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Abstract: Let A be a finite dimensional associative algebra with derivations over
a field of characteristic zero, i.e., an algebra whose structure is enriched by the action
of a Lie algebra L by derivations, and let cLn(A), n ≥ 1, be its differential codimension

sequence. Such sequence is exponentially bounded and expL(A) = limn→∞
n
√
cLn(A)

is an integer that can be computed, called differential PI-exponent of A.
In this paper we prove that for any Lie algebra L, expL(A) coincides with exp(A),

the ordinary PI-exponent of A. Furthermore, in case L is a solvable Lie algebra, we
apply such result to classify varieties of L-algebras of almost polynomial growth,
i.e., varieties of exponential growth such that any proper subvariety has polynomial
growth.
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1. Introduction
Let A be an associative algebra over a field F of characteristic zero and

Id(A) its T -ideal of polynomial identities. One of the most interesting and
challenging problems in combinatorial theory of polynomials identities is that
of finding numerical invariants allowing to give a quantitative description of
Id(A). In this setting a very useful and important invariant is the sequence
of codimensions cn(A), n ≥ 1, of A, introduced by Regev in 1972. More
precisely, if Pn is the vector space of multilinear polynomials in the non-
commutative n variables, cn(A) = dimPn/(Pn ∩ Id(A)) is called the n-th
codimension of A. When the base field is of characteristic zero Id(A) is de-
termined by the multilinear polynomials it contains, then the codimension
sequence gives in some sense a quantitative measure of the identities satisfied
by A. Regardless of its importance, the exact computation of the codimen-
sions of an algebra is an hard task and it has been done for very few algebras.
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That is why one is led to study the asymptotic behaviour of the codimen-
sions. In this sense, Regev in [21] showed that if A satisfies a non-trivial
polynomial identity (PI-algebra for short), then the codimension sequence is
exponentially bounded. Later Kemer [16] showed that such codimensions are
either polynomially bounded or grow exponentially. Moreover, in [7] and [8]
Giambruno and Zaicev proved the Amitsur’s conjecture for PI-algebras, i.e.,
they showed that for any PI-algebra A over a field of characteristic zero the
sequence (cn(A))1/n converges, and its limit is always an integer, called the
exponent of A and denoted by exp(A). Since then, extensive research on the
exponent of PI-algebras has been conducted.

Here we are interested in the growth of the differential identities of alge-
bras, i.e., polynomial identities of algebras with an action of a Lie algebra by
derivations. Recall that if L a Lie F -algebra acting on A by derivations, then
such action can be naturally extended to the action of the universal envelop-
ing algebra U(L) of L and in this case A is called algebra with derivations
or L-algebra. Then one can define in a natural way the differential identities
of A, i.e., polynomials in the variables xd, d ∈ U(L), vanishing on A. Such
identities were introduced by Kharchenko in [17] (see also [18]) and in later
years, after the paper [11] of Gordienko and Kochetov the interest on them
grew.

Similarly to the ordinary case, one can attach to an L-algebra A the differ-
ential codimension sequence cLn(A), n ≥ 1. In [10] Gordienko showed that in
case A is finite dimensional L-algebra, cLn(A) is exponentially bounded and
he captured this exponential rate of growth answering positively to the Amit-
sur’s conjecture for this kind of algebras. More precisely, he proved that the
limit limn→∞

n
√
cLn(A) = expL(A) exists and is a non-negative integer called

differential exponent, or L-exponent, of A and he gave an explicit way to
compute it. As a consequence of [10], it turns out that the differential codi-
mensions of a finite dimensional algebra are either polynomially bounded or
grow exponentially (no intermediate growth is allowed).

The theory of differential identities is a natural generalization of the theory
of ordinary polynomial identities arising when the Lie algebra L acts trivially
on A and, as consequence, U(L) coincides with F . So, at this point a question
arise naturally: can we compare the differential exponent and the ordinary
one of a given L-algebra?

Since cn(A) ≤ cLn(A) for all n ≥ 1, clearly we have that exp(A) ≤ expL(A)
and in [11] Gordienko and Kochetov conjectured the following.
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Conjecture 1.1. If A is a finite dimensional L-algebra, then

exp(A) = expL(A).

In the same paper they proved it in case L is a finite dimensional semisimple
Lie algebra and in [24] the authors proved that expL(A) = 1 if and only if
exp(A) = 1 where L is any Lie algebra.

In this paper we give a positive answer to the Gordienko-Kochetov’s con-
jecture for any Lie algebra L. It is important to highlight that this conjecture
is no longer true if we consider other type of algebras with additional struc-
ture such for example algebras with involution [4] or algebras graded by an
abelian finite group [25].

One of the main advantages of the exponent is to have an integral scale
allowing us to measure the growth of any non-trivial variety of algebras.
So it becomes important to study varieties with the same exponent and to
determine those with the most distinguished properties. In this setting a
celebrated theorem of Kemer characterizes varieties generated by an algebra
of exponent less or equal to one as follows. If G is the infinite dimensional
Grassmann algebra over F and UT2 is the algebra of 2× 2 upper triangular
matrices over F , then exp(A) ≤ 1 if and only if G, UT2 do not belong to the
variety V generated by A.

Now, if V is a variety of algebras, the growth of V is the growth of the
sequence of codimensions of a generating algebra. Hence the varieties gen-
erated by G and UT2 are the only of almost polynomial growth, i.e., they
grow exponentially but any proper subvariety grows polynomially. Similar
results were also proved in the setting of varieties of graded algebras [5, 25],
algebras with involution [3], algebras with superinvolution [2] and algebras
with pseudoinvolution [15].

Clearly UT2 generates also L-variety, i.e, variety of L-algebras, of almost
polynomial growth if we suppose that L acts trivially on it. Another use-
ful example of algebras with derivations generating an L-variety of almost
polynomial growth is UT ε2 , the L-algebra UT2 with Fε-action, where ε is the
inner derivation induced by e22 (see [6]). In [23] the author proved that, up
to TL-equivalence, UT2 and UT ε2 are the only 2×2 upper triangular matrices
generating L-varieties of almost polynomial growth and in [20] the authors
completely classify all their subvarieties. Notice that for what concern the
infinite dimensional Grassmann algebra so far we know just that G generates
L-variety of almost polynomial growth if L acts trivially on it and it does not
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generate a L-variety of almost polynomial growth if L acts on it as a finite
dimensional abelian Lie algebra (see [22]).

