
Pré-Publicações do Departamento de Matemática
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Abstract: To improve nonparametric estimates of lifetime distributions, we pro-
pose using the increasing odds rate (IOR) model as an alternative to other popular,
but more restrictive, “adverse ageing” models, such as the increasing hazard rate
one. This extends the scope of applicability of some methods for statistical inference
under order restrictions, since the IOR model is compatible with heavy-tailed and
bathtub distributions. We study a strongly uniformly consistent estimator of the
cumulative distribution function of interest under the IOR constraint. Numerical
evidence shows that this estimator often outperforms the classic empirical distri-
bution function when the underlying model does belong to the IOR family. We
also study two different tests, aimed at detecting deviations from the IOR property,
and we establish their consistency. The performance of these tests is also evaluated
through simulations.
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1. Introduction
In statistics, the problem of estimating a cumulative distribution function

(CDF) F , often depends on any prior information on F . This is, for example,
the idea that gives rise to parametric inference. On the other hand, no infor-
mation on F leads to the most basic nonparametric estimator of F , namely,
the empirical CDF Fn. The approach based on shape restricted inference
represents an intermediate case, in which it is assumed that F belongs to
some important, and as broad as possible, nonparametric family of distribu-
tions, satisfying some shape constraints. It is obvious that, using a stronger
shape constraint, one may expect a larger estimation improvement upon Fn,
but, on the other hand, less applicability and higher risk, if the constraint is

Received December 1, 2022.
T.L. was supported by the Italian funds ex MURST 60% 2021, by the Czech Science Foundation
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false. Thus, these shape restrictions should be chosen to reasonably conform
to the data, and validated through statistical testing.

In reliability and survival analysis, one is generally interested in random
lifetimes, so it is typically assumed that distributions may exhibit “adverse
ageing”, vaguely meaning that ageing has a negative effect on lifetime Mar-
shall and Olkin (2007). The classic (but not unique) way of translating this
intuitive notion into a mathematical language is assuming that F has an in-
creasing hazard rate (IHR). For this reason, nonparametric inference for IHR
distributions represents an extremely relevant case, which has been studied
by Grenander (1956), Marshall and Proschan (1965) or Prakasa Rao (1970),
among many other authors. However, the IHR assumption is sometimes
considered to be too strong. For example, it is not compatible with heavy-
tailed (as it requires the existence of all moments) and bathtub distributions,
namely, distributions that exhibit a U-shaped hazard rate Marshall and Olkin
(2007). The solution to this problem may be using a weaker shape restriction,
which is still coherent with the “adverse ageing” notion. For example, Wang
(1987), Rojo and Samaniego (1994) or El Barmi et al. (2021) estimate dis-
tributions which exhibit an IHR, but only on average (IHRA). Although the
IHRA class contains the IHR class, this family still requires the existence of
all moments and does not contain any bathtub model. Therefore, the prob-
lem of estimating F within a weaker “adverse ageing” setting, compatible
with heavy-tailed and bathtub distributions, is particularly interesting.

In a recent paper, Lando et al. (2022a) proposed an ageing class that is
based on the monotonicity of the odds rate (OR), instead of the hazard rate.
In fact, ageing classes are typically defined in terms of some suitable sto-
chastic ordering constraint, taking the exponential distribution as the classic
benchmark for “no ageing”. This is due to the well-known “lack of mem-
ory” property. However, a wider family than the IHR may be constructed
by replacing the exponential with a different reference distribution, provid-
ing an alternative interpretation of “no ageing”. In particular, as discussed
in Lando et al. (2022a), the log-logistic distribution (with shape parameter
equal to 1), hereafter referred to as LL(1), may be a suitable benchmark, as
it satisfies a “multiplicative lack of memory” property Galambos and Kotz
(2006), and it is the only distribution such that the odds of failure by time
x, that is the probability of failure over survival at x, has a constant growth
rate with respect to time. Moreover, unlike the exponential distribution, the
LL(1) distribution has an infinite expectation, which is also more coherent
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with a literal intuitive translation of the “no ageing” concept. The family
of distributions that are dominated by the LL(1) with respect to the convex
transform order of Van Zwet (1964) is called the increasing odds rate (IOR)
family. Besides having some interesting properties, the IOR class has a wide
range of applicability: it does not require the existence of moments, it con-
tains all IHR distributions, plus some important heavy-tailed and bathtub
ones (see Section 2.1 of Lando et al. (2022a)). Accordingly, the objective of
this paper is to obtain an estimator of F that satisfies the IOR assumption,
hence improving upon Fn under weak conditions. In Section 3, we construct
such an estimator, denoted as F̃n, using similar methods as those discussed
in the books of Barlow et al. (1971) or Robertson et al. (1988). F̃n is strongly
uniformly consistent, and simulations show that it is generally more accu-
rate than Fn, provided that the IOR assumption holds. On the other hand,
it is clear that the method does not work properly when the IOR assump-
tion is false, therefore it is important to decide, based on statistical testing,
whether the data support the IOR assumption or not. In Section 4, we ob-
tain two different nonparametric tests of the IOR null hypothesis. We study
the properties of these tests, establish their consistency, and compare their
performances simulating the values of the power function under some critical
alternatives.

