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Abstract: Using tail bounds, we introduce a new probabilistic condition for func-
tion estimation in stochastic derivative-free optimization which leads to a reduction
in the number of samples and eases algorithmic analyses. Moreover, we develop
simple stochastic direct-search and trust-region methods for the optimization of a
potentially non-smooth function whose values can only be estimated via stochastic
observations. For trial points to be accepted, these algorithms require the estimated
function values to yield a sufficient decrease measured in terms of a power larger
than 1 of the algoritmic stepsize.

Our new tail-bound condition is precisely imposed on the reduction estimate
used to achieve such a sufficient decrease. This condition allows us to select the
stepsize power used for sufficient decrease in such a way to reduce the number of
samples needed per iteration. In previous works, the number of samples necessary
for global convergence at every iteration k of this type of algorithms was O(∆−4

k ),
where ∆k is the stepsize or trust region radius. However, using the new tail-bound
condition, and under mild assumptions on the noise, one can prove that such a
number of samples is only O(∆−2−ε

k ), where ε > 0 can be made arbitrarily small by
selecting the power of the stepsize in the sufficient decrease test arbitrarily close to 1.
The global convergence properties of the stochastic direct-search and trust-region
algorithms are established under the new tail bound condition.
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Trust-region methods.
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1. Introduction
We consider the following unconstrained optimization problem

min
x∈Rn

f(x) (1.1)

with f locally Lipschitz continuous and possibly non-smooth function with
inf f = f ∗ ∈ R. We assume that the original function f(x) is not computable,
and the only information available on f is given by a stochastic oracle pro-
ducing an estimate f̃(x) for any x ∈ Rn. In some contexts, we can assume
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that the estimate is a random variable parameterized by x, that is

f̃(x) = F (x, ξ),

with the black-box oracle given by sampling on the ξ space. When dealing
with, e.g., statistical learning problems, the function F (x, ξ) evaluates the
loss of the decision rule parametrized by x on a data point ξ (see, e.g.,
[17] for further details). In simulation-based engineering applications, the
function F (x, ξ) is simply related to some noisy computable version of the
original function. In this case ξ represents the random variable that induces
the noise (a classic example is given by Monte Carlo simulations). A detailed
overview is given in, e.g., [1].

When this random variable is exact in expected value, problem (1.3) turns
out to be the expected loss formulation

min
x∈Rn

Eξ[F (x, ξ)], (1.2)

a case addressed in recent literature, see, e.g., [18, 26], for further details.
Although the role of derivative-free optimization is particularly important

when the black-box representing the function is somehow noisy or, in general,
of a stochastic type, traditional DFO methods have been developed primar-
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value, problem (1.3) turns out to be the expected loss formulation

min
x∈Rn

Eξ[F (x, ξ)], (1.4)

a case addressed in recent literature, see, e.g., [18, 26] for further details.

1.1. A short review of stochastic derivative-free optimization. Al-
though the role of derivative-free optimization is particularly important when
the black-box representing the function is somehow noisy or, in general, of
a stochastic type, traditional DFO methods have been developed primarily
for deterministic functions, and only recently adapted to deal with stochastic
observations (see, e.g., [8] for a detailed discussion on this matter). We give
here a brief overview of the main results available in the literature by first fo-
cusing on model-based strategies and then moving to direct-search approaches
(see, e.g., [3, 10] for further details on these two classes of methods).

In [18], the authors describe a trust-region algorithm to handle noisy ob-
jectives and prove convergence when f is sufficiently smooth (i.e., with Lip-
schitz continuous gradient) and the noise is drawn independently from a
distribution with zero mean and finite variance, that is they aim at solv-
ing a smooth version of problem (1.4), when ξ is additive noise. In the
same line of research, the authors in [26] developed a class of derivative-free
trust-region algorithms, called ASTRO-DF, for unconstrained optimization
problems whose objective function has Lipschitz continuous gradient and can
only be implicitly expressed via a Monte Carlo oracle. The authors consider
again an objective with noise drawn independently from a distribution with
zero mean, finite variance and a bound on the 4v-th moment (with v ≥ 2),
and prove the almost sure convergence of their method when using stochastic
polynomial interpolation models. Another relevant reference in this context
is given by [8], where the authors analyze a trust-region model-based al-
gorithm for solving unconstrained stochastic optimization problems. They
consider random models of a smooth objective function, obtained from sto-
chastic observations of the function or its gradient. Convergence rates for this
class of methods are reported in [6]. The frameworks analyzed in [6, 7, 8]
extend the trust-region DFO method based on probabilistic models described
in [5]. It is important to notice that the randomness in the models described
in [5] comes from the way sample points are chosen, rather than from noise in
the function evaluations. All the above-mentioned model-based approaches
consider functions with a certain degree of smoothness (e.g., with Lipschitz
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continuous gradient) and assume that a probabilistically accurate gradient
estimate (e.g., some kind of probabilistically fully-linear model) can be gen-
erated, while of course such an estimate is not available when dealing with
non-smooth functions.

A detailed convergence rate analysis of stochastic direct search variants
is reported in [12] for the smooth case, i.e., for an objective function with
Lipschitz continuous gradient. The main theoretical results are obtained by
suitably adapting the supermartingale-based framework proposed in [6]. A
stochastic mesh adaptive direct search for black-box nonsmooth optimization
is proposed in [2]. The authors prove convergence with probability one to a
Clarke stationary point [9] of the objective function by assuming that sto-
chastic observations are sufficiently accurate and satisfy a variance condition.
The considered analysis adapts to the direct-search gradient-free framework
the theoretical analysis given in [23] for a class of stochastic gradient-based
methods. It was extended in [13] to the constrained case.

1.2. The contributions of this paper. The main goal of this paper is to
introduce a tail-bound probabilistic condition needed to deal with a stochas-
tic black-box function in general direct-search and trust-region schemes. This
probabilistic condition focuses on the reduction estimate (i.e., the estimate of
the difference between the function at the current iterate and at a potential
next iterate) used in the acceptance test of those derivative-free algorithms.
It expresses a bound on the probability that the reduction estimate error is
greater than a fraction of a stepsize power characterizing the sufficient de-
crease needed for trial-point acceptance, and can therefore be easily adapted
to different choices of the power defining such a sufficient decrease.

Our condition enables us to define a trade-off between noise, algorithm
parameters, and number of samples per iteration needed to achieve global
convergence. One of our results is that if all the noise moments are finite,
like in the case of Gaussian noise, we only need O(∆−2−ε

k ) samples, where
∆k is the stepsize at iteration k (see Corollary 2.2.1). Here, ε > 0 can be
made arbitrarily small by selecting the sufficient decrease power arbitrarily
close to 1. This result compares to the O(∆−4

k ) number of samples required
in previous works on stochastic trust-region methods (see, e.g., [6, 8, 26])
and stochastic direct-search methods (see [2, 12, 13]). We further show that
the number of samples needed can be lowered to O(∆−ε

k ) when the sampling
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errors are suitably correlated and the random number generator is known
(see Corollary 2.8).

We introduce two different algorithmic schemes, namely a simple stochas-
tic direct-search strategy and a stochastic version of the basic deterministic
trust-region scheme reported in [19]. Both schemes work as follows: they
randomly generate a direction (direct search) or a linear term (trust region);
then generate the new iterate by either moving along the direction (direct
search) or by solving a trust-region subproblem (trust region); finally they
use a sufficient decrease acceptance test to decide if the new point can be ac-
cepted (successful iteration) or not. In this work, we use stochastic function
estimates in the acceptance tests rather than exact values. Our tail bound
condition applies to the function reduction estimates of both schemes, and it
allows us to deduce global convergence and to take advantage of the improve-
ment in the number of samples per iteration. We remark that the convergence
analysis of our trust-region scheme is developed under a new bound on the
Hessian of the quadratic model which allow us to generate non-unit linear
terms, and thus generalizing the deterministic version given in [19].

