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1.Introduction

In this introduction we review the state of the art concerning variational

methods that give rise to Riemannian splines, and briefly comment on other

approaches to solve interpolation problems on manifolds. We also mention

related problems and potential applications in control, geometric mechanics

and robotics that have driven an increasing interest in this area.

It is well known that in Euclidean spaces polynomial splines of arbitrary

odd degree k = 2m−1 are piecewise polynomials that enjoy remarkable opti-

mum properties. These curves, that satisfy some boundary and interpolation

conditions, arise as solutions of an optimization problem in which one mini-

mizes an energy functional involving the norm of the m-th derivative. Cubic

splines have a wide range of applications due to the fact that they minimize

the acceleration cost.

A natural generalization to Riemannian manifolds is based on the sim-

ple idea of replacing the Euclidean metric by the Riemannian metric and

usual derivatives by covariant derivatives. The definition of Riemannian k-

polynomials was first proposed in Camarinha, Silva Leite and Crouch [18],

and arose in continuity of the study of cubic splines, an interpolation method

based on these curves developed in Gabriel and Kajiya [32], Noakes et al. [53],

and Crouch and Silva Leite [28]. Although the extension of this definition has
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arisen from a natural adaptation of the classical case, it opened up many the-

oretical challenges. The Riemannian cubic polynomials, which minimize the

norm of the intrinsic acceleration, are challenging enough and garnered more

attention, even though some results have also been obtained for arbitrary

odd degree.

The Riemannian k-polynomials can be seen as a special case of polyhar-

monic maps. The study of polyharmonic curves is relatively recent ([49], [15],

[52], [17]), although we could consider its beginning in 1964, when J. Eells

and J. H. Sampson noted that harmonic maps between Riemannian mani-

folds were the first case of a more general theory [30].

The study of this m-order variational problem on Riemannian manifolds

has been taken in many research directions and led to a wide range of ap-

plications. The literature on the subject is vast and divided into fields of

different research interests, so it is not surprising that k-polynomials were

also being called polyharmonic curves or m-geodesics (see for instance [63]).

From a geometrical viewpoint, the study of the problem was first carried

out in [18] and the Riemannian k-polynomials were defined as solutions of

the Euler-Lagrange equation. A theory showing the analogies of Riemannian

k-polynomials with the classical theory of Riemannian geodesics has been

developed in [20] for degree k = 3, and in [18] and [19] for arbitrary odd

degree k. This study includes the generalization of Jacobi fields, conjugate

points and the exponential map.

In [36], the m-order variational problem was studied from an analytic point

of view and lower estimates on the number of Riemannian k-polynomials

satisfying fixed arbitrary conditions were obtained. For m = 2, local existence

and uniqueness of cubic polynomials were recently explored in [21] and [22].

Turning to the problem of proving the existence of cubic splines, the subject

was recently addressed in [38].

With regard to these problems on Lie groups, Noakes and collaborators

have an extensive work dedicated to the study of cubic polynomials (see, for

instance, [57], [54], [58], and references therein). In particular, they derived

the Lie reduction of the Euler-Lagrange equation and introduced the notion

of null cubic polynomials. Riemannian cubics, or simply cubics, was the ab-

breviation used by Noakes for cubic polynomials, and the curves on the Lie

algebra obtained by Lie reduction of cubics were designated by Lie quadrat-

ics. This terminology for cubic polynomials stood out due to the extension

of their work.
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For higher-order polynomials on Lie groups, the Lie reduction of these

curves to the corresponding Lie algebra was addressed in [45] and [63], as

an extension of the result obtained by Noakes for cubics. Zefran et al. [67]

analysed the problem of generating smooth rigid body motions, studying

left-invariant metrics in SE(3). In [4] the problem is considered in the more

general setting of semidirect product of Lie groups.

The second order variational problem was formulated as an optimal control

problem in Crouch et al. [26] and analyzed through two different perspec-

tives, a variational approach and a Hamiltonian methodology. The authors

also showed that, for Lie groups, the variational approach leads to the Lie

reduction of the Euler-Lagrange equation obtained by Noakes. More recently,

Balseiro et al. [6] studied the problem from the point of view of the Pontrya-

gin maximum principle in optimal control theory.

Bearing in mind applications to computational anatomy, Gay-Balmaz et al.

[34], [33] developed the higher-order framework for Lagrangian and Hamilton-

ian reduction by symmetry in geometric mechanics and studied higher-order

variational problems invariant under Lie group transformations. In this con-

text, they presented the Euler-Poincaré equations for k-polynomials on Lie

groups. The Hamiltonian and Hamilton-Ostrogradsky Lie-Poisson formula-

tions of the higher-order Euler-Poincaré theory were also developed.

Apart from the studies on cubics parametrized by arclength, developed by

Arroyo, Garay and Menćıa [5] on space forms of constant sectional curvature,

cubics have rarely been obtained. Noakes made great efforts to determine

explicit solutions of the Euler-Lagrange equation in SO(3) and SO(1, 2) and,

almost invariably, approximated solutions [55].

While the theory of Riemannian splines is already fairly well established,

one major problem with applications of this theory is related with difficulties

of obtaining explicit solutions.

Numerical integration schemes are also potential powerful tools to obtain

approximate solutions. In [16], a geometric integrator was developed for a

class of higher-order mechanical systems. The design of geometric integrators

proposed in [50] was extended in [24] to higher-order variational systems

with boundary conditions. These theories offer different methods of obtaining

approximations of k-splines and were illustrated with the Riemannian cubic

example.
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Alternative methods to solve interpolation problems on Riemannian man-

ifolds that overcome the difficulties of the variational and Hamiltonian ap-

proaches have been developed. For instance, in [60] and [29], the classical

De Casteljau algorithm was generalized to Riemannian manifolds in general

and to some symmetric spaces in particular. More on this subject can also

be found in [64]. A numerical algorithm for C2-smooth splines on symmetric

spaces, based on generalized Bézier curves, has also been presented in [14].

These methods don’t guarantee that the splines solve the Euler-Lagrange

equation of the variational approach, but more recently there has been at-

tempts to incorporate the optimality criteria in the De Casteljau algorithm

[37].

Another alternative that produces explicit formulas for interpolating curves

on manifolds involves rolling maps, an efficient technique that consists in

rolling the data to a flat space so that classical methods can be used to solve

the problem, and then roll the solution back to the original manifold. Details

may be found, for instance, in [39] and [40]. But in spite of its simplicity, the

optimization criteria of such interpolating curves is still in question.

The growing interest in the study of k-splines on manifolds, and in par-

ticular cubic splines, was essentially due to their optimality properties. The

link with optimal control problems is quite natural.

In relation to optimal control problems, during the last few decades other

developments have been achieved having in mind applications in robotics,

aeronautics, quantum mechanics, computational anatomy, and many other

areas. Unable to give credit to so many contributions, we emphasize some of

the most relevant in the study of optimal control problems for mechanical

systems evolving on Riemannian manifolds, which are more closely related

to the subject of this paper. Without any particular order of importance, we

mention [11], [12], [41], [7], [23], and references therein.

Extensions of the problems studied here are already quite vast, but we

limit our references to the geometric splines in tension and to least squares

problems on manifolds, since their approach is closely related to what is

presented here.