2. The IOR property
Let us begin with some preliminary notations. Throughout this paper, “in-

creasing” signifies “non-decreasing” and “decreasing” signifies “non-increasing”.
We define the greatest convex minorant (GCM) of a function g, denoted as
gcx, as the largest convex function that does not exceed g. Similarly, the least
concave majorant (LCM) of g, denoted as gcv, is the smallest concave func-
tion which is larger than or equal to g. Throughout this paper, X denotes
a random variable with an absolutely continuous CDF F and probability
density function (PDF) f . Moreover, for the sake of simplicity, any map φ
which depends on a CDF F , will be denoted as φF or just φ, whenever it is
clear from the context.

We will now recall the definition and properties of the IOR family. The
reader is referred to Lando et al. (2022a) for a more detailed discussion.
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Let us denote with L(x) = x
1+x , x > 0, the CDF of the LL(1) distribution.

The function

ΛF (x) = L−1 ◦ F (x) =
F (x)

1− F (x)

defines the odds of failure by time x. The function ΛF is obviously increasing,
so it is natural to get interested in its growth rate. In fact, one may expect
that F exhibits “no ageing”, in some sense, when the odds rate of F , defined
as

λF (x) = Λ′F (x) =
f(x)

(1− F (x))2
,

is constant. Similarly, an increase of λ means that the probability of failure
over survival is accelerating with respect to time, suggesting an “adverse age-
ing” scenario. Therefore, we are interested in distributions with an increasing
behaviour of λ, or, equivalently, with a convex odds function Λ. This family,
formally FIOR = {F : ΛF is convex}, is referred to as the IOR class.

Note that the convexity of Λ does not imply the existence of a density.
Indeed, this convexity allows for a single point mass of F at the right endpoint
of the support. However, for simplicity of the presentation, we shall assume
the existence of a PDF.

It is easy to see that the IOR class contains the well known IHR class,
which may be characterized as {F : − ln(1 − F ) is convex}. These two
classes may be equivalently defined in terms of the convex transform order,
requiring convexity of G−1◦F , where G is some suitable (and fixed) reference
CDF. In general, G dominates F in the convex transform order, denoted as
G ≥c F , if G−1 ◦ F is convex Shaked and Shanthikumar (2007). The IHR
class is obtained by choosing G(x) = E(x) = 1− e−x, x > 0, namely, the unit
exponential distribution. The main reason for choosing E as a benchmark
is that it satisfies the “lack of memory” property. Likewise, for G = L, we
obtain the IOR class, and it is also easy to see that, if X ∼ L, then the
shifted random variable X + 1 satisfies the “multiplicative lack of memory”
property, that is, P (X+1 > ab|X+1 > a) = P (X+1 > b), for every a, b > 1
Galambos and Kotz (2006). Bear in mind that ageing notions are typically
location and scale independent, in particular, X and σX + µ are equivalent
in terms of the convex transform order. In this regard, we may refer to the
LL(1) location-scale family, determined by the CDF L up to location and
scale transformations.
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We now discuss the applicability of the IOR model. First, note that the
IOR class may contain bathtub distributions, characterised by a “decreasing
then increasing” behaviour of the HR, and are commonly employed in sur-
vival analysis and reliability (see, for example, Marshall and Olkin (2007),
or Glaser (1980)). For instance, under some conditions on the parameters,
the bathtub distributions defined by Topp and Leone (1955), Hjorth (1980),
Schäbe (1994) or Haupt and Schäbe (1997) are IOR. This class contains
also many heavy-tailed distributions, such as the log-logistic, the Pareto,
the Burr XII, the Fréchet, the Student’s t (with shape parameter(s) larger
than or equal to 1), the lognormal (under some conditions) and the Cauchy
distributions. It is not possible to establish inclusion relations between the
IOR class and other relevant classes which contain the IHR class, such as the
IHRA and the DMRL families Marshall and Olkin (2007). However, like the
IHR, these latter classes require the existence of all moments, therefore they
cannot be used as shape constraints to estimate heavy-tailed distributions,
which is one of the main advantages of the IOR model. This discussion mo-
tivates us to study nonparametric inference on lifetime distributions using
the IOR constraint, instead of the IHR one.

3. An IOR estimator
Since we are interested in random lifetimes, hereafter we will focus on the

case in which the distribution of interest F has support included in the in-
terval [0,∞). Given an ordered sample X(1), . . . , X(n) from F , the empirical

CDF is defined as Fn(x) = 1
n

∑n
i=1 1X(i)≤x, where 1A is the indicator of the

event A. A realisation of the random process Fn will be denoted with Fn. The
empirical CDF represents the most natural way of estimating F without any
prior information, as it satisfies several important properties, in particular,
the Glivenko-Cantelli Theorem establishes strong and uniform convergence
of Fn to F . Assume that F ∈ FIOR: we are interested in determining an esti-
mator, say F̃n, such that F̃n ∈ FIOR and F̃n converges strongly and uniformly
to F . A first intuitive solution would be estimating ΛF using its empirical
counterpart ΛFn

= L−1◦Fn = Fn

1−Fn
(note that ΛFn

(X(i)) = i
n−i) and then esti-

mate F using L ◦ (ΛFn
)cx. However, the function L−1(p) = p

1−p is unbounded

in [0, 1), accordingly, for every sample size, sup x|ΛFn
(x) − Λ(x)| = ∞, and

the corresponding IOR estimator defined earlier would not have the desired
property. Therefore, we will consider a somewhat more involved approach.
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For some given CDF F ∈ FIOR, let us define the following integral trans-
form

T−1
F (p) = ZF ◦ F−1(p) =

∫ F−1(p)

0

(1− F (x))2 dx, p ∈ [0, 1],

where ZF (t) =
∫ t

0 (1 − F (x))2 dx, and the corresponding scale-free version

T
−1
F (p) =

T−1
F (p)

T−1
F (1)

. We shall focus on distributions such that T−1
F (1) =

∫∞
0 (1−

F (x))2 dx < ∞. In particular, T−1(1) < ∞ if 1 − F is integrable, that is, if
F has finite mean, because

∫∞
0 (1 − F (x))2 dx ≤

∫∞
0 (1 − F (x)) dx = E(X).