Inspired by the above results here we characterize L-varieties V having
polynomial growth and we reach our goal in the setting of varieties generated
by finite dimensional L-algebras A where L is a solvable Lie algebra. In this
setting we prove that V has polynomial growth if and only if UT2, UT

ε
2 /∈ V .

As a consequence, there are only two varieties with derivations generated by
a finite dimensional algebra with almost polynomial growth.

2. Preliminaries
Throughout this paper F will denote a field of characteristic zero, A a finite

dimensional associative F -algebra and L a fixed Lie F -algebra.
Recall that a derivation of A is a linear map δ : A→ A such that it satisfies

the Leibniz rule: for all a, b ∈ A

(ab)δ = aδb+ abδ.

If a ∈ A, then the F -liner map ada : A→ A defined by xada = [x, a] = xa−ax
for all x ∈ A, is a derivation on A called inner derivation induced by the
element a. Notice that the set of all derivation of A is a Lie F -algebra denoted
by Der(A) and the set ad(A) of all inner derivations of A is a Lie ideal of
Der(A). Throughout the paper, we will adopt the exponential notation for
derivations, hence derivations will compose from left to right.

A Lie algebra L acts on A by derivation if there exists a homomorphism
of Lie algebras ϕ : L → Der(A). In particular, if L̄ is a Lie subalgebra of
Der(A), then we say that L acts on A as the Lie algebra L̄ if ϕ(L) = L̄.
By the Poincaré–Birkhoff–Witt Theorem the L-action on A can be naturally
extended to an U(L)-action, where U(L) is the universal enveloping algebra
of L with product right-to-left (opposite to the usual one), in fact ϕ can be
naturally extended to an homomorphism of associative algebras φ : U(L)→
EndF (A). In this way A becomes a right U(L)-module and we call it algebra
with derivations or L-algebra. Note also that by the Poincaré–Birkhoff–Witt
Theorem, if {δi | i ∈ I} is an ordered basis of L, then U(L) has a basis
{δi1 · · · δip | i1 < · · · < ip, ik ∈ I, p ≥ 0}. Thus U(L) = U ′(L) ⊕ F · 1 as
vector spaces, where U ′(L) is the non-unital universal enveloping algebra of
L and 1 = 1U(L) is the unit of U(L).

Let (A,L) and (B,L′) be two L-algebras, i.e., L acts on A as the Lie algebra
L and on B as the Lie algebra L′. An isomorphism of algebras ψ : A→ B is
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said to be a isomorphism of L-algebras if there exists an homomorphism of
Lie algebra φ : L̄→ L′ such that ψ(aδ) = ψ(a)φ(δ), for any a ∈ A and δ ∈ L
and in this case we write A ∼=L B. Notice that in case the two L-algebras
(A,L) and (B,L′) are isomorphic just as ordinary algebras we write A ∼= B.

In order to define what a polynomial identity is for this kind algebras, we
need to introduce the free algebra with derivations. Given a basis BU(L) =
{di | i ≥ 0} of U(L) and a countable set X = {x1, x2, . . . }, we let F 〈X|L〉
be the free associative algebra over F with free formal generators x

dj
i , i > 0,

j ≥ 0 where we identify xi = x1
i , 1 = d0 ∈ U(L). Moreover, for all d =∑

i∈I αidi ∈ U(L), where only a finite number of αi ∈ F are non-zero, we set
xd :=

∑
i≥0 αix

di. Then F 〈X|L〉 has a structure of L-algebra by setting

(x
dj1
i1
x
dj2
i2
. . . x

djn
in

)δ = x
dj1δ
i1

x
dj2
i2
. . . x

djn
in

+ x
dj1
i1
x
dj2δ
i2

. . . x
djn
in

+ · · ·+ x
dj1
i1
x
dj2
i2
. . . x

djnδ
in

for all δ ∈ L and x
dj1
i1
x
dj2
i2
. . . x

djn
in
∈ F 〈X|L〉. Thus F 〈X|L〉 is called free alge-

bra with derivations or free L-algebra and its elements are called differential
polynomials or L-polynomials. Note that our definition of F 〈X|L〉 depends
on the choice of the basis BU(L) in U(L). However such algebras can be
identified in a natural way.

A differential polynomial f(x1, . . . , xn) ∈ F 〈X|L〉 is a differential identity,
or an L-identity, of the L- algebra A, if f(a1, . . . , an) = 0 for any ai ∈ A,
and in this case we write f ≡ 0. We denote by IdL(A) the set of differential
identities of A, which is a TL-ideal of the free algebra with derivations, i.e.,
an ideal invariant under all endomorphisms ψ of F 〈X|L〉 such that ψ(fd) =
ψ(f)d for all f ∈ F 〈X|L〉 and d ∈ U(L). We shall use the following notation:
if (A,L) is an L-algebra, i.e., there exists a surjective homomorphism of Lie
algebra ϕ : L → L̄ ⊆ Der(A), then in the set of generators of the TL-ideal
IdL(A) of (A, L̄) we omit the differential identities of the type xδ ≡ 0 for all
δ ∈ kerϕ.

As in the ordinary case, in characteristic zero IdL(A) is completely deter-
mined by its multilinear polynomials. We denote by

PL
n = spanF{x

di1
σ(1) . . . x

din
σ(n) | σ ∈ Sn, dik ∈ BU(L)}

the vector space of multilinear differential polynomials in the variables x1, . . . , xn,
n ≥ 1 and

cLn(A) = dimF
PL
n

PL
n ∩ IdL(A)
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is called nth differential codimension, or L-codimension, of A. Notice that
cLn(A) is well defined because U(L) acts on A as a suitable subalgebra of
EndF (A) and A is a finite dimensional L-algebra.

