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Abstract: Stochastic alternating algorithms for bi-objective optimization are con-
sidered when optimizing two conflicting functions for which optimization steps have
to be applied separately for each function. Such algorithms consist of applying a
certain number of steps of gradient or subgradient descent on each single objective
at each iteration. In this paper, we show that stochastic alternating algorithms
achieve a sublinear convergence rate of O(1/T ), under strong convexity, for the de-
termination of a minimizer of a weighted-sum of the two functions, parameterized
by the number of steps applied on each of them. An extension to the convex case is
presented for which the rate weakens to O(1/

√
T ). These rates are valid also in the

non-smooth case. Importantly, by varying the proportion of steps applied to each
function, one can determine an approximation to the Pareto front.
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1. Introduction
Numerous real-world application scenarios involve several potentially con-

flicting objectives, which need to be considered simultaneously. Such type of
optimization problems is referred to as multi-objective optimization (MOO).
One can find various applications spanning across applied engineering, opera-
tions management, finance, economics and social sciences, agriculture, green
logistics, and health systems [26]. As these objectives are usually competing
among each other, it is not possible to find a single solution which is optimal
with respect to all objectives. The goal of MOO is to find a set of equally
good solutions known as Pareto optimal solutions or efficient points. Roughly
speaking for each Pareto optimal solution, there is no other point in the fea-
sible region leading to a simultaneous improvement in all objectives. The
determination of the set of Pareto optimal solutions helps decision makers to
define the best trade-offs among the several competing criteria.
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In this paper, we consider a continuous bi-objective optimization problem

min F (x) = (fa(x), f b(x))⊤, x ∈ X , (1)

where X is a nonempty bounded closed convex region. We say that the multi-
objective problem is smooth if all objective functions f i are continuously dif-
ferentiable. In the convergence theory of our algorithms, we will assume that
both functions are convex. Furthermore, both objectives involve randomness
in its parameters, in which case we expect that a true gradient or subgradi-
ent is not available or too expensive to compute. Instead, one can access a
unbiased estimator gi(x, ξ), i ∈ {a, b}, of a true gradient or subgradient of f i,
where ξ denotes some random variable. The optimality in MOO is defined via
the concept of Pareto dominance. More precisely, for the general bi-objective
problem (1), we say that x (weakly) dominates y if f i(x) ≤ f i(y),∀i ∈ {a, b},
and F (x) ̸= F (y). A point x ∈ X is called a (strictly) non-dominated solu-
tion or Pareto optimal solution if it is not (weakly) dominated by any other
point in X . The set of non-dominated solutions denoted by P forms the
so-called Pareto front F (P) = {F (x) : x ∈ P}.

1.1. A quick overview of multi-objective optimization methods.
Depending on whether the decision maker’s preference is explicitly involved
during the optimization process, two categories of approaches, namely a pri-
ori and a posteriori methods, are mainly considered in the existing multi-
objective optimization literature.
The a priori methods incorporate the preference to reduce the multi-

objective problem into a single-objective one, which can then be tackled
by classical single-objective optimization algorithms. Such preferences could
be expressed via weights put on different objectives, desired upper bounds
of some objectives, or utility functions, corresponding to the weight-sum
method [25], the ϵ-constrained method [27], and the utility function
method [10, 30]. In the weighted-sum method, one assigns each objective
a non-negative weight λi and then optimizes the weighted-sum function
S(x, λ) =

∑
i λif

i(x). By varying the weights in a convex linear combi-
nation one is guaranteed to find all Pareto solutions when the functions are
convex. The ϵ-constrained method consists of optimizing one objective using
given upper bounds, i.e., min f i(x) subject to f j(x) ≤ ϵj,∀j ̸= i. The util-
ity function method is a more general approach in this category. A utility
function U is a real function quantifying the overall preference among the
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competing objectives [10]. Given two candidate solutions x and y, then the
decision maker prefers x to y if U(F (x)) > U(F (y)).
As for the a posteriori methods, the solution process aims at producing all

the Pareto optimal solutions or a representative subset of the Pareto optimal
solutions, out of which a single “best” solution is then selected according to
the decision maker’s preferences. A technique often used is to maintain and
update a list of candidates iteratively based on a heuristic or rigorous mech-
anism. The class of (a posteriori) evolutionary multi-objective optimization
algorithms [3, 13] using metaheuristics has been a very popular research
topic since 1990’s. Moreover, in the past two decades, many rigorous descent
methods [24] have been developed, namely multi-objective versions of the
zero-order method [15], the steepest descent [16, 17, 18, 20, 22, 23], the sub-
gradient methods [5, 14], the proximal gradient [6, 8, 38, 39], the conjugate
gradient methods [32], the trust-region methods [35, 40], and the Newton
methods [19, 21, 33, 34]. These methods attempt to decrease the individual
objective values simultaneously in some sense, and the convergence of the
generated iterates to a Pareto first-order stationary point is rigorously estab-
lished under reasonable assumptions. Such a common descent direction for
all the objectives is usually computed at each iteration by solving a certain
sub-problem that takes into account the gradient and/or Hessian information
of all the objectives.
Stochastic multi-objective optimization (SMOO) deals with the case where

one or multiple objective functions involve uncertainty or noisy data. One
usually formulates the objective functions in the form of expectation with
respect to some random variables and approximate them by the sample av-
erage approximation (SAA) technique. Two main approaches [1, 2, 11] for
solving the resulting SMOO problems are the multi-objective methods and
the stochastic methods. While the former reduces the SMOO problem into
a deterministic MOO problem, the later converts the original problem into a
single-objective stochastic problem by scalarization.
The alternating optimization algorithms considered in this paper belong

to the a priori category. Instead of decreasing individual objectives simul-
taneously at each iteration, such algorithms separately optimize them, one
after the other, and we will see in this paper that these algorithms eventually
optimize a certain convex linear combination of the two functions. In terms
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of how the stochasticity is handled, our paper uses the stochastic approxi-
mation (SA) technique (stochastic gradient-based methods) which has been
recently considered for SMOO by [29, 36].
An example of stochastic alternating algorithms for bi-objective optimiza-

tion arises in fair clustering, where one tries to capture a trade-off between
clustering cost and balance among different demographic groups defined by
sensitive attributes (see [12, 7, 37, 41]). A perfectly balanced solution re-
quires that each cluster has exactly the same proportions of each group, but
such solution is not necessarily the one that minimizes the clustering cost.
Fair clustering can be formulated as a bi-objective problem (see [28, Prob-
lem (2)]), involving two non-convex and non-smooth functions. The problem
is originally discrete but a continuous relaxation of the binary assignment
variables can be considered. In [28], we introduced a stochastic alternat-
ing balance fair k-means (SAfairKM) approach for fair clustering. In this
application we could not find a reasonable way to optimize a convex linear
combination of the two functions. Rather, we were faced with a situation
where we knew how to optimize them separately.