Lastly, we show that, for suitable choices of the algorithmic parameters, our
tail-bound condition is implied by the variance conditions considered in [2]
and by the probabilistically accurate function estimate assumption used in
[2, 8, 23]. It is also interesting to notice that the finite variance oracle usually
considered in the literature (see, e.g., [18, 26]) can be replaced by a more
general finite moment oracle (see Subsection 2.2.1 for further details) when
constructing estimates satisfying our conditions.

1.3. Outline of the paper. In Section 2, we introduce our tail-bound
probabilistic condition, prove the new bounds on the number of samples
needed per iteration to satisfy the condition, and compare it to existing
conditions from the literature. We then analyze the direct-search and trust-
region schemes in Sections 3 and 4, respectively. In both cases, the analysis
has two main steps. In the first one, we show a result that implies con-
vergence of the stepsize/trust-region radius to zero almost surely. In the
second one, we focus on the random sequence of the unsuccessful iterations
and prove, by exploiting the first result, Clarke stationarity at certain limit
points. Numerical results for the direct-search scheme on a standard set of
problems are reported in Section 5. Finally, we draw some conclusions and
discuss some possible extensions in Section 6. In order to improve readability
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and ease the comprehension, we leave some proofs and additional numerical
results to an appendix.

2. A weak tail-bound probabilistic condition for function
estimation

In order to give convergence results for our algorithms, we need to introduce
a tail-bound probabilistic condition on the accuracy of the function oracle.
The stochastic quantities defined hereafter lie in a probability space (P, Ω, F),
with probability measure P and σ-algebra F containing subsets of Ω, which
is the space of the realizations of the algorithms under analysis. Any single
outcome of the sample space Ω will be denoted by w. For a random variable
X defined in Ω we use the shorthand {X ∈ A} to denote {w | X(w) ∈ A}.

Our algorithms take a step along a certain direction, which can be a direct-
search direction or a trust-region step, and in both cases there is a suitable
stepsize quantifying the displacement. The algorithms generate a random
process whose random quantity realizations are indicated as follows. The
direction, the stepsize, and the current point are denoted by Gk, ∆k, and
Xk, with realizations gk, δk, and xk respectively. The function values f(Xk)
and f(Xk + ∆kGk) are denoted by Fk and F g

k , with realizations fk and f g
k

respectively. In the direct-search case, the acceptance criterion will be defined
as

fk − f g
k ≥ θδq

k , (2.1)
for some θ > 0 and q > 1, with δk replaced by the norm of the step ∥sk∥ in
the trust-region case. We define Fk−1 as the σ−algebra of events up to the
choice of Gk (so that in particular Gk is measurable with respect to Fk−1).
More explicitly, we define Fk−1 as the σ-algebra generated by (Fj, F g

j )k−1
j=0 and

(Gj)k
j=0. Finally, we use E to denote expectation and conditional expectation,

x̂ as a shorthand for x/∥x∥, with x̂ = 0 for x = 0, and a.s. as a shorthand
for almost surely.

2.1. The weak tail-bound probabilistic condition. We now introduce
our tail bound assumption, related to the acceptance criterion (2.1).

Assumption 2.1. For some εq > 0 (independent of k):

P (|Fk − F g
k − (f(Xk) − f(Xk + ∆kGk))| ≥ α∆q

k |Fk−1) ≤ εq

αq/(q−1) (AS1)

a.s. for every α > 0.
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The above assumption is in particular a power law tail bound with exponent
q/(q−1). Notice that we are only assuming an error bound for the estimate of
the difference f(Xk) − f(Xk + ∆kGk) and not for the estimates of f(Xk) and
f(Xk +∆kGk) taken individually; we basically want to bound the probability
that the error in that estimate is large, as such an estimation plays a crucial
role in the acceptance tests of our algorithms. We will see in Sections 3.2
and 4.2 that knowledge of an upper bound εq is needed in order to ensure
convergence in the proposed algorithms.

Remark 2.2. As we will see in Section 2.2.1, Assumption 2.1 can be posed
for any q provided that the r-th moment of the evaluation noise is finite, for
r = q/(q − 1). Furthermore, for q ∈ (1, 2), the number of samples needed
to satisfy Assumption 2.1 is just O(∆−2q

k ) rather than the standard O(∆−4
k )

required under finite variance assumptions [2]. This improvement is possible
thanks to the strict relation between the tail bound (AS1) and the acceptance
criterion (2.1), together with classic results from probability theory on the
convergence rate for the law of large numbers. More precisely, we will use
the fact that, for A average of m i.i.d. samples with finite r-th finite moment,
there is a tail bound of the form

P(A ≥ α) ≤ Km,r

αr
,

with Km,r ∝ m− r
2 (as a consequence of Rosenthal’s inequality [15]).

In our convergence arguments we will need Assumption 2.1 with a Fk−1
measurable random variable A rather than a real number α. This is justified
by the following lemma.

Lemma 2.3. Let A be a positive Fk−1 measurable random variable. If (AS1)
holds, then it holds also with A instead of α.

Proof : We prove the result in the case where A is a discrete random variable
with a countable set of possible realizations {ai}i∈N, which is sufficient since
the general case then follows by approximation. Let Y = |Fk −F g

k −(f(Xk)−
f(Xk+∆kGk))|/∆q

k, and r = q
q−1 . By the definition of conditional probability,

(AS1) holds with A instead of α if and only if, for every F ∈ Fk−1:

E[1F 1{Y ≥A}] ≤ E[1F
εq

Ar
] . (2.2)
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Indeed we have
E[1F 1{Y ≥A}] =

∑
i∈N

E[1F 1{Y ≥A}1{A=ai}] =
∑
i∈N

E[1F∩{A=ai}1{Y ≥ai}]

≤
∑
i∈N

E[1F∩{A=ai}
εq

ar
i

] =
∑
i∈N

E[1F 1{A=ai}
εq

ar
i

] = E[1F
εq

Ar
]

(2.3)

as desired, where we used that F ∩ {A = ai} is measurable w.r.t. Fk−1
together with (AS1) for α = ai in the inequality.

In the remaining of this section, we will report the bounds on the number
of samples needed to satisfy Assumption 2.1, as well as a comparison with
existing conditions. The proofs are rather technical and can be found in the
appendix.

2.2. Sampling improvement under the new condition. We will show
that our tail-bound condition can be satisfied under a reduced number of
function samples.

2.2.1. Finite moment oracle. We deal first with the case where the error of
the oracle has finite r-th moment, for some r > 1:

f(x) = Eξ[F (x, ξ)] ,

Eξ[|F (x, ξ) − f(x)|r] ≤ Mr < +∞ . (2.4)
Recall that finite r-th moment implies finite r′-th moment for any r′ ∈ (1, r].
Thus for r < 2 assumption (2.4) is weaker than assuming finite variance,
while for r > 2 (2.4) is stronger than assuming finite variance. The next
result describes the number of samples needed asymptotically to satisfy our
tail bound conditions as a function of r.

Theorem 2.4. Assume that (2.4) holds with r = q
q−1. If q ≥ 2, then As-

sumption 2.1 can be satisfied using

O
(
∆−q2

k

)
(2.5)

i.i.d. samples, while if q ∈ (1, 2), it can be satisfied using

O
(
∆−2q

k

)
(2.6)

i.i.d. samples.

We thus have the following corollary illustrating an improvement on the
number of samples per iteration with respect to the finite variance case.
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Corollary 2.5. Let ε ∈ (0, 1]. Then, for q = 1 + ε, O(∆−2−ε
k ) samples

are sufficient to satisfy Assumption 2.1, under the finite moment assumption
(2.4) for r = q

q−1.