In order to capture the exponential rate of growth of the above sequence
of codimensions, in [10] the author proved that for any finite dimensional
L-algebra A, the limit

expL(A) = lim
n→∞

n

√
cLn(A)

exists and is a non-negative integer, called differential exponent, or L-exponent,
of A. As a consequence, if A is a finite dimensional L-algebra, then the se-
quence of differential codimensions cLn(A) growths exponentially or is poly-
nomially bounded.

Recall that ifA is an L-algebra, then the variety of algebras with derivations
generated by A is denoted by varL(A) and is called L-variety. The growth
of V = varL(A) is the growth of the sequence cLn(V) = cLn(A), n ≥ 1. We say
that the L-variety V has polynomial growth if cLn(V) is polynomially bounded
and V has almost polynomial growth if cLn(V) is not polynomially bounded
but every proper L-subvariety of V has polynomial growth.

Notice that the theory of differential identities generalizes the ordinary
theory of polynomial identities. In fact, any algebra A can be regarded as
L-algebra by letting L act on A trivially, i.e., L acts on A as the trivial Lie
algebra and U(L) ∼= F . Moreover, since U(L) is an algebra with unit, we
can identify in a natural way Pn with a subspace of PL

n . Hence Pn ⊆ PL
n and

Pn ∩ Id(A) = Pn ∩ IdL(A). As a consequence, if for all n ≥ 1 we denote by

cn(A) = dimF
Pn

Pn ∩ Id(A)
,

the sequence of (ordinary) codimension of A, then we have the following
relation

cn(A) ≤ cLn(A), for all n ≥ 1. (2.1)

Moreover, it is well known that if A is an associative algebra (not necessarily
finite dimensional) over a field of characteristic zero the limit

exp(A) = lim
n→∞

n
√
cn(A)

always exists and is a non-negative integer called the exponent of A (see [7,
8]). By relation (2.1) we have that if A is a finite dimensional L-algebra, then
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exp(A) ≤ expL(A). In what follows we shall prove that actually exp(A) =
expL(A).

3. Finite dimensional algebras with derivations and their
codimensions

In this section we shall prove the Gordienko-Kochetov’s conjecture. To this
end we start by presenting the structure and properties of finite dimensional
L-algebras.

Let A be a finite dimensional L-algebra. If B ⊆ A, then we denote by
BL the set all bd such that b ∈ B and d ∈ BU(L), where BU(L) is a basis of

U(L). We say that B is L-invariant if BL ⊆ B. Thus we have the following
definition. An ideal (subalgebra) I of A is an L-ideal (subalgebra) if it is
L-invariant.

Let us denote by J = J(A) the Jacobson radical of A. It is well known that
J(A) is an L-ideal of A [13, Theorem 4.2] and that A is called semisimple if
and only if J(A) = 0.

Since A is finite dimensional, then by Wedderburn-Malcev decomposition
for associative algebras (see [9, Theorem 3.4.3]), we can find a maximal
semisimple subalgebras B ⊆ A such that

A = B + J.

Moreover, B = B1 ⊕ · · · ⊕ Bk where B1, . . . , Bk are simple algebras and
are all minimal ideals of B. In case L is a semisimple Lie algebra, then
such decomposition is L-invariant, i.e., we can find a maximal semisimple
subalgebra B that is L-invariant ([11, Theorem 4]). However if L is not
semisimple, although J(A) is an L-ideal it may not exist an L-invariant
Wedderburn-Malcev decomposition, i.e., it may happen that BL * B for
every maximal semisimple subalgebra B of A (see [24, Example 3]).

Lemma 3.1. Let A = B1 ⊕ · · · ⊕ Bk + J a finite dimensional algebra where
B1, . . . , Bk are simple algebras. If A is an L-algebra, then BL

i ⊆ Bi + J for
all 1 ≤ i ≤ k. Moreover, BL

i ⊆ J whenever Bi
∼= F .

Proof : Let δ ∈ Der(A). By [13, Theorem 4.3] δ = adb + adj +δ′, where b ∈ B,
j ∈ J and δ′ ∈ Der(A) is such that aδ

′
= 0 for all a ∈ B. Let 1 ≤ i ≤ k and

a ∈ Bi. Then aδ = aadb + aadj . Since BiBr = 0, r 6= i, aadb ∈ Bi. Thus since
J is an ideal of A, aδ ∈ Bi + J and we have proved that Bδ

i ⊆ Bi + J for all
1 ≤ i ≤ k and δ ∈ Der(A). Now if d ∈ U(L), by the Poincaré–Birkhoff–Witt
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Theorem we may assume that there exists s ≥ 0 such that d = δ1 . . . δs where
δi ∈ L for all 1 ≤ i ≤ s. If s = 0, then d = 1U(L) and there is nothing to

prove. So let us suppose that s > 0. Since Bδ
i ⊆ Bi + J for any choose of

δ ∈ L and J is an L-ideal, then BL
i ⊆ Bi + J .

Now suppose that Bi
∼= F for some 1 ≤ i ≤ k. Then Bi = spanF{ei}.

Since BiBr = 0, r 6= i, eδi = e
adb + adj +δ′

i = e
adj

i ∈ J , where δ = adb + adj +δ′ ∈
Der(A) with b ∈ B, j ∈ J and δ′ ∈ Der(A) is such that Bδ′ = 0. Thus since
J is an L-ideal, the proof is complete.

Recall that an algebra A is L-simple if A2 6= {0} and A has no non-trivial
L-ideals. Thus we have the following.

Proposition 3.2. Let A be a finite dimensional L-algebra. Then

1) If A is semisimple, then A = A1 ⊕ · · · ⊕ Am where A1, . . . , Am are
L-simple algebras and are all minimal L-ideals of A.

2) If A is L-simple, then A is simple.

Proof : Suppose that A is semisimple. Then since J(A) = 0, we have that
A = B1⊕ · · · ⊕Bk where B1, . . . , Bk are simple algebras and are all minimal
ideals of A. By Lemma 3.1 it follows that BL

i ⊆ Bi for all 1 ≤ i ≤ k. Thus
B1, . . . , Bk are L-invariant simple algebras and, as a consequence, L-simple.
So the first statement is proved. As for the second, it is proved in [11, Lemma
9].

