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Abstract: We investigate the behaviour of split extensions in the category OrdGrp
of (pre)ordered groups. Namely we show that the lexicographic order plays a key
role on the existence of compatible orders for semidirect products, establishing nec-
essary and sufficient conditions for such existence; we prove that the Split Short
Five Lemma holds for stably strong split extensions, and identify classes of split
extensions which admit a classifier.
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1. Introduction
In [10] the authors studied the behaviour of the category OrdGrp of pre-

ordered groups and monotone group homomorphisms. They show in par-
ticular that, unlike the categories Grp of groups and TopGrp of topological
groups, OrdGrp is not protomodular, and, consequently, the Split Short Five
Lemma does not hold. This relies essentially on the study of possible orders
(as very common in the literature, throughout by order we mean preorder)
in a semidirect product X oϕ B in Grp of two ordered groups X and B so
that

X
〈1,0〉

// X oϕ B π2
// B

〈0,1〉
oo

is a split extension in OrdGrp. Calling these orders compatible, it is shown in
[10] that compatible orders must contain the product order and be contained
in the (reverse) lexicographic order, and that they may not exist, or there
may be plenty of them.

This note complements the study of split extensions presented in [10]. In-
deed, we establish necessary and sufficient conditions in order to a compatible

Received December 6, 2022.
The first author acknowledges partial financial assistance by the Centre for Mathematics of

the University of Coimbra – UIDB/00324/2020, funded by the Portuguese Government through
FCT/MCTES.

This work was carried out within the scope of a grant from the Gulbenkian Foundation pro-
gramme Novos Talentos em Matemática.
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order in X oϕ B exist, and show that the compatibility of the lexicographic
order is essential. In case it exists, we identify both the maximal order, which
is the lexicographic order, and the minimal one, which in general does not
coincide with the product order.

Strong split extensions, or strong points, are exactly those with minimal
order. It is shown that strong points need not be stable under pullback, and
that the Split Short Five Lemma holds for stably strong points. This way we
identify a sort of relative protomodularity which is possibly weaker than the
notion introduced in [7], but which still guarantees the validity of the Split
Short Five Lemma, and, consequently, the reflection of isomorphisms by the
corresponding change of base functors, as for protomodularity [4, 1].

Finally, we investigate the existence of split extension classifier, showing
that this is possible only for special classes of split extensions, as for instance
for those that may be identified as ralis (=right adjoints and left inverses)
for the Ord-enrichment of OrdGrp considered in [11].

2. Preliminaries
Let OrdGrp be the category of ordered groups and monotone group homo-

morphisms. By an ordered group we mean a (non-necessarily abelian) group
X equipped with an order (i.e. a reflexive and transitive) relation ≤ such
that the group operation (here denoted by +) is monotone. We point out
that in general the group inversion is not monotone; it is in fact necessar-
ily anti-monotone. The order is completely determined by its positive cone
P = {x ∈ X ; x ≥ 0}, which is a submonoid of X closed under conjugation.
Moreover, for any group X, any submonoid closed under conjugation defines
an order on X.

Remark 2.1. Given a subset A of a group X, the least order on X whose
positive cone contains A is obtained in two steps: first we consider the closure
Â of A under conjugation and then the closure of Â under addition, which
we denote by 〈A〉.

The category OrdGrp has both an algebraic and a topological flavour; in-
deed, it was shown in [10] that the forgetful functors OrdGrp → Grp and
OrdGrp → Ord are, respectively, topological and monadic. These functors
allow us to construct limits and colimits easily, and are the basis for the
categorical study of OrdGrp. Therefore, in order to study the behaviour
of split extensions in OrdGrp we start by recalling briefly the behaviour of
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split extensions in Grp. By split extension we mean a short exact sequence

( X
k // A

f
// B ), with k = kerf and f = cokerk, where f is a split epi-

morphism and a splitting of f is given:

X
k // A

f
// B

soo (2.i)

A morphism between split extensions is a triple (a, b, c) making the following
diagram commutative