Riemannian cubics in tension, also called elastic curves in some literature,

are solutions of optimization problems whose the cost functional depends on

both velocity and acceleration. They have been studied, for instance, in [66],

[59], and [68].
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The relation of Riemannian cubics to the Bernoulli elastica appears in [5],

with focus on cubics for space forms of constant sectional curvature. This

link was also explored later in [31] for Lie groups, and extended to homoge-

neous spaces in [68], where the authors made the difference between elastica

and cubics in tension. The study of elastica on Lie groups was also incor-

porated into optimal control theory in [44]. Results were obtained through

the Pontryagin’s Maximum Principle on manifolds, using the Hamiltonian

formalism.

In many applications involving smoothing data on non-Euclidean spaces,

it is not crucial to find an interpolating curve, but rather a curve that passes

reasonably close to the known data. This is the case when the collected

data results from experimental tasks is corrupted by noise, or when a small

deviation from the data can result in a significant decrease of the cost.

In this context, smoothing geometric splines were defined as solutions of a

natural generalization to Riemannian manifolds of the classical least squares

problems and studied in [48]. Such generalization is based in the formulation

of a high order variational problem, depending on a smoothing parameter,

whose solutions are smoothing curves minimizing the average norm of the

covariant derivative of order m ≥ 1 and, in addition, fitting a given set

of points on a manifold at prescribed instants of time. This work followed

the ideas behind the construction of smoothing splines for the S2 sphere

encountered in [42] and generalized the work in [47] for the case m = 2.

The organization of this survey paper is the following. In Section 2 the vari-

ational problem that gives rise to high-order splines on Riemannian mani-

folds (geometric splines) is formulated and the corresponding Euler-Lagrange

equations are derived. In order to obtain sufficient optimality conditions, in

Section 3 we extend several concepts from the theory of geodesics to geomet-

ric polynomials, in particular, we obtain the second variation formula and

define generalized Jacobi fields and conjugate points. In Section 4, a general-

ization of the exponential map is introduced in order to address questions of

existence and uniqueness of geometric polynomials. Finally, we formulate in

Section 5 the variational problem giving rise to cubic polynomials as an op-

timal control problem and derive the corresponding Hamiltonian equations.

2.High-order splines on Riemannian manifolds

High-order polynomial splines on Rn, equipped with the Euclidean metric

〈., .〉, have been studied intensively in the past. It is well known that, for m ≥
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2, there exists a unique 2m− 2 times continuously differentiable polynomial

spline of degree 2m− 1, satisfying N + 1 interpolation conditions x(Ti) = xi,

0 ≤ i ≤ N , and 2m− 2 prescribed derivatives at the end points, (dj/dtj)x(0)

and (dj/dtj)x(T ), j = 1, · · · ,m− 1. It turns out that this polynomial spline

also arises as the only solution of the optimization problem in which one

minimizes the functional

J(x) =
1

2

∫ T

0

〈d
mx

dtm
,
dmx

dtm
〉 dt, (1)

among all Cm functions satisfying the same prescribed data. In this case, the

Euler-Lagrange equation is

d2mx(t)

dt2m
= 0, ∀t ∈ [Ti−1, Ti] and 1 ≤ i ≤ N. (2)

We refer, for instance, to Prenter [65] for details.

The generalization to non-Euclidian spaces of high-order polynomial splines

appeared first in Camarinha, Silva Leite and Crouch [18]. Instead of the Eu-

clidean space, we now consider a Riemannian manifold M of dimension n,

with Riemannian metric 〈·, ·〉. Denote by∇ the Levi-Civita connection on M ,

which is the symmetric connection compatible with that metric. If t 7→ x(t) is

a curve in M with velocity vector field V (x(t)) = dx(t)/dt = V (t) ∈ Tx(t) and

W is a vector field defined on a neighborhood of the curve x, then the covari-

ant derivative along x of W is defined by DW (t)/dt = (∇VW )(x(t)). We can

similarly define the covariant derivative of a covector field η along x by consid-

ering Dη(t)/dt = (∇V η)(x(t)), bearing in mind that now ∇ is the connection

induced on covector fields by the Levi-Civita connection. In what follows we

also denote by Dix(t)/dti the covariant derivative of order i − 1 of the ve-

locity vector field V , which is given by Dix(t)/dti = D(Di−1x(t)/dti−1)/dt.

We refer to Milnor [51] and Lee [46] for details concerning Riemannian ge-

ometry and, in particular, for properties of covariant derivatives. We now

consider the following optimization problem, where the energy functional is

the counterpart of (1).

Problem (P1):

Find the critical points of the functional

J(x) =
1

2

∫ T

0

〈D
mx

dtm
,
Dmx

dtm
〉 dt, (3)
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over the class Γ of C2m−3-smooth paths x on M satisfying

x|[Ti−1,Ti] is smooth,

x(Ti) = xi, 0 ≤ i ≤ N, (4)

for a distinct set of points xi ∈ M and fixed times Ti, 0 ≤
i ≤ N , where 0 = T0 < T1 < · · · < TN−1 < TN = T , and, in

addition,

Djx

dtj
(0) = v0j,

Djx

dtj
(T ) = vTj, 1 ≤ j ≤ m− 1, (5)

where vij, with i = 0, T and 1 ≤ j ≤ m−1, are fixed n-vectors.

Before presenting the main result of this section, we need to introduce a

few more concepts.

For each curve x ∈ Γ we define the tangent space TxΓ to Γ at x as the vector

space of C2m−3-vector fields t 7→ W (t) along x such that W is smooth on each

interval [Ti−1, Ti], 1 ≤ i ≤ N , and satisfies the interpolation conditions

W (Ti) = 0, 1 ≤ i ≤ N − 1, (6)

and the boundary conditions

W (0) = 0,
DjW

dtj
(0) = 0, j = 1, . . . ,m− 1, (7)

W (T ) = 0,
DjW

dtj
(T ) = 0, j = 1, . . . ,m− 1. (8)

Now let α : [0, T ] × (−ε,+ε) 7→ M , for some ε > 0, be a one-parameter

variation of x, defined through the exponential map on M and a vector field

W ∈ TxΓ by α(t, u) = expx(t)(uW (t)). This variation satisfies the following
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conditions:

◦ α is smooth on each interval [Ti−1, Ti]× (−ε,+ε), 1 ≤ i ≤ N ;

◦ α(t, 0) = x(t), 0 ≤ t ≤ T ;

◦ ∂α

∂u
(t, 0) = W (t), 0 ≤ t ≤ T ;

◦ ∂α

∂u
(Ti, 0) = W (Ti) = 0, 0 ≤ i ≤ N ;

◦ D

dt

∂α

∂u
(t, 0) =

DW

dt
(t) is C2m−4 on [0, T ];

◦ Dj

dtj
∂α

∂u
(0, 0) =

Dj

dtj
∂α

∂u
(T, 0) = 0, j = 1, · · ·m− 1.

(9)

To simplify notations, write αu(t) for α(t, u). The following properties of the

curvature tensor can be found in Milnor [51] and Nomizu [56] and will play

an important role here. (We note that Milnor defines R with the opposite

sign.) For X, Y, Z and W any vector fields in M one has:

R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0; (10)

〈R(X, Y )Z,W 〉 = 〈R(W,Z)Y,X〉; (11)

∇W (R(X, Y )Z) = (∇WR)(X, Y )Z +R(∇WX, Y )Z

+R(X,∇WY )Z +R(X, Y )∇WZ.
(12)

We also need the following result which can easily be proved by induction,

using the fact that, in general, the covariant differentiation operators D/∂u

and D/∂t do not commute (see, for instance, Milnor [51]).