Lemma 3.3. Let A = B1 ⊕ · · · ⊕ Bk + J a finite dimensional algebra
over an algebraically closed field F of characteristic zero where B1, . . . , Bk

are simple algebras and let A+ = A + F · 1. If A is an L-algebra and
BL

1 A
+BL

2 · · ·BL
k−1A

+BL
k 6= 0, then B1JB2 · · ·Bk−1JBk 6= 0

Proof : If J = 0 there is nothing to prove. So let J 6= 0. If k = 1 again there
is nothing to prove. So, assume that k > 1. By hypothesis

bd11 a1b
d2
2 a2 . . . ak−1b

dk
k 6= 0 (3.1)

for some bi ∈ Bi, di ∈ BU(L) and aq ∈ A+ for 1 ≤ i ≤ k and 1 ≤ q ≤ k − 1.
We claim that for all 2 ≤ i ≤ k− 1 there exist āi−1, āi ∈ A+ and b̄i ∈ Bi such

that b
di−1
i−1 āi−1b̄iāib

di+1

i+1 6= 0.

By (3.1) for all 2 ≤ i ≤ k−1 we have that b
di−1
i−1 ai−1b

di
i aib

di+1

i+1 6= 0. If bdii ∈ Bi

the claim is proved. Then let us assume that bdii /∈ Bi. Since Bi is simple, it
is a unitary algebra and we denote by ei its unit. Without loss generality we
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may suppose that di = δ1 . . . δr with δj ∈ L, 1 ≤ j ≤ r, r ≥ 1. We proceed
by induction on r.

If r = 1, then di ∈ L. By the Leibniz rule and since ei is the unit of Bi, we
get that bdii = edii bi + eib

di
i . Thus it follows that

b
di−1
i−1 ai−1e

di
i biaib

di+1

i+1 + b
di−1
i−1 ai−1eib

di
i aib

di+1

i+1 6= 0.

Now, if b
di−1
i−1 ai−1e

di
i biaib

di+1

i+1 6= 0, by setting āi−1 = ai−1e
di
i ∈ A+, b̄i = bi ∈ Bi

and āi = ai ∈ A+ we get the desired conclusion. On the other hand, if

b
di−1
i−1 ai−1eib

di
i aib

di+1

i+1 6= 0, we get b
di−1
i−1 āi−1b̄iāib

di+1

i+1 6= 0 where āi−1 = ai−1 ∈ A+,

b̄i = ei ∈ Bi and āi = bdii ai ∈ A+. So let us assume that r > 1. Then again
by Leibniz rule and since ei is the unit of Bi we have that

bdii = edii bi + eib
di
i +

∑
P,Q

edPi b
dQ
i

where {P ,Q} is a partition of the set {1, . . . , r} into two disjoint ordered
non-empty subsets such that if P = {p1, . . . , ps} and Q = {q1, . . . , qt},
then dP = δp1 · · · δps and dQ = δq1 · · · δqt. Since by hypothesis we have that

b
di−1
i−1 ai−1b

di
i aib

di+1

i+1 6= 0, then

b
di−1
i−1 ai−1e

di
i biaib

di+1

i+1 + b
di−1
i−1 ai−1eib

di
i aib

di+1

i+1 +
∑
P,Q

b
di−1
i−1 ai−1e

dP
i b

dQ
i aib

di+1

i+1 6= 0.

If b
di−1
i−1 ai−1e

di
i biaib

di+1

i+1 6= 0 or b
di−1
i−1 ai−1eib

di
i aib

di+1

i+1 6= 0 we are done. So, let
suppose that there exists a partition {P ,Q} of {1, . . . , r} such that

b
di−1
i−1 ai−1e

dP
i b

dQ
i aib

di+1

i+1 6= 0.

Since ai−1e
dP
i ∈ A+, by the inductive hypothesis the claim is proved.

We proved that there exist b̄i ∈ Bi, 2 ≤ i ≤ k − 1, and ā1, . . . , āk−1 ∈ A+

such that bd11 ā1b̄2ā2 . . . āk−1b
dk
k 6= 0. Now with a similar argument of above

we can prove that there exist b̄1 ∈ B1, b̄k ∈ Bk and ã1, ãk−1 ∈ A+ such
that b̄1ã1b̄2 6= 0 and b̄k−1ãk−1b̄k 6= 0 and, as a consequence, we have that
b̄1ã1b̄2ā2 . . . ãk−1b̄k 6= 0. Since BrBs 6= 0 for all 1 ≤ r, s ≤ k, r 6= s, it follows
that ā1, . . . āk−1 ∈ J and the lemma is proved.

Next we recall the characterizations of the exponent exp(A) and L-exponent
expL(A) of A.
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Theorem 3.4. [9, Section 6.2] If A is a finite dimensional algebra over a
field of characteristic zero, then

exp(A) = max{ dimF (Bi1 ⊕Bi2 ⊕ · · · ⊕Bir) | Bi1JBi2J · · · JBir 6= 0,

1 ≤ r ≤ k, ip 6= is, 1 ≤ p, s ≤ r},

where A = B1 ⊕ · · · ⊕Bk + J with B1, . . . , Bk simple algebras and J = J(A)
is the Jacobson radical of A.

Theorem 3.5. [10, Theorems 1 and 3] Let A be a finite dimensional L-
algebra over a field of characteristic zero. If J = J(A) is the Jacobson
radical of A and A/J = A1 ⊕ · · · ⊕ Am with A1, . . . , Am L-simple algebras,
then

expL(A) = max{ dimF (Ai1 ⊕ Ai2 ⊕ · · · ⊕ Air) | AL
i1
A+AL

i2
A+ · · ·A+AL

ir
6= 0,

1 ≤ r ≤ m, ip 6= is, 1 ≤ p, s ≤ r}

where A+ = A + F · 1 and Ai1, . . . , Aik are a subalgebra of A (not necessary
L-invariant) such that π(Air) = Air for all 1 ≤ r ≤ k, where π : A→ A/J is
the canonical projection.