1.2. Contribution of this paper. In this paper, we establish rates of con-
vergence for stochastic alternating bi-objective optimization algorithms, both
in the smooth and non-smooth cases, and under both simple and strong con-
vexity. It is shown that the algorithms exhibit sublinear convergence rates
of O(1/T ) when determining a Pareto solution, under strong convexity and
classical assumptions of gradients or subgradients. Moreover, we show that
downgrading strong convexity to convexity results in a degradation of the
convergence rate from O(1/T ) to O(1/

√
T ). It is remarkable that we recover

the same convergence rates of the corresponding single-objective stochastic
gradient/subgradient methods. Our theory evolves around an ingenious ap-
plication of the Intermediate Value Theorem (IVT) to aggregate the steps
applied when separately optimizing each function. The target Pareto solu-
tion is defined by selecting a convex span of the number of steps applied to
each function. By varying the weight in this convex span, one can determine
the whole Pareto front in the convex case. It is the application of the IVT
that brings the convex span of the effort into the convergence rates.
Methods like weighted-sum or ϵ-constrained would be the reasonable choices

in most practical applications whenever it is possible to optimize a convex
linear combination of the objective functions or optimize one of them subject
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to the others be within a certain range. Our alternating methodology would
be chosen when optimizing such a combination is not possible. That is the
case when the functions are defined by some form of black-box for which
there is a legacy or binary code to carry out the optimization. That is also
the case when there is some form of function-dependent descent step [28].
Our methodology would also be chosen when optimizing such combination is
possible but not desirable, which may happen for instance when the functions
exhibit a scale that is very different and hard to balance.

2. Alternating bi-objective optimization algorithms
The key idea of the alternating bi-objective optimization for solving (1)

consists of iteratively taking na gradient (or subgradient) descent steps for
the first objective and then nb gradient (or subgradient) descent steps for the
second objective. For simplicity, we denote such na + nb steps as one single
iteration of the algorithm. The stochastic alternating bi-objective gradient
or subgradient algorithm (SA2GD) is formally described in Algorithm 1. At
every iteration t, starting at xt = ya0,t, the algorithm computes two sequences

of intermediate iterates, {yar,t}
na
r=1 and {ybr,t}

nb
r=1. Let PX denote the orthogonal

projection operator that projects the new iterate back to the feasible region.
Such an operator is well-defined because we assume a compact and convex
feasible region.

Algorithm 1 Stochastic alternating bi-objective gradient (or subgradient)

algorithm (SA2GD)

1: Input: Initial point x0 = ya0,0 and a step size sequence {αt}.
2: Output: A likely non-dominated or Pareto solution xT = ya0,T .
3: for t = 0, 1, . . . , T − 1 do
4: for r = 0, . . . , na − 1 do
5: Generate a stochastic gradient ga(yar,t, ξ

r
t ).

6: Update yar+1,t = yar,t − αtg
a(yar,t, ξ

r
t ).

7: Set yb0,t = yana,t
.

8: for r = 0, . . . , nb − 1 do
9: Generate a stochastic gradient gb(ybr,t, ξ

na+r
t ).

10: Update ybr+1,t = ybr,t − αtg
b(ybr,t, ξ

na+r
t ).

11: Set xt+1 = ya0,t+1 = PX (y
b
nb,t

).
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Similarly, in the case where both objectives are non-smooth but
sub-differentiable, one can develop a counterpart stochastic alternating bi-
objective subgradient method by simply replacing stochastic gradients used
in Lines 5 and 9 by stochastic subgradients.
The stochastic gradient algorithm for SMOO (stochastic multi-gradient)

computes one point in the Pareto front (following a steepest descent princi-
ple) [29, 36]. The alternating one also computes just one point. The difference
is that the stochastic multi-gradient method is not parameterized or scalar-
ized, and so the only form to use it to compute the whole Pareto front is to
incorporate it in a non-dominated list updating mechanism or some form of
hotstarting or randomization. The alternating one works like the weighted-
sum and ϵ-constrained methods, and it involves parameters such that when
varied allow us to capture the whole Pareto front (the optimization effort
quantified by na, nb).

3. Convergence analysis
Our convergence analysis starts with an easier case where both objectives

are assumed smooth and strongly convex. When we remove smoothness from
the assumptions, the same convergence rate is maintained. Furthermore, in
both cases, relaxing strong convexity to convexity leads to degradation of
convergence rates from O(1/T ) to O(1/

√
T ).

3.1. The smooth and strongly convex case. We first assume that both
objective functions are smooth and strongly convex and establish a O(1/T )
sublinear convergence rate for the stochastic alternating bi-objective gra-
dient descent (SA2GD) algorithm. At every iteration t, starting at xt =
ya0,t, SA2GD computes two sequences of intermediate iterates, {yar,t}

na
r=1 and

{ybr,t}
nb
r=1. We first make a formal assumption on the boundedness of the

feasible region.

Assumption 3.1. (Bounded feasible region) The feasible region X is
compact, and in particular there exists a positive constant Θ such that

max
x,x̄∈X

∥x− x̄∥ ≤ Θ < ∞.

Then, we formalize the classical smoothness assumption of Lipschitz con-
tinuity of the gradients.
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Assumption 3.2. (Lipschitz continuous gradients) The individual true
gradients are Lipschitz continuous with Lipschitz constants Li > 0, i ∈ {a, b},
i.e.,

∥∇f i(x)−∇f i(x̄)∥ ≤ Li∥x− x̄∥, ∀(x, x̄) ∈ X × X .