However, the existence of the mean is not necessary: for example, for the
CDF L we have T−1

L (1) = 1, although L has infinite mean. The function T−1

belongs to the family of generalized total time on test transforms, which has
been studied by Barlow and Van Zwet (1969). Note also that the inverse of
T−1
F , namely TF = F ◦ Z−1

F , is a CDF with support [0, T−1
F (1)].

It can be seen that

(T−1)′(p) = Z ′ ◦ F−1(p)(F−1)′(p) =
(1− F ◦ F−1(p))2

f ◦ F−1(p)
, (1)

so that T−1 is concave, or, equivalently, T is convex, if and only if f(x)
(1−F (x))2

is increasing, that is, F is IOR. Note that T−1 is the identity function if and
only if F is an LL(1) distribution.

For k = 1, . . . , n, the empirical counterpart of T−1
F (kn) is

T−1
Fn

(
k

n

)
=

∫ X(k)

0

(1− Fn(t))2 dt

=
1

n2

(
k−1∑
i=1

(2n− 2i+ 1)X(i) + (n− k + 1)2X(k)

)
,

where, in particular, X(0) := 0, T−1
Fn

(0) := 0, and T−1
Fn

(1) = 1
n2

∑n
i=1(2n− 2i+

1)X(i). Note that T−1
Fn

(kn) can also be expressed as

T−1
Fn

(
k

n

)
=

k∑
j=1

(
n− j + 1

n

)2

(X(j) −X(j−1)).

For general p ∈ [0, 1], T−1
Fn

(p) is defined, by linear interpolation, as the piece-

wise linear function joining the points
(
k−1
n , T−1

Fn

(
k−1
n

))
and

(
k
n , T

−1
Fn

(
k
n

))
,
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k = 1, . . . , n. Similarly, the estimator of T
−1

is T
−1
Fn

=
T−1
Fn (p)

T−1
Fn (1)

. These estima-

tors are strongly uniformly consistent.

Lemma 1.

(1) T−1
Fn

(T
−1
Fn
) converges strongly and uniformly to T−1

F (T
−1
F ) in [0, 1];

(2) TFn
(T Fn

) converges strongly and uniformly to TF (T F ) in [0, T−1
F (1)]

([0, 1]).

Proof : The strong uniform convergence of T−1
Fn

is a special case of Theorem

2.1 of Barlow and Van Zwet (1969). Since T−1
Fn

is bounded and has bounded
domain, its inverse function TFn

is also strongly uniformly consistent. Since

T−1
Fn

(1) converges a.s. to T−1
F (1), it is clear that the same results hold for T

−1
Fn

and, likewise, for T Fn
.

Henceforth, we will abbreviate T−1
Fn

and T
−1
Fn

with T−1
n and T

−1
n , respectively,

whenever it will be clear from the context that they correspond to a sample
from Fn.

Note that under the IOR constraint, T−1 is concave. Therefore, an IOR
estimator may be constructed using (T−1

n )cv, namely, the LCM of T−1
n . In

fact, (T−1
n )cv is a concave piecewise linear function, so it always has a right

derivative, denoted as ∂+(T−1
n )cv, which, by construction, is a decreasing

right-continuous step function. Accordingly, the relation in (1) may be used
to obtain an increasing estimator of the OR, defined as follows:

λ̃n(x) =
1

∂+(T−1
n )cv ◦ Fn(x)

, for x ∈ (0, X(n)),

whereas λ̃n(x) = 0, for x ≤ 0, and λ̃n(x) = +∞, for x ≥ X(n). In other words,

λ̃n(x) is the reciprocal of the slope (from the right) of (T−1
n )cv, evaluated at

the point Fn(x). Accordingly, the odds function is estimated by

Λ̃n(x) =

∫ x

0

λ̃n(t) dt =

∫ x

0

1

∂+(T−1
n )cv ◦ Fn(t)

dt. (2)

Finally, an IOR estimator of F is given by

F̃n = L ◦ Λ̃n = 1− 1

1 + Λ̃n

.

F̃n is clearly IOR, and it is absolutely continuous, except in the right endpoint
of its support, X(n), at which it has a jump. Correspondingly, the PDF f
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can be estimated, in (0, X(n)), as

f̃n =
λ̃n

(1 + Λ̃n)2
. (3)

Using the methods described in the book of Robertson et al. (1988), it is
possible to establish the asymptotic properties of these estimators.

Theorem 2. Assume that F is IOR, then:

(1) λ̃n −→ λ almost surely and uniformly in [0, x0], for every x0 such that
λ(x0) <∞;

(2) F̃n−→F almost surely and uniformly in [0,∞);

(3) f̃n−→f almost surely and uniformly in [0, x0], for every x0 such that
λ(x0) <∞.