Remark 3.6. Let π : A → A/J = A be the canonical projection where
J = J(A) is the Jacobson radical of A. If B is the maximal semisimple
subalgebra of A such that A = B + J and

B = B1 ⊕ · · · ⊕Bk

where B1, . . . , Bk are simple algebras (not necessary L-invariant) and are all
minimal ideals of B, then clearly π|B : B → A is an isomorphism of algebras

and π(B1), . . . , π(Bk) are simple subalgebra of A. On the other hand, since
J is an L-ideal of A, A is a semisimple L-algebra and by 1) of Proposition
3.2 we have that

A = A1 ⊕ · · · ⊕ Am

where A1, . . . , Am are L-simple algebras and are all minimal L-ideals of A.
Then by 2) of Proposition 3.2, A1, . . . , Am are also simple algebras and,
as a consequence, they are all minimal ideals of A. Thus it follows that
k = m and for all 1 ≤ i ≤ k there exists 1 ≤ j ≤ k such that π(Bi) = Aj.
Moreover, since B1, . . . , Bk are simple algebras, π|Bi

is an isomorphism of
ordinary algebras for all 1 ≤ i ≤ k, i.e., for all 1 ≤ i ≤ k there exists
1 ≤ j ≤ k such that Bi

∼= Aj.
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Now we are in position to prove the Gordienko-Kochetov’s conjecture.

Theorem 3.7. Let L be a Lie algebra over a field F of characteristic zero.
If A is a finite dimensional L-algebra over F , then expL(A) = exp(A).

Proof : Clearly by definition of exp(A) and expL(A) and by relation (2.1) it
follows that exp(A) ≤ expL(A).

In order to prove the opposite inclusion, let us suppose that expL(A) = d
and consider the canonical projection π : A → A/J = A where J = J(A) is
the Jacobson radical of A. If A = A1 ⊕ · · · ⊕ Am with A1, . . . , Am L-simple
algebras, by Theorem 3.5

d = dimF (Ai1 ⊕ Ai2 ⊕ · · · ⊕ Air)

for some L-subalgebra Ai1⊕Ai2⊕· · ·⊕Air of A such that 1 ≤ r ≤ m, is 6= ip,
1 ≤ s, p ≤ r, and

AL
i1
A+AL

i2
A+ · · ·A+AL

ir
6= 0,

where A+ = A + F · 1 and Ai1, . . . , Air are subalgebras of A (not necessary
L-invariant) such that π(Ais) = Ais for all 1 ≤ s ≤ r. Now let consider a
maximal semisimple subalgebra B of A such that A = B + J . If we write
B = B1⊕· · ·⊕Bk withB1, . . . , Bk simple algebras (not necessary L-invariant),
then by Remark 3.6 k = m and for all 1 ≤ s ≤ m there exists 1 ≤ js ≤ m
such that Ais = Bjs. Since for all 1 ≤ s ≤ r, Bjs

∼= Ais (as ordinary algebras),
it follows that

d = dimF (Bj1 ⊕Bj2 ⊕ · · · ⊕Bjr)

with jp 6= js for all 1 ≤ p, s ≤ r and BL
j1
A+BL

j2
A+ · · ·A+BL

jr
6= 0. Then by

Lemma 3.3 it follows that Bj1JBj2J . . . JBjr 6= 0 and by Theorem 3.4 we are
done.

4. On upper triangular matrix algebras with derivations
In this section we collect some results concerning the upper triangular

matrix algebras with derivations.
For n > 1, let UTn be the algebra of n× n upper triangular matrices over

F . In [1] the authors studied the derivations of UTn and proved that any
derivation of UTn is inner.

Let us consider the algebra UT2 where L acts trivially on it. Since xγ ≡ 0
for all γ ∈ L is a differential identity of UT2, we are dealing with ordinary
identities. Thus by [19] we have the following result.

Theorem 4.1.
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1) IdL(UT2) = 〈[x, y][z, w]〉TL.

2) {xi1 . . . xim[xk, xj1, . . . , xjn−m−1] | i1 < · · · < im, k > j1 < · · · <
jn−m−1, m 6= n− 1} is a basis of PL

n modulo PL
n ∩ IdL(UT2).

3) cLn(UT2) = 2n−1(n− 2) + 2.

In [6], Giambruno and Rizzo introduced another algebra with derivations
generating a variety of almost polynomial growth. They considered UT ε2 to
be the L-algebra UT2 where L acts on it as the 1-dimensional Lie algebra
spanned by the inner derivation ε = ade22, where e22 is the matrix unit whose
non-zero entry is 1F in position (2, 2). The authors proved the following.

Theorem 4.2. [6, Theorem 5]

1) IdL(UT ε2 ) = 〈xε2 − xε, xεyε, [x, y]ε − [x, y]〉TL.
2) {xi1 . . . xim[xk, xj1, . . . , xjn−m−1], xi1 . . . xim[xεl1, xl2, . . . , xln−m],
xh1 . . . xhn−1x

ε
r, | i1 < · · · < im, k > j1 < · · · < jn−m−1, l1 < · · · <

ln−m, h1 < · · · < hn−1, m 6= n − 1} is a basis of PL
n modulo PL

n ∩
IdL(UT ε2 ).

3) cLn(UT ε2 ) = 2n−1n− 1.

Notice that from the above theorems it follows that IdL(UT2) * IdL(UT ε2 )

and IdL(UT ε2 ) * IdL(UT2) for any Lie algebra L that acts as Fε on UT ε2 and
as the zero Lie algebra on UT2. Thus by [16] and [6, Theorem 15] we have
the following.

Theorem 4.3. The algebras UT2 and UT ε2 generate two distinct varieties of
algebras with derivations of almost polynomial growth.