X

a
��

k // A

b
��

f
// B

c
��

soo

X ′
k′ // A′

f ′
// B′

s′oo

(2.ii)

so that k′ · a = b · k, f ′ · b = c · f , and s′ · c = b · s.
It is well-known that every split extension in Grp is isomorphic to one given

by a semidirect product, i.e. A is necessarily isomorphic to the group XoϕB
having as underlying set the cartesian product X × B and, for (x, b), (x′, b′)
in X ×B,

(x, b) + (x′, b′) = (x+ ϕ(b, x′), b+ b′),

where ϕ : B × X → X is an action of B on X (so that ϕ(0, x) = x,
ϕ(b, x+ x′) = ϕ(b, x) +ϕ(b, x′), ϕ(b′, ϕ(b, x)) = ϕ(b′+ b, x)). This induces an
isomorphism of split extensions

X
k // A

θ
��

f
// B

soo

X
〈1,0〉

// X oϕ B π2
// B

〈0,1〉
oo

,

with θ(a) = (a− sf(a), f(a)) for every a ∈ A, and ϕb(x) = ϕ(b, x) = s(b) +
k(x) (see for instance [9, Section 4.1] for details).

In Grp split extensions with given kernel have a classifier, in the sense that
the category of split extensions with kernel X has a terminal object, i.e.
there exists a split extension with kernel X

X // X o AUT(X) // AUT(X)oo (2.iii)
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such that, for each split extension (2.i) there exists exactly one morphism
(a, b, c) from (2.i) to (2.iii) with a = idX ; here AUT(X) is the group

{α : X → X ; α is an automorphism},

with the operation given by composition, and the addition on the semidirect
product X o AUT(X) given by

(x, α) + (x′, α′) = (x+ α(x′), α · α′).

The claimed morphism of split extensions is then given by

X
k // A

θ
��

f
// B

soo

X
〈1,0〉

// X oϕ B π2
//

1×ϕ
��

B
〈0,1〉

oo

ϕ
��

X
〈1,0〉

// X o AUT(X)
π2
// AUT(X)

〈0,1〉
oo

(2.iv)

where ϕ(b) = ϕb.
Alternatively one also says that in Grp actions are representable, since this

property can be stated as representability of a functor into Set (see [2, 3] for
details).

3. Compatible orders
Throughout this section

(X,PX)
〈1,0〉

// X oϕ B πB
// (B,PB)

〈0,1〉
oo (3.i)

is a split extension in Grp, and X and B are ordered groups, with positive
cones PX and PB respectively. As shown in [10] there may be no – or there
may be plenty of – orders in XoϕB making (3.i) a split extension in OrdGrp.
Here we will identify exactly those split extensions (3.i) for which there exist
compatible orders. For that we make use of:

• the product order, with positive cone Pprod = PX × PB, and
• the lexicographic order, with positive cone

Plex = {(x, b) ∈ X ×B | b > 0 or (b ∼ 0 and x ≥ 0)}.
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We point out that these orders need not be compatible in (3.i), and that
this lexicographic order is larger than the one defined in [10]. In fact the
lexicographic order in Proposition 5.1 of [10] should have been this one and
not the one considered in [10].

Proposition 3.1. For a positive cone P in XoϕB, the following conditions
are equivalent:

(i) P is compatible in (3.i);
(ii) Pprod ⊆ P ⊆ Plex.

Proof : (i)⇒(ii): Monotonicity of X
〈1,0〉

// X oϕ B B
〈0,1〉
oo implies (x, 0) ∈ P

and (0, b) ∈ P when x ∈ PX and b ∈ PB, and therefore (x, b) = (x, 0)+(0, b) ∈
P , that is Pprod ⊆ P .

If (x, b) ∈ P then necessarily b ≥ 0 because πB is monotone. When b ∼ 0
and (x, b) ∈ P , then (0, b) ∼ (0, 0) and so (x, 0) = (x, b) − (0, b) ∈ P , which
implies x ≥ 0 because 〈1, 0〉 : X → X oϕ B is a kernel in OrdGrp.

(ii)⇒(i): For every b ∈ PB, x ∈ X, (x, b) ≥ 0 implies b ≥ 0, hence πB is
monotone. For every x ∈ X, (x, 0) ∈ P if and only if x ∈ PX , and therefore
〈1, 0〉 : (X,PX) → (X oϕ B,P ) is the kernel of πB. Finally, if b ≥ 0 then
(0, b) ∈ Pprod ⊆ P , and so 〈0, 1〉 : (B,PB)→ (XoϕB,P ) is also monotone.