Note that any continuous function attains a maximum on a compact set,
and thus one can assume the existence of positive constants M i

∇, i ∈ {a, b},
such that

∥∇f i(x)∥2 ≤ M i
∇, ∀x ∈ X . (2)

In addition to Assumption 3.2, we impose strong convexity in both objective
functions.

Assumption 3.3. (Strong convexity) For all i = {a, b}, there exists a
scalar ci > 0 such that

f i(x̄) ≥ f i(x) +∇f i(x)⊤(x̄− x) +
ci
2
∥x̄− x∥2, ∀(x, x̄) ∈ X × X .

Note that based on the above assumption, the weighted-sum function
S(x, λ) = λfa(x) + (1− λ)f b(x), λ ∈ [0, 1], is also strongly convex with con-
stant c = min(ca, cb). Given the individual stochastic gradients gi(xt, ξt),∀i ∈
{a, b}, generated with random variable ξt, we use Eξt[·] to denote the con-
ditional expectation taken with respect to ξt. We also impose the following
two classical assumptions of stochastic gradients.

Assumption 3.4. For both objective functions i ∈ {a, b}, and all iterates
t ∈ N, the individual stochastic gradients gi(xt, ξt) satisfy the following:

(a) (Unbiased gradient estimation) Eξt[g
i(xt, ξt)] = ∇f i(xt), ∀i ∈

{a, b}.
(b) (Bound on the second moment) There exist positive

scalars Gi > 0 and Ḡi > 0 such that

Eξt[g
i(xt, ξt)∥2] ≤ Gi + Ḡi∥∇f i(xt)∥2, ∀i ∈ {a, b}.

The above assumptions are the commonly used ones in classical stochastic
gradient methods [9], basically assuming reasonable bounds on the expecta-
tion and variance of the individual stochastic gradients.
Our main result stated below shows that SA2GD drives the expected opti-

mality gap of the weighted-sum function S(·, λ(na, nb)) to zero at a sublinear
rate of 1/T , where λ(na, nb) = na/(na + nb), when using a decaying step size
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sequence. By varying na and nb in {1, . . . , ntotal}, such that ntotal = na + nb,
one can capture the entire trade-off between fa and f b.

Theorem 3.1. (Sublinear convergence rate of SA2GD in the smooth
and strongly convex case) Let Assumptions 3.1-3.4 hold and x∗ be the
unique minimizer of the weighted function S(·, λ∗) in X , where
λ∗ = λ(na, nb) = na/(na + nb). Choosing a diminishing step size sequence
αt =

2
c(t+1)(na+nb)

, the sequence of iterates generated by the SA2GD algorithm

satisfies

min
t=1,...,T

E[S(xt, λ∗)]− S(x∗, λ∗) ≤ 4

c(T + 1)

(
Ĝ2 + LΘĜ

)
.

where Ĝ =
√
G+ ḠM∇, L = max(La, Lb), G = max(Ga, Gb),

Ḡ = max(Ḡa, Ḡb), and M∇ = max(Ma
∇,M

b
∇).

Proof : The proof is divided in three parts for better organization and under-
standing. In the first part, one obtains an upper bound on the norm of the
iterates, Eξt[∥xt+1 − x∗∥2]. Strong convexity of the weighted-sum function is
applied in the second part. The third part concludes the proof using stan-
dard arguments. For simplicity, we let zt = yb0,t = yana,t

be the intermediate
point at each iteration.

Part I: Bound on the iterates error using the Intermediate Value
Theorem. At any iteration t, the sequence of stochastic gradients is com-
puted from drawing the sequence of random variables ξt = {ξ0t , . . . , ξ

na+nb−1
t }.

We have

xt+1 − x∗ = PX

(
zt − αt

nb−1∑
r=0

gb(ybr,t, ξ
r
t )

)
− x∗,

= PX

(
xt − αt

na−1∑
r=0

ga(yar,t, ξ
r
t )− αt

nb−1∑
r=0

gb(ybr,t, ξ
na+r
t )

)
− x∗.

Since the sequence ξt is drawn independently, using Assumption 3.4 (a)
one has

Eξt[g
a(yar,t, ξ

r
t )] = Eξ0t ,...,ξ

r−1
t

[Eξrt [g
a(yar,t, ξ

r
t )]] = Eξ0t ,...,ξ

r−1
t

[∇fa(yar,t)]
= Eξt[∇fa(yar,t)],

where the last equality holds due to the independence between yar,t and

{ξrt , . . . , ξ
na+nb−1
t }. Similarly, we have Eξt[g

b(ybr,t, ξ
na+r
t )] = Eξt[∇f b(ybr,t)].
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Then, taking square norms and expectations over the random variables ξt
on both sides yields

Eξt[∥xt+1 − x∗∥2] ≤ ∥xt − x∗∥2

+ α2
tEξt[∥

na−1∑
r=0

ga(yar,t, ξ
r
t ) +

nb−1∑
r=0

gb(ybr,t, ξ
na+r
t )∥2]

− Eξt[2αt(xt − x∗)
⊤(

na−1∑
r=0

∇fa(yar,t) +
nb−1∑
r=0

∇f b(ybr,t))],

(3)

which holds by the non-expansiveness property of the orthogonal projection
operator.
We now claim, by applying a version of the Intermediate Value Theorem

given in Proposition A.1, that the last term of the right-hand side in (3)
can be written as −2αt(xt − x∗)

⊤Eξt[na∇fa(wa
t ) + nb∇f b(wb

t)] for some wa
t

and wb
t . In fact, we apply Proposition A.1 to the real continuous function

ϕi(y) = −2αt(xt−x∗)
⊤∇f i(y), from which we then know that wi

t is a convex
linear combination of a sequence of points {yir,t}

ni−1
r=0 for both i ∈ {a, b}.