Proof : Following the approach as in Theorem 7.4.1 of Robertson et al. (1988)

we prove that λ(x−0 ) ≤ lim infn→∞ λ̃n(x0) ≤ lim supn→∞ λ̃n(x0) ≤ λ(x+
0 ).

Indeed, since the LCM (T−1
n )cv is concave by construction, then, for some

small ε > 0, we have that

(T−1
n )cv(Fn(x0) + ε)− (T−1

n )cv(Fn(x0))

ε
≤ ∂+(T−1

n )cv ◦ Fn(x0) =
1

λ̃n(x
+
0 )

≤ 1

λ̃n(x
−
0 )

= ∂−(T−1
n )cv ◦ Fn(x0) ≤

(T−1
n )cv(Fn(x0))− (T−1

n )cv(Fn(x0)− ε)
ε

,

for every x0 > 0 and ε ∈ (0,min(Fn(x0), 1 − Fn(x0))). T−1
n converges uni-

formly to T−1 on [0, 1], consequently, the Marshall’s inequality (Groeneboom
and Jongbloed, 2014, Exercise 3.1) gives

sup
p∈[0,1]

|(T−1
n )cv(p)− T−1(p)| ≤ sup

p∈[0,1]

|T−1
n (p)− T−1(p)| −→ 0,

with probability 1. Then, letting n −→∞ in the above inequality, we obtain

T−1(F (x0) + ε)− T−1(F (x0))

ε
≤ lim sup

n→∞

1

λ̃n(x0)

≤ lim inf
n→∞

1

λ̃n(x0)
≤ T−1(F (x0))− T−1(F (x0)− ε)

ε
,

which gives the claimed bound allowing ε −→ 0. In particular, λ̃n is uniformly
strongly consistent at the continuity points of λ. Now, if λ is increasing and
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continuous on some compact set [0, x], λ̃n converges uniformly to λ on [0, x].
Setting x = x0, we obtain part 1). Subsequently, the dominated convergence

theorem (note that λ̃n is bounded on [0, x]) implies limn→∞
∫ y

0 λ̃n(t) dt =

limn→∞ Λ̃n(y) =
∫ y

0 λ(t) dt = Λ(y), for every y ∈ [0, x]. Therefore, since the
CDF L is uniformly continuous in [0,∞), it follows that

F̃n(x) = L ◦ Λ̃n(x) −→ L ◦ Λ(x) = F (x)

almost surely, for every x. Finally, following the same arguments in the
proof of the Glivenko-Cantelli theorem, we can ensure that F̃n −→ F almost
surely and uniformly in [0,∞). Since f(x) = λ(x)(1 − F (x))2 and, writing

Λ̃n = ΛF̃n
, we may express f̃n(x) = λ̃n(x)(1 − F̃n(x))2. Then, part 1) and

part 2) imply that f̃n −→ f strongly and uniformly in [0, x0].

3.1. Simulations. We illustrate the numerical performance of F̃n and Fn
in terms of MSE, as is well known, MSE(Fn(x)) = 1

nF (x)(1 − F (x)). With

regard to F̃n, the MSE was simulated using the following distributions: (i)
log-logistic, F (x) = 1

1+x−a , a > 0, hereafter LL(a), which is IOR for a > 1

and has a constant OR for a = 1; (ii) Weibull F (x) = 1 − e−x
a

, a > 0,
hereafter W(a), which is IOR for a ≥ 1 (and also log-concave, IHR, IHRA and
DMRL); (iii) beta type II, F (x) = β( x

1+x ; a, b), a, b > 0, hereafter B2(a, b),
which is IOR for a > 1, b ≥ 1 (β denotes the regularized incomplete beta
function); (iv) the Haupt and Schabe’s distribution Haupt and Schäbe (1997)

F (x) =
√
a2 + (2a+ 1)x− a, a > −1/2, x ∈ [0, 1], hereafter HS(a), which is

bathtub for a ∈ (1
2 , 1) and IOR at the same time. Note that scale parameters

are conveniently not considered in our analysis, since ageing properties are
scale invariant. Figure 1 illustrates the estimators F̃n and Fn in the IOR case,
using a small sample size. Differently, the behaviour of such estimators in
the non-IOR case is discussed in the next section and depicted in Figure 5.

In Figure 2 we plot simulated MSE values at all percentiles, based on

1000 runs, standardised by the corresponding ones for Fn, that is, MSE(F̃n(x))
MSE(Fn(x)) .

The simulation results show that, when F is IOR, F̃n often outperforms
Fn, especially for extremely small deciles. This is particularly visible for
small sample sizes, as clearly when n grows both estimators converge to F .
According to our results, the largest improvements often occur in the left
tails, around deciles 0.1–0.3, however, in some cases F̃n performs worse at
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Figure 1. Simulated small sample (n = 20) from the IOR dis-
tribution HS(0.6). The plot on the left shows the CDFs F (dot-

dashed), Fn (solid) and F̃n (dashed); the plot on the right shows

λF (dot-dashed) and λ̃n (dashed).