The lexicographic order plays an essential role here, since it is compatible
as soon as there is a compatible order, as we show next.

Theorem 3.2. Given (3.i), the following conditions are equivalent:

(i) There is a compatible order in (3.i).
(ii) For every b ∈ B ϕb is monotone, and, if b ∼ 0 then ϕb ∼ id (point-

wise).
(iii) The lexicographic order is compatible in (3.i).

Proof : (i)⇒(ii): Let P be a compatible positive cone. If x ≥ 0, then, for any
b ∈ B, (ϕb(x), 0) = (0, b)+(x, 0)−(0, b) ∈ P , that is ϕb(x) ≥ 0. Now let b ∼ 0
in B. Then, for every x ∈ X, (x− ϕb(x), b) = (x, 0) + (0, b)− (x, 0) ∈ P and
so x ≥ ϕb(x); this, together with −x ≥ ϕb(−x) = −ϕb(x) gives x ∼ ϕb(x).

(ii)⇒(iii): We need to prove that Plex is a positive cone, that is, it is
closed under addition and conjugation. If (x, b), (x′, b′) ∈ P and b > 0 or
b′ > 0, then, obviously, (x, b) + (x′, b′) ∈ P ; if both b ∼ 0 and b′ ∼ 0, then in
(x, b)+(x′, b′) = (x+ϕb(x

′), b+b′) we have b+b′ ∼ 0 and x+ϕb(x
′) ≥ 0 because
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both x and ϕb(x
′) are positive. Now let (x, b) ∈ P and (y, a) ∈ XoϕB. Then

(y, a) + (x, b)− (y, a) = (y + ϕa(x)− ϕa+b−a(y), a+ b− a);

if b > 0, then a+b−a > 0 and so the pair above belongs to Plex; if b ∼ 0, then
x ≥ 0 and a+ b− a ∼ 0, and so y + ϕa(x)− ϕa+b−a(y) ∼ y + ϕa(x)− y ≥ 0.

(iii)⇒(i) is trivial.

Corollary 3.3. If the order in B is antisymmetric, then there is a compatible
order in (3.i) if, and only if, ϕb is monotone for every b ∈ B.

We may consider now the set P of compatible positive cones for (3.i).
We have just shown that either P is empty or it has a top element, Plex,
when ordered by inclusion. A split extension (3.i) where X oϕ B has the
lexicographic order will be called maximal.

Proposition 3.4. Either P = ∅ or P is a complete lattice.

Proof : It is easily checked that the meet of compatible orders is a compatible
order.

Hence, if P 6= ∅, there is a least compatible order, which we call minimal
and describe next.

Proposition 3.5. Let P 6= ∅.
(1) The positive cone of the least compatible order for (3.i) is 〈Pprod〉, that

is, the one generated by PX × PB.
(2) Moreover, it coincides with Pprod if, and only if, ϕb ∼ id for every

positive element b of B.

Proof : (1) is obvious. To show (2) we use [10, Proposition 5.2], which assures
that Pprod is compatible if and only if ϕb(x) ≥ x for all b ∈ PB and x ∈ X.
But this, together with ϕb(−x) ≥ −x gives ϕb ∼ id as claimed.

Remark 3.6. On one hand there are examples of (3.i) with no compatible
order, like for instance

(Z,N)
〈1,0〉

// Z o Z
π2
// (Z,Z)

〈0,1〉
oo

with ϕb(x) = (−1)bx, since ϕb is not monotone. On the other hand, Example
5.8 of [10] shows that there may be plenty of possible positive cones, even in
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the case when both X and B are abelian and have antisymmetric orders: it
is shown there that, for the split extension

(Z,N)
〈1,0〉

// Z× Z
π2
// (Z,N)

〈0,1〉
oo

P is an uncountable set. Indeed, a positive cone P on Z×Z can be determined
by a family of sets (Xj = {n ∈ Z ; (n, j) ∈ P})j∈Z, with Xj = ∅ if j < 0
and Xj =↑ −xn ⊆ Z for j ≥ 0 so that x0 = 0 and (xn)n∈N is a sequence in
N ∪ {∞} such that xn+m ≥ xn + xm.