Now denote by UT η2 the L-algebra UT2 where L acts on it as the 1-
dimensional Lie algebra spanned by a derivation η of UT2. Notice that since
any derivation of UT2 is inner, Der(UT2) is the 2-dimensional metabelian Lie
algebra with basis {ε, δ}, where ε = ade22 and δ = ade12, where e12 is the
matrix unit whose non-zero entry is 1F in position (1, 2). Then η = αε+ βδ,
for some α, β ∈ F . In [23] the author proved the following.

Theorem 4.4. [23, Theorem 12] Let η = αε + βδ ∈ Der(UT2) such that
α, β ∈ F are not both zero.

1) If α 6= 0, then IdL(UT η2 ) = 〈xη2 − αxη, xηyη, [x, y]η − α[x, y]〉TL.

Otherwise, IdL(UT η2 ) = 〈xη2, xηyη, [x, y]η, [x, y][z, w], xη[y, z]〉TL.
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2) cLn(UT η2 ) = 2n−1n+ 1.

As a consequence we get the following corollary.

Corollary 4.5. Let η = αε + βδ ∈ Der(UT2) for some α, β ∈ F . If α 6= 0,
then varL(UT η2 ) = varL(UT ε2 ). Otherwise, UT2 ∈ varL(UT η2 ).

Proof : Let suppose first that α 6= 0. Notice that for any β ∈ F , IdL(UT η2 ) =
IdL(UT αε2 ) where UT αε2 is the L-algebra UT2 where L acts on it as the 1-
dimensional Lie algebra spanned by the derivation αε = α ade22. On the
other hand it is clear that varL(UT ε2 ) = varL(UT αε2 ) and then varL(UT ε2 ) =
varL(UT η2 ).

Suppose now that α = 0. If β = 0 there is nothing to prove, so let β 6= 0.
Notice that we can regard UT2 as an algebra with Fη-action by derivation
where η acts trivially on UT2, i.e., xη ≡ 0 is differential identity of UT2. Then
by Theorem 4.4 it follows that UT2 ∈ varL(UT η2 ).

Remark 4.6. Let us denote by UTD2 the L-algebra UT2 where L acts on it as
the all Lie algebra Der(UT2). In [6] the authors proved that UT ε2 ∈ varL(UTD2 )
and, as a consequence, varL(UTD2 ) has no almost polynomial growth.

Proposition 4.7. If a Lie algebra L acts on UTn, n ≥ 2, by derivations,
then either UT2 ∈ varL(UTn) or UT ε2 ∈ varL(UTn).

Proof : Suppose first that n = 2. If L acts trivially there is nothing to prove,
so let L acts non-trivially on UT2. If L acts as a 1-dimensional Lie subalgebra
of Der(UT2), then by Corollary 4.5 we are done. Then let us assume that L
acts as a 2-dimensional Lie subalgebra of Der(UT2). Then L acts as the all
Lie algebra Der(UT2) since dimF Der(UT2) = 2. Thus by Remark 4.6 we are
done also in this case.

Suppose then that n > 2 and consider the ideal I = spanF{eij : i < j, j 6=
2} of UTn where eij’s are the usual matrix units. Since any derivation of UTn
is inner (see [1]), by the multiplication table of UTn it follows that I is an
L-ideal of UTn and A = UTn/I is an L-algebra. If B = spanF{e11 + I, e22 +
I, e12 + I}, then B is a L-subalgebra of A. Moreover, B is isomorphic to
UT2 as ordinary algebras. Thus as L-algebra B is isomorphic to UT2 with L-
action and by the first part of the proof we have that either UT2 ∈ varL(B)
or UT ε2 ∈ varL(B). Since varL(B) ⊆ varL(A) ⊆ varL(UTn) the proof is
complete.



14 C. RIZZO

Notice that as a consequence of the Theorem 4.3 and Proposition 4.7 we
have that UT2 and UT ε2 are the only upper triangular matrix algebras gen-
erating varieties of algebras with derivation of almost polynomial growth.

5. Differential varieties of almost polynomial growth
In this section we shall characterize the varieties of algebras with deriva-

tions of almost polynomial growth in case L is a finite dimensional solvable
Lie algebra.

Let V be a finite dimensional vector space over F . The space gl(V ) of all
linear maps from V to V is a Lie algebra, if we define the Lie bracket [−,−]
by

[v, w] := v ◦ w − v ◦ w
for all v, w ∈ gl(V ), where ◦ denotes the composition of maps. Then we have
the following property for solvable Lie subalgebra of gl(V ).

Theorem 5.1 ([14], Theorem 4.1). Let V be a finite dimensional non-zero
vector space over an algebraically closed field F of characteristic zero. Sup-
pose that L is a finite dimensional solvable Lie subalgebra of gl(V ). Then
there is some non-zero v ∈ V which is a simultaneous eigenvector for all
δ ∈ L, i.e., vδ = αδv with αδ ∈ F for all δ ∈ L.

Next lemmas will be useful to establish a structural result about L-varieties
of polynomial growth.

Lemma 5.2. Let A = A1 ⊕ A2 + J be a finite dimensional algebra over
an algebraically closed field F of characteristic zero, where A1

∼= A2
∼= F ,

A1JA2 6= 0 and A1JA2 ⊆ Jq, with q such that Jq 6= 0 and Jq+1 = 0. If L
is a finite dimensional solvable Lie algebra acting on A by derivation, then
either UT2 ∈ varL(A) or UT ε2 ∈ varL(A).

Proof : Since A1JA2 6= 0, if e1 and e2 denote the unit elements of A1 and
A2, respectively, we have that e1Je2 6= 0 with e1e2 = e2e1 = 0. Moreover,
since A1JA2 ⊆ Jq, there exists j ∈ Jq such that e1je2 6= 0. Let B =
spanF{e1j

de2 | d ∈ BU(L)}. Clearly B is a subalgebra of A. Moreover, by the
Poincaré–Birkhoff–Witt Theorem and the Leibniz rule we have that, for all
h ∈ BU(L),

(e1j
de2)

h = eh1j
de2 + e1j

dhe2 + e1j
deh2 +

∑
eh
′

1 j
dh′′eh

′′′

2
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where h′, h′′, h′′′ are suitable elements of U(L) such that at least two between
them are not in spanF{1U(L)}. Since A1

∼= A2
∼= F , by Lemma 3.1 it follows

that eh1 , e
h
2 ∈ J for all h ∈ U(L). Then since j ∈ Jq , we have that (e1j

de2)
h =

e1j
dhe2 for all h ∈ U(L). Thus it follows that B is an L-subalgebra of A.