Lemma 2.1. Let α be a one-parameter variation of x, satisfying conditions

(9). Then, ∀m ≥ 2, we have

D

∂u

Dmαu
∂tm

=
Dm

∂tm
∂αu
∂u

+
m∑
j=2

Dm−j

∂tm−j

(
R(
∂αu
∂u

,
∂αu
∂t

)
Dj−1αu
∂tj−1

)
(13)

Theorem 2.2. A necessary condition for x to be a minimizer of the func-

tional (3) over the class of C2m−3 paths x on M such that x|[Ti−1,Ti] is smooth

and also satisfies (4) and (5) is that, x is C2m−2, and, ∀t ∈ [Ti−1, Ti] and

1 ≤ i ≤ N, the following holds
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D2m−1V

dt2m−1
(t) +

m∑
j=2

(−1)jR

(
D2m−j−1V

dt2m−j−1
(t),

Dj−2V

dtj−2
(t)

)
V (t) = 0, (14)

where V (t) = dx(t)/dt and R is the curvature tensor of the Levi-Civita con-

nection ∇ on M .

Proof : A curve x is a critical path for the functional (3) if ∂
∂uJ(αu)

∣∣
u=0

= 0,

for all variations α : [0, T ]× (−ε,+ε) → M , satisfying conditions (9). Using

the result of Lemma 2.1, one has

∂

∂u
J(αu) =

∫ T

0

〈D
∂u

Dmαu
∂tm

,
Dmαu
∂tm

〉dt =

∫ T

0

{
〈D

m

∂tm
∂αu
∂u

,
Dmαu
∂tm

〉

+
m∑
j=2

〈D
m−j

∂tm−j

(
R(
∂αu
∂u

,
∂αu
∂t

)
Dj−1αu
∂tj−1

)
,
Dmαu
∂tm

〉
}
dt.

(15)

Now, integrating m times by parts on each interval [Ti−1, Ti], 1 ≤ i ≤ N ,

one gets:

∫ T

0

〈D
m

∂tm
∂αu
∂u

,
Dmαu
∂tm

〉dt =

=
N∑
i=1

m∑
l=1

(−1)l+1

[
〈D

m−l

∂tm−l
∂αu
∂u

,
Dm+l−1αu
∂tm+l−1

〉
]T−

i

T+
i−1

+

+(−1)m
∫ T

0

〈∂αu
∂u

,
D2mαu
∂t2m

〉 dt,

(16)
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and∫ T

0

〈D
m−j

∂tm−j

(
R(
∂αu
∂u

,
∂αu
∂t

)
Dj−1αu
∂tj−1

)
,
Dmαu
∂tm

〉 dt

=
N∑
i=1

[
〈D

m−j−1

∂tm−j−1

(
R(
∂αu
∂u

,
∂αu
∂t

)
Dj−1αu
∂tj−1

)
,
Dmαu
∂tm

〉

−〈D
m−j−2

∂tm−j−2

(
R(
∂αu
∂u

,
∂αu
∂t

)
Dj−1αu
∂tj−1

)
,
Dm+1αu
∂tm+1

〉+

+ · · ·+ (−1)m−j−1〈R(
∂αu
∂u

,
∂αu
∂t

)
Dj−1αu
∂tj−1

,
D2m−j−1αu
∂t2m−j−1

〉
]T−

i

T+
i−1

+

+(−1)m−j
∫ T

0

〈R
(
∂αu
∂u

,
∂αu
∂t

)
Dj−1αu
∂tj−1

,
D2m−jαu
∂t2m−j

〉 dt.

(17)

Replacing (16) and (17) in (15) and using properties (11) and (12) for the

curvature tensor and also identities (9), we obtain, after several calculations,

the following:

∂

∂u
J(αu)

∣∣∣∣
u=0

=
N−1∑
i=1

〈DW
dt

(Ti),
D2m−3V

dt2m−3
(T+

i )− D2m−3V

dt2m−3
(T−i )〉

+(−1)m
∫ T

0

〈W, D
2m−1V

dt2m−1
+

+
m∑
j=2

(−1)jR

(
D2m−j−1V

dt2m−j−1
,
Dj−2V

dtj−2

)
V 〉 dt.

(18)

Now choose a variation α of x with variation vector field W given by

W (t) = F (t)

(
D2m−1V

dt2m−1
(t) +

m∑
j=2

(−1)jR

(
D2m−j−1V

dt2m−j−1
(t),

Dj−2V

dtj−2
(t)

)
V (t)

)
,

where F (t) > 0, t ∈ (Ti−1, Ti), 1 ≤ i ≤ N , and F (Ti) = (D/dt)F (Ti) =

0, 1 ≤ i ≤ N . Then, it follows from (18) that, if (∂/∂u)J(αu)|u=0 = 0,

D2m−1V

dt2m−1
(t) +

m∑
j=2

(−1)jR

(
D2m−j−1V

dt2m−j−1
(t),

Dj−2V

dtj−2
(t)

)
V (t) = 0, (19)
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∀t ∈ [Ti−1, Ti] and 1 ≤ i ≤ N , and this shows that (19) is a necessary

condition for x to be a minimizer.

To show that x is C2m−2, suppose that x is a minimizer. Then, under this

condition, the second term in the right-hand side of (18) is zero. If α is a

variation of x with variation vector field W satisfying

DW

dt
(Ti) =

D2m−3V

dt2m−3
(T+

i )− D2m−3V

dt2m−3
(T−i ), 1 ≤ i ≤ N − 1,

it follows from (18) that (D2m−3V/dt2m−3)(T+
i ) = (D2m−3V/dt2m−3)(T−i ), 1 ≤

i ≤ N − 1, so x is of class C2m−2. This completes the proof of Theorem 2.2

Remark 2.3. If, in the statement of Theorem 2.2, we relax the smooth-

ness condition for the curve x on each subinterval [Ti−1, Ti] by considering

that x|[Ti−1,Ti] is piecewise smooth, one can still show that these segments are

smooth.

Definition 2.4. We say that the curve x ∈ Γ is a C2m−2-geometric spline

on M if the velocity vector field V along x satisfies the equation (14), or

equivalently, if

D2mx(t)

dt2m
+

m∑
j=2

(−1)jR

(
D2m−jx(t)

dt2m−j
,
Dj−1x(t)

dtj−1

)
Dx(t)

dt
= 0, (20)

∀t ∈ [Ti−1, Ti] and 1 ≤ i ≤ N .

Equation (20) is the Euler-Lagrange equation for the variational problem

(P1).

In the absence of interpolating points, the solutions of the Euler-Lagrange

equation are geometric polynomials on M .

Remark 2.5. .

• If M = Rn, the curvature tensor is zero and the covariant derivative

is the usual derivative. In this case, the equation (20) reduces to the

equation (2) of a Euclidean polynomial spline of degree 2m− 1.

• If m = 1 and there are no interpolating points, the equation (14)

reduces to the well known equation of a geodesic in M .

• If m = 2, the equation (20) reduces on each subinterval [Ti−1, Ti] to

D4x

dt4
+R(

D2x

dt2
,
Dx

dt
)
Dx

dt
= 0, (21)
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giving the geometric cubic splines in Crouch and Silva Leite [27] and

Noakes, Heinzinger and Paden [53].

The equation (20) is highly nonlinear and there is no hope to solve it

explicitly even for m = 2.

