THE INVERSE HORN PROBLEM

JOÃO FILIPE QUEIRÓ AND ANA PAULA SANTANA

Abstract

Alfred Horn's conjecture on eigenvalues of sums of Hermitian matrices was proved more than 20 years ago. In this note we raise the problem of, given an n-tuple γ in the solution polytope, constructing Hermitian matrices with the required spectra such that their sum has eigenvalues γ.

Keywords: Eigenvalues, Hermitian matrices, sums of matrices. Math. Subject Classification (2020): 05E10; 15A18; 15A29.

1. Introduction

A classical problem in matrix theory is the following: given three n-tuples of real numbers $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$ and $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$, ordered decreasingly, when is γ the spectrum of $A+B$, where A and B are Hermitian with spectra α and β, respectively? For fixed α and β, denote by $E(\alpha, \beta)$ the set of possible γ. Trivially the set $E(\alpha, \beta)$ is compact and connected (as it is the image of the $n \times n$ unitary group under the continuous mapping taking U to the spectrum of $\left.\operatorname{diag}(\alpha)+U \operatorname{diag}(\beta) U^{*}\right)$ and it is contained in the hyperplane defined by the trace condition, which we abbreviate to $\Sigma \gamma=$ $\Sigma \alpha+\Sigma \beta$.
The problem had a long history in the 20th century, starting with H. Weyl [19]. The theme that emerged gradually was that $E(\alpha, \beta)$ should be described by a family of inequalities of the type

$$
\gamma_{k_{1}}+\cdots+\gamma_{k_{r}} \leq \alpha_{i_{1}}+\cdots+\alpha_{i_{r}}+\beta_{j_{1}}+\cdots+\beta_{j_{r}},
$$

where $r \in\{1, \ldots, n\}$ and $i_{1}<\ldots<i_{r}, j_{1}<\ldots<j_{r}, k_{1}<\ldots<k_{r}$.
In short,

$$
\Sigma \gamma_{K} \leq \Sigma \alpha_{I}+\Sigma \beta_{J},
$$

where $I=\left(i_{1}, \ldots, i_{r}\right), J=\left(j_{1}, \ldots, j_{r}\right), K=\left(k_{1}, \ldots, k_{r}\right)$. The question is to identify the right triples (I, J, K).

[^0]The big moment was a 1962 paper by A. Horn [11]. He presented a remarkable conjecture on the set $E(\alpha, \beta)$, which, in sightly changed form, reads as follows.
For a sequence of indices $I=\left(i_{1}, \ldots, i_{r}\right)$, with $1 \leq i_{1}<\ldots<i_{r} \leq n$, write

$$
\rho(I)=\left(i_{r}-r, \ldots, i_{2}-2, i_{1}-1\right) .
$$

Then Horn's conjecture is: $\gamma \in E(\alpha, \beta)$ if and only if

$$
\left\{\begin{array}{l}
\Sigma \gamma=\Sigma \alpha+\Sigma \beta, \\
\Sigma \gamma_{K} \leq \Sigma \alpha_{I}+\Sigma \beta_{J} \text { whenever } \\
\quad \rho(K) \in E(\rho(I), \rho(J)) \quad \text { (for all } r, 1 \leq r<n) .
\end{array}\right.
$$

The conjecture is now a theorem. So $E(\alpha, \beta)$ is described recursively and is a convex polytope. We refer the reader to two excellent surveys on this story, by Fulton [9] and Bhatia [2].

2. An open problem

A natural question concerns the inverse problem, that is, construction of solutions: given α, β, and $\gamma \in E(\alpha, \beta)$, find Hermitian A with spectrum α and B with spectrum β such that $A+B$ has spectrum γ. In the remainder of this note we make some comments on this open problem and give a few references.
Given the drop in dimension it is to be expected that, for each γ, there may be many solutions. Since the proof of Horn's conjecture, several authors have studied a question related to the inverse problem: finding the probability distribution of γ, for given α and β, using the fact that, as mentioned before, γ is a continuous function on the unitary group, where we can take the Haar measure.
References on this, some very recent, are [5], [6], [7], [8], [17], [20], [21].

3. Two particular cases

Only one paper - that we know of - addresses the actual construction problem. In [4], the authors use semidefinite programming and give an algorithm that works for $n=3$. (The case $n=2$ is trivial.)
In a different spirit, we can find an exact solution in a very particular case. Without loss of generality, we may assume the α 's, the β 's and the γ 's are ≥ 0. We proceed to address the case $\beta_{2}=\cdots=\beta_{n}=0$. So the second matrix to be constructed has rank 1. (By translation, this covers the case where β has $n-1$ coordinates equal.)

In this situation the Horn inequalities reduce to

$$
\begin{gathered}
\gamma_{1}+\cdots+\gamma_{n}=\alpha_{1}+\cdots+\alpha_{n}+\beta_{1}, \\
\gamma_{1} \geq \alpha_{1} \geq \gamma_{2} \geq \alpha_{2} \geq \cdots \geq \gamma_{n} \geq \alpha_{n} .
\end{gathered}
$$

Put $D_{\alpha}=\operatorname{diag}(\alpha)$. We are going to find a (real) column x such that $D_{\alpha}+x x^{T}$ has spectrum γ. Clearly $\|x\|^{2}=\beta_{1}$.