Now, since L is solvable, by Theorem 5.1 there exists a non-zero b ∈ B which
is a simultaneous eigenvector for all δ ∈ L. Thus, as a consequence of the
Poincaré–Birkhoff–Witt Theorem, we have that bh = αhb, αh ∈ F , for all
h ∈ U(L). Notice also that b = e1be2 and j̄b = bj̄ = 0 for all j̄ ∈ J . Let now
C be the subalgebra of A generating by {eh1 , eh2 , b | h ∈ BU(L)}. Clearly C is
L-invariant and its vector subspace D = spanF{e1, e2, b} is a subalgebra (not
necessarily L-invariant) such that bh = αhb, αh ∈ F , for all h ∈ U(L) and
D ∼= UT2 as ordinary algebras. We shall prove that either UT2 ∈ varL(C) or
UT ε2 ∈ varL(C) and since varL(C) ⊆ varL(A) the theorem will be proved.

Suppose first that bh = 0 for all h ∈ BU ′(L), where BU ′(L) is a basis of the

non-unital enveloping algebra U ′(L) of L, and let f ∈ IdL(C) be a multilinear
L-polynomial of degree n. By Theorem 4.1, f can be written as

f = αx1 . . . xn +
∑
I,J

αI,Jxi1 . . . xim[xk, xj1, . . . , xjn−m−1] + g,

where g ∈ IdL(UT2), I = {i1, . . . , im} and J = {j1, . . . , jn−m−1} with i1 <
· · · < im, k > j1 < · · · < jn−m−1 and 0 ≤ m ≤ n− 2. First of all notice that
if ϕ is an evaluation that send at least one variables in b and all the others
in {e1, e2}, then ϕ(g) = 0: indeed, since bh = 0, eh1 , e

h
2 ∈ J for all h ∈ BU ′(L)

and j̄b = bj̄ = 0 for all j̄ ∈ J , all the monomials of g in which appear at least
an element of U ′(L) as exponent of some variables are evaluated in zero. So
it is not restrictive to assume that g is a linear combination of monomials in
which all the variables have as exponent 1U(L), i.e., g ∈ Pn ∩ IdL(UT2). Thus
since spanF{e1, e2, b} ∼= UT2 as ordinary algebras, it follows that ϕ(g) = 0.

For fixed I and J the evaluation xi1 = · · · = xim = e1 + e2, xk = b,
xj1 = · · · = xjn−m−1 = e2 gives αI,J = 0 since eh1 , e

h
2 ∈ J for all h ∈ BU ′(L),

j̄b = bj̄ = 0 for all j̄ ∈ J and spanF{e1, e2, b} has the same multiplication
table of UT2. Moreover, by choosing x1 = · · · = xn−1 = e1 and xn = b we get
α = 0. Thus f = g ∈ IdL(UT2) and so UT2 ∈ varL(C).

Let now suppose that there exists h ∈ BU ′(L) such that bh = αhb with
αh ∈ F , αh 6= 0. Clearly it is not restrictive suppose that h ∈ L. Moreover,
we may assume that bh = b and bh

′
= 0 for all h′ ∈ BU ′(L) such that h′ 6= h. In

fact, if not, we consider a new basis of U ′(L) obtained from our basis BU ′(L)
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by substituting any element h′ ∈ BU ′(L), h
′ 6= h, such that bh

′
= αh′b, αh′ 6= 0,

with the element h′ − αh′α−1
h h and h with α−1

h h.

Let f ∈ IdL(C) be a multilinear L-polynomial of degree n. By Theorem
4.2, f can be written as

f =αx1 . . . xn +
∑
I,J

αI,J xi1 . . . xim[xk, xj1, . . . , xjn−m−1] +
n∑
r=1

βr xq1 . . . xqn−1x
h
r

+
∑
P

γP xp1 . . . xps[x
h
t1
, xt2, . . . , xtn−s] + g

where g ∈ IdL(UT ε2 ), I = {i1, . . . , im}, J = {j1, . . . , jn−m−1} and P =
{p1, . . . , ps} with i1 < · · · < im, k > j1 < · · · < jn−m−1, p1 < · · · < ps,
t1 < · · · < tn−s, 0 ≤ m, s ≤ n− 2 and q1 < · · · < qn−1.

Notice that ϕ(g) = 0 for all evaluation ϕ that send at least one variables
in b and all the others in {e1, e2}. In fact, if ϕ is such evaluation, then every
monomials in g with at least two elements of U ′(L) as exponent of different
variables and that one with an element h′ ∈ U ′(L), h′ 6= h, as exponent of
some variables are evaluated in zero. So, we may assume that g is a linear
combination of monomials in which at most one varialbe has as exponent h
and all the others 1U(L). Thus since g ∈ IdL(UT ε2 ), spanF{e1, e2, b} ∼= UT2 as

ordinary algebras and bh = b, it follows that ϕ(g) = 0.
Suppose first n = 1. Then f = f(x) = αx + βxh + g(x) where g(x) ∈

IdL(UT ε2 ). If we evaluate x = e1, we obtain αe1 + βeh1 + ḡ(e1) = 0, where
βeh1 + ḡ(e1) ∈ J since ed1 ∈ J for all d ∈ U ′(L). Thus since A1 ∩ J = 0, it
follows that α = 0. Now by making the substitution x = b, we get β = 0
because bh

′
= 0 for all h′ ∈ BU ′(L), h

′ 6= h. Thus for n = 1, f = g ∈ IdL(UT ε2 ).