From the Euler-Lagrange equation (14), it is easy to obtain the following

invariant along a geometric polynomial.
m∑
j=2

(−1)j〈D
2m−jV

dt2m−j
,
Dj−2V

dtj−2
〉+

1

2
(−1)m+1〈D

m−1V

dtm−1
,
Dm−1V

dtm−1
〉 = k, (22)

for a real constant k. When m = 2, this invariant reduces to

〈D
2V

dt2
, V 〉 − 1

2
〈DV
dt

,
DV

dt
〉 = k. (23)

This first integral turns out to be the Hamiltonian function associated with

the Hamiltonian formulation of the variational problem, as will be clear later

on.

3.Jacobi fields along geometric polynomials

The Euler-Lagrange equation gives a necessary condition for x to be a so-

lution of problem (P1). Contrary to what happens in Euclidean spaces, for

general Riemannian manifolds it is much harder to show whether or not be-

ing a solution of the Euler-Lagrange equation is also a sufficient condition. In

order to find a possible answer to this question, we must find the second vari-

ation of the functional J given by (3) and develop a variational theory based

on the notions of Jacobi fields and conjugate points. This is the objective of

the present section.

In the absence of interpolating points, the extended class of curves men-

tioned in Remark 2.3 reduces to the class Ω of C2m−3 piecewise smooth curves

x on M satisfying the boundary conditions

x(T0) = x0, x(TN) = xN , (24)

in addition with (5). For each curve x ∈ Ω we define the tangent space TxΩ

at x as the vector space of C2m−3 piecewise smooth vector fields X along

x verifying the boundary conditions (7)–(8), and consider a two-parameter

admissible variation of x(t) α : [0, T ] × (−ε, ε) × (−δ, δ) 7→ M , defined for

some ε > 0 and δ > 0 by the exponential mapping on M through the equality

α(t, r, s) = expx(t)(rX(t) + sY (t)), where X, Y ∈ TxΩ. To simplify notations

write αr,s(t) for α(t, r, s).
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3.1.Second variation of the functional J. In order to obtain sufficient

optimality conditions, first we need to obtain the second variation of J . From

now on, x denotes a geometric polynomial of degree k = 2m− 1.

Theorem 3.1. If α is the two-parameter admissible variation of x associated

with the vector fields X and Y belonging to TxΩ, then

∂2

∂s∂r
J(αr,s)|r=s=0 =

∫ T

0

(
〈D

mX

dtm
,
DmY

dtm
〉+ (−1)m〈X,F (Y, V )〉

)
dt, (25)

where F is defined by

F (Y, V ) =
2m∑
j=2

D2m−j

dt2m−j
[R(Y, V )

Dj−2V

dtj−2
]

+
m∑
j=2

(−1)j
[
(∇YR)(

D2m−j−1V

dt2m−j−1
,
Dj−2V

dtj−2
)V

+R(
D2m−jY

dt2m−j
,
Dj−2V

dtj−2
)V +R(

D2m−j−1V

dt2m−j−1
,
Dj−1Y

dtj−1
)V

+R(
D2m−j−1V

dt2m−j−1
,
Dj−2V

dtj−2
)
DY

dt

(26)

+

2m−j∑
i=2

R(
D2m−j−i

dt2m−j−i
[R(Y, V )

Di−2V

dti−2
],
Dj−2V

dtj−2
)V

+

j−1∑
i=2

R(
D2m−j−1V

dt2m−j−1
,
Dj−1−i

dtj−1−i [R(Y, V )
Di−2V

dti−2
])V

]
.

The proof of this result involves calculations but is otherwise straightfor-

ward.

According to the last theorem, the expression (25) defines a bilinear form

on TxΩ. It is called the second variation of J at x and will be denoted by Ix.

The second variation of J may also be defined by the alternative formula:
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Ix(X, Y ) =
l−1∑
i=1

m∑
k=1

(−1)k〈D
m−kX

dtm−k
(ti),∆i

Dm+k−1Y

dtm+k−1
〉

+(−1)m
∫ T

0

〈X, D
2mY

dt2m
+ F (Y, V )〉 dt,

(27)

where, ∆iZ = Z(ti
+) − Z(ti

−) for a vector field Z along x and a partition

of [0, T ], 0 = t0 < t1 < · · · < tl = T , such that αr,s|[ti−1,ti]
, i = 1, · · · , l, is

smooth.

3.2.Generalized Jacobi fields and conjugate points.

Definition 3.2. A smooth vector field W along a geometric polynomial x is

said to be a Jacobi field if W solves the equation

D2mW

dt2m
+ F (W,V ) = 0, (28)

called the Jacobi equation.

The notion of Jacobi fields is strictly related with the following definition,

which plays an important role in the discussion of the problem.

Definition 3.3. The points t = t1 and t = t2, t1, t2 ∈ [0, T ], t1 6= t2, are

said conjugate along the geometric polynomial x, if there exists a non-zero

Jacobi field W along x satisfying

W (t1) = 0, W (t2) = 0,

DjW

dtj
(t1) = 0,

DjW

dtj
(t2) = 0, j = 1, . . . ,m− 1.

The multiplicity of t = t1 and t = t2 as conjugate points is the dimension of

the vector space consisting of all such Jacobi fields.

We may also say that the points (x(t1),
dx
dt (t1),

D2x
dt2 (t1), · · · , D

m−1x
dtm−1 (t1)) and

(x(t2),
dx
dt (t2),

D2x
dt2 (t2), · · · , D

m−1x
dtm−1 (t2)) are conjugate along x, if there is no am-

biguity, that is, if the points do not coincide.

The following theorem establishes the relationship between Jacobi fields

and the nullspace of the second variation. This general result has much in

common with analogous theorems in the theory of geodesics and the theory

of generalized cubic polynomials developed in Crouch and Silva Leite [28]

and Camarinha et al. [20].
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Theorem 3.4. The vector field W ∈ TxΩ belongs to the nullspace of Ix if

and only if W is a Jacobi field along x. Hence, Ix is degenerate if and only

if t = 0 and t = T are conjugate along x.

4.A generalization of the exponential map

Consider the k-tangent bundle T kM =
⋃
q∈M(TqM)k, with k = 2m− 1. A

geometric polynomial x of order k is uniquely defined by the initial conditions

x(0) = x0,
Djx

dtj
(0) = v0j, 1 ≤ j ≤ k, (29)

where x0 ∈ M and vi,j ∈ Tx0M , with i = 0, T and 1 ≤ j ≤ m − 1. Such

a polynomial will be denoted by x
v
(k)
0

, with v
(k)
0 = (x0, v0,1, v0,2, · · · , v0,k) ∈

T kM .

Let B be a neighborhood of v
(k)
0 and δ a positive real number such that,

for each v
(k)
1 ∈ B, there exists a unique k-polynomial x

v
(k)
1

defined in the

interval (−δ, δ). Consider a neighborhood D of v
(m,k)
0 = (v0,m, v0,m+1, · · · , v0,k)

in (Tx0M)m such that {v(m−1)
0 } ×D ⊂ B. Also assume 0 < t < δ.

The m-exponential is the map m-expt
v
(m−1)
0

: D → TmM that assigns, to

each point v
(m,k)
1 , the point (x(t), dxdt (t),

D2x
dt2 (t), · · · , Dm−1x

dtm−1 (t)), where x = x
v
(k)
1

.

This map is well defined and smooth on D.