2.2.2. Correlated errors. We assume now that the objective is given in the
form (1.4), and that we have access to the random number generator, that
is we can sample different x with fixed ξ. Let now

F̄ (x, ξ) = F (x, ξ) − f(x)
be the sampling error. We assume that the sampling errors of close points
are correlated in the following way:

Eξ[|F̄ (x, ξ) − F̄ (y, ξ)|r] ≤ Dr∥x − y∥r (2.7)
for some Dr > 0. The use of the term correlation to describe (2.7) can be
better understood with the following lemma.

Proposition 2.6. Assume that, for some V , l̄ > 0, we have
Varξ(F (x, ξ)) = V ,

and
Covξ(F (x, ξ), F (y, ξ)) ≥ V (1 − l̄∥x − y∥2)

for every x, y ∈ Rn. Then (2.7) is satisfied for Dr = 2V l̄ and r = 2.

We now show how the bound given in Theorem 2.4 improves under (2.7),
for r ≥ 2.

Theorem 2.7. If the random number generator is known and (2.7) holds
with r = q

q−1, then Assumption 2.1 can be obtained for q ∈ (1, 2] using

O
(
∆2−2q

k

)
(2.8)

i.i.d. samples.

As a corollary we can state a further improvement in samples per iteration
with respect to Corollary 2.5.

Corollary 2.8. If q = 1 + ε
2 then O(∆−ε

k ) samples are sufficient to get As-
sumption 2.1 under (2.7) for r = q

q−1.

We conclude with an example where (2.7) is satisfied, with the noise mod-
elled as a Gaussian process, as it is common practice in Bayesian optimization
(see, e.g., [25]).
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Proposition 2.9. Assume that F (x, ξ) is a Gaussian process with expectation
f(x) and exponentiated quadratic kernel, so that in particular

Covξ(F (x, ξ), F (y, ξ)) = σ2exp
−∥x − y∥2

2l2

 (2.9)

for some σ, l > 0 and every x, y ∈ Rn. Then assumption (2.7) is satisfied,
for every r ≥ 2 (with Dr depending on r).

2.3. Comparison with existing conditions. In this subsection, we com-
pare our condition with others found in the literature. We will start by
showing that our condition is weaker than the ones imposed in [2]. More
precisely, it is implied by [2, Equation (2)], rewritten in our notation as

E[|F g
k − f(Xk + ∆kGk)|2 | Fk−1] ≤ k2

f∆4
k

E[|Fk − f(Xk)|2 | Fk−1] ≤ k2
f∆4

k ,
(2.10)

for a constant kf > 0. The kf -variance condition in (2.10) is a gradient free
version of [23, Assumption 2.4, (iii)], and more precisely can be obtained from
the latter by removing the gradient related terms in the right-hand side. It
is important to note here that in [23] as well as in other works on smooth
stochastic derivative free optimization (see, e.g., [8, 18, 26] and references
therein), a probabilistically accurate gradient estimate is also used, while of
course such an estimate is not available in a possibly non-smooth setting.

Proposition 2.10. Condition (2.10) implies Assumption 2.1 for εq = 4k2
f

and q = 2.

The proof of the above result relies on the conditional Chebyshev’s inequal-
ity (see the proof in the appendix for details).

Remark 2.11. In the algorithm proposed in [2] the direct-search direction
at iteration k is chosen before the function estimates to be used in the ac-
ceptance test are computed. Thus our analysis can be extended also to that
algorithm.

We now describe the relation between our assumption and the
β-probabilistically accurate function estimate assumption

P({|Fk − f(Xk)| ≤ τf∆2
k} ∩ {|F g

k − f(Xk + ∆kGk)| ≤ τf∆2
k|} | Fk−1) ≥ β ,

(2.11)
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used in [2, 8, 23] in combination with other assumptions. In particular, con-
ditions (2.10) are used in [2] and [23] (as discussed above), and a probabilistic
assumption on the accuracy of random models for the objective is considered
in [8].

We show that if (2.11) is satisfied for every β in a certain interval, with τf

depending on β and an accuracy parameter ε, then also our assumption is
satisfied with εq dependent on ε.

Proposition 2.12. Let ε > 0 and p̄ ∈ (0, 1). Assume that (2.11) holds for
every β ∈ [1 − p̄, 1), with τf = τf(β) < 1

2
√ ε

1−β . Then Assumption 2.1 holds
with εq = ε

p̄ and q = 2.

The proposition above follows from the inclusion
{|Fk − F g

k − (f(Xk) − f(Xk + ∆kGk))| < α∆2
k}

⊃ {|Fk − f(Xk)| ≤ τf(β)∆2
k} ∩ {|F g

k − f(Xk + ∆kGk)| ≤ τf(β)∆2
k} ,

(2.12)
whenever τf(β) < α

2 (see the proof in the appendix for details).

3. A simple direct-search method for stochastic non-
smooth functions

In this section, we first describe a simple stochastic direct-search algorithm
for the unconstrained minimization problem given in (1.3), where f is possi-
bly non-smooth, and then analyze its convergence.

3.1. The stochastic direct-search scheme. A detailed description of our
stochastic direct-search method is given in Algorithm 1. At each iteration, we
generate a direction gk in the unitary sphere (independently of the estimates
of the objective function generated so far; see Step 3), and perform a step
along the direction gk with stepsize δk. Then, at Step 4, we compute f g

k

and fk, that is the estimate values of the function at the resulting trial
point xk + δkgk and also at xk. We then accept or reject the trial point based
on a sufficient decrease condition, imposing that the improvement on the
objective estimate at the trial point is at least θδq

k. If the sufficient decrease
condition is satisfied, we have a successful iteration. We hence update our
iterate xk+1 by setting it equal to the trial point and expand or keep the
same stepsize at Step 5. Otherwise, the iteration is unsuccessful, so we do
not move (i.e., xk+1 = xk) and shrink the stepsize (see Step 6).



12 F. RINALDI, L. N. VICENTE AND D. ZEFFIRO

Algorithm 1 Stochastic direct search

1 Initialization. Choose a point x0, δ0, θ > 0, τ ∈ (0, 1), τ̄ ∈ [1, 1 + τ ].
2 For k = 0, 1 . . .
3 Select a direction gk in the unitary sphere.
4 Compute estimates fk and f g

k for f in xk and xk + δkgk.
5 If fk − f g

k ≥ θδq
k, Then set SUCCESS = true, xk+1 = xk + δkgk,

δk+1 = τ̄ δk.
6 Else set SUCCESS = false, xk+1 = xk, δk+1 = (1 − τ)δk.
7 End if
8 End for

In order for the method to convergence to Clarke stationary points, the
sequence {gk} must be dense in the unit sphere on certain subsequences (see
Theorem 3.3). We remark that a dense sequence in the unit sphere can be
generated using a suitable quasirandom sequence (see, e.g., [14, 19]).

3.2. Convergence analysis under the tail-bound probabilistic condi-
tion. The following theorem, which implies that the stepsize sequence {∆k}
converges to zero almost surely, is a key result in the convergence analysis.
By taking a look at the proof, we can see how the use of the tail-bound prob-
abilistic condition (AS1) allows us to give a unified argument for unsuccessful
and successful steps.

We define now for convenience the positive constants τ+
q = (1 + τ)q − 1,

τ−
q = 1 − (1 − τ)q, and τ̄q = τ+

q + τ−
q . To obtain our result we need the

following lower bound on the parameter θ defining the sufficient decrease
condition, dependent on the stepsize update parameter τ and the tail bound
parameter εq:

θ >
r(q)
√

εqτ̄q

τ−
q

, (3.1)

with r(q) = q
q−1 . Notice that since τ ∈ (0, 1) we must always have θ > 0.

The bound (3.1) allows us to relate stepsize expansions to improvements of
the objective.
Theorem 3.1. Under Assumption 2.1, if Inequality (3.1) holds then∑

k∈N0

E[∆q
k] < ∞ (3.2)

a.s. in Ω.
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Proof : Let εf = r(q)
√

εq, Φk = f(Xk) − f ∗ + η∆q
k, with η = θ

τ̄q
, and

ε = −εf +
τ−

q θ

τ̄q
> 0 ,

where the inequality follows by (3.1).
We will prove, for every k ≥ 0, that

E[Φk − Φk+1 | Fk−1] ≥ ε∆q
k . (3.3)

The thesis then follows as in [2, Theorem 1] (or directly by Robbins-Siegmund
Theorem [24]).