Next we present a characterization of compatible orders inspired by the
latter example. We say that family of subsets (Xb)b∈B of X is compatible if
P = {(x, b) ; b ∈ B, x ∈ Xb} is a compatible positive cone.

Proposition 3.7. A family (Xb)b∈PB
of subsets of X is compatible if and

only if it is satisfies the following conditions:

(1) Xb 6= ∅ ⇔ b ∈ PB ⇔ 0 ∈ Xb;
(2) X0 = PX;
(3) (∀b, b′ ∈ PB) Xb + ϕb(Xb′) ⊆ Xb+b′;
(4) (∀a ∈ B) (∀b ∈ PB) (∀x ∈ X) x+ ϕa(Xb) ⊆ Xa+b−a + ϕa+b−a(x).

Proof : (1) and (2) guarantee that πB is monotone and the order of X is
inherited from the order of X oϕ B, while (3) and (4) are equivalent to
closure of P under addition and conjugation, respectively.

Remark 3.8. Although the previous result is just a way of formulating the
closure under addition and conjugation of P , it gives interesting information
on the behaviour of Xb under the action ϕa. Indeed, one concludes that, if
(Xb)b∈B is compatible, then:

(∀a ∈ B) (∀b ∈ PB) ϕa(Xb) = Xa+b−a.

This gives that, in particular, for all b ∈ PB, ϕb(Xb) = Xb, and that, for
conjugate positive elements b, b′ of B, Xb is isomorphic to Xb′, via the action
ϕ.

4. On S-protomodularity
The existence of different compatible orders shows that the Split Short

Five Lemma fails in OrdGrp, and so this category is not protomodular. One
may then ask whether OrdGrp is S-protomodular (cf. [7, Definition 3.1]), for
a suitable class S of split extensions, which in this context are usually called
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points, due to the fact that a split epimorphism f : A → B in a category
C, together with its splitting s : B → A, is nothing but a morphism from
the terminal object id : B → B into f : A → B in the slice category C/B
over B, which we will refer to as a point over B. We will denote by Pt(B)
the category of points (f : A → B, s : B → A) over B where a morphism
h : (f, s) → (f ′, s′) is a morphism h : A → A′ in C such that f ′ · h = f and
h · s = s′; PtS(B) is its full subcategory of points in S.

We recall that a split extension

X
k // A

f
// B

soo (4.i)

or, equivalently, a point (f, s) with kernel k, is strong if k and s are jointly
strongly epimorphic. It is stably strong if every pullback of it along any
morphism g : C → B is a strong point.

As in every protomodular category, in Grp every point is strong, hence also
stably strong, but that is not the case in OrdGrp. Below we identify the
strong points in OrdGrp. Also, one may wonder whether they are related to
the points (f, s) such that (f, s) is a rali (f is r ight adjoint and left inverse
to s) with respect to the Ord-enrichment of OrdGrp studied in [11]: given two
morphisms g, h : X → Y in OrdGrp, g ≤ h if g(x) ≤ h(x) for every positive
element x of X.

Lemma 4.1. Given a point (4.i) in OrdGrp, where we identify A with XoϕB
as usual, and P is its positive cone,

(1) (f, s) is a rali if, and only if, P = Pprod;
(2) (f, s) is strong if, and only if, P is minimal (i.e. P is generated by

Pprod).

Proof : (1) Assume that (f, s) is a rali, i.e. f · s = idB and s · f ≤ idA. Then,
for every (x, b) ∈ P , (0, b) = s(f(x, b)) ≤ (x, b), and therefore (0, 0) ≤ (x, 0),
which is equivalent to x ≥ 0 since k is an extremal monomorphism.

(2) Since (f, s) is always strong as a point in Grp, we only have to show that,
if k and s factor through a bijective morphism, then it is an isomorphism,
and this is easily seen to be the case exactly when P is minimal.