Put $C=\left[\sqrt{D_{\alpha}} x\right]$. We have

$$
D_{\alpha}+x x^{T}=\left[\begin{array}{ll}
\sqrt{D_{\alpha}} & x
\end{array}\right]\left[\begin{array}{c}
\sqrt{D_{\alpha}} \\
x^{T}
\end{array}\right]=C C^{T} .
$$

Therefore, we are looking for a column x such that C has singular values $\sqrt{\gamma_{1}}, \ldots, \sqrt{\gamma_{n}}$. We may assume the α 's to be all distinct (if $\alpha_{i}=\alpha_{i+1}$ just take $x_{i}=0$). Denote by x^{2} the column $\left[x_{1}^{2} x_{2}^{2} \cdots x_{n}^{2}\right]^{T}$.
Denote by $\sigma_{k}(\alpha)$ the k-th elementary symmetric function of $\alpha_{1}, \ldots, \alpha_{n}$ and write $\sigma(\alpha)$ for the column $\left[\sigma_{1}(\alpha) \sigma_{2}(\alpha) \cdots \sigma_{n}(\alpha)\right]^{T}$.
In [16] it was proved that

$$
J(\alpha) \cdot x^{2}=\sigma(\gamma)-\sigma(\alpha),
$$

where J is the Jacobian matrix of the elementary symmetric functions.
We have det $J(\alpha)=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)$. Since $\alpha_{1}>\cdots>\alpha_{n}, J(\alpha)$ is nonsingular. In [16] the inverse of $J(\alpha)$ is found and related to the Vandermonde matrix with parameters α.
So the column x satisfies $x^{2}=J(\alpha)^{-1} \cdot[\sigma(\gamma)-\sigma(\alpha)]$ and there is a nice simple expression for x.
An example: take the triples $\alpha=(6,4,2), \beta=(3,0,0), \gamma=(7,5,3)$. We
get $x=\left[\begin{array}{l}0.6124 \\ 0.8660 \\ 1.3693\end{array}\right]$, so $A=\left[\begin{array}{lll}6 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 2\end{array}\right]$ and $B=\left[\begin{array}{lll}0.3750 & 0.5303 & 0.8385 \\ 0.5303 & 0.7500 & 1.1859 \\ 0.8385 & 1.1859 & 1.8750\end{array}\right]$ solve the problem.

4. A possible general approach

A somewhat speculative idea to approach the inverse Horn problem uses the well-known Littlewood-Richardson rule, an object appearing in many settings, starting from representation theory.
Suppose the n-tuples α and β are integral and nonnegative. Denote by $L R(\alpha, \beta)$ the set of all n-tuples γ that can be obtained from α and β according to the Littlewood-Richardson rule (see e.g. [10, App.A.1]).

In [18] it was proved that $E(\alpha, \beta) \cap \mathbb{Z}^{n} \supseteq L R(\alpha, \beta)$. Shortly afterwards, Knutson and Tao [15] proved a combinatorial theorem that, together with earlier work by Klyachko [13] (which also implies the result in [18], obtained independently), shows that there is in fact equality: $E(\alpha, \beta) \cap \mathbb{Z}^{n}=L R(\alpha, \beta)$, and this leads to a proof of Horn's conjecture. Without going into details (see [9]), the equality gives an idea of why the conjecture should be true, because nonempty intersections of Schubert varieties (which produce inequalities) are governed by the $L R$ rule: using the above notations, we have

$$
\rho(K) \in L R(\rho(I), \rho(J)) \Longrightarrow \Sigma \gamma_{K} \leq \Sigma \alpha_{I}+\Sigma \beta_{J}
$$

Second, the equality suggests a connection to another problem: invariant factors of a product of two matrices over a principal ideal domain. (For more general rings see [3].) Let R be a p.i.d. Consider three n-tuples of nonzero elements of R

$$
a=\left(a_{n}, \ldots, a_{2}, a_{1}\right), \quad b=\left(b_{n}, \ldots, b_{2}, b_{1}\right), \quad c=\left(c_{n}, \ldots, c_{2}, c_{1}\right)
$$

ordered so that

$$
a_{n}|\cdots| a_{2}\left|a_{1}, \quad b_{n}\right| \cdots\left|b_{2}\right| b_{1}, \quad c_{n}|\cdots| c_{2} \mid c_{1}
$$

The invariant factor problem is: when is c the n-tuple of invariant factors of $A B$, where A and B are R-matrices with invariant factors a and b, respectively?