Let ρk be the random variable such that f(Xk)−f(Xk+∆kGk) = (θ−ρk)∆q
k,

and let Jk be the event that the step k is successful. We have
E[(Φk − Φk+1)|Fk−1] = E[(Φk − Φk+1)(1Jk

+ (1 − 1Jk
))|Fk−1]

= (f(Xk) − f(Xk+1) + η(∆q
k − ∆q

k+1))E[1Jk
|Fk−1]

+ (f(Xk) − f(Xk+1) + η(∆q
k − ∆q

k+1))E[ 1 − 1Jk
|Fk−1]

= (f(Xk) − f(Xk + ∆kGk) + η(∆q
k − ∆q

k+1))E[1Jk
|Fk−1]

+ η(∆q
k − ∆q

k+1)E[1 − 1Jk
|Fk−1]

≥ (((θ − ρk) − ητ+
q )E[1Jk

|Fk−1] + ητ−
q E[1 − 1Jk

|Fk−1])∆q
k,

(3.4)

where we used Xk = Xk+1 for unsuccessful steps in the second equality, and
∆k+1 = τ̄∆k ≤ (1 + τ)∆k for successful steps in the inequality. In turn,

(((θ − ρk) − ητ+
q )E[1Jk

|Fk−1] + ητ−
q E[1 − 1Jk

|Fk−1])∆q
k

= ((θ − ρk − ητ̄q)E[1Jk
|Fk−1] + ητ−

q )∆q
k

= −ρk∆q
kE[1Jk

|Fk−1] + ητ−
q ∆q

k ,

(3.5)

where we used E[1 − 1Jk
|Fk−1] = 1 − E[1Jk

|Fk−1] in the first equality, and
θ = ητ̄q in the second one. By combining (3.4) and (3.5) we can therefore
conclude

E[(Φk − Φk+1)|Fk−1] ≥ −ρk∆q
kE[1Jk

|Fk−1] + ητ−
q ∆q

k . (3.6)

Notice that if the step is successful then fk − f g
k ≥ θδq

k, which implies
fk − f g

k − (f(xk) − f(xk + δkgk)) ≥ θδq
k − (θ − ρk(w))δq

k = ρk(w)δq
k .

In particular
Jk ⊂ {|Fk − F g

k − (f(Xk) − f(Xk + ∆kGk))| ≥ ρk∆q
k} ,
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and we can write, for ρ+
k = ρk1ρk>0,

E[1Jk
|Fk−1] = E[1Jk

1{ρk>0} + 1Jk
1{ρk≤0}|Fk−1]

= E[1Jk∩{ρk>0}|Fk−1] + 1{ρk≤0}E[1Jk
|Fk−1]

≤ P(|Fk − F g
k − (f(Xk) − f(Xk + ∆kGk))| ≥ ρ+

k ∆q
k|Fk−1)

+ 1{ρk≤0}E[1Jk
|Fk−1] ,

(3.7)

where we used the measurability of ρk w.r.t. Fk−1 in the second equality. We
now have

− ρkE[1Jk
|Fk−1] ≥ −ρ+

k E[1Jk
|Fk−1]

≥ −ρ+
k (P(|Fk − F g

k − (f(Xk) − f(Xk + ∆kGk))| ≥ ρ+
k ∆q

k|Fk−1)
+ 1{ρk≤0}E[1Jk

|Fk−1])
= −ρ+

k P(|Fk − F g
k − (f(Xk) − f(Xk + ∆kGk))| ≥ ρ+

k ∆q
k|Fk−1)

≥ −ρ+
k min

1,
εq

(ρ+
k )r(q)

 = −ρ+
k min

1,
ε

r(q)
f

(ρ+
k )r(q)

 ≥ −ρ+
k min

1,
εf

ρ+
k


≥ −εf ,

(3.8)
where we applied (3.7) in the first inequality, and the second inequality is a
direct consequence of (AS1) for α = ρ+

k . Hence,

−ρk∆q
kE[1Jk

|Fk−1] + ητ−
q ∆q

k ≥ (−εf + ητ−
q )∆q

k = ε∆q
k , (3.9)

where we used (3.8) in the inequality.
Claim (3.3) can finally be obtained by concatenating (3.6) and (3.9).

The lemma we now state will be useful for the proof of the optimality
result of Theorem 3.3 which is based on the Clarke generalized directional
derivative. We notice that Assumption 2.1 plays a key role in this result,
allowing us to upper bound the error of the reduction estimate by a quantity
that depends on the stepsize ∆k.

Lemma 3.2. Let K be the set of indices of unsuccessful iterations (notice
that K is random). Then under Assumption 2.1 and (3.1) we have a.s. in Ω

lim inf
k∈K, k→∞

f(Xk + ∆kGk) − f(Xk)
∆k

≥ 0 . (3.10)
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Proof : Clearly it suffices to show that, for any given m ∈ N and a.s.,

lim inf
k∈K, k→∞

f(Xk + ∆kGk) − f(Xk)
∆k

≥ − 1
m

. (3.11)

To start with, by applying (AS1) with α = ∆1−q
k

m we have

P(|Fk − F g
k − (f(Xk) − f(Xk + ∆kGk))| ≥ ∆k

m
| Fk−1) ≤ mr(q)∆q

kεq ,

and therefore taking expectations on both sides

P(|Fk − F g
k − (f(Xk) − f(Xk + ∆kGk))| ≥ ∆k

m
) ≤ mr(q)E[∆q

k]εq .

We can now deduce∑
k∈N0

P(|Fk −F g
k − (f(Xk)−f(Xk +∆kGk))| ≥ ∆k

m
) ≤

∑
k∈N0

mr(q)E[∆q
k]εq < ∞ ,

where we applied Theorem 3.1 in the last inequality. In particular, by the
Borel-Cantelli’s first lemma

P
({

|Fk − f g
k − (f(Xk) − f(Xk + ∆kGk))| ≥ ∆k

m

}
i.o.

)
= 0 ,

where “i.o.” stands for infinitely often. Hence, we have a.s.

|Fk − F g
k − (f(Xk) − f(Xk + ∆kGk))| ≤ ∆k

m
for k large enough. (3.12)

From this we can infer that a.s., for every k ∈ K large enough
f(Xk + ∆kGk) − f(Xk)

∆k
≥ F g

k − Fk − |Fk − F g
k − (f(Xk) − f(Xk + ∆kGk))|

∆k

≥ −θ∆k − 1
m

,

(3.13)
where we used (3.12) combined with the unsuccessful step condition of Algo-
rithm 1 in the second inequality. Finally, (3.11) follows passing to the liminf
for k → ∞ in (3.13).

We now report the main convergence result for our stochastic direct-search
scheme. We refer to V as the event with probability one that (3.10) holds.

Theorem 3.3. Assume that f is Lipschitz continuous with constant L∗
f

around any limit point of the sequence of iterates {Xk}. Let K be the set
of indices of unsuccessful iterations. Let Assumptions 2.1 and (3.1) hold.
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Then, the following property holds a.s. in Ω: if L ⊂ K (notice that L, K are
random) is such that {Gk}k∈L is dense in the unit sphere and

lim
k∈L, k→∞

Xk = X∗ ,

then the point X∗ is Clarke stationary.

Proof : Let d be a direction in the unitary sphere, and let S ⊂ L be such that

lim
k∈S, k→∞

Gk = d .

By definition of Clarke stationarity, we just need to prove that on V (and
therefore a.s.)

lim sup
k∈S, k→∞

f(Xk + ∆kd) − f(Xk)
∆k

≥ 0 .