Using a combination of (2) and Assumption 3.4 (b), the bound for the
second moment of the stochastic gradients is given by

Eξt[∥gi(yir,t, ξrt )∥2] ≤ G+ ḠM∇, Eξt[∥gi(yir,t, ξrt )∥] ≤
√
G+ ḠM∇, (4)

where the second bound results from applying Jensen’s inequality to the first
one. Hence, the second term in the right-hand side of (3) can be bounded by

Eξt[∥
na−1∑
r=0

ga(yar,t, ξ
r
t ) +

nb−1∑
r=0

gb(ybr,t, ξ
na+r
t )∥2]

≤ 2Eξt[∥
na−1∑
r=0

ga(yar,t, ξ
r
t )∥2] + 2Eξt[∥

nb−1∑
r=0

gb(ybr,t, ξ
na+r
t )∥2]

≤ 2na

na−1∑
r=0

Eξt[∥ga(yar,t, ξrt )∥2] + 2nb

nb−1∑
r=0

Eξt[∥gb(ybr,t, ξ
na+r
t )∥2]

≤ 2(na + nb)
2(G+ ḠM∇).
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We thus arrive at

Eξt[∥xt+1 − x∗∥2] ≤ ∥xt − x∗∥2 + 2α2
t (na + nb)

2(G+ ḠM∇)

− 2αt(xt − x∗)
⊤Eξt[na∇fa(wa

t ) + nb∇f b(wb
t)].

(5)

By adding and subtracting 2αt(xt − x∗)
⊤(na∇fa(xt) + nb∇f b(xt)) in the

right-hand side of (5), we further rewrite it as

Eξt[∥xt+1 − x∗∥2] ≤ ∥xt − x∗∥2 + 2α2
t (na + nb)

2(G+ ḠM∇)

− 2αt(xt − x∗)
⊤(na∇fa(xt) + nb∇f b(xt))

+ 2αt∥xt − x∗∥Eξt[∥na∇fa(wa
t )− na∇fa(xt)∥]

+ 2αt∥xt − x∗∥Eξt[∥nb∇f b(wb
t)− nb∇f b(xt)∥].

(6)

Note that the last two terms are derived by the Cauchy–Schwarz and Jensen’s
inequalities.

Part II: Using strong convexity. Selecting λ∗ = λ(na, nb) = na/(na+nb),
by the strong convexity of the weighted-sum function, one has

∇xS(xt, λ∗)
⊤(xt − x∗) ≥ S(xt, λ∗)− S(x∗, λ∗) +

c

2
∥xt − x∗∥2,

which is equivalent to

(xt − x∗)
⊤(na∇fa(xt) + nb∇f b(xt))

≥ (na + nb)(S(xt, λ∗)− S(x∗, λ∗) +
c

2
∥xt − x∗∥2).

(7)

From Assumption 3.2, we obtain a bound for the last two terms of (6) in
the form

2αt∥xt − x∗∥Eξt[∥ni∇f i(wi
t)− ni∇f i(xt)∥]

≤ 2αtLni∥xt − x∗∥Eξt[∥xt − wi
t∥],∀i ∈ {a, b}.

(8)

According to Proposition A.1, wi
t is a convex linear combination of a sequence

of points {yir,t}
ni−1
r=0 for i ∈ {a, b}. One can write wi

t =
∑ni−1

r=0 βry
i
r,t with

βr ≥ 0, r = 0, . . . , ni − 1 , and
∑ni−1

r=0 βr = 1. An explicit upper bound of
∥xt − wi

t∥ can then be derived as follows

∥xt −
ni−1∑
r=0

βry
i
r,t∥ = ∥

ni−1∑
r=0

βr(xt − yir,t)∥ ≤
ni−1∑
r=0

βr∥xt − yir,t∥. (9)
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Using yir,t = yi0,t −
∑r−1

j=0 αtg
i(yij,t, ξ

j
t ) and applying the triangle inequality, we

have

∥xt − yar,t∥ ≤ αt

r−1∑
j=0

∥ga(yaj,t, ξ
j
t )∥, (10)

and

∥xt − ybr,t∥ = ∥xt − yana,t
+

r−1∑
j=0

αtg
b(ybj,t, ξ

na+j
t )∥

≤ αt

na−1∑
j=0

∥ga(yaj,t, ξ
j
t )∥+ αt

r−1∑
j=0

∥gb(ybj,t, ξ
na+j
t )∥.

(11)

Plugging (10) into (9) with i = a results in (note that ya0,t = xt)

∥xt − wa
t ∥ ≤ αt

na−1∑
r=1

βr

r−1∑
j=0

∥ga(yaj,t, ξ
j
t )∥

= αt

na−1∑
j=0

∥ga(yaj,t, ξ
j
t )∥

na−1∑
r=j+1

βr ≤ αt

na−1∑
j=0

∥ga(yaj,t, ξ
j
t )∥.

(12)

Applying expectations on both sides of (12), followed by the bound (4) on
the second moment of the stochastic gradients,

Eξt[∥xt − wa
t ∥] ≤ αtna

√
G+ ḠM∇. (13)

Similarly, merging (11) into (9) with i = b leads to

∥xt − wb
t∥ ≤ αt

na−1∑
j=0

∥ga(yaj,t, ξ
j
t )∥+ αt

nb−1∑
j=0

∥gb(ybj,t, ξ
na+j
t )∥, (14)

and applying expectations

Eξt[∥xt − wb
t∥] ≤ αt(na + nb)

√
G+ ḠM∇. (15)

Finally, combining (8), (13), and (15) yields

2αt∥xt − x∗∥
∑

i∈{a,b}

Eξt[∥ni∇f i(wi
t)− ni∇f i(xt)∥]

≤ 2α2
tLΘ(na + nb)

2
√
G+ ḠM∇.