Remark 4.2. As a side remark we mention that a point (4.i) is a rali exactly

when the split extension PX
〈1,0〉

// P
π2
// PB

〈0,1〉
oo is a Schreier point (see [6]) in

the category of monoids.
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In [10, Proposition 6.2] it is shown that OrdGrp is S-protomodular when S

is the class of split extensions with the product order, i.e. rali points. Here
we analyse whether there is a larger class S of points that makes OrdGrp
an S-protomodular category. Denoting the classes of rali, strong and stably
strong points by Rali, Strong and Strong∗ respectively, we know that

Rali ⊆ Strong∗ ⊆ Strong and that we must have Rali ⊆ S ⊆ Strong∗.

First we show that the two inclusions on the left are strict.

Proposition 4.3. (1) Strong points are not stable under pullback.
(2) There is a stably strong point which is not a rali.

Proof : (1) With Z0 and Z the group of integers, respectively with P = {0}
and with the usual order, and ϕ : Z0×Z→ Z defined by ϕ1(x) = −x, consider
the strong point

Z0

〈1,0〉
// Z0 oϕ Z π2

// Z;
〈0,1〉
oo

that is, Z0 oϕZ is equipped with the minimal order. This point is not stably
strong, as we show next.

Indeed, for any strong point (4.i) such that there exists b ≥ 0 with ϕb 6≥ id
but ϕmb ≥ id for some natural number m 6= 0 (here by ϕmb we mean ϕb
computed m times), we may consider its pullback along f : Z → B with
f(n) = nmb:

X o Z //

π2
��

X oϕ B

π2
��

Z
〈0,1〉

OO

f
// B

〈0,1〉
OO

Then the action of the point on the left is given by ϕmb , hence the product
order is the minimal compatible order in X o Z. However, this point is not
ordered by the product order: for x ∈ X such that ϕb(x) 6≥ x one has, since
b ≥ 0,

(−x, 0) + (0, b) + (x, 0) + (0, (m− 1)b) = (−x+ ϕb(x),m b) ≥ 0;

hence (−x+ϕb(x), 1) is positive in XoZ although −x+ϕb(x) is not positive,
by assumption.
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(2) Consider now the point

Q
〈1,0〉

// Qoϕ Z π2
// Z

〈0,1〉
oo (4.ii)

with ϕn(x) = 2nx (hence monotone for every n ∈ Z), equipped with the
minimal order, and let g : A→ Z be any morphism in OrdGrp. In its pullback
Qoψ A as in the diagram

Qoψ A //

��

Qoϕ Z

��

A g
// Z

the positive cone is given by P = {(x, a) ; a ≥ 0 and (x, g(a)) ≥ 0}, and the
action ψ is given by ψa(x) = ϕg(a)(x). Let us check that Q oψ A has the
minimal order: if (x, a) ≥ 0 and g(a) = 0, then both a and x are positive; if
(x, a) ≥ 0 and g(a) 6= 0, then, for r = x

1−2g(a)
one gets, by closure of P under

conjugation,

(r, 0) + (0, a)− (r, 0) = (r − ψa(r), a) = (r − ϕg(a)(r), a) = (x, a) ∈ P.
Therefore, every pullback of the point (4.ii) is a strong point, as claimed.

Lemma 4.4. The class Strong∗ of stably strong points in OrdGrp is closed
under finite products in the category of points.

Proof : Strong∗ contains the terminal object and is closed under binary prod-
ucts because they commute with pullbacks.

Theorem 4.5. Let S = Strong∗ be the class of stably strong points in OrdGrp.
Then:

(1) The Split Short Five Lemma holds with respect to S; that is, for any
commutative diagram

0 // X
k //

a
��

A
f
//

b
��

B
soo

c
��

// 0

0 // X ′
k′
// A′

f ′
// B′

s′oo // 0

(4.iii)

in the sense that b · k = k′ · a, c · f = f ′ · b and b · s = s′ · c, if the rows
are split extensions belonging to S and a and c are isomorphisms, then
b is an isomorphism as well.
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(2) For any morphism h : Y → B, the change of base functor
h∗ : PtS(B)→ PtS(Y ) is conservative.