For w ∈ V we can write

lim sup
k∈S, k→∞

f(Xk + ∆kGk) − f(Xk)
∆k

≥ lim inf
k∈K, k→∞

f(Xk + ∆kGk) − f(Xk)
∆k

≥ 0 ,

(3.14)
where the last inequality follows by (3.10).

Now using the Lipschitz property of f we can write, for k ∈ S(w) large
enough,

f(Xk + ∆kd) − f(Xk)
∆k

=f(Xk + ∆kGk) − f(Xk)
∆k

+ f(Xk + ∆kd) − f(Xk + ∆kGk)
∆k

≥f(Xk + ∆kGk) − f(Xk)
∆k

− L∗
f∥Gk − d∥.

Passing to the limsup for k ∈ S ⊂ L we get

lim sup
k∈S, k→∞

f(Xk + ∆kd) − f(Xk)
∆k

≥ lim sup
k∈S, k→∞

f(Xk + ∆kGk) − f(Xk)
∆k

≥ 0 ,

for every w ∈ V , where we used ∥Gk − d∥ → 0 by construction in the first
inequality and (3.14) in the second.
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4. A simple trust-region method for stochastic
non-smooth functions

After having analyzed a simple stochastic direct-search method, we focus
on a stochastic version of the Basic DFO-TRNS presented in [19], and analyze
its convergence properties under tail-bound probabilistic conditions like the
ones used in Section 3. Some minor changes in notation are convenient and
will be introduced with a clear reference to the corresponding elements of
Algorithm 1.

4.1. The stochastic trust-region scheme. As already mentioned, the
simple trust-region algorithm that we report here is a minor modification
of the Basic DFO-TRNS algorithm proposed in [19]. Indeed, there are two
differences between the Basic DFO-TRNS algorithm and its stochastic coun-
terpart.

The first difference is in the updating rule related to the trust-region radius.
In our modification, we choose τ ∈ (0, 1) and then choose 1−τ as contraction
factor and τ̄ ∈ [1, 1 + τ ] as expansion factor.

The second, more relevant difference is the fact that the linear term gk is
not constrained to the unit sphere. This makes more sense when modeling
cases where gk resembles an approximation of the gradient.

The detailed scheme is reported in Algorithm 2. At every iteration k, a
symmetric matrix Bk is built from interpolation or regression on a sample
set of points. The linear term gk needs to randomly cover the unit sphere
when normalized. By using these quantities, a quadratic model of the ob-
jective function around xk is built. The step sk is obtained by solving the
trust-region subproblem, i.e., by minimizing the quadratic model within the
spherical trust-region constraint. Once the current step has been computed,
we estimate the true objective function f at the trial point xk +sk and recom-
pute a new estimate at xk, after which we compute the acceptance ratio ρ̄k.
Note that, as in [19], the non-standard acceptance ratio is motivated by con-
vergence requirements. In this scheme, realizations related to the estimate
of the function value at the current iterate f(xk) and at the potential next
iterate f(xk + sk) are indicated with fk and f s

k (thus replacing f g
k used in the

direct-search scheme) as a shorthand for Fk(w) and F s
k (w), respectively.

For convergence purposes, we require the Hessian model to satisfy the
assumption below.
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Algorithm 2 Stochastic DFO Trust-Region Algorithm

1 Initialization. Select x0 ∈ Rn, θ > 0, τ ∈ (0, 1), τ̄ ∈ [1, 1 + τ ], δ0 > 0,
q > 1.
2 For k = 0, 1 . . .
3 Select a direction gk ̸= 0 and build a symmetric matrix Bk.
4 Compute

sk ∈ arg min
∥s∥≤δk

g⊤
k s + 1

2s⊤Bks. (4.1)

5 Compute estimates fk, f s
k for f at xk, xk + δk, respectively, and let

ρ̄k = fk − f s
k

θ∥sk∥q
.

6 If ρ̄k ≥ 1 Then set SUCCESS = true, xk+1 = xk + sk, δk+1 = τ̄ δk.
7 Else set SUCCESS = false, xk+1 = xk, δk+1 = (1 − τ)δk.
8 End If
9 End For

Assumption 4.1. There exist ρ ∈ (0, 1] such that, for every k ∈ N0,

∥Bk∥ ≤ 1
ρ

∥Gk∥
∆k

.

When ∥Gk∥ = 1, the above assumption is essentially saying that Bk can
be unbounded as long at it does not go to infinity faster than 1/∆k.

We now show, under Assumption 4.1, that every trust-region subproblem
solution Sk has norm equal to ∆k, up to a constant. This will allow us to
deduce convergence to 0 of the trust-region radius from convergence to 0 of
the solution norm.

Lemma 4.2. Under Assumption 4.1 we have
∥Sk∥ ≥ ρ∆k . (4.2)

Proof : The thesis is clear if Sk is on the boundary of the trust region, which
includes the case Bk = 0 since Gk ̸= 0 by assumption. Otherwise, if Sk is in
the interior we must have

BkSk = −Gk ,

and therefore
∥Bk∥∥Sk∥ ≥ ∥Gk∥ ≥ ρ∆k∥Bk∥ ,

where we used (4.1) in the second inequality, and the proof is completed.
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4.2. Convergence analysis under the tail-bound probabilistic condi-
tion. In order to analyze the method introduced above, we adapt Assump-
tion 2.1, replacing Gk with Ŝk and ∆k with ∥Sk∥. Now ∆k stands for the
trust-region radius. Hence, we obtain the following tail-bound condition.
Assumption 4.3. For some εq > 0 (independent of k):

P (|Fk − F g
k − (f(Xk) − f(Xk + Sk))| ≥ α∥Sk∥q |Fk−1) ≤ εq

αq/(q−1) , (A2’)

a.s. for every α > 0.
The next theorem states convergence of the series of trust-region radii

elevated to the q almost surely. This obviously implies that the trust-region
radius converges to zero almost surely.
Theorem 4.4. Under Assumptions 4.1 and 4.3, if

θ >
(ρqτ−

q + τ+
q ) r(q)

√
εq

ρqτ−
q

, (4.3)

then ∑
k∈N0

E[∆q
k] < ∞

a.s. in Ω.
Proof : Reasoning along the lines of Theorem 3.1, using the merit function
Φk = f(Xk) − F ∗ + η∥Sk∥q, with η = θρq

τ+
q +ρqτ−

q
, we obtain∑

k∈N0

E[∥Sk∥q] < +∞ ,

and therefore ∑
k∈N0

E[∆q
k] ≤ 1

ρq

∑
k∈N0

E[∥Sk∥q] < +∞ ,

where we used (4.2) in the inequality.
As for the analysis of our direct-search scheme in Section 3, we now state

a lemma that will be useful for the proof of the optimality result based on
the Clarke generalized derivative.
Lemma 4.5. Let K be the set of indices of unsuccessful iterations (notice
that K is random). Then under Assumptions 4.1, 4.3, and (4.3) we have
a.s.

lim inf
k∈K, k→∞

f(Xk + Sk) − f(Xk)
∥Sk∥

≥ 0 .
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Proof : Follows analogously to Lemma 3.2.

We now state a convergence result generalizing Theorem 3.3 to our trust-
region method.

Theorem 4.6. Assume that f is Lipschitz continuous with constant L∗
f

around any limit point of the sequence of iterates {Xk}. Let K be the set
of indices of unsuccessful iterations. Let Assumptions 4.1, 4.3, and (4.3)
hold. Then, the following property holds a.s. in Ω: if L ⊂ K (notice that
L, K are random) is such that {Ŝk}k∈L is dense in the unit sphere and

lim
k∈L, k→∞

Xk = X∗ ,

then the point X∗ is Clarke stationary.

Proof : The proof follows the lines of Theorem 3.3’s proof, replacing ∆k, Gk,
∆kGk by respectively ∥Sk∥, Ŝk, Sk.

We now introduce a stronger version of Assumption 4.1, and show that
under this stronger assumption the trust-region scheme becomes at the limit
a search along a direction Gk with stepsize ∆k.