(16)



12 S. LIU AND L. N. VICENTE

Part III: Bound on the optimality gap in terms of weighted-sum
function. Applying inequalities (7) and (16) to (6) leads to

Eξt[∥xt+1 − x∗∥2] ≤ (1− αt(na + nb)c)∥xt − x∗∥2

− 2αt(na + nb)(S(xt, λ∗)− S(x∗, λ∗)) + α2
tM,

(17)

where we let M = 2(na + nb)
2(G + ḠM∇ + LΘ

√
G+ ḠM∇). Plugging in

αt =
2

c(na+nb)(t+1) and rearranging the last inequality result in

S(xt, λ∗)− S(x∗, λ∗)

≤ (1− αt(na + nb)c)∥xt − x∗∥2 − Eξt[∥xt+1 − x∗∥2] + α2
tM

2αt(na + nb)

≤ c(t− 1)

4
∥xt − x∗∥2 −

c(t+ 1)

4
Eξt[∥xt+1 − x∗∥2] +

M̃

c(t+ 1)
,

where M̃ = M
(na+nb)2

. By taking total expectation over {ξt}, multiplying both

sides by t, and summing over t = 1, . . . , T , one obtains

T∑
t=1

t(E[S(xt, λ∗)]− S(x∗, λ∗))

≤
T∑
t=1

(
ct(t− 1)

4
E[∥xt − x∗∥2]−

ct(t+ 1)

4
E[∥xt+1 − x∗∥2]

)

+
T∑
t=1

M̃t

c(t+ 1)

≤ − cT (T + 1)

4
E[∥xT+1 − x∗∥2] +

T∑
t=1

M̃t

c(t+ 1)
≤ T

c
M̃.

Dividing both sides of the last inequality by
∑T

t=1 t yields

min
t=1,...,T

E[S(xt, λ∗)]− S(x∗, λ∗) ≤ 2

c(T + 1)
M̃,

which concludes the proof.

The key of the proof was to bound the deviation from wi
t to xt using the step

size αt. It is in fact the use of the decaying step size that compensates for the
error O(α2

t ) generated when bundling the gradients using the Intermediate
Value Theorem. Note that the above theorem is still guaranteed when one
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relaxes Assumption 3.3 to the case where both objectives are convex and one
of them is strongly convex, as (7) still holds in such a case. A rate in terms
of the iterates can be also derived.

Corollary 3.1. Let Assumptions 3.1-3.4 hold and x∗ be the unique minimizer
of the weighted function S(·, λ∗) in X , where λ∗ = λ(na, nb) = na/(na + nb).
Choosing a diminishing step size sequence αt = γ/t where γ > 1

2(na+nb)c
, the

sequence of iterates generated by the SA2GD algorithm satisfies

E[∥xT − x∗∥2] ≤ max{2γ2M(2c(na + nb)γ − 1)−1, ∥x0 − x∗∥2}
T

.

where M = 2(na + nb)
2(G+ ḠM∇ + LΘ

√
G+ ḠM∇).

Proof : Since the weighted-sum function S(·, λ∗) is strongly convex, one also
has

(∇S(x, λ)−∇xS(x̄, λ))
⊤(x− x̄) ≥ c∥x− x̄∥2, ∀(x, x̄) ∈ X × X .

Letting x = xt, x̄ = x∗, and λ = λk in the above inequality leads to

∇S(xt, λ∗)⊤(xt − x∗) ≥ c∥xt − x∗∥2,
where we used the fact that ∇S(x∗, λ∗)⊤(xt − x∗) = (PX∇S(x∗, λ∗))⊤(xt −
x∗) = 0. Hence,

(xt − x∗)
⊤(na∇fa(xt) + nb∇f b(xt)) ≥ c(na + nb)∥xt − x∗∥2. (18)

Plugging (16) and (18) in (6) results in

E[∥xt+1 − x∗∥2] ≤ (1− 2c(na + nb)αt)E[∥xt − x∗∥2] + α2
tM.

Using αt = γ/t with γ > 1/(2c(na + nb)) and the induction argument in [31,
Eq. (2.9) and (2.10)] lead us to the result.

3.2. The non-smooth and strongly convex case. In this section, we
analyze the convergence rates for stochastic alternating bi-objective descent
(SA2GD) when subgradients are used in Algorithm 1. Instead of using gradi-
ents, the notation gi(x, ξ),∀i ∈ {a, b}, denotes now the individual stochastic
subgradient generated using a random variable ξ. Let ∂f i(x) be the subdif-
ferential at x. Next, we describe the assumptions under which SA2GD will
be analyzed (in addition to Assumption 3.1). We formalize first a classical
assumption of Lipschitz continuity of both objective functions, which is often
satisfied in practice.
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Assumption 3.5. (Lipschitz continuous functions) Both objective func-

tions are Lipschitz continuous with Lipschitz constants L̂i > 0, i ∈ {a, b},
i.e.,

|f i(x̄)− f i(x)| ≤ L̂i∥x̄− x∥, ∀(x, x̄) ∈ X × X .
We also impose the following two classical assumptions about stochastic

subgradients.

Assumption 3.6. For both objective functions i ∈ {a, b}, and all iterates
t ∈ N, the stochastic subgradients gi(xt, ξt) satisfy the following:

(a) (Unbiasedness) Eξt[g
i(xt, ξt)] ∈ ∂f i(xt).

(b) (Boundness) There exist positive constants L̃i > 0 such that
Eξt[∥gi(xt, ξt)∥2] ≤ L̃2

i .

The above assumptions are commonly used ones in classical stochastic sub-
gradient methods [4, Section 8.3]. For conciseness, we denote L̂ =

max{L̂a, L̂b} and L̃ = max{L̃a, L̃b}.
In addition to the above assumptions, we impose strong convexity in both

objective functions.

Assumption 3.7. (Strong convexity in the non-smooth case) For
both objective functions i ∈ {a, b}, there exists a scalar ĉi > 0 such that

f i(x̄) ≥ f i(x) + gi(x)⊤(x̄− x) +
ĉi
2
∥x̄− x∥2, ∀(x, x̄) ∈ X × X ,

for all subgradients gi(x) ∈ ∂f i(x).

Based on the above two assumptions, the weighted-sum function S(x, λ) =
λfa(x) + (1− λ)f b(x),∀λ ∈ [0, 1], is also Lipschitz continuous with constant

L̂ and strongly convex with constant ĉ = min{ĉa, ĉb}. Now, we are ready to
show a similar convergence rate result as Theorem 3.1. Readers are referred
to [4, Theorems 8.31 (a) and 8.37 (a)] for the single-objective counterparts.