very small percentiles (0.01–0.05) for very small sample sizes (n = 10) and
some particular models, as it can be seen in Figure 2. Note that, among
the distributions considered, only the W and the HS distributions have all
moments, whereas the LL(1) has an infinite mean, the LL(2) and the B2
with b ≤ 2 have infinite variance, and the B2 with b ≤ 3 has an infinite
third moment. This represents one of the main advantages of the proposed
method, as the majority of the shape conditions which are commonly used in
order-restricted inference under an “adverse ageing scenario” (log-concavity,
IHR, IHRA, DMRL) require the existence of all moments. Similarly, the
HS(a) is bathtub for the values of a considered, so it is not compatible with
the log-concavity, IHR, and IHRA assumptions (only the W(a), for a ≥ 1,
satisfies all these latter properties). It can also be noted that convergence
is somewhat slower for distributions with infinite variance. The case of the
LL(1) is especially critical, because, besides having an infinite mean, more
importantly, it has a constant OR, so we expect no improvement, or less,
compared to the cases in which the OR is strictly increasing. Surprisingly,
even in this case, F̃n performs slightly better than Fn for smaller sample sizes,
whereas, in general, F̃n performs better at the tails and Fn performs better
around the median.
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Figure 2. Standardised MSE for n = 10 (solid), n = 30
(dashed), n = 50 (dot-dashed), n = 100 (dotted), evaluated at
all percentiles.
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3.2. Smoothed estimators. One may wonder whether the improvement of
F̃n over Fn depends on the fact that F̃n is a smooth function. In response to
this, a numerical comparison of F̃n with kernel estimators of the CDF, may
show that the MSE of F̃n is often smaller even in this case, suggesting that
the improvement of F̃n over Fn depends mostly on shape aspects, rather than
on smoothness. Although the objective of this paper is to estimate the CDF,
we will now briefly discuss the possibility of obtaining smooth estimators
even for the PDF. In fact, while F̃n is absolutely continuous in [0, X(n)), the

corresponding estimator of the PDF f̃n, defined by (3), is typically discon-
tinuous and may exhibit spikes at the observed points (see Figure 3). Hence,
it is generally not a good pointwise estimator of f . For this reason, it may
be interesting to obtain a smooth estimator of the PDF which preserves the
OR properties of f̃n, which may be achieved by smoothing the step function
λ̃n and then applying the approach discussed above.

Let k be a zero-mean PDF with support [−1, 1], for technical convenience.
Given a bandwidth h > 0 define as usual kh(x) = 1

hk(xh), and denote by Kh

the corresponding CDF, that is, Kh(x) =
∫ x
−∞ kh(t) dt. A smooth version of

λ̃n is given by

λsn,h(x) =

∫
kh(x− t)λ̃n(t) dt =

∫
(1−Kh(x− t)) dλ̃n(t),

after integration by parts. Therefore, as λ̃n is increasing by construction,
it follows immediately that λsn,h is also increasing. Note that, since λ̃n(x) =
+∞, for x ≥ X(n), then λsn,h(x) = +∞, for x ≥ X(n)−h, hence the smoothing
has an effect just at points smaller than X(n) − h. Now, a convex estimator

of Λ is given by Λs
n,h =

∫ x
−∞ λ

s
n,h(t) dt, where, unlike (2), here the integration

starts at −∞, meaning that it assigns positive mass to the negative half line
(this may be adjusted, if needed). Correspondingly, an IOR estimator of the
CDF is defined as Fsn,h = L ◦ Λs

n,h, and a smooth estimator of the PDF is

given by f sn,h =
λsn,h

(1+Λs
n)2 .

Since k has support [−1, 1], λsn,h(x) =
∫ x+h

x−h kh(x− t)λ̃n(t) dt. Therefore, by

monotonicity, λ̃n(t) ∈ [λ̃n(x−h), λ̃n(x+h)], which holds for t ∈ [x−h, x+h],

implies that λsn,h(x) ∈ [λ̃n(x − h), λ̃n(x + h)]. Then, if h −→ 0 as n −→ ∞,

the asymptotic behaviour of λ̃n, proved in Theorem 2, entails that λsn,h −→ λ
strongly and uniformly in [0, x0] for every x0 such that λ(x0) <∞. So, using
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Figure 3. Simulated small sample (n = 20) from the IOR dis-
tribution B2(2,3). The plot on the left shows the ORs λF (dot-

dashed) λ̃n (solid) and λsn,h (dashed), for h = 1
4 ; the plot on the

right shows f (dot-dashed), f̃n (solid) and f sn,h (dashed).

the same arguments as in the proof of Theorem 2, Fsn −→ F uniformly in
[0,∞) and f sn −→ f strongly and uniformly in [0, x0].

As usual in kernel estimation problems, the optimal choice of the band-
width is the crucial issue. We are not dealing with this problem in the
present paper, as the involved construction of λ̃n makes it very hard to de-
rive expressions for the MSE of λsn,h. This estimator is also quite demanding
from a computational point of view. As an illustration, Figure 3 shows λsn,h
and f sn,h for a sample of size n = 20 from a B2(2,3) distribution, using the

Epanechnikov kernel with bandwidth h = 1
4 , that is, k1/4(x) = 3

4

(
1− 16x2

)
,

x ∈ [−1
4 ,

1
4 ].

4. Tests for the IOR null hypothesis
Tests of different ageing properties, or, as discussed above, shape restric-

tions, have been discussed extensively in the literature: among many other
authors, Proschan and Pyke (1967), Barlow and Proschan (1969), Bickel
(1969) or Bickel and Doksum (1969) consider the null hypothesis of expo-
nentiality versus the IHR alternative; Deshpande (1983), Kochar (1985), Link
(1989), Wells and Tiwari (1991), and Ahmad (1994), consider the null hy-
pothesis of exponentiality versus the IHRA alternative; while Tenga and
Santner (1984), Hall and Van Keilegom (2005), Durot (2008), Groeneboom
and Jongbloed (2012), Gijbels and Heckman (2004) or Lando (2022) consider
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the IHR null hypothesis versus the alternative that the HR is non-monotone.
This approach, that is, setting the shape restriction as the null hypothesis,
may be more demanding from a computational point of view, but it has sev-
eral advantages in controlling the behaviour of the test. We follow this idea
and study tests of the null hypothesis H0 : F ∈ FIOR versus H1 : F /∈ FIOR.
Tests of this kind have already been studied in Lando et al. (2022a), who
focused on a restricted null hypothesis Hν

0 : “λ is increasing in Sν”, where
Sν = {x : x ≤ F−1(1− ν)}, ν ∈ (0, 1). The domain restriction was necessary
to control the behaviour of the test statistic, given by the maximum distance
between the empirical odds function ΛFn

= Fn

1−Fn
and its GCM (ΛFn

)cx, due

to the lack of uniform strong convergence of ΛFn
and (ΛFn

)cx to ΛF under H0.
Differently, transporting the testing problem to the maximum distance be-
tween the estimators T n, or Fn, and their corresponding constrained versions
(T n)cx, or F̃n, respectively, means that, under H0, we do have uniform strong
convergence in the whole domain, hence restrictions are no longer necessary.

4.1. A test based on the convexity of T . Similarly to Tenga and Santner
(1984), who deal with the IHR property, we may obtain a first test which
detects departures from the IOR property by considering a suitable distance

between T n and (T n)cx, or, similarly, T
−1
n and (T

−1
n )cv. We will consider the

following scale-independent test statistic

KT(Fn) = sup
u∈[0,1]

|T n(u)− (T n)cx(u)| = max
1≤i≤n

| i
n
− (T n)cx ◦ T

−1
n ( in)|.

It can be seen that, if the jump points of the empirical odds function ΛFn
,

determined by the coordinates (X(i),
i

n−1), i = 1, . . . , n − 1, lay on a convex
curve, then KT(Fn) = 0.

To obtain a conservative test, the determination of the least favourable
distribution of KT under the null hypothesis is especially critical. As estab-
lished in the following theorem, owing to a stochastic ordering result, such a
distribution coincides with the distribution of KT in the case when the data
are randomly sampled from the LL(1). To understand this behaviour, we
need to introduce some additional notations. Let us denote ZF = ZF

T−1
F (1)

, so

that T F = F ◦ Z−1
F , and define the functional

Φp(F ) = (F ◦ Z−1
F )cx ◦ T

−1
F (p) = (T F )cx ◦ T

−1
F (p).
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The empirical counterpart of Φp(F ), for p = i
n , is

Φi/n(Fn) = (Fn ◦ Z
−1
Fn

)cx ◦ T
−1
Fn

( in) = (T Fn
)cx ◦ T

−1
Fn

( in).

Let us recall that X is larger than Y in the usual stochastic order, denoted
as X ≥st Y , if P (X ≥ t) ≥ P (Y ≥ t), for every t Shaked and Shanthikumar
(2007). We can now establish the following result.

Theorem 3. Let Ln be the empirical CDF corresponding to a random sample
from L. Under H0, KT(Ln) ≥st KT(Fn).

Proof : Let Ln be a realization of Ln, corresponding to the observed sample
(y(1), . . . , y(n)). Since L ≥c F , Theorem 1 of Lando et al. (2022b) implies that
Φi/n(Fn) ≥st Φi/n(Ln), for i = 1, . . . , n, provided that

(T F ∗
n
)cx ◦ T

−1
F ∗
n
( in) = Φi/n(F

∗
n) ≥ Φi/n(Ln) = (TLn

)cx ◦ T
−1
Ln

( in), (4)

where F ∗n = F−1 ◦L ◦Ln = τ ◦Ln is the empirical CDF corresponding to the
values τ(y(i)), which determine an ordered sample from F . Let

ui = T
−1
Ln

( in) =

∑i
j=1(

n−j+1
n )2(y(j) − y(j−1))∑n

j=1(
n−j+1
n )2(y(j) − y(j−1))

u∗i = T
−1
F ∗
n
( in) =

∑i
j=1(

n−j+1
n )2(τ(y(j))− τ(y(j−1)))∑n

j=1(
n−j+1
n )2(τ(y(j))− τ(y(j−1)))

.

The denominators θ =
∑n

j=1(
n−j+1
n )2(y(j)−y(j−1)) and η =

∑n
j=1(

n−j+1
n )2(τ(y(j))−

τ(y(j−1))) are constant because the samples are fixed. We now define the
function h : [0, 1]→ [0, 1] by

h(ui) = h

(
1

θ

i∑
j=1

(
n− j + 1

n
)2(y(j) − y(j−1))

)

=
1

η

i∑
j=1

(
n− j + 1

n
)2(τ(y(j))− τ(y(j−1))) = u∗i ,

and by linear interpolation between the ui’s values. The increments may be
expressed as ui−ui−1 = 1

θ(
n−j+1
n )2(y(i)−y(i−1)) and u∗i−u∗i−1 = 1

η(
n−j+1
n )2(τ(y(i))−
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τ(y(i−1))), respectively. To prove (4), note that, under H0, the function τ is
increasing and concave, hence

h(ui+1)− h(ui)

ui+1 − ui
=
θ

η

τ(yi+1)− τ(yi)

yi+1 − yi
≤ θ

η

τ(yi)− τ(yi−1)

yi − yi−1
=
h(ui)− h(ui−1)

ui − ui−1
.