Assumption 4.7. For some positive sequence {ak} such that ak → 0

∥Bk∥ ≤ ak
∥Gk∥
∆k

. (4.4)

Trivially, Assumption 4.7 implies Assumption 4.1, with ρ = 1
max({ak}) .

Proposition 4.8. Let Assumptions 4.3, 4.7, and (4.3) hold. Then we have
a.s.

lim
k→∞

Ĝk + Ŝk = 0 .

Proof : First, notice that ∥Ĝk∥ = 1, as well as ∥Ŝk∥ = 1 since Gk must be
always different from 0 and therefore Sk as well. Now define F m

k as the local
model:

F m
k (s) = G⊤

k s + 1
2s⊤Bks ,

and let γk = Ĝ⊤
k Ŝk be the cosine of the angle between Ĝk and Ŝk. We need

to prove γk → −1 (a.s.).
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We have on the one hand

F m
k (Sk) = S⊤

k Gk + 1
2S⊤

k BkSk = γk∥Sk∥∥Gk∥ + 1
2S⊤

k BkSk

≥ min(0, γk)∆k∥Gk∥ − 1
2∥Bk∥∆2

k ,
(4.5)

where we used ∥Sk∥ ≤ ∆k in the inequality. On the other hand

F m
k (−∆kĜk) = −∆k∥Gk∥ + ∆2

k

2 Ĝ⊤
k BkĜk ≤ −∆k∥Gk∥ + 1

2∆2
k∥Bk∥ . (4.6)

Putting (4.5) and (4.6) together we obtain

−∆k∥Gk∥ + 1
2∆2

k∥Bk∥ ≥ F m
k (−∆kĜk) ≥ F m

k (Sk)

≥ min(0, γk)∆k∥Gk∥ − 1
2∥Bk∥∆2

k ,
(4.7)

where in the second inequality we used that Sk is a solution of the trust-region
subproblem. Then rearranging (4.7) and dividing by ∆k∥Gk∥ we get

(1 + min(0, γk)) ≤ ∥Bk∥∆k

∥Gk∥
. (4.8)

Since the right-hand side of (4.8) converges to 0 a.s. by Theorem 4.4, we get
1 + min(0, γk) → 0 a.s., and we can conclude γk → −1 a.s. as desired.

Under the conditions of Proposition 4.8, we just need to ensure that Ĝk

is dense in the unit sphere on subsequences to obtain convergence to Clarke
stationary points, as expressed in the following corollary.

Corollary 4.9. Assume that f is Lipschitz continuous with constant L∗
f

around any limit point of the sequence of iterates {Xk}. Let K be the set
of indices of unsuccessful iterations. Let Assumption 4.3, 4.7 and (4.3) hold.
Then, the following property holds a.s. in Ω: if L ⊂ K (notice that L, K are
random) is such that {Ĝk}k∈L is dense in the unit sphere and

lim
k∈L, k→∞

Xk = X∗ ,

then the point X∗ is Clarke stationary.

Proof : Thanks to Proposition 4.8 since {Ĝk}k∈L is dense in the unit sphere
{Ŝk}k∈L also is, and we can therefore apply Theorem 4.6.
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5. Numerical results
We describe in this section some numerical results comparing two instances

of Algorithm 1 for different choices of the sufficient decrease parameter and
sampling strategies, corresponding to different values of q and r in the al-
gorithmic scheme and in the assumptions. Our main goal is to show that
the theoretical improvement from O(∆−4

k ) samples per iteration to O(∆−2−ε
k ),

proved for a suitable choice of q and r, also leads to an experimental improve-
ment on the total number of samples needed to find a good solution. We then
show that an analogous experimental improvement can be observed in the
case of correlated errors discussed in Section 2.2.2. Focusing on Algorithm 1
rather than Algorithm 2 allows us to only count function samples necessary
to satisfy the weak tail bound conditions introduced in this paper, rather
than having to take into account the samples used to build the trust-region
model as well.

Remark 5.1. It is of course not always the case that an improvement in
number of samples per iteration leads to an improvement in the solution
found with a fixed budget of samples, since using lower values of q might
increase the iteration complexity. For instance, for smooth objectives with
deterministic oracles a complexity of O(ϵ− q

q−1 ) was proved in [27] for a scheme
analogous to Algorithm 1, with q ∈ (1, 2]. Then in this case the lower number
of samples per iteration for q approaching 1 comes at the price of a potentially
much higher iteration complexity. However, it is important to note that the
estimates from [27] heavily rely on the Lipschitz continuity of the gradient, so
that this trade-off does not necessarily generalize to potentially non smooth
objectives.

To compare the performance of the two algorithms, we will use data and
performance profiles as defined in [22]. We briefly recall here their definitions.
Given a set S of algorithms and a set P of problems, for s ∈ S and p ∈ P ,
let tp,s be the number of function evaluations required by algorithm s on
problem p to satisfy the condition

f(xk) ≤ fL + γp(f(x0) − fL) , (5.1)

where γp ∈ (0, 1) and fL is the best objective function value achieved by any
solver on problem p. Then, the performance and data profiles of solver s are
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defined by

ρs(α) = 1
|P |

∣∣∣∣∣∣
p ∈ P : tp,s

min{tp,s′ : s′ ∈ S}
≤ α


∣∣∣∣∣∣ ,

ds(κ) = 1
|P |

|{p ∈ P : tp,s ≤ κ(np + 1)}| ,

where np is the dimension of problem p. We used a budget of 10000(np + 1)
sample evaluations for both algorithms and two different accuracies for (5.1),
that is γp ∈ {10−2, 10−4}. All the profiles are built with the true function
values rather than the noisy estimates used in the algorithms. The set P
includes 96 well known instances of derivative-free unconstrained nonsmooth
optimization problems reported in Table 1 with dimensions and references.
Each of the instances is used 10 times, so that both algorithms perform 10
runs on every instance, thus getting |P | = 960.

We tuned the parameters with a basic grid search to obtain good perfor-
mances for both instances of Algorithm 1 to τ = 0.001, τ̄ = 1.001, θ = 0.5
and δ0 = 2 (see Section A.2). We set q = 2 and q = 1.5 for the first and the
second instance, thus comparing a standard choice (see, e.g., [2, 12, 13]) to
one that allows us to use a lower number of samples per iteration as proved in
Theorems 2.4 and 2.7. We simulate the process of sampling pk noisy function
estimates by adding Gaussian noise with 0 mean and 1/pk variance.

Remark 5.2. It is not difficult to check that the bound (3.1) translates to
θ > c with c = 4 and c ≈ 9 for q = 2 and q = 1.5 respectively. However,
both algorithms show bad relative performance for θ greater than 1 (see
Figure 3). We conjecture that lower values of θ and therefore a more tolerant
acceptance test might still lead to convergence in practice in most cases,
with a lower number of samples needed to find a good solution due to the
resulting more aggressive exploration. Finding weaker versions of (3.1) that
still guarantee convergence under reasonable assumptions remains of course
an open problem to be studied more in depth in future works.

We first deal with the general case of finite r-th moment and uncorrelated
errors (Figure 1). We refer in this case to the two instances of Algorithm 1 as
SDSq for q ∈ {2, 1.5}. By Theorem 2.4, we have that O

(
∆−2q

k

)
samples are

needed to satisfy the weak tail bound assumptions. Given that the Gaussian
noise has finite r-th moment for every r, we can apply Theorem 2.4 with
r = q/(q − 1). The number of samples needed per iteration is then O(∆−4

k )
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and O(∆−3
k ) respectively for SDS2 and SDS1.5. We thus set pk = ⌈δ−4

k ⌉ and
pk = ⌈δ−3

k ⌉ in our sampling simulation.
We then consider the case of correlated errors (Figure 2). We refer in this

case to the two instances of Algorithm 1 as SDSqc for q ∈ {2, 1.5}. By using
Theorem 2.7 and reasoning as for the general case, we obtain that O(∆−2

k )
and O(∆−1

k ) samples are needed per iteration to satisfy the weak tail bound
assumptions. In the implementation we thus set pk = ⌈δ−2

k ⌉ and pk = ⌈δ−1
k ⌉.