Now, we recall that it is possible to interpret m-conjugate points in terms

of the m-exponential map if we assume that the map m-expt
v
(m−1)
0

is defined

in a neighborhood of v
(m,k)
0 , for each t ∈ [0, T ].

Proposition 4.1. The points t = 0 and t = t0, t0 ∈ (0, T ], are m-conjugate

along the k-polynomial x
v
(k)
1

if and only if the map m-expt0
v
(m−1)
0

is critical at

v
(m,k)
0 .

The m-exponential map establishes the connection between the initial con-

ditions (29) and the boundary conditions given in (4)–(5) and, as happens in

the theory of geodesics, it is a key ingredient to address local existence and

uniqueness of geometric polynomials satisfying boundary conditions. Actu-

ally, this map can be seen as a generalization of the exponential map expx0,

though, in general, there is no guarantee the geometric polynomials can be

defined at t = 1.



16 M. CAMARINHA, F. SILVA LEITE AND P. CROUCH

A first attempt to study this map has been made in [21] and [22], for

cubic polynomials (m = 2). The m-exponential map is, in this case, called

biexponential map.

Proposition 4.2 ([21]). Let v
(3)
0 = (x0, v0,1, v0,2, v0,3) ∈ T 3M , 2-expT(x0,v0,1)

the biexponential map defined in a neighborhood D of (v0,2, v0,3) in (TpM)2

and (x1, v1,1) = 2-expT(x0,v0,1)(v0,2, v0,3), with T > 0. If the biexponential map

2-expT(x0,v0,1) is not critical at (v0,2, v0,3), then there exist two neighborhoods

W1 and W2 of (x0, v0,1) and (x1, v1,1), respectively, and a neighborhood U of

(x0, v0,1, v0,2, v0,3) such that:

(1) For each (x̃0, ṽ0,1) ∈ W1 and (x̃1, ṽ1,1) ∈ W2, there exists a unique

cubic y satisfying

y(0) = x̃0, y(T ) = x̃1,
dy

dt
(0) = ṽ0,1,

dy

dt
(T ) = ṽ1,1, (30)

(y(0),
dy

dt
(0),

D2y

dt2
(0),

D3y

dt3
(0)) ∈ U. (31)

(2) This cubic y depends smoothly on the points (x̃0, ṽ0,1) and (x̃1, ṽ1,1), in

the sense that the following map is smooth.

[0, T ]×W1 ×W2 → M

(t, (x̃0, ṽ0,1), (x̃1, ṽ1,1)) 7→ y(t)
.

(3) 2-expT(x0,v0,1) maps an open set C ⊂ D in (Tx0M)2 diffeomorphically

onto an open set Z ⊃ W2 in TM .

The simplest case when (v0,2, v0,3) is a regular point of 2-expT(x0,v0,1) is ob-

tained by considering the zero vector at x0 for each v0,j, j = 1, 2, 3. In this

case, Proposition 4.2 reduces to the following result.

Proposition 4.3 ([21]). Let x0 ∈M and T > 0. There exists a neighborhood

W of (x0, 0) in TM and a positive real number ε so that:

(1) For each points (x̃0, ṽ0,1) and (x̃1, ṽ1,1) ∈ W , there exists a unique cubic

y such that

y(0) = x̃0, y(T ) = x̃1,
dy

dt
(0) = ṽ0,1,

dy

dt
(T ) = ṽ1,1,

‖D
2y

dt2
(0)‖ < ε, ‖D

3y

dt3
(0)‖ < ε.

(2) This cubic y depends smoothly on the points (x̃0, ṽ0,1) and (x̃1, ṽ1,1).
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(3) 2-expT(x0,0) maps the open set

Bε(0, 0) = {(ṽ0,2, ṽ0,3) : ‖ṽ0,2‖ < ε, ‖ṽ0,3‖ < ε}

in (Tx0M)2 diffeomorphically onto an open set Z ⊃ W in TM .

Proposition 4.3 establishes the existence and uniqueness of cubics for bound-

ary data with sufficiently short length. The extension of this result to a more

general boundary data follows naturally for nonzero tangent vectors v0,1, al-

though a compromise between the length of the tangent vector v0,1 and the

time t is needed.

Proposition 4.4 ([22]). Let p ∈ M . There exists a positive number ε such

that, for v ∈ TpM and T > 0 verifying T‖v‖ < ε, the biexponential map

2-expT(x0,v0,1) is not critical at (0, 0).

From the previous result, the hypothesis of Proposition 4.2 are satisfied

for boundary data (x0, v0,1) and (x1, v1,1) of sufficiently small arcs of geodesic

and we can guarantee the existence and uniqueness of cubics with boundary

data close to the boundary data (x0, v0,1) and (x1, v1,1).

Proposition 4.5 ([22]). Consider (x0, v0,1) ∈ TM , T > 0 and ε > 0 in

the conditions of Proposition 4.4. Then the biexponential map 2-expT(x0,v0,1)

is not critical at (0, 0) and, therefore, if x is the geodesic defined on [0, T ]

by the initial data (x0, v0,1), with (x1, v1,1) = (x(T ),
dx

dt
(T )), then there exist

two neighborhoods W1 and W2 of (x0, v0,1) and (x1, v1,1), respectively, and a

neighborhood U of (x0, v0,1, 0, 0) in T 3M verifying the conditions 1,2 and 3

of Proposition 4.2.

In [22] the authors address the problem of extending these results to a

more general boundary data and explore methods to study the existence and

uniqueness of cubics close to a reference cubic x = x
v
(3)
0

defined in [0, T ] by

the initial data v
(3)
0 ∈ T 3M . If the vector fields V = dx

dt , Y = D2x
dt2 and Z = D3x

dt3

have sufficiently small length along x, then the reference cubic is close to a

geodesic in a certain sense, this is, the cubic x can be interpreted as a nearly

geodesic cubic. This analysis can, in particular, be applied to a geodesic x

with velocity of sufficiently small length, and reduces to Proposition 4.5.

Finally, we remark the role bi-Jacobi fields play in these studies. In fact, we

should mention that Noakes [54] and later on Noakes and Ratiu [55] have also

used bi-Jacobi fields to compute approximations of nearly geodesic cubics for

studies on SO(3) with bi-invariant and left-invariant Riemannian metrics.
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5.Geometric polynomials and optimal control

The Pontryagin Maximum Principle (PMP) is the key result in optimal

control theory. R. Gamkrelidze made fundamental contributions to this the-

ory, having been the first to prove the PMP while setting the grounds of the

Mathematical Theory of Optimal Processes, together with L. Pontryagin, V.

Boltyanskii and E. Mishchenko, in the late 1950’s ([61], [62]). New develop-

ment and generalizations of the Pontryagin Maximum Principle, to include

broader classes of optimal control problems, have evolved since then. We re-

fer to [2] for a modern geometric point of view of the mathematical theory

of optimal control for manifolds, and to [43] for the case of Lie groups.

Many problems on geometric mechanics and geometry can be incorporated

into optimal control. The Hamiltonian formalism at the bottom of the PMP

opens new perspectives of research that enrich the subject in hand.

Back to the present case, Riemannian cubics arise in optimal control for

mechanical systems. In this situation, one may encounter high order bun-

dles that make the Hamiltonian approach quite cumbersome. One situation

that illustrates this, but is still manageable, is related to the optimal control

problem associated to the cubic geometric polynomials which are solutions

of the unconstrained variational problem (P1), with m = 2 and N = 1.