Theorem 3.2. (Sublinear convergence rate of SA2GD in the non-
smooth and strongly convex case) Let Assumptions 3.1 and 3.5–3.7 hold
and x∗ be the unique minimizer of the weighted function S(·, λ∗) in X , where
λ∗ = λ(na, nb) = na/(na + nb). Choosing a diminishing step size sequence
αt =

2
ĉ(t+1)(na+nb)

, the sequence of iterates generated by the SA2GD algorithm

satisfies

min
t=1,...,T

E[S(xt, λ∗)]− S(x∗, λ∗) ≤ 4

ĉ(T + 1)

(
2L̃2 + L̂L̃+ ĉΘL̃

)
.
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Proof : Similar to the proof of Theorem 3.1, the proof is divided in three
parts. In the first part, one obtains an upper bound on the norm of the
iterates, Eξt[∥xt+1 − x∗∥2]. Strong convexity is applied in the second part.
We skip the third part as it is exactly the same as part III of Theorem 3.1.

Part I: Bound on the iterates error. At any iteration t, the sequence
of stochastic subgradients is computed from drawing the sequence of ran-
dom variables ξt = {ξ0t , . . . , ξ

na+nb−1
t }. Replacing the gradients in (3) by the

corresponding subgradients, one has

Eξt[∥xt+1 − x∗∥2]

≤ ∥xt − x∗∥2 + α2
tEξt[∥

na−1∑
r=0

ga(yar,t, ξ
r
t ) +

nb−1∑
r=0

gb(ybr,t, ξ
na+r
t )∥2]

− 2αtEξt[(xt − x∗)
⊤(

na−1∑
r=0

(fa)′(yar,t) +

nb−1∑
r=0

(f b)′(ybr,t))],

(19)

where (fa)′(x) ∈ ∂fa(x) and (f b)′(x) ∈ ∂f b(x) denote certain deterministic
subgradients at x for the two objectives respectively.
The upper bound for the second moment of the sequence of stochastic sub-

gradients
{ga(yar,t, ξrt )}

na−1
r=0 and {gb(ybr,t, ξ

na+r
t )}nb−1

r=0 at each iteration t can be derived
as follows.

Eξt[∥
na−1∑
r=0

ga(yar,t, ξ
r
t ) +

nb−1∑
r=0

gb(ybr,t, ξ
na+r
t )∥2]

≤ 2Eξt[∥
na−1∑
r=0

ga(yar,t, ξ
r
t )∥2] + 2Eξt[∥

nb−1∑
r=0

gb(ybr,t, ξ
na+r
t )∥2]

≤ 2na

na−1∑
r=0

Eξt[∥ga(yar,t, ξrt )∥2] + 2nb

nb−1∑
r=0

Eξt[∥gb(ybr,t, ξ
na+r
t )∥2]

≤ 2(na + nb)
2L̃2,

(20)

where L̃ = max(L̃a, L̃b).

Part II: Using strong convexity and Intermediate Value Theorem.
In order to get a bound for the term −2αtEξt[(xt − x∗)

⊤∑na−1
r=0 (fa)′(yar,t)] −
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2αtEξt[(xt − x∗)
⊤∑nb−1

r=0 (f b)′(ybr,t)], we will apply Assumption 3.7 multiple
times. For simplicity, the expectation symbol is temporarily ignored,

− 2αt(xt − x∗)
⊤

na−1∑
r=0

(fa)′(yar,t)

= − 2αt(xt − x∗)
⊤(fa)′(xt)

− 2αt(y
a
1,t − x∗)

⊤(fa)′(ya1,t)− 2αt(xt − ya1,t)
⊤(fa)′(ya1,t)

· · ·
− 2αt(y

a
na−1,t − x∗)

⊤(fa)′(yana−1,t)− 2αt(xt − yana−1,t)
⊤(fa)′(yana−1,t)

≤ − 2αt

na−1∑
r=0

(fa(yar,t)− fa(x∗) +
ĉ

2
∥yar,t − x∗∥2)

− 2αt

na−1∑
r=0

(xt − yar,t)
⊤(fa)′(yar,t)

≤ − 2αt(naf
a(wa

t )− naf
a(x∗))− ĉαtna∥wa

t − x∗∥2 + 2αt

na−1∑
r=0

∥xt − yar,t∥L̃a,

(21)

where we applied Assumption 3.6 (a) and Assumption 3.7 to get the first
inequality. The last inequality holds by applying Proposition A.1 to the qua-
dratic function ψa(x) = fa(x) − fa(x∗) +

ĉ
2∥x − x∗∥2, the Cauchy–Schwarz

inequality, and the combination of Assumption 3.6 (b) and the Jensen’s in-
equality ∥Eξt[g

i(xt, ξt)]∥2 ≤ Eξt[∥gi(xt, ξt)∥2]. Here, wa
t is a point in the convex

hull of {yar,t}
na−1
r=0 .

The second term ∥wa
t − x∗∥2 on the right hand side can be handled using

the triangle inequality, i.e.,
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∥wa
t − x∗∥2 ≥ (∥wa

t − xt∥ − ∥xt − x∗∥)2

= ∥xt − wa
t ∥2 + ∥xt − x∗∥2 − 2∥xt − wa

t ∥∥xt − x∗∥
≥ ∥xt − x∗∥2 − 2∥xt − wa

t ∥∥xt − x∗∥.

Applying the above inequality to (21) and using Assumption 3.1 result in

− 2αt(xt − x∗)
⊤

na−1∑
r=0

(fa)′(yar,t)

≤ − 2αt(naf
a(wa

t )− naf
a(x∗))− ĉαtna∥xt − x∗∥2

+ 2ĉΘαtna∥xt − wa
t ∥+ 2αt

na−1∑
r=0

∥xt − yar,t∥L̃a.