By taking a look at the profiles, we can easily see that SDS1.5 and SDS1.5c
outperform SDS2 and SDS2c, respectively. We can then conclude for both
the general and the correlated error case, using q = 1.5 (and consequently
fewer samples per iteration) gives better performances in the end.

Table 1. Problems used in numerical experiments.

name dimension reference
crescent 2 [22]
cb2 2 [21]
charconn1 2 [20]
charconn2 2 [20]
demyanov-malozemov 2 [20]
dennis-woods 2 [11]
wong1 7 [21]
wong2 10 [21]
wong3 20 [21]
elattar 6 [21]
goffin 50 [21]
hald-madsen 1 2 [20]
lq 2 [21]
ql 2 [21]
maxl 20 [21]
maxq 20 [22]
mifflin 1 2 [16]
mifflin 2 2 [16]
rosen-suzuki 4 [21]
wf 2 [21]
spiral 2 [21]
evd 52 3 [21]
kowalik-osborne 4 [21]
oet 5 4 [21]
oet 6 4 [21]
gamma 4 [21]
exp 5 [21]
pbc1 5 [21]
evd61 6 [21]
filter 9 [21]
polak 2 10 [21]
polak 3 11 [21]
polak 6 4 [21]
watson 20 [21]
osborne 2 11 [21]
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shor 5 [21]
colville 1 5 [21]
hs 78 5 [21]
maxquad 10 [21]
gill 10 [21]
mxhilb 50 [16]
l1hilb 50 [21]
davidon 2 4 [21]
shelldual 15 [21]
steiner 2 12 [21]
transformer 6 [21]
polak 6.10 1 [21]
wild1 20 [16]
wild2 20 [16]
wild3 20 [16]
wild19 20 [16]
wild11 20 [16]
wild16 20 [16]
wild20 20 [16]
wild15 20 [16]
wild21 20 [16]
maxq {10, 20, 30, 40} [16]
l1hilb {10, 20, 30, 40} [22]
lq {10, 20, 30, 40} [22]
cb3 {10, 20, 30, 40} [22]
cb32 {10, 20, 30, 40} [22]
af {10, 20, 30, 40} [22]
brown {10, 20, 30, 40} [22]
mifflin2 {10, 20, 30, 40} [22]
crescent {10, 20, 30, 40} [22]
crescent2 {10, 20, 30, 40} [22]

6. Concluding remarks and future work
This paper proposed a new tail-bound condition for function estimation

in stochastic derivative-free optimization, provably weaker than probabilistic
conditions appearing in previous works. We showed how this condition can
be obtained under a finite moment assumption on the black box noise, gen-
eralizing finite variance. This naturally led to defining a trade-off between
noise moment and number of samples per iteration, generalizing the clas-
sic O(∆−4

k ) sample bound of the finite variance case, with improvements for
higher moments.

Our tail bound assumption allowed us to obtain convergence of both a
direct-search and a trust-region method. Surprisingly, unlike in previous
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Figure 1. Profiles for SDS2 and SDS1.5.

works on stochastic DFO requiring multiple probabilistic conditions for con-
vergence, in this work a single tail-bound is sufficient to prove that the se-
quence of stepsizes/radii converges to 0, and to conclude convergence to
Clarke stationary points.

There are a few future research developments. A first one is the analysis of
trust-region algorithms based on non-smooth random local models under the
new conditions. Possible choices of the model include piecewise linear models
and random smooth functions like the ones used in Bayesian optimization.
Studying tailored models for special cases where the objective is the non
smooth composition of smooth functions (like for instance the maximum
of smooth functions) is a related challenge. Other possible research topics
include the extension of our analysis to the constrained case, its integration
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Figure 2. Profiles for SDS2c and SDS1.5c.

within global optimization schemes, and numerical tests for the trust-region
scheme.

Appendix A.Appendix
A.1. Proofs. In this appendix, we report the missing proofs. We first recall
Rosenthal inequality (see, e.g., [15]), together with a corollary useful for
several results. This inequality states that, for {Zi}i∈[1:p] independent and
with 0 mean and finite r-th moment, r ≥ 2, and S = 1

p

∑p
i=1 Zi, one has

E[|S|r] ≤ p−rC(r) max
 p∑

i=1
E[|Zi|r],

 p∑
i=1

E
[
|Zi|2

] r
2
 . (A.1)
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Note that when the {Zi} are i.i.d. and having the same distribution of a
certain random variable Z, (A.1) reduces to

E[|S|r] ≤ p−rC(r) max
(
pE[|Z|r], p

r
2 E

[
|Z|2

] r
2
)

. (A.2)

Now, we have

p−rC(r) max
(
pE[|Z|r], p

r
2 E

[
|Z|2

] r
2
)

≤ C(r)p−r max
(
pE[|Z|r], p

r
2 E[|Z|r]

)
≤ C(r)p− r

2 E[|Z|r] ,
(A.3)

where we used Jensen’s inequality on the second argument of the max oper-
ator in the first inequality and r ≥ 2 and p ≥ 1 in the second inequality. By
concatenating (A.2) and (A.3), we obtain the following corollary of Rosen-
thal’s inequality

E[|S|r] ≤ C(r)p− r
2 E[|Z|r] . (A.4)

Proof of Theorem 2.4. Let F̄k = Fk − f(Xk) and F̄ g
k = F g

k − f(Xk + ∆kGk),
for Fk and F g

k average of pk samples:

Fk = 1
pk

pk∑
i=1

F (Xk, ξk,i)

F g
k = 1

pk

pk∑
i=1

F (Xk + ∆kGk, ξg
k,i) .

We start with the case q ≥ 2, implying r ∈ (1, 2]. By the conditional
version of [4, Theorem 2], we have

E[|Āk|r | Fk−1] ≤ 2Mrp
1−r
k (A.5)

for Āk = F̄k, F̄ g
k . Let now Ak = F̄k − F̄ g

k . We can then prove
E[|Ak|r | Fk−1] ≤ 2r−1E[|F̄k|r + |F̄ g

k |r | Fk−1] ≤ 2r+1Mrp
1−r
k , (A.6)

where we used ||a| + |b||r ≤ 2r−1(|a|r + |b|r) for a, b ∈ R in the first inequality,
and (A.5) in the second. Applying (A.6) we obtain

P(|Ak| ≥ α∆
r

r−1
k | Fk−1) = P(|Ak|r ≥ α∆r2/r−1

k | Fk−1)

≤ E[|Ak|r | Fk−1]
αr∆r2/(r−1)

k

≤ 2r+1Mr
p1−r

k

αr∆r2/(r−1)
k

,
(A.7)

where for pk = O(∆
− r2

(r−1)2

k ) = O(∆−q2

k ) the right-hand side of (A.7) is O(1/αr)
and Assumption 2.1 follows.
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We now deal with the case q ∈ (1, 2), corresponding to r ∈ (2, +∞). We
will apply the conditional version of (A.4) with S = F̄k and Z = F (Xk, ξ) −
f(Xk), and write

E[|F̄k|r | Fk−1] ≤ C(r)p− r
2

k E[|Z|r | Fk−1] ≤ C(r)Mrp
− r

2
k , (A.8)

where we used (2.4) in the second inequality. Of course (A.8) holds with F̄ g
k

instead of F̄k as well. Then, reasoning as in (A.5), we get

E[|Ak|r | Fk−1] ≤ 2rC(r)Mrp
− r

2
k ,

and analogously to (A.7):

P(|Ak| ≥ α∆
r

r−1
k | Fk−1) = P(|Ak|r ≥ αr∆

r2
r−1
k | Fk−1)

≤ E[|Ak|r | Fk−1]
αr∆r2/(r−1)

k

≤ 2rC(r)Mrp
− r

2
k

αr∆r2/(r−1)
k

.
(A.9)

In particular, for pk = O(∆
−2r
r−1
k ) = O(∆−2q

k ), we retrieve Assumption 2.1.