Consider the optimal control problem (P2):

min
u

∫ T

0

1

2
〈u, u〉dt (32)

subject to:

ẋ = V,
DV

dt
= u, (33)

x(0) = x0, ẋ(0) = v0,

x(T ) = xT , ẋ(T ) = vT ,
(34)

where x0 and xT are given points in M , v0 and vT are tangent vectors to M ,

at x0 and xT respectively.

The system of equations (33) may already be viewed as the reduction to

TM , of a system which is viewed in the Hamiltonian setting as one in TT ∗M .

To solve the optimal control problem, however, the maximum principle in-

structs us that extremal solutions are projections of a Hamiltonian flow in

TT ∗TM . This situation is already complicated, using the canonical sym-

plectic form on T ∗TM . Here we explore the possibility of writing down the

extremal solutions of the problem (32) - (33) - (34) as a flow on the space
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E = ∪q∈MTqM ⊕ T ∗qM ⊕ T ∗qM . We exhibit the extremal equations in Hamil-

tonian form and identify the correct symplectic form, but our result is de-

pendent upon a choice of frame for TM . Thus we obtain global results, only

in the case M is parallelizable. For the particular case when M = G, a Lie

group, our results are global and the flow reduces to a flow on G×G×G∗×G∗
where G is the Lie algebra of G. In this section, we follow closely [26].

Before proceeding, let {X1, · · · , Xn} be a frame of vector fields on M and

{ω1, · · · , ωn} a co-frame of covector fields such that ωk(Xj) = δkl. This se-

lection must be local, unless M is parallelizable. In terms of these frames we

may write any vector field Y and covector field η along a curve t→ x(t) as:

Y (x(t)) = Y (t) =
n∑
i=1

yi(t)Xi(x(t)) ∈ Tx(t)M,

η(x(t)) = η(t) =
n∑
i=1

ηi(t)wi(x(t)) ∈ T ∗x(t)M.

Thus, although the Xi’s and the wi’s are defined on some open set in M ,

Y (t) and η(t) are only defined along the curve x(t). Setting

ẋ(t) =
n∑
i=1

vi(t)Xi(x(t)) = V (t) ∈ Tx(t)M,

it follows that the covariant derivatives of Y and η, along the curve t→ x(t)

with velocity vector field V , are given by:

DY
dt (t) =

n∑
i=1

ẏi(t)Xi(x(t)) +
n∑
i=1

yi(t)(∇VXi)(x(t)),

Dη
dt (t) =

n∑
i=1

η̇i(t)wi(x(t)) +
n∑
i=1

ηi(t)(∇Vwi)(x(t)).

We denote these expressions by the contracted forms

DY

dt
= Ẏ +∇V Y,

Dη

dt
= η̇ +∇V η. (35)

5.1.A variational approach. We first look at the optimal control problem

(32) - (33) - (34) as a constrained variational problem, and seek for a solution

using the Lagrange multipliers as co-states. So, we briefly consider solving
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the optimal control problem through the following variational problem, where

p1(t), p2(t) belong to T ∗x(t)M , and u(t), V (t) belong to Tx(t)M :

minu J(x, V, p1, p2, u) =
∫ T

0 (p1(ẋ− V ) + p2(
DV
dt − u) + 1

2〈u, u〉)dt, (36)

subject to the dynamics (33) and to the boundary conditions (34).

Using the fundamental theorem of the calculus of variations, one may derive

the corresponding Euler-Lagrange equations.

In what follows, Σ : TM → T ∗M is the fiber-linear map associated to the

Riemannian metric 〈., .〉 and defined by

(ΣX)(Y ) = 〈X, Y 〉, X, Y ∈ Γ(TM), (37)

where Γ(TM) denotes the set of smooth vector fields on M .

Theorem 5.1 ([25]). The extremals of the optimal control problem (32) -

(33) - (34) may be expressed as solutions of the following system of equations,

relative to the local choice of frame and co-frame for TM and T ∗M :
ẋ = V

V̇ = Σ−1p2 −∇V V

ṗ1 = −dp1(V, .) + p2(∇(Σ−1p2))

ṗ2 = −p1 + p2(∇V )−∇V p2

. (38)

Notice that the optimal control u∗ is given by u∗ = Σ−1p2 and that, since

V ∈ TxM, p1, p2 ∈ T ∗xM , this system evolves on ∪x∈MTxM ⊕ T ∗xM ⊕ T ∗xM .

Theorem 5.2 ([26]). If V is a solution of (38), then V also solves

D3V

dt3
+R(

DV

dt
, V )V = 0, (39)

which is the Euler-Lagrange equation (21) for the unconstrained variational

problem.

5.2.A Hamiltonian approach. The Hamiltonian function associated with

the optimal control problem (32) - (33) - (34) is given by

H(q, V, p1, p2) = −1
2〈Σ

−1p2,Σ
−1p2〉+ p1(V ) + p2(V̇ ) (40)

or, equivalently, by

H(q, V, p1, p2) = −1
2〈Σ

−1p2,Σ
−1p2〉+ p1(V )− p2(∇V V ). (41)
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Our next objective is to exhibit the extremal equations in Hamiltonian form,

for this Hamiltonian, and identify the correct symplectic form. Since for any

vector fields X, Y and covector field p along a curve t→ q(t), one has

p(∇XY ) = −(∇Xp)(Y ), (42)

we also have the following alternative formula for the Hamiltonian:

H(q, V, p1, p2) = 1
2 p2(Σ

−1p2) + (∇V p2)(V ) + p1(V ). (43)

Theorem 5.3. Let E = ∪q∈MTqM ⊕ T ∗qM ⊕ T ∗qM . The extremals of the

optimal control problem (32) - (33) - (34) satisfy:
q̇ = Dp1H

V̇ = Dp2H

ṗ1 + dp1(q̇, .) = −DqH

ṗ2 = −DVH

, (44)

where Dp1, Dp2, and DV are fiber derivatives in the bundle E.

Proof : From (41) it is clear that Dp1H = V and so the first equation in

(38) implies that Dp1H = q̇. From (41) and the second equation in (38)

we have Dp2H = Σ−1p2 − ∇V V = V̇ . We now proceed to get the fourth

equation. From (38) and (35) respectively, one gets Dp2
dt = −p1 + p2(∇V )

and Dp2
dt = ṗ2 +∇V p2. From these identities and (42) it follows that

ṗ2 = −p1 − (∇p2)(V )−∇V p2. (45)

On the other hand, it follows from (43) that DVH = p1 + (∇p2)(V ) +∇V p2,

and so, according to (45), DVH = −ṗ2 as required. Finally, to obtain the

equation for ṗ1 we consider H in the form given in (40),

H = −1

2
p2(Σ

−1p2) + p2(V̇ ) + p1(V ).

Thus, for any vector field X along q, dH(X) = X(H) = −p2

(
∇X(Σ−1p2)

)
,

since p2(V̇ ) + p1(V ) does not depend on q. But, from the third equation in

(38), we may write dH(X) = −ṗ1 − dp1(q̇, .) as required.

Lemma 5.4 ([25]). The first integral (23) associated to the flow (39) corre-

sponds to the Hamiltonian function (41).
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Having derived equations (44), we now explain in what sense they are

Hamiltonian. We first define a map

σ : E −→ Ê

(q, V, p1, p2) → (q, vi, p
i
1, p

i
2)
, (46)

where E = ∪q∈MTqM⊕T ∗qM⊕T ∗qM , Ê = M⊕Rn⊕Rn∗⊕Rn∗ and vi, p
i
1, p

i
2 are

respectively the coordinates of the vector field V and covector fields p1, p2 in

M , with respect to the global frames {X1, · · · , Xn} and {w1, · · · , wn}. That

is,

V =
∑
i

viXi, p1 =
∑
i

pi1wi, p2 =
∑
i

pi2wi.

σ is a diffeomorphism between the differentiable manifolds E and Ê.

Lemma 5.5. Ê is a symplectic manifold with symplectic form

Ω̂ =
∑
i

(wi ∧ dpi1 − pi1dwi + dvi ∧ dpi2). (47)

Proof : Since
∑

i dvi ∧ dpi2 is the natural symplectic structure on Rn ⊕ Rn∗,

it is enough to show that
∑

i(wi ∧ dpi1− pi1dwi) = −d(
∑

i p
i
1wi) is a symplec-

tic form on T ∗M ' M ⊕ Rn∗. Assume that q1, · · · , qn are local coordinates

on M , so that {dq1, · · · , dqn} is a basis of T ∗qM . So, any 1-form on M , in

particular the wi’s, may be expressed in terms of that basis and we may

write,
∑

i p
i
1wi =

∑
i p̂

i
1dqi = θ, where pi1 =

∑
j p̂

j
1dqj(Xi). Since the matrix

[dqj(Xi)]i,j is nondegenerate everywhere, {p̂i1}i is another set of local coordi-

nates for Rn∗. It is therefore sufficient to show that dθ is nondegenerate, but

this is a simple exercise in local coordinates. So,
∑

i(wi ∧ dpi1− pi1dwi) is the

symplectic form −dθ on T ∗M .

Since σ : E → Ê is a diffeomorphism and Ω̂ is a symplectic form on Ê, we

may define the pull back σ∗Ω̂, of Ω̂ by σ, by

(σ∗Ω̂)x(X1, X2) = Ωσ(x)(σ∗(X1), σ∗(X2)),

where x ∈ E, X1, X2 ∈ TxE and σ∗ is the derivative of σ at x. Ω is clearly a

symplectic form on E. However Ω is complicated to explicitly write down.

Now let Ĥ = (σ−1)∗H be the pull back of H by σ−1. That is,

Ĥ(q, vi, p
i
1, p

i
2) = H ◦ σ−1(q, vi, p

i
1, p

i
2) = H(q, V, p1, p2).
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Theorem 5.6. On the symplectic space (Ê, Ω̂), the equations

q̇ =
∑

i
∂Ĥ
∂pi1
Xi

v̇i = ∂Ĥ
∂pi2

ṗi1 + dp1(q̇, Xi) = −dĤ(Xi)

ṗi2 = −∂Ĥ
∂vi

(48)

are Hamiltonian, with Hamiltonian function Ĥ.

Proof : Expand the equation Ω̂(XĤ , .) = dĤ, in the coordinates (q, vi, p
i
1, p

i
2),

with XĤ = (q, vi, p
i
1, p

i
2).

Theorem 5.7. The system (44) is a Hamiltonian system with Hamiltonian

H on the symplectic space (E,Ω).

Proof : The map σ maps the dynamics (44) onto the dynamics (48) and by

construction σ is a symplectic morphism of (E,Ω) onto (Ê, Ω̂).

5.3.The Lie group case. We now specialize to the case where M = G, is

a compact or semi-simple Lie group, with Lie algebra G. In this case M is

parallelizable and the equations (38) and (44), may be given a global inter-

pretation. In this case we also have an explicit expression for the connection

corresponding to the unique bi-invariant metric on G, ∇XY = 1
2 [X, Y ], (see,

for instance, [51]). This corresponds to the choice where Σ : G → G∗ is defined

by (ΣX)(Y ) = 〈Y,X〉.
We may assume that {X1, . . . , Xn} is a basis of left-invariant vector fields

and {w1, . . . , wn} is a dual basis of left-invariant one-forms. It follows that

the equations (38) are indeed globally defined and we may identify V, p1, p2,

as elements of G, G∗ and G∗ respectively.

We recall here a few formulas when M is a Lie group G. If for X ∈ G, adX
denotes the adjoint map

adX : G → G
Y 7→ [X, Y ]

,

the co-adjoint map of adX is defined by:

ad∗Xη(Y ) = −η(adXY ) = −η([X, Y ]), η ∈ G∗, Y ∈ G. (49)
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Now, if X and Y are left-invariant vector fields on G and η is a left-invariant

one-form on G, then Y (η(X)) = 0, ∀X, Y, and consequently

η(∇XY ) = −(∇Xη)Y, dη(X, Y ) = −η([X, Y ]). (50)

Also taking into account that ∇YX = 1
2 [Y,X], it follows from (50) that

dη(X, Y ) = −2η(∇XY ) = 2(∇Xη)Y,

and, also, using (49)

∇Xη =
1

2
ad∗Xη. (51)

We now turn our attention to the problem of identifying the correct Hamil-

tonian and symplectic structure, which will be a generalization of that from

T ∗G to T ∗TG.

Lemma 5.8. In the case of a compact or semisimple Lie group G with Lie

algebra G, the extremal equations (38) may be written in the form
q̇ = Lq∗(V )

V̇ = Σ−1p2

ṗ1 = −ad∗V p1

ṗ2 = −p1

, (52)

where V ∈ G, p1, p2 ∈ G∗, Lq is left translation in the Lie group G and Lq∗ is

the derivative of Lq.

Proof : As a consequence of (50) and(51) we may write the equations (38),

with V ∈ G, p1, p2 ∈ G∗, in the form
q̇ = Lq∗(V )

V̇ = Σ−1p2

ṗ1 = −ad∗V p1 + 1
2ad

∗
Σ−1p2

p2

ṗ2 = −p1

.

But from (50) and the definition of Σ,

ad∗Σ−1p2
p2(X) = −p2([Σ

−1p2, X]) = −〈Σ−1p2, [Σ
−1p2, X]〉 = 0.

Note that the system (52) is Hamiltonian on G × G × G∗ × G∗ = E with

Hamiltonian function H = 1
2p2(Σ

−1p2) + p1(V ) and symplectic form

Ω(q̇, V̇ , ṗ1, ṗ2, q̇, V̇ , ṗ1, ṗ2) =
∑

i

(
ωi(q̇) ṗ

i
1 − ωi(q̇) ṗi1

)
−(ad∗Lq

−1
∗(q̇)p1)(Lq

−1
∗(q̇)) +

∑
i

(
v̇i ṗ

i
2 − v̇i ṗi2

)
.
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Corollary 5.9. The system of equations (52) satisfies

...

V +[V, V̈ ] = 0, (53)

which is the Euler-Lagrange equation (39) specialized to Lie groups.

Equation (53) was first written down in this generality in [53].

We can also write the extremal equations in Lemma 5.8 using the natural

identification of elements of G and G∗. More precisely, if one defines p1 =

〈A1, .〉, p2 = 〈A2, .〉, A1, A2 ∈ G, and Ê = G× G × G × G , then,

Theorem 5.10. The extremal equations on Ê have the form
q̇ = Lq∗(V )

V̇ = A2

Ȧ1 − [A1, V ] = 0

Ȧ2 = −A1

. (54)

Proof : We only need to prove that the third equation is satisfied. It follows

from identity (49) and 〈X, [Y, Z]〉 = 〈[X, Y ], Z〉 that

ṗ1 = −ad∗V p1 ⇔ 〈Ȧ1, .〉 = 〈A1, [V, .]〉 ⇔ 〈Ȧ1, .〉 = −〈[V,A1], .〉,

which completes the proof.

Theorem 5.11. Ê = G×G×G×G is a symplectic manifold with symplectic

form

Ω̂(q̇, V̇ , Ȧ1, Ȧ2, q̇, V̇ , Ȧ1, Ȧ2) = 〈Ȧ1, Lq
−1
∗(q̇)〉 − 〈Ȧ1, Lq

−1
∗(q̇)〉

+〈V̇ , Ȧ2〉 − 〈V̇ , Ȧ2〉 − 〈adLq
−1

∗(q̇)A1, Lq
−1
∗(q̇)〉.

Moreover, the equations (54) are Hamiltonian with Hamiltonian function

Ĥ =
1

2
〈A2, A2〉+ 〈A1, V 〉.

5.4.Example. A specific problem in optimal control of the form (32)–(33)–

(34) was treated in [13] where an analysis was made between the Hamiltonian

and the Lagrangian formulation of higher order optimal control problems. We

treat the example again here in a slightly different setting.

Consider the problem:
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min
u

∫ T

0

1

2
〈u, u〉dt, subject to:{

Q̇ = Ω1Q
Q ∈ SO(n), u,Ω1 ∈ so(n),

Ω̇1 = u

and boundary conditions

Q(0) = Q0, Q(T ) = QT ,

Q̇(0) = Q̇0, Q̇(T ) = Q̇T .

Here 〈A,B〉 = trace(ATB). To solve the problem we construct the Hamil-

tonian

H(u,Q,Ω1, p1, p2) = 〈p2, u〉+ 〈p1,Ω1Q〉 − 1/2〈u, u〉. (55)

Thus the optimal control is u∗ = p2 ∈ so(n), from which we get

H = 1/2〈p2, p2〉+ 〈p1,Ω1Q〉.

Using properties of the trace of a matrix we obtain

ṗ2 = −1/2(p1Q
T −QpT1 ), ṗ1 = −ΩT

1 p1. (56)

We hypothesize a solution where p1 = Ω2Q, with Ω2 ∈ so(n). If we make this

assumption it follows from (56) that ṗ2 = −Ω2, Ω̇2 = [Ω1,Ω2] and so, the

full extremal equations may be written as
Q̇ = Ω1Q

Ω̇1 = p2

ṗ2 = −Ω2

Ω̇2 = [Ω1,Ω2]

. (57)

The equations (57) are precisely the equations of Theorem 5.10 and the

corresponding Hamiltonian function (55) is

H = 1/2〈p2, p2〉+〈p1,Ω1Q〉 = 1/2〈p2, p2〉+〈Ω2Q,Ω1Q〉 = 1/2〈p2, p2〉+〈Ω2,Ω1〉.

Note that the symplectic structure on SO(n)× so(n)× so(n)× so(n), is that

in Theorem 5.11. We also note that the equations
Q̇ = Ω1Q

Ω̇1 = p2

ṗ2 = −1/2(p1Q
T −QpT1 )

ṗ1 = −ΩT
1 p1
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are Hamiltonian with respect to the Hamiltonian function

H =
1

2
〈p2, p2〉+

1

2
〈p1Q

T −QpT1 ,Ω1〉.
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[40] K. Hüper, K. Krakowski, F. Silva Leite, Rolling maps and nonlinear data. In Handbook of

Variational Methods for Nonlinear Geometric Data (Chapter 21), P. Grohs, M. Holler, A.

Weinmann (Eds.) Springer 2020.

[41] I. I. Hussein and A. M. Bloch, Dynamic coverage optimal control for multiple spacecraft

interferometric imaging, J. Dyn. Control Syst., 13 (2007), 69–93.

[42] P. E. Jupp and J. T. Kent, Fitting smooth paths to spherical data, Appl. Statist., 36, 1 (1987),

34–46.

[43] V. Jurdjevic, Geometric Control Theory. Cambridge: Cambridge University Press, 1997.

[44] V. Jurdjevic, Non-Euclidean elastica, American J. of Math., 117 (1995), 93–124.

[45] K. Krakowski, Geometrical Methods of Inference, PhD Thesis, University of Western Australia,

2002.

[46] L.M. Lee, Riemannian Manifolds: An Introduction to Curvature, Springer, 1997.

[47] L. Machado and F. Silva Leite, Fitting smooth paths on Riemannian manifolds, International

Journal of Applied Mathematics & Statistics 4, J06 (2006), 25–53.

[48] L. Machado, F. Silva Leite and K. Krakowski, Higher-order smoothing splines versus least

squares problems on Riemannian manifolds, J. Dyn. Control Syst., 16 (2010), 121–148.

[49] S. Maeta, The second variational formula of the k-energy and k-harmonic curves. Osaka J.

Math., 49, 4 (2012), 1035–1063.

[50] J. E. Marsden and M. West, M., Discrete mechanics and variational integrators. Acta Numer.,

10, 357–514.

[51] J. Milnor, Morse Theory, Annals of Mathematics Studies, 51, Princeton University, 1963.

[52] S. Montaldo and C. Oniciuc, A short survey on biharmonic maps between Riemannian mani-

folds. Rev. Un. Mat. Argentina 47, 2 (2006), 1–22.

[53] L. Noakes, G.Heinzinger and B.Paden, Cubic splines on curved spaces, IMA Journal of Math-

ematics Control & Information 6, (1989), 465–473.

[54] L. Noakes, Approximating near-geodesic natural cubic splines, Commun. Math. Sci., 12

(2014), 1409–1425.

[55] L. Noakes and T. S. Ratiu, Bi-Jacobi fields and Riemannian cubics for left-invariant SO(3),

Commun. Math. Sci., 14 (2016), 55–68.

[56] K.Nomizu, Invariant affine connections on homogeneous spaces, American Journal of Mathe-

matics, 76 (1954), 33–65.

[57] L. Noakes, Null cubics and Lie quadratics, J. Math. Phys., 44 (2003), 1436–1448.

[58] L. Noakes and T. Popiel, Null Riemannian cubics in tension in SO(3). IMA J. Math. Control

Inform., 22, 4 (2005), 477–488.

[59] L. Noakes and T. Popiel, Quadratures and cubics in SO(3) and SO(1,2), IMA J. Math. Control

Inform., 23 (2006), 463–473.

[60] F. Park and B. Ravani, Bézier curves on Riemannian manifolds and Lie groups with kinematics

applications. ASME J. Mechan. Design 117, 36–40 (1995)

[61] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, The Mathematical

Theory of Optimal Processes. Translated from Russian by K. N. Trirogoff. Translation edited

by L. W. Neustadt Interscience Publishers John Wiley & Sons, Inc., New York-London, 1962.



30 M. CAMARINHA, F. SILVA LEITE AND P. CROUCH

[62] R. V. Gamkrelidze, Principles of Optimal Control Theory. Translated from the Russian by

Karol Malowski. Translation edited by and with a foreword by Leonard D. Berkovitz. Revised

edition. Mathematical Concepts and Methods in Science and Engineering, Vol. 7. Plenum

Press, New York, 1978.

[63] T. Popiel, Higher order geodesics in Lie groups, Math. Control Signals Systems, 19 (2007),

235–253.
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