Now if n = 2, then f = f(x, y) = α1xy + α2yx + β1yx
h + β2xy

h + γxhy +
g(x, y) where g(x, y) ∈ IdL(UT ε2 ). By making the evaluation x = y = e1 we
get (α1 + α2)e1 + (β1 + β2)e1e

h
1 + γeh1e1 + ḡ(e1, e1) = 0 where (β1 + β2)e1e

h
1 +

γeh1e1 + ḡ(e1, e1) ∈ J since ed1 ∈ J for all d ∈ U ′(L). Thus it follows that
α1 + α2 = 0 since A1 ∩ J = 0. Now by choosing x = e2 and y = b we have
that α2 = 0 and α1 = −α2 = 0. Now by evaluating x = b and y = e1 we get
β1 = 0. From the substitution x = e1 and y = b we obtain β2 = 0. Finally,
the evaluation x = b and y = e2 gives γ = 0. Thus also in this case we proved
that f = g ∈ IdL(UT ε2 ).

Let now n ≥ 3. For fixed I and J consider the evaluation xi1 = · · · = xim =
e1 + e2, xk = b and xj1 = · · · = xjn−m−1 = e2. Since |J | ≥ 2 and k > j1, then
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αI,J = 0 because eh1 , e
h
2 ∈ J , j̄b = bj̄ = 0 for all j̄ ∈ J and spanF{e1, e2, b}

has the same multiplication table of UT2. Moreover, for fixed P by making
the evaluation xp1 = · · · = xps = e1 + e2, xt1 = b and xt2 = · · · = xtn−s = e2,
we get γP = 0 if P 6= {1, . . . , s}. Thus we may assume that

f = αx1 . . . xn+
n∑
r=1

βr xq1 . . . xqn−1x
h
r +

n−2∑
s=0

γs x1 . . . xs[x
h
s+1, xs+2, . . . , xtn] + g,

where g ∈ IdL(UT ε2 ) and q1 < · · · < qn−1. If n is odd, then from the evaluation
x1 = b, x2 = · · · = xn = e2 we get α = 0. Also the evaluation x1 = e1, x2 = b,
x3 = · · · = xn = e2 gives γ1 = 0 since n ≥ 3. On the other hand, if n is
even, then by making the evaluation x1 = e1, x2 = b, x3 = · · · = xn = e2, we
obtain α = 0 since n ≥ 4. Moreover, by choosing x1 = b, x2 = · · · = xn = e2

we get γ0 = 0. Thus we may assume that α = γ0 = γ1 = 0 for all n ≥ 3. Now
if for all 2 ≤ s ≤ n − 2 we consider the evaluation x1 = · · · = xs = e1 + e2,
xs+1 = b, xs+2 = · · · = xn = e2, then we get γs = 0. Finally, for 1 ≤ r ≤ n
by choosing xr = b and xq1 = · · · = xqn−1 = e1 we obtain βr = 0. As a

consequence we have that for all n ≥ 3 f = g ∈ IdL(UT ε2 ). Thus we prove
that UT ε2 ∈ varL(C) and the proof is complete.

A basic result we shall need in what follows is the Lie’s theorem for solvable
Lie algebras.

Theorem 5.3 ([14], Lie’s Theorem). Let V be a finite dimensional non-zero
vector space over an algebraically closed field F of characteristic zero and let
L be a finite dimensional solvable Lie subalgebra of gl(V ). Then there is a
basis of V in which every element of L is represented by an upper triangular
matrix.

Recall that if V is a p-dimensional vector space over F and we fix a basis
of it, then we may identify gl(V ) with the set of all p × p matrices over F ,
and we write glp for the Lie algebra of all p× p matrices over F with the Lie
bracket defined by [a, b] = ab− ba, for all a, b ∈ glp.

Theorem 5.4. Let L be a finite dimensional solvable Lie algebra over a
field F of characteristic zero and A be a finite dimensional L-algebra over
F . Then the sequence cLn(A), n ≥ 1, is polynomially bounded if and only if
UT2, UT

ε
2 /∈ varL(A).
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Proof : First suppose that cLn(A) is polynomially bounded. Since, by theorems
4.1 and 4.2, UT2 and UT ε2 generate L-varieties of exponential growth, we have
UT2, UT

ε
2 /∈ varL(A).

Now assume UT2, UT
ε
2 /∈ varL(A). Using an argument analogous to that

used in the ordinary case (see [9, Theorem 4.1.9]), we can prove that the
differential codimensions do not change upon extension of the base field and
so we may assume F is algebraically closed. Since the Jacobson radical
J = J(A) of A is an L-ideal, by Proposition 3.2 we have that A = A/J is a
semisimple L-algebra such that A = A1 ⊕ · · · ⊕ Am where Ai is an L-simple
algebras such that Ai

∼=L Mni(F ), ni ≥ 1, for all 1 ≤ i ≤ m.
Suppose that ni > 1, for some i. As a consequence of the Noether-Skolem

theorem, all derivations of Mni(F ) are inner ([12, p.100]), then L acts on
Mni(F ) as adL where L is a Lie subalgebra of glni. Since every homomorphic

image of a solvable Lie algebra is still solvable, then L is solvable. Thus,
by Theorem 5.3, L is contained in the Lie subalgebra Uni of glni of ni ×
ni upper triangular matrices over F . Hence it follows that UTni is an L-
invariant subalgebra of Mni(F ), i.e., UTni ∈ varL(Mni(F )) ⊆ varL(A) and by
Proposition 4.7 we reach a contradiction. Thus Ai

∼= F for all 1 ≤ i ≤ m.
Notice that if we consider the Wedderburn-Malcev decomposition of A as

ordinary algebra, A = A1 ⊕ · · · ⊕ Am + J, then by Remark 3.6 Ai
∼= F (as

ordinary algebras) for all 1 ≤ i ≤ m. Thus in order to finish the proof,
by theorems 3.7 and ??, it is enough to guarantee that AiJAk = 0 for all
1 ≤ i, k ≤ m, i 6= k. Suppose to the contrary that there exist 1 ≤ i, k ≤ m,
i 6= k, such that AiJAk 6= 0. Since Ai

∼= Ak
∼= F , by Lemma 3.1 AL

i ⊆ J
and AL

k ⊆ J ; then B = Ai ⊕ Ak + J is a L-subalgebra of A. