγ

Cγ P

cγ

cγ

rdγ

pγ

h

s

f

x

µ̃

γ

A B Xi+1 Cγ

Xi+1 Cγ P

cγ

cγ

rdγ

pγ

h x◦f//h

s

cγ

µ̃χγ

Consequently, we may apply the two-dimensional aspect of the uni-
versality of each bi-coequinserter cγ, obtaining a unique 2-cell µ̂γ such
that µ̂γ ◦ cγ = µ̃.

Xi+2

Cγ P
rdγ

pγ

dγ pi+2

µ̂γ

∼=

Because the equality µ̂γ ◦ cγ = µ̃ holds for all γ, by the two dimen-
sional universal property of the wide bipushout there exists a unique

•
µ : pi+2 ⇒ r
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such that
•
µ ◦dγ = µ̂γ. Consequently,

•
µ x0,i+2 =

•
µ dγcγx0,i+1 =

µ̂γcγx0,i+1 = µ . The unicity of
•
µ is a routine check.

Concerning the Kan injectivity of 1-cells, let u : P → Q be in LInj(H).
We want to show that upi+2

∼= qi+2. In diagram (9), put γ̄P := γ̄ and,
analogously, use the notation γ̄Q for the γ̄ corresponding to Q, instead of P .
Since u : P → Q preserves left Kan extensions, uγ̄P = γ̄Q. Then, we have
that

upγξγ = uγ̄P = γ̄Q

and

upγcγ ∼= upi+1
∼= qi+1

showing that upγ ∼= qγ. Since this holds for all γ, by the universality of the
wide bipushout (7), we conclude that upi+2

∼= qi+2.

4. KZ-monadicity via the pseudochain
Along this section K is a 2-category with (weighted) bicolimits.
A key requisite in the classical Small Object Argument and Orthogonal

Subcategory Problem is a convenient concept of smallness for objects. Here
we make use of the following notion:

Definition 4.1. An object A is λ-small, for λ an infinite regular cardinal, if
the 2-functor

K(A,−) : K → Cat

preserves bicolimits of λ-pseudochains.
Explicitly: For every λ-pseudochain (Xi)i<λ, with bicolimit coprojections

li : Xi → L, we have:

(1) every morphism a : A→ L factorises through some Xi (up-to-iso);

L

A

a
∼=

>>

a′
// Xi

li

OO
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(2) for every 2-cell of the form

Xi

A L

Xi′

f

g

li

li′

α

there is some j ≥ i, i′ and a 2-cell α such that

Xi

A Xj L

Xi′

f

g

α lj

li

li′

∼=

∼=

= α.

An object X is said to be small if it is λ-small for some infinite regular
cardinal λ.

Remark 4.2. An example of λ-small object is the notion of λ-bipresentable
object studied in great detail in [DLO22]. Recall that an object A of K is said
to be λ-bipresentable if the 2-functor K(A,−) : K → Cat preserves filtered
bicolimits in the sense of [DLO22, 2.1.3]. Notice that in 1-dimensional cate-
gory theory the two notions collapse due to [AR94, 1.6]. The 2-dimensional
aspects of such a result are unknown at the current state of art.

Theorem 4.3. Let K be a 2-category with bicolimits and small objects.
Then, for any set H of 1-cells in K, the inclusion 2-functor

LInj(H) ↪→ K

is the right part of a KZ-adjunction. Moreover, LInj(H) is the corresponding
Eilenberg-Moore category, up to equivalence of 2-categories.

Proof : Since H is a set and every object of K is small, there is some infinite
regular cardinal κ such that all domains and codomains of morphisms of H
are κ-small.
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We will use Theorem 2.1, setting A := LInj(H), DX := Xκ and dX as the
1-cells x0,κ : X = X0 → Xκ, to prove that the inclusion 2-functor

LInj(H) ↪→ K
is the right part of a KZ-adjunction. In Lemma 3.5, we have already proved
that LInj(H) is a sub-2-category of LInj({x0κ | X ∈ K}). Therefore, we just
need to prove the following two properties:

(1) For all X ∈ K, Xκ ∈ LInj(H) and, for any p : X → P with P ∈
LInj(H), the morphism p/x0,κ belongs to LInj(H).

(2) Every x0,κ is dense, i.e. the triangle

X0 Xκ

Xκ

x0,κ

x0,κ

1Xκ

∼=

presents 1Xκ
as a left extension of x0,κ along itself.

Let us prove these properties.

(1) First, we will prove that Xκ ∈ LInj(H). Given h : A → A′ ∈ H and
f : A→ Xκ, since A is κ-small and Xκ = bicolimj<κXj, there is some
even ordinal i such that f ∼= xi,κ ◦ f ′ with f ′ : A→ Xi. We claim that
f/h := xi+1,κ ◦ f ′//h and the invertible 2-cell

ξhf :=

A A′

Xi Xi+1

Xκ

h

f ′ f ′//h

xi+1,κ

xi,κ

f

∼=

∼=

∼=

provides a left Kan extension of f along h. To prove this, let us
consider a 2-cell

A A′

Xκ.

h

f
g

β

Since A′ is κ-small, g factorises through some Xj, i.e. g ∼= xj,κg
′.

Without loss of generality, we may assume that this j is even and
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i ≤ j. This way, we can consider the 2-cell β′ given by the pasting
below.

Xi Xj

A Xκ

A′ Xj

h

g′

xj,κ

f ′

xi,j

xj,κ

g

f

β

∼=

∼=

∼=

Therefore, since A is κ-small, there is some m ≥ j (which we may
assume even) and a 2-cell β such that

Xi Xj

β′ = A Xm+1 Xκ

A′ Xj
g′

h

f ′

β

∼=

∼=

The 2-cell β, modulo pasting with the invertible 2-cell xi+1,m+1◦f ′//h◦
h ∼= xi,m+1 ◦ f ′, is of the form of the 2-cells γ considered in the con-
struction of Xm+2 (see (2) of Construction 3.4), so let us consider the
bi-coequinserter associated to it, which we denote with

Xi+1 Xm+1

A′ Cβ

Xj Xm+1.

cβ

cβ

f ′//h

g′

χβ



40 I. DI LIBERTI, G. LOBBIA AND L. SOUSA

We put

β̃ :=

Xi+1 Xm+1

A′ Cβ Xm+2 Xκ

Xj Xm+1

cβ

cβ

f ′//h

g′

xi+1,κ

xj,κ

χβ

∼=

∼=

∼=

∼=

which is a 2-cell xi+1,κf
′//h⇒ xj,κg

′ ∼= g.

Warning. In the next equations we will write ' between two 2-
cells whether the equality holds when pasting with the connecting
isomorphisms of the pseudochain Xi and the isomorphisms xi,κf

′ ∼= f
and xj,κg

′ ∼= g. We write this instead of the proper equality of pasting
diagrams to make the proof more readable.

Pasting β̃ with ξhf , we get, by successively using the definitions of χβ
and β:

Xi Xi+1 Xm+1

A A′ Cβ Xm+2 Xκ

Xj Xm+1

cβ

cβ

f//h

g′

h

f ′

χβ

∼=

∼=

∼=

'

Xi Xi+1

A Xm+1 Cβ Xm+2 Xκ

A′ Xj
g′

h

f ′

∼=

∼=
β '

Xi Xi+1

A Xm+1 Xκ

A′ Xj
g′

h

f ′

β ' β.



KZ-MONADS AND KAN INJECTIVITY 41

It is clear that β̃ is the unique 2-cell such that pasting with ξhf gives
β, which provides the required property of the left Kan extension.

Second, let us consider a 1-cell p : X0 → P with P ∈ LInj(H). We
know that p gives rise to a pseudococone pi : Xi → P satisfying the
conditions in Lemma 3.5. Now, we want to show that the morphism
pκ : Xκ → P belongs to LInj(H), i.e. for every f : A → Xκ and
h : A→ A′ ∈ H

pκf/h ∼= (pκf)/h.

Since A is κ-small, there is some even ordinal i and f ′ : A→ Xi such
that f ∼= xi,κf

′. From the first part, we know that f/h ∼= xi+1,κf
′//h.

Therefore,

pκf/h ∼= pκxi+1,κf
′//h (by first part)

∼= pi+1f
′//h (by pseudococone condition)

∼= (pif
′)/h (by construction of pi+1, see diagram (8)))

∼= (pκxi,κf
′)/h (by pseudococone condition)

∼= (pκf)/h (by f ∼= xi,κf
′).

(2) Let us now consider Xκ, which is in LInj(H) as we proved in the
previous point. Setting p0 := x0,κ and P := Xκ, by Lemma 3.5, we
get a pseudococone pi : Xi → Xκ with pi ∼= p0/x0,i. We will show that,
for any i < κ,

pi ∼= xi,κ

which implies that pκ ∼= 1Xκ
and 1Xκ

∼= x0,κ/x0,κ. As usual, we will
proceed inductively.

Limit step. It follows directly by bicolimit properties.
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Step i + 1. By construction pi+1 : Xi+1 → P = Xκ is the unique
(up-to-iso) morphism such that, for any h and f ,

A A′

ξhpif = Xi Xi+1

P = Xκ

h

f//h

pi+1

f

pi

(pif)/h

∼=

∼=

∼=

Now, we will prove that xi+1,κ has the same universal property of pi+1.
Let us recall that in point (1) we proved that (xi,κf)/h ∼= xi+1,κf//h.
Since by inductive hypothesis we have pi ∼= xi,κ, then

A A′

Xi Xi+1

Xκ

h

f f//h

xiκ

(xiκf)/h

pi

(pif)/h
∼=

∼=

∼= ∼=

∼=

=

A A′

Xi Xi+1

Xκ.

h

f//h

pi+1

f

pi

(pif)/h

∼=

∼=

∼=

Therefore, xi+1,κ
∼= pi+1 since it satisfies the same universal property.

Step i+ 2. Since

Xi+1 Cγ

Xi+2

cγ

dγxi+1,i+2

∼=

is a wide bipushout, it suffices to show that for every γ,

pi+2dγ ∼= xi+2,κdγ.

But (Cγ, cγ, χγ) is a bi-coequinserter, so we can check this isomorphism
precomposing with cγ and χγ.

Let us start with cγ. We have that

pi+2dγcγ ∼= xi+2,κdγcγ ⇐⇒ pi+2xi+1,i+2
∼= xi+2,κxi+1,i+2
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and both members of the second equality are isomorphic to pi+1:
pi+2xi+1,i+2

∼= pi+1 because pi is a pseudococone, and xi+2,κxi+1,i+2
∼=

xi+1,κ
∼= pi+1 by inductive hypothesis.

We have left to prove the equality precomposing with the 2-cell χγ,
i.e. the 2-cell

Xj+1 Xi+1

A′ Cγ Xi+2 Xκ

Xi+1

g

f//h

xj+1,i+1

cγ

cγ

dγ pi+2

xi+1,κ

χγ

∼=

equals the 2-cell

Xj+1 Xi+1

A′ Cγ Xi+2 Xκ.

Xi+1

g

f//h

xj+1,i+1

cγ

cγ

dγ xi+2,κ

xi+1,κ

χγ

∼=

These 2-cells have domain xi+1,κxj+1,i+1f//h ∼= xj+1,κf//h ∼= (xj,κf)/h
which is a left Kan extension. Therefore, this equation is true if and
only if it remains true pasting with the universal 2-cell ξhxj,κf . Indeed,

Xj

A A′ Xj+1 Xi+1

Xi+1 Cγ Xi+2 Xκ

g

f//h

xj+1,i+1

cγ

cγ dγ pi+2

xi+1,κ

h

f
xj,κ

xj,j+1∼=

∼=

χγ

∼=

= (by definition of χγ)
Xj

A Xi+1 Xκ

A′ Cγ Xi+2

cγ

dγ

pi+2

xi+1,κ

h

f

g

xj,j+1

γ

xj,κ

∼=

∼=

= (similarly as above)
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Xj

A A′ Xj+1 Xi+1

Xi+1 Cγ Xi+2 Xκ.
g

f//h

xj+1,i+1

cγ

cγ dγ xi+2,κ

xi+1,κ

h

f
xj,κ

xj,j+1∼=

∼=
χγ

∼=

This concludes the proof of the first part of the theorem, i.e. the inclusion
2-functor LInj(H) ↪→ K is the right part of a KZ-adjunction.

Finally, it follows from Corollary 2.5 that LInj(H) is the corresponding
2-category of pseudoalgebras of the induced KZ-monad.

5. Lex colimits, distributive laws and Kan injectivity
5.1. Distributivity. In this section we are given a pseudomonad (S, s,m)
and a KZ pseudomonad (T, t, n) on a 2-category K with weighted bicolimits
and a pseudodistributive law

d : ST ⇒ TS.

For the theory of pseudodistributive laws over KZ doctrines, we refer to
[Wal19, Mar99]. Recall that, as shown in [Wal19, Thm. 35 (a)(b), or Cor.

50], this amounts to a lift (T̂ , t̂, n̂) of T to the category of (pseudo)algebras

for S as in the diagram below, moreover T̂ is KZ too and its unit t̂ coincides
with the unit of T .

S-Alg S-Alg

K K
T

T̂

Moreover, because we are assuming that T is KZ, there is at most one such
a d [Wal19, Def 33, Thm. 44 and Cor. 49] and it has to coincide with the
left Kan extension below.

T

ST TS

Ts

d≡Ts/sT

sT

This situation is pretty common in practice. Our guiding example is that
in which S is the free completion under finite limits in Cat, while T is a
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completion under a family of colimits. The reader might observe that in this
specific example S is coKZ, and we have not listed this one as a working
assumption. We will come back to this later.

Definition 5.1 (Three interesting classes of maps). Consider the diagrams
below collecting the data of the distributivity law d between the pseudomon-
ads S and T .

1 T S

S T ST TS ST TS

s t Ts

d

sT

d

St tS

We can then define three classes of maps in S-Alg.

(1) HSt contains the maps St : S → ST .
(2) HtS contains the maps tS : S → TS. Notice that those coincide with

the unit t̂ on free S-algebras and thus are in the 2-category S-Alg.
(3) Ht̂ contains the maps t̂ : 1→ T̂ .

Remark 5.2. On a technical level, the rest of the section will be devoted
to discuss the diagram below, that is to discuss the relation between the
2-categories of Kan injectives with respect to these classes of 1-cells.

LInj(HSt) LInj(HtS) LInj(Ht̂) T̂ -Alg

S-Alg

d∗ '

As hinted by the diagram we will show that d yields a forgetful functor
from LInj(HSt) to LInj(HtS) and that the two classes HSt and Ht̂ specify
the relatable 2-categories of Kan injectives. Already at this stage we can
infer that LInj(Ht̂) is equivalent to T̂ -Alg. Indeed, the lift of a KZ monad
will be KZ and thus its category of pseudoalgebras coincides with the Kan
injectives with respect to the unit as observed in Theorem 2.3.

Proposition 5.3. The precomposition with d defines a forgetful 2-functor

d∗ : LInj(HtS)→ LInj(HSt).
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Proof : The key aspect of this proof is to show that in the diagram below,
when X is Kan injective with respect to tS, the precomposition with d gives
us the left Kan extension f/St.

S ST

TS

X

d

St

tS

f

Indeed, if we show this, we have that every LInj(HtS) lies in LInj(HSt)
and we will see that a routine idea delivers the functoriality on the spot.
Now, recall that by [Wal19, Thm 44, Cor. 49] d must coincide with tS/St.
We are thus left with the composition

(f/tS) ◦ (tS/St)

and we want to show that it coincides with f/St. But recall that tS is

the unit of T̂ on a free algebra, and that T̂ is KZ. We can thus apply the
Kancellation rule [DLL18, Rem 2.20] and deduce that

(f/tS) ◦ (tS/St) ∼= f/St,

which is the thesis. Notice that to apply [DLL18, Rem 2.20], we need St to
be admissible in the sense of Bunge and Funk [BF06, Def. 4.3.2], this is true
by [Wal19, Lemma 41].

Remark 5.4. Because HtS ⊂ Ht̂, it follows from subsection 1.3 that we have
LInj(Ht̂) ⊆ LInj(HtS).

Proposition 5.5. If S is KZ, then LInj(HtS) = LInj(Ht̂).

Proof : Together with the previous remark, it is enough to show that Ht̂ ⊂
Hsat
tS . By inspecting the diagram below, that is witnessing the fact that every

S algebra is reflective in its free completion,
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Y SY

TY TSY

sY

a

TsY

Ta

t̂Y =tY tSY

a
a

We see that t̂ can be obtained from tS via one of the steps that saturates
HtS in Proposition 1.13 and thus the two classes have the same saturation.

5.2. Lex colimits. The technology of lex colimits was introduced by Garner
and Lack [GL12] to describe a large class of structures where colimits interact
with limits lex -ly. The paradigmatic example of this behavior is Grothendieck
topoi, where this phenomenon is called descent.

Let us recall very briefly their definitions to set the notation of the subsec-
tion and introduce the reader to the topic. We work in Cat, the 2-category
of small (but possibly large) categories, functors between them and modifi-
cations. This choice will rule out the very interesting case of Grothendieck
topoi, and could be avoided by paying the price of a very detailed founda-
tional analysis. We prefer to stick to small categories because the treatment
will be largely cleaner.

Construction 5.6. For Φ a set of weights W : Iop → Set and C a category,
we can consider the category Φl(C) as the full subcategory of the presheaf
category Psh(C) consisting of all Φ-weighted colimits of representables (see
[GL12, Sec. 3]). This construction defines a KZ doctrine on Cat, which lifts
to a KZ monad over Lex, the 2-category of small categories with finite limits
and functors preserving them.

Lex Lex

Cat Cat
Φl

Φ̂l

Of course, this perfectly fits with the narrative the previous subsection,
indeed Lex is coKZ doctrinal over Cat.

Definition 5.7 (Φ-lex-cocompleteness, [GL12]). C is Φ-lex-cocomplete if it
is lex and has colimits of shape Φ, that is if it is lex and is a Φl algebra. This
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gives us the 2-category Φ-LexAlg, of lex categories supporting a Φl structure
and functors preserving both finite limits and Φ-colimits.

Definition 5.8 (Φ-exactness, [GL12]). Now a Φ-lex-cocomplete category is
said to be Φ-exact if its algebra structure Φl(C)→ C is lex, which amounts
to saying that C bears a structure of pseudo-algebra for the pseudomonad
Φl on Lex. This gives us the 2-category Φ-Ex, which is another name for
Φ̂l-Alg.

Of course, it is easy to see that we have a fully faithful forgetful 2-functor
which is only acknowledging that the requirement of being Φ-exact is stronger
than being lex and Φ-cocomplete.

Φ-LexAlg Φ-Ex

Lex

U

We are now read to apply our machinery to this situation, and get the
following theorem.

Theorem 5.9. The following are equivalent.

(1) C is Φ-exact.
(2) C is Kan injective in Lex to all the maps D → Φl(D).

Remark 5.10. This theorem follows directly from the previous subsection,
but we shall compare it with the content of [GL12, 3.4]. The (1)⇔ (2) part
of the theorem above may seem to say the same thing of [GL12, 3.4]. But
their Kan extensions are taken in Cat, while in our paper we compute them
in Lex. The forgetful functor from Lex to Cat does not seem to preserve left
Kan extensions in general, their result is thus surprising from this point of
view.

Theorem 5.11. Φ-LexAlg is equivalent to LInj(HSt) and the forgetful func-
tor U is precisely d∗.
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