Proof of Proposition 2.6. We have
Eξ[|F̄ (x, ξ) − F̄ (y, ξ)|2] = Eξ[F̄ (x, ξ)2] + Eξ[F̄ (y, ξ)2] − 2Eξ[F̄ (x, ξ)F̄ (y, ξ)]
= Varξ(F (x, ξ)) + Varξ(F (y, ξ)) − 2Covξ(F (x, ξ), F (y, ξ))
≤ 2V − 2V (1 − l̄∥x − y∥2) = 2V l̄∥x − y∥2 .

Proof of Theorem 2.7. Let Ak be an estimate of the difference between the
errors in the current and the tentative point obtained with pk samples:

Ak = 1
pk

pk∑
i=1

(F̄ (Xk, ξk,i) − F̄ (Xk + ∆kGk, ξk,i)) .

Then, for Z = F̄ (Xk, ξ) − F̄ (Xk + ∆kGk, ξ), and C(r) constant depending
only on r

E[|Ak|r | Fk−1] ≤ C(r)p− r
2

k E[|Z|r | Fk−1] ≤ DrC(r)p− r
2

k ∥∆kGk∥r

= DrC(r)p− r
2

k ∆r
k ,

(A.10)

where we used the conditional version of (A.4) in the first inequality, (2.7)
in the second inequality, and ∥Gk∥ = 1 in the last equality.
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We thus have

P(|Ak| ≥ α∆
r

r−1
k | Fk−1) = P(|Ak|r ≥ αr∆

r2
r−1
k | Fk−1)

≤ E[|Ak|r | |Fk−1]
αr∆r2/(r−1)

k

≤ DrC(r)∆− r
r−1

k

p
r
2
kαr

,

where we used the conditional Chebyshev’s inequality in the first inequality,
and (A.10) in the last inequality. Hence we obtain Assumption 2.1 for pk =
O(∆− 2

r−1
k ) = O(∆2−2q

k ) as desired.

Proof of Proposition 2.9: By setting x = y in (2.9) we get

Varξ[F (x, ξ)] = σ2 .

Moreover, we have

Covξ(F (x, ξ), F (y, ξ)) = σ2exp
−∥x − y∥2

2l2

 ≥ σ2(1 − ∥x − y∥2

2l2 ) ,

where we used (2.9) in the equality and ex > 1 + x in the inequality. We can
then apply Proposition 2.6 with V = σ2 and l̄ = 1

2l2 to obtain

Eξ[|F̄ (x, ξ) − F̄ (y, ξ)|2] ≤ σ2

l2 ∥x − y∥2 . (A.11)

Let now Vx,y = Eξ[|F̄ (x, ξ) − F̄ (y, ξ)|2] = Varε[F̄ (x, ξ) − F̄ (y, ξ)]. Since any
linear combination of jointly Gaussian variables is still Gaussian, F̄ (x, ξ) −
F̄ (y, ξ) is Gaussian with 0 mean and variance Vx,y. In particular, we can write
F̄ (x, ξ)−F̄ (y, ξ) =

√
Vx,yN , with N having standard normal distribution. We

conclude by noticing, for r ≥ 2,

Eξ[|F̄ (x, ξ)−F̄ (y, ξ)|r] = E[V r
2

x,y|N |r] = V
r
2

x,yE[|N |r] = V
r
2

x,yM̄r ≤ σr

lr
∥x−y∥rM̄r ,

where we used (A.11) in the second inequality, and M̄r is the r-th moment
of a folded normal distribution of mean 0 and variance 1.

Proof of Proposition 2.10. First, notice that
E[|Fk − F g

k − (f(Xk) − f(Xk + ∆kGk))|2 | Fk−1]
≤ 2(E[|F g

k − f(Xk + ∆kGk)|2 | Fk−1] + E[|Fk − f(Xk)|2 | Fk−1])
≤ 4k2

f∆4
k ,

(A.12)
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where we used (a + b)2 ≤ 2(a2 + b2) for a, b ∈ R in the first inequality, and
(2.10) in the second. We now have

P[|Fk − F g
k − (f(Xk) − f(Xk + ∆kGk))| ≥ α∆2

k | Fk−1]
= P[|Fk − F g

k − (f(Xk) − f(Xk + ∆kGk))|2 ≥ α2∆4
k | Fk−1]

≤ E[|Fk − F g
k − (f(Xk) − f(Xk + ∆kGk))|2 | Fk−1]

α2∆4
k

≤
4k2

f

α2 ,

where we used the conditional Chebyshev’s inequality in the first inequal-
ity, and (A.12) in the second inequality. By setting εq = 4k2

f in the above
equation we obtain

P[|Fk − F g
k − (f(Xk) − f(Xk + ∆kGk))| ≥ α∆2

k | Fk−1] ≤ εq

α2 (A.13)

as desired.

Proof of Proposition 2.12. Notice that (AS1) is trivially satisfied for α <√
εq. We then just need to deal with the case α ≥ √

εq. First observe that
by the triangular inequality

|Fk − f(Xk)| + |F g
k − f(Xk + ∆kGk)| ≥ |Fk − F g

k − (f(Xk) − f(Xk + ∆kGk))| ,

which proves in particular (2.12). Let α ≥ √
εq be arbitrary. For β =

1 − εq

α2 p̄ ∈ (1, 1 − p̄],

P(|Fk − F g
k − (f(Xk) − f(Xk + ∆kGk))| ≥ α∆2

k |Fk−1)
= 1 − P(|Fk − F g

k − (f(Xk) − f(Xk + ∆kGk))| < α∆2
k |Fk−1)

≤ 1−
P({|Fk − f(Xk)| ≤ τf(β)∆2

k} ∩ {|F g
k − f(Xk + ∆kGk)| ≤ τf(β)∆2

k} | Fk−1)

≤ 1 − β = εq

α2 p̄ ≤ εq

α2 ,

where we were able to apply (2.12) in the first inequality since by assumption

τf(β) <
1
2

√√√√ ε

1 − β
= α

2 ,

and the second inequality follows from (2.11). Given that α > εf is arbitrary,
this proves the first point of the thesis, and an analogous reasoning holds for
the second.
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A.2. Additional numerical results. We report here details about the grid
search used to fine tune Algorithm 1 parameters in the tests of Section 5. We
fixed τ = 0.001 (using τ = 0.01 lead to similar results) and defined τ̄ = 1+τ .
We then considered, after some preliminary tests to determine a range of
competitive parameters, θ ∈ θ̄ = (0, 0.5, 1, 2) and δ0 ∈ δ̄0 = (0.5, 1, 2, 4).
We defined H̄ ∈ R4×4×4×4, with H̄(i1, j1, i2, j2) ∈ [0, 1] equal to the fraction
of instances from the test set where SDS1.5 with (δ0, θ) = (δ̄0(i1), θ̄(j1))
outperformed SDS2 with (δ0, θ) = (δ̄0(i2), θ̄(j2)). Finally, we defined H1.5 ∈
R4×4 as

H1.5(i1, j1) = min
i2,j2∈(1,2,3,4)2

H̄(i1, j1, i2, j2) ,

i.e., the worst case performance of SDS1.5 for a fixed choice of (δ0, θ). The
matrix H2 ∈ R4×4 was defined analogously, switching the roles of SDS2 and
SDS1.5. The results, in Figure 3, clearly show that the performance of SDS1.5
is robust with respect to (δ0, θ), in most cases outperforming SDS2 in at least
half the instances.

Figure 3. From left to right, heatmaps representing worst case
performance of SDS1.5 against SDS2 and conversely, for various
choices of the optimization parameters.
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