Therefore the slopes of the piecewise linear function h are decreasing, that
is, h is concave. Now, Theorem 2.2 of Tenga and Santner (1984) yields (4).
Subsequently, as Φi/n(Fn) ≥st Φi/n(Ln), KT(Fn) = maxi(

i
n − Φi/n(Fn)) and

similarly KT(Ln) = maxi(
i
n − Φi/n(Ln)), we obtain the desired result.

Theorem 3 states that the random variable KT(Ln) represents a stochas-
tic (upper) bound for KT(Fn) under the null hypothesis. Accordingly, the
problem boils down to testing HL

0 : “F is LL(1)” against H1, so we reject H0

when KT(Fn) ≥ cα,n, where cα,n is the solution of P (KT(Ln) ≥ cα,n) = α.
Theorem 3 ensures that the probability of rejecting H0 when it is true, is at
most α, that is, the test has size α under H0. Similarly, if F is DOR, it is
easy to see that P (KT(Fn) ≥ cα,n) ≥ P (KT(Ln) ≥ cα,n) = α, that is, the test
is unbiased under DOR alternatives. For a given realisation Fn, the p-value
of the test is p = P (KT(Ln) ≥ KT(Fn)).

As established by the following theorem, KT is also capable of detecting
any deviation from the IOR null hypothesis.

Theorem 4. Under H1, limn→∞ P (KT(Fn) > cα,n) = 1.

Proof : IfH0 is true, considering the special case when T n is obtained by sam-
pling from the LL(1), T n and (T n)cx converge strongly and uniformly to the
identity function. In particular, Marshall’s inequality gives supu∈[0,1] |(T n)cx(u)−
u| ≤ supu∈[0,1] |T n(u)−u|, with probability 1. Then, for every fixed α ∈ (0, 1),
there exists some n0 such that, for n > n0

P (sup
u
|T n(u)− u| ≤ ε

2
∧ sup

u
|(T n)cx(u)− u| ≤ ε

2
) ≥ 1− α

However, the function u − ε
2 is convex, therefore, for n > n0, u − ε

2 ≤
(T n)cx(u) ≤ T n(u) ≤ u+ ε

2 ,∀u, and by inclusion we obtain

P (−ε ≤ T n(u)−(T n)cx(u) ≤ ε,∀u) = P (sup
u

(T n(u)−(T n)cx(u)) ≤ ε) ≥ 1−α.

Since ε can be arbitrarily small, cα,n −→ 0 for n −→∞.
Suppose that H1 is true. Then d = supu(T (u)− (T n)cx(u)) > 0. Moreover,

T n converges strongly and uniformly to T , whereas (T n)cx converges strongly
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and uniformly to T cx (this can be seen using the same argument as in The-
orem 3 of Lando (2022)). Therefore, given some ε > 0, there exists some n0

such that, for n > n0, supu |T (u)−T n(u)| < ε
2 and sup |(T n)cx(u)−T cx(u)| <

ε
2 , with probability 1. Then, for n > n0

T n(u)− (T n)cx(u) > T (u)− ε

2
− (T cx(u) +

ε

2
) = T (u)− T cx(u)− ε

almost surely, for every u, which implies

sup
u

(T n(u)− (T n)cx(u)) > sup
u

(T (u)− T cx(u)− ε) = d− ε > 0.

Therefore, since ε can be arbitrarily small, P (supu(T n(u) − (T n)cx(u)) ≥
d) −→ 1, for n −→∞. But since cα,n → 0, then P (KT(Fn) > cα,n) −→ 1.

It is important to remark that one may replace the sup-norm with a differ-
ent type of distance between (T n)cx and T n and still obtain a consistent test,
since the key steps in the proof of Theorem 4 are the uniform consistency of
these two estimators under H0, while only T n converges to T under H1.

4.2. A test based on F̃n. A second test can be obtained by considering
a suitable distance between Fn and F̃n, such as the uniform norm. Let us
define the following Kolmogorov-Smirnov type test statistic

KS(Fn) = sup
x>0
|Fn(x)− F̃n(x)|.

About the IHR property, a Kolmogorov-Smirnov test of this type has been
studied by Lando (2022). Note that KS is also scale-independent. However, if
the jump points of ΛFn

lay on a convex curve, then KS(Fn) does not coincide
with 0, differently from KT(Fn). To fulfil this property, one should consider

a modified version of KS, say K̂S(Fn) = supx>0 |F̂n(x)− F̃n(x)|, where F̂n has

the same construction of F̃n, as described in Section 3, with the exception
that it does not include any shape constraint, namely,

F̂n(x) = L

(∫ x

0

1

∂+(T−1
n ) ◦ Fn(t)

dt

)
.

F̂n and Fn are very similar and it is easy to see that they are asymptotically
equivalent, moreover, the computation of F̂n is quite demanding without
having an improvement on the power of the test. Therefore, henceforth we
will focus only on KS.
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As in the previous subsection, the distribution of KS may be determined by
simulating from L. However, in this case, the stochastic ordering arguments
used in Theorem 3 do not hold, because of the complicated construction of
F̃n. Accordingly, we cannot formally establish a stochastic bound for the
size of the test under H0, so it is more correct to present this as a test for
HL

0 against H1. We reject the null HL
0 when KS(Fn) ≥ cα,n, where cα,n is

the solution of P (KS(Ln) ≥ cα,n) = α. However, even in some critical IOR
cases, numerical evidence, reported in the next section, shows that the type-I
error of KS is always smaller than α. Moreover, the test is consistent against
non-IOR alternatives, as established by the following theorem. The proof is
omitted because it can be obtained using the same arguments as in the proof
of Theorem 3 of Lando (2022).