The problem was solved, not in the same exact language, by Klein in 1968 [12]. First, localize the situation: fix a prime $p \in R$ and work over the local ring R_{p}, i.e. work with powers of p :

$$
a_{i} \rightarrow p^{\alpha_{i}}, b_{i} \rightarrow p^{\beta_{i}}, c_{i} \rightarrow p^{\gamma_{i}}
$$

where $\alpha_{1} \geq \cdots \geq \alpha_{n}, \beta_{1} \geq \cdots \geq \beta_{n}, \quad \gamma_{1} \geq \cdots \geq \gamma_{n}$ are nonnegative integers. Denote by $\operatorname{IF}(\alpha, \beta)$ the set of possible γ in the invariant factor product problem. Then Klein's result states that

$$
I F(\alpha, \beta)=L R(\alpha, \beta)
$$

So $E(\alpha, \beta) \cap \mathbb{Z}^{n}=I F(\alpha, \beta)$. But in [1] there is a constructive version of Klein's theorem. Our speculative question is then: is there a way of "transporting" this construction from the invariant factor setting to Hermitian matrices for the case of integral α, β, γ ? In this context, it is relevant to note that the equality $E(\alpha, \beta) \cap \mathbb{Z}^{n}=L R(\alpha, \beta)$ reflects a deep result, the

Kirwan-Ness theorem, relating symplectic geometry to geometric invariant theory. (See [14].)

References

[1] O. Azenhas and E.M. Sá, Matrix realizations of Littlewood-Richardson sequences, Lin. Multilin. Algebra 27 (1990), 229-242.
[2] R. Bhatia, Linear algebra to quantum cohomology: the story of Alfred Horn's inequalities, Amer. Math. Monthly 108 (2001), 289-318.
[3] C. Caldeira and J. F. Queiró, Invariant factors of products over elementary divisor domains, Linear Algebra Appl. 485 (2015), 345-358.
[4] L. Cao and H. J. Woerdeman, Real zero polynomials and A. Horn's problem, Linear Algebra Appl. 552(2018), 147-158.
[5] R. Coquereaux, C. McSwiggen and J.-B. Zuber, Revisiting Horn's problem, J. Stat. Mech. Theory Exp. no. 9 (2019), 22 pp.
[6] R. Coquereaux, C. McSwiggen and J.-B. Zuber, On Horn's problem and its volume function, Comm. Math. Phys. 376 (2020), no. 3, 2409-2439.
[7] J. Faraut, Horn's problem and Fourier analysis, Tunis. J. Math. 1 (2019), no. 4, 585-606.
[8] A. Frumkin and A. Goldberger, On the distribution of the spectrum of the sum of two Hermitian or real symmetric matrices, Adv. Appl. Math. 37 (2006), no. 2, 268-286.
[9] W. Fulton, Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bull. Amer. Math. Soc. 37 (2000), 209-249.
[10] W. Fulton and J. Harris, Representation Theory, Springer-Verlag, New York, 1991.
[11] A. Horn, Eigenvalues of sums of Hermitian matrices, Pacific J. Math. 12 (1962), 225-241.
[12] T. Klein, The multiplication of Schur functions and extensions of p-modules, J. London Math. Soc. 43 (1968), 280-284.
[13] A. Klyachko, Stable bundles, representation theory and Hermitian operators, Selecta Mathematica 4 (1998), 419-445.
[14] A. Knutson, The symplectic and algebraic geometry of Horn's problem, Linear Algebra Appl., 319 (2000), 61-81.
[15] A. Knutson and T. Tao, The honeycomb model of $G L_{n}(\mathbb{C})$ tensor products I: proof of the saturation conjecture, J. Amer. Math. Soc. 12 (1999), 1055-1090.
[16] J. F. Queiró, An inverse problem for singular values and the Jacobian of the elementary symmetric functions, Linear Algebra Appl. 197-198 (1994) 277-282.
[17] J. Repka, N. Wildberger, Invariant measure on sums of symmetric 3×3 matrices with specified eigenvalues, J. Phys. A: Math. Gen. 23 (1990) 5717-5724.
[18] A. P. Santana, J. F. Queiró and E. Marques de Sá, Group representations and matrix spectral problems, Linear and Multilinear Algebra 46 (1999), 1-23.
[19] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen, Math. Ann. 71 (1912), 441-479.
[20] J. Zhang, M. Kieburg and P. J. Forrester, Harmonic analysis for rank-1 randomised Horn problems, Lett. Math. Phys. 111 (2021), no. 4, Paper No. 98, 27 pp.
[21] J.-B. Zuber, Horn's problem and Harish-Chandra's integrals. Probability density functions, Ann. Inst. Henri Poincaré D 5 (2018), no. 3, 309-338.

João Filipe Queiró
University of Coimbra, CMUC, Department of Mathematics, 3000-143 Coimbra, Portugal
E-mail address: jfqueiro@mat.uc.pt

Ana Paula Santana
University of Coimbra, CMUC, Department of Mathematics, 3000-143 Coimbra, Portugal
E-mail address: aps@mat.uc.pt

[^0]: Received November 30, 2022.
 This work was partially supported by the Centre for Mathematics of the University of Coimbra (CMUC) - UIDB/00324/2020, funded by the Portuguese Government through FCT/MCTES.