(22)

Similarly, we can obtain

− 2αt(xt − x∗)
⊤

nb−1∑
r=0

(f b)′(ybr,t)

≤ − 2αt(nbf
b(wb

t)− nbf
b(x∗))− ĉαtnb∥xt − x∗∥2

+ 2ĉΘαtnb∥xt − wb
t∥+ 2αt

nb−1∑
r=0

∥xt − ybr,t∥L̃b,

(23)

where wb
t is a point in the convex hull of {ybr,t}

nb−1
r=0 .
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Plugging the inequalities (3.2), (22)-(23) back in (19) and adding and sub-
tracting 2αt(naf

a(xt) + nbf
b(xt)) on the right-hand side yield

Eξt[∥xt+1 − x∗∥2] ≤ (1− ĉαt(na + nb))∥xt − x∗∥2 + 2α2
t (na + nb)

2L̃2

− 2αt(naf
a(xt) + nbf

b(xt)− (naf
a(x∗) + nbf

b(x∗)))

− 2αtEξt[naf
a(wa

t )− naf
a(xt) + nbf

b(wb
t)− nbf

b(xt)]

+ 2ĉΘαt(naEξt[∥xt − wa
t ∥] + nbEξt[∥xt − wb

t∥])

+ 2αtL̃(

na−1∑
r=0

Eξt[∥xt − yar,t∥] +
nb−1∑
r=0

Eξt[∥xt − ybr,t∥])

≤ (1− ĉαt(na + nb))∥xt − x∗∥2 + 2α2
t (na + nb)

2L̃2

− 2αt(naf
a(xt) + nbf

b(xt)− (naf
a(x∗) + nbf

b(x∗)))

+ 2L̂αt(naEξt[∥xt − wa
t ∥] + nbEξt[∥xt − wb

t∥])
+ 2ĉΘαt(naEξt[∥xt − wa

t ∥] + nbEξt[∥xt − wb
t∥])

+ 2αtL̃(

na−1∑
r=0

Eξt[∥xt − yar,t∥] +
nb−1∑
r=0

Eξt[∥xt − ybr,t∥]),

(24)

where, in the second inequality, we applied Assumption 3.5 to the fourth
term.
We now recall the bounds (10)–(12) and (14) on the distance from yar,t, y

b
r,t,

wa
t , and wb

t to xt. Applying expectation to these four bounds, followed by
Assumption 3.6 (b), gives us

Eξt[∥xt − yar,t∥] ≤ αtnaL̃

Eξt[∥xt − ybr,t∥] ≤ αt(na + nb)L̃

Eξt[∥xt − wa
t ∥] ≤ αtnaL̃

Eξt[∥xt − wb
t∥] ≤ αt(na + nb)L̃.

(25)

Finally, plugging (25) into (24) yields

Eξt[∥xt+1 − x∗∥2] ≤ (1− ĉαt(na + nb))∥xt − x∗∥2 + α2
tM

− 2αt(naf
a(xt) + nbf

b(xt)− (naf
a(x∗) + nbf

b(x∗))),
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where M = (4L̃2 + 2L̂L̃ + 2ĉΘL̃)(na + nb)
2. Now, we arrive at exactly the

same form of upper bound as (17) in the smooth case. Choosing the step
size sequence αt = 2

ĉ(t+1)(na+nb)
, the proof is then completed by the same

derivation as the Part III of the proof for Theorem 3.1.

In the above proof, since we could not use Lipschitz continuity of sub-
gradients, we applied the Intermediate Value Theorem after (instead of be-
fore) using the strong convexity assumption. The resulting quadratic term
∥wi

t − x∗∥2 from strong convexity was then merged into the ∥xt − x∗∥2 term
and the other alike O(α2

t ) terms, converting the bound on the iterate error
to what we had seen before in the smooth and strongly convex case.

3.3. The convex case. If we replace strong convexity (Assumption 3.7) by
(simple) convexity (see below), we will observe a degradation on the conver-
gence rate. Corollary 3.2 can be seen as a counterpart of the single objective
cases [4, Theorems 8.30 (b) and 8.35 (b)].

Assumption 3.8. (Convexity in the non-smooth case) For both ob-
jective functions i ∈ {a, b}, we have

f i(x̄) ≥ f i(x) + gi(x)⊤(x̄− x), ∀(x, x̄) ∈ X × X ,

for all subgradients gi(x) ∈ ∂f i(x).

Corollary 3.2. (Sublinear convergence rate of SA2GD in the non-
smooth and convex case) Let Assumptions 3.1, 3.5–3.6, and 3.8 hold
and x∗ be a minimizer of the weighted function S(·, λ∗) in X , where λ∗ =
λ(na, nb) = na/(na + nb). Choosing a diminishing step size sequence αt =

ᾱ√
t(na+nb)

, where ᾱ is any positive constant, the sequence of iterates generated

by the SA2GD algorithm satisfies

min
t=1,...,T

E[S(xt, λ∗)]− E[S(x∗, λ∗)] ≤
Θ2

2ᾱ + 4ᾱL̃2 + 2ᾱL̃L̂
√
T

.

Proof : The proof differs from the proof of Theorem 3.2 in Parts II and
III. When applying convexity to the second inequality of (21), the term
ĉαtna∥wa

t − x∗∥2 does not appear on the right-hand side anymore, and we
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derive the bound of the iterate error

Eξt[∥xt+1 − x∗∥2] ≤ ∥xt − x∗∥2 + 2α2
t (na + nb)

2L̃2

− 2αt(naf
a(xt) + nbf

b(xt)− (naf
a(x∗) + nbf

b(x∗)))

+ 2αtL̂Eξt[na∥xt − wa
t ∥+ nb∥xt − wb

t∥]

+ 2αtL̃(

na−1∑
r=0

Eξt[∥xt − yar,t∥] +
nb−1∑
r=0

Eξt[∥xt − ybr,t∥]).

(26)

Plugging (25) into (26) yields

Eξt[∥xt+1 − x∗∥2] ≤ ∥xt − x∗∥2 + α2
tM̂

− 2αt(naf
a(xt) + nbf

b(xt)− (naf
a(x∗) + nbf

b(x∗))),

where M̂ = (4L̃2 + 2L̃L̂)(na + nb)
2. The proof is completed by applying the

same standard arguments as in Theorem 5.3 of [29].

The non-smooth and convex case sheds light on the convergence behavior
of the SAfairKM algorithm for the original non-convex and non-smooth bi-
objective optimization problem [28].
For completeness, we conclude this section by the following corollary stat-

ing the convergence rate for the smooth and convex case without proof. The
proof is also derived by getting rid of the quadratic term −cαt(na+nb)∥xt−
x∗∥2 in (17) and then applying the standard arguments as Theorem 5.3 in [29].