Theorem 5. Under H1, limn→∞ P (KS(Fn) > cα,n) = 1.

Similarly to what has been discussed in the previous subsection, one may
replace the sup-norm with a different type of distance between F̃n and Fn,
and the corresponding test would still be consistent.

4.3. Simulations. We compare the performance of the two tests proposed
simulating from some popular parametric families of distributions. As these
tests are scale invariant, we set the scale parameters to 1. Some special
cases of interest are (i) IOR models, (ii) decreasing OR (DOR) models, (iii)
non-monotone OR models. As for (i), we consider the LL(a), with shape
parameter a ranging in the interval [1, 1.2]. With regard to (ii), we consider
the LL(a) with a ∈ [0.7, 1). These cases are especially difficult to detect
because, for a = 1, the OR is constant. As for (iii), we consider the W(a)
with shape parameter a ∈ [0.3, 0.8], which exhibits a decreasing-increasing
OR for a < 1; the B2 distribution, which has an increasing-decreasing OR
for a < 1 and b > 1, (thus we consider b = 2, a ∈ [0.3, 0.7]); and the

Birnbaum-Saunders (BS) distribution with CDF Φ
(

1
a

(√
x− 1√

x

))
, x, a > 0

(Φ denotes the standard normal CDF), which has an increasing-decreasing-
increasing OR for a ∈ [2, 4] (this is especially critical to detect for smaller
values of a). The results are reported in Figure 4, which show the rejection
rates at level α = 0.1, corresponding to 500 simulation runs. The plots show
that the performance of the tests is very similar when H0 is true (LL(a) with
a ≥ 1) and against DOR alternatives (LL(a) with a ≤ 1). In particular, it
can be seen that, for both tests, in the IOR case the simulated type-I error
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probability is always bounded by α, whereas, in the DOR case, the simulated
power is always greater than α. About KT, this is formally established by
Theorem 3, which represents an advantage. However, it can be seen from
Figure 4 that KS remarkably outperforms KT when F has a non-monotone
OR, which is typically the most critical case to detect. For both tests, the
simulated power increases with the sample size, confirming the consistency
properties established in Theorem 4 and Theorem 5.

To illustrate the behaviour of KT and KS under non-IOR alternatives, we
also consider the following CDF,

Fa,b(x) =

{
xa

xa+1 0 < x ≤ 1,
xb

xb+1
x > 1,

a, b > 0.

For a, b ≥ 1, the OR of this distribution is increasing almost everywhere,
however, for a > b, it has a downward jump at x = 1, so that Fa,b cannot
be IOR. Figure 5 shows the remarkable distance between T n and (T n), and

between Fn and F̃n, for a simulated sample of size 100 from F5,1. In both
cases, these large distances lead to the rejection of H0.
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Haupt, E., Schäbe, H., 1997. The ttt transformation and a new bath-
tub distribution model. J. Statist. Plann. Inference 60, 229–240.
doi:10.1016/S0378-3758(97)89710-8.

Hjorth, U., 1980. A reliability distribution with increasing, decreasing,
constant and bathtub-shaped failure rates. Technometrics 22, 99–107.
doi:10.2307/1268388.

Kochar, S.C., 1985. Testing exponentiality against monotone failure rate
average. Communications in Statistics-Theory and Methods 14, 381–392.
doi:10.1080/03610928508828919.

Lando, T., 2022. Testing departures from the increasing hazard rate property.
Statistics & Probability Letters doi:10.1016/j.spl.2022.109736.

Lando, T., Arab, I., Oliveira, P.E., 2022a. Properties of increasing odds rate
distributions with a statistical application. Journal of Statistical Planning
and Inference doi:10.1016/j.jspi.2022.05.004.

Lando, T., Arab, I., Oliveira, P.E., 2022b. Tranform orders and stochastic
monotonicity of statistical functionals. Scandinavian Journal of Statistics
(to appear) .

Link, W.A., 1989. Testing for exponentiality against monotone failure rate
average alternatives. Communications in Statistics-Theory and Methods
18, 3009–3017. doi:10.1080/03610928908830073.

Marshall, A.W., Olkin, I., 2007. Life distributions. volume 13. Springer.
Marshall, A.W., Proschan, F., 1965. Maximum likelihood estimation for

distributions with monotone failure rate. The annals of mathematical sta-
tistics 36, 69–77. doi:10.1214/aoms/1177700271.

Prakasa Rao, B., 1970. Estimation for distributions with monotone
failure rate. The annals of mathematical statistics 41, 507–519.
doi:10.1214/aoms/1177697091.

Proschan, F., Pyke, R., 1967. Tests for monotone failure rate, in: Fifth
Berkley Symposium, pp. 293–313.

Robertson, T., Wright, F.T., Dykstra, R.L., 1988. Order restricted statistical
inference. Wiley.

Rojo, J., Samaniego, F.J., 1994. Uniform strong consistent estimation of an
ifra distribution function. Journal of multivariate analysis 49, 150–163.
doi:10.1006/jmva.1994.1019.



REFERENCES 23
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