Proof : (1) Given diagram (4.iii), we know that b is an isomorphism of groups,
because the Split Short Five Lemma holds in Grp. Since both orders are min-
imal, b is in fact an isomorphism in OrdGrp.

(2) Adapting the classical proof that the change of base functor between
points is conservative provided that the Split Short Five Lemma holds, it is
enough to observe that the change of base functor between points restricts
to PtS since S is pullback stable.

It is an open problem to know whether Strong∗ is stable under equaliz-
ers in the category of points, and consequently whether OrdGrp is Strong∗-
protomodular in the sense of [6, Definition 8.1.1], [7, Definition 3.1], al-
though the previous Theorem shows that OrdGrp has the desired properties
for relative protomodularity with respect to Strong∗. Moreover, OrdGrp is
Strong∗-protomodular in the sense of [5, Definition 8.5], where the author
only imposes that S is a stable class of strong points, and therefore this
weaker notion does not assure that the change of base functor, restricted to
S, is conservative (hence neither the Split Short Five Lemma). To assure
that the change of base functor, restricted to PtS, is conservative, the au-
thors of [7] impose that S is stable under equalizers in the category of points.
However this property seems quite complicated to check, as it is the case of
our example and, for instance, of the class of points studied in [12, 7.14].

Henceforth, we propose the following definition, which is in fact a trans-
lation of the notion of (absolute) protomodularity [1, Definition 3.1.3], not
making use of equalizers but instead focussing on the key property of proto-
modularity.

Definition 4.6. If S is a class of strong points of the category C, C is said
to be protomodular with respect to S if

(1) C has pullbacks of points in S along any morphism, which belong also
to S.

(2) For any morphism h : Y → B, the change of base functor
h∗ : PtS(B)→ PtS(Y ) reflects isomorphisms.

Then we can compare these notions using Proposition 3.2 of [7]:
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Theorem 4.7. If C is S-protomodular in the sense of [7], then the change of
base functor is conservative when restricted to PtS, and so C is protomodular
with respect to S.

5. On the existence of S-classifiers
Unlike the category TopGrp of topological groups (see [8]), OrdGrp has no

split extension classifiers, as we show in Theorem 5.7. Still, it is interesting
to analyse the existence, in OrdGrp, of split extension classifiers for special
classes of points, as we discuss in this last section.

Given a class S of split extensions in OrdGrp, we denote by SX the category
of split extensions in S with kernel X with morphisms triples (a, b, c) as in
(2.ii) with a = id.

Definition 5.1. If S is a class of split extensions in OrdGrp, we say that
OrdGrp has S-classifiers if the category SX has a terminal object; that is, for
every ordered group X there exists a split extension with kernel X

X
〈1,0〉

// X o A(X)
π2
// A(X)

〈0,1〉
oo (5.i)

in S such that, for each split extension in S with kernel X there exists exactly
one morphism in SX from it into (5.i).

Given an ordered group X, let AutP (X) be the group

Aut(X) = {α : X → X ; α is a monotone automorphism}
equipped with an order with positive cone P . Then, by Theorem 3.2, there
is an order in X o Aut(X) making

X
〈1,0〉

// X o AutP (X)
π2
// AutP (X)

〈0,1〉
oo (5.ii)

a split extension if, and only if, when α ∼ id in AutP (X) also α ∼ id pointwise
in X. We call such orders in Aut(X) admissible.

Proposition 5.2. Let S be a class of split extensions, X an ordered group
and P an admissible positive cone in Aut(X) such that (5.ii) belongs to S. If

X
〈1,0〉

// X o A(X)
π2
// A(X)

〈0,1〉
oo

is a classifier for SX, then A(X) is isomorphic, as a group, to Aut(X), and
its positive cone PA contains P .
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Proof : By definition of classifier, there exists a unique morphism γ making
the following diagram commute

X
〈1,0〉

// X o AutP (X)

��

π2
// AutP (X)

γ
��

〈0,1〉
oo

X
〈1,0〉

// X o A(X)
π2

// A(X).
〈0,1〉

oo

On the other hand, being a split extension in Grp, there is a group homomor-
phism ψ : A(X) → AUT(X) as in diagram (2.iv). Since we are in OrdGrp,
the image of ψ has only monotone automorphisms, i.e. ψ factors through
Aut(X) as ψ : A(X)→ Aut(X). Clearly ψ · γ = id and γ · ψ = id, hence we
may assume that A(X), as a group, is Aut(X); moreover, from the mono-
tonicity of γ it follows that its positive cone PA contains the positive cone P
of AutP (X).