Assumption 3.9. (Convexity in the smooth case) For both objective
functions i ∈ {a, b}, we have

f i(x̄) ≥ f i(x) +∇f i(x)⊤(x̄− x), ∀(x, x̄) ∈ X × X .

Corollary 3.3. (Sublinear convergence rate of SA2GD in the
smooth and convex case) Let Assumptions 3.1–3.2, 3.4, and 3.9 hold
and x∗ be a minimizer of the weighted function S(·, λ∗) in X , where λ∗ =
λ(na, nb) = na/(na + nb). Choosing a diminishing step size sequence αt =

ᾱ√
t(na+nb)

, where ᾱ is any positive constant, the sequence of iterates generated

by the SA2GD algorithm satisfies

min
t=1,...,T

E[S(xt, λ∗)]− E[S(x∗, λ∗)] ≤
Θ2

2ᾱ + 2ᾱĜ2 + 2ᾱLΘĜ
√
T

.
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As a final remark, the given upper bounds in Theorems 3.1-3.2 and Corol-
laries 3.2-3.3 also hold for the aggregated iterate x̄T =

∑T
t=1 txt/

∑T
t=1 t in the

strongly convex case and x̄T =
∑T

t=1 xt/T in the convex case. Such claims
follow from the following Jensen’s inequalities

S
(∑T

t=1 txt∑T
t=1 t

, λ∗

)
≤

∑T
t=1 tS(xt,λ∗)∑T

t=1 t
and S

(∑T
t=1 xt

T , λ∗

)
≤

∑T
t=1 S(xt,λ∗)

T .

4. A numerical experiment to illustrate the scalarization
by optimization effort
We now present an illustration of the behavior of the SA2GD method

in what regards its ability to determine the whole Pareto front when ap-
plied multiple times over a discretization of the optimization effort scalars na
and nb. For simplicity we have applied SA2GD to deterministic problems,
thus using full batch gradients. Four deterministic bi-objective problems were
selected from [15] involving only simple bound constraints. We will compare
the scalarization effort of SA2GD to the one of the weighted-sum method,
where each scalarized problem minx∈X λf

a(x) + (1 − λ)f b(x), λ ∈ (0, 1), is
solved by the same gradient descent methodology. For both approaches, we
use a fixed step size 10−3 at each iteration. The starting point for each run
is randomly generated within the feasible region.
Figure 1 illustrates the approximated Pareto fronts obtained from both

the SA2GD algorithm and the weight-sum algorithm for the selected prob-
lems. SA2GD was ran 201 times with na + nb = 200 and na ∈ {0, ..., 200}.
Weighted-sum was also run 201 times with λ ∈ {0, 1/200, . . . , 1}. In both
cases, we stopped each algorithmic run after 300 iterations. Regardless of the
shape of Pareto front (convex, concave, or disconnected), one observes that
SA2GD performs similarly to the weight-sum approach in terms of capturing
well-spread Pareto fronts from scalarization.

5. Conclusions
We have shown that stochastic alternating bi-objective gradient or subgra-

dient descent is convergent, achieving convergence rates aligned with what
is known for single-objective gradient (or subgradient) methods. The rates
are O(1/

√
T ) for convex functions and O(1/T ) for strongly convex functions,

and they hold for both smooth and non-smooth functions.
The analysis considered the case where all gradient (or subgradient) steps

are applied first in a block to one function and then to the other also in block.
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Figure 1. An illustration of the scalarization by optimization
effort of SA2GD when compared to the weighted-sum method.

We ingeniously applied the Intermediate Value Theorem to bundle all steps
taken on each of the functions, a process that led to an implicit scalarization
(naf

a+nbf
b)/(na+nb) of the two functions. It is however possible, following

a similar proof logic, to show that the convergence rates are maintained
regardless of the order according to which the gradient (subgradient) steps
for the two objectives are executed. In fact, we can even, within a single
iteration, randomly select the na positions where steps are applied to fa from
the na+nb total number of steps without impacting the rate of convergence.
Furthermore, the proposed stochastic alternating optimization framework

and theory could be generalized to more than two conflicting objectives.
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By varying the effort put in separately optimizing each objective within a
convex linear combination, one can capture a trade-off among the multiple
objectives.
In practice, many machine learning models lead to non-convex optimization

problems. Non-convexity is present in the original bi-objective fair k-means
clustering problem mentioned in the Introduction. A meaningful convergence
guarantee for the non-convex case is certainly a topic for future research.

Appendix A.Proposition using Intermediate Value The-
orem

Based on the Intermediate Value Theorem, we derive the following propo-
sition for the purpose of convergence rate analysis of the SA2GD algorithm.

Proposition A.1. Given a continuous real function ϕ(x) : Rn → R and a
set of points {xj}mj=1, there exists w ∈ Rn such that

mϕ(w) =
m∑
j=1

ϕ(xj),

where w =
∑m

j=1 µjxj, with
∑m

j=1 µj = 1, µj ≥ 0, i = 1, . . . ,m, is a convex
linear combination of {xj}mj=1.

Proof : The proposition is obtained by consecutively applying the Interme-
diate Value Theorem to ϕ(x). First, for the pair of points x1 and x2, there
exists a point w12 = µ12x1 + (1 − µ12)x2, µ12 ∈ [0, 1], such that ϕ(w12) =
(ϕ(x1) + ϕ(x2))/2 according to the Intermediate Value Theorem, which im-
plies that

∑m
j=1 ϕ(xj) = 2ϕ(w12) +

∑m
j=3 ϕ(xj). Then, there exists w13 =

µ13w12 + (1− µ13)x3, µ13 ≥ 0, such that ϕ(w13) = (2ϕ(w12) + ϕ(x3))/3 holds
given that the average function value (2ϕ(w12)+ϕ(x3))/3 lies between ϕ(w12)
and ϕ(x3). Notice that w13 can also be written as convex linear combination
of {x1, x2, x3}. The proof is concluded by continuing this process until xm is
reached.
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