Theorem 5.3. For every ordered group X, let P̃ = {α ; α(x) ∼ x for all x ∈
X}. The rali point

X
〈1,0〉

// X o AutP̃ (X)
π2
// AutP̃ (X).

〈0,1〉
oo (5.iii)

is a terminal object of RaliX.

Proof : First of all it is easy to check that the product order in XoAutP̃ (X),
which in fact coincides with the lexicographic order, is compatible in (5.iii).
So (5.iii) is a rali point.

Given a rali point X oϕ B π2
// B

〈0,1〉
oo with kernel X, we know that there

is a unique group homomorphism ϕ : B → AUT(X), which factors through
Aut(X), making diagram (2.iv) commute. Moreover, its corestriction ϕ̃ : B →
AutP (X) is monotone – since X oϕB has the product order, by Proposition
3.5(2) ϕ ∼ id for every b ≥ 0 – and 1× ϕ̃ : X oϕ B → X o Aut∼(X) is also
clearly monotone. Uniqueness of ϕ guarantees uniqueness of ϕ̃.

Corollary 5.4. OrdGrp has Rali-classifiers. �

This result can be naturally extended in the following way.
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Proposition 5.5. Let X be an ordered group and P an admissible positive
cone in Aut(X). Then the maximal point

X
〈1,0〉

// X o AutP (X)
π2
// AutP (X)

〈0,1〉
oo

classifies the class SX of split extensions X oϕ B π2
// B

〈0,1〉
oo with kernel X such

that

(1) for all b ∈ PB, ϕb ∈ P ;
(2) for all x ∈ X, x ≥ 0 provided that there exists b ∈ PB with (x, b) ≥ 0

in X oϕ B and ϕb ∼ id in AutP (X).

Proof : Given a point in SX , we know that there is a unique group homomor-
phism ϕ : B → Aut(X) making the following diagram

X
〈1,0〉

// X oϕ B π2
//

1×ϕ
��

B
〈0,1〉

oo

ϕ
��

X
〈1,0〉

// X o AutP (X)
π2
// AutP (X)

〈0,1〉
oo

commute. Then condition (1) guarantees that ϕ is monotone, and (2) gives
monotonicity of 1× ϕ.

Remark 5.6. Given an ordered group X such that, for every x ∈ X, ei-
ther x ≥ 0 or −x ≥ 0, consider in Aut(X) the admissible order defined by
P+ = {α ; (∀x ∈ PX) α(x) ≥ x}. We denote by Aut+(X) this ordered group
and by S+ the class of split extensions defined as in the proposition above,
that is, S+ is the union of S+

X for all such ordered groups X. The split exten-
sions classified by Aut+(X) depend very much on the action ϕ. For instance,
Aut+(Q) classifies a split extension

Q
〈1,0〉

// Qoϕ Z π2
// Z

〈0,1〉
oo

when ϕ = id only if it is a rali, while when ϕn(x) = 2n x it classifies any such
split extension.

We could use analogously the order in Aut(X) defined by P− = {α ; (∀x ≤
0) α(x) ≥ x}.
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Theorem 5.7. OrdGrp has no split extensions classifiers.

Proof : For each ordered group X, assume that X o AutP (X)
π2
// AutP (X)

〈0,1〉
oo

classifies the split extensions with kernel X. As we remarked above, when X
is an ordered group such that each x ∈ X is either positive or negative, both
P+ and P− are admissible positive cones in Aut(X). Hence, both P+ and
P− are contained in P . Since α ∈ P+ if and only if its inverse α−1 ∈ P−,
this shows that if α ∈ P+ then α ∼ id in P , and so α ∼ id pointwise in X
because P must be admissible. But this is not true in general: for instance,
for X = Q and n a natural number larger than 1, α(x) = nx ∈ P+ but
pointwise α 6∼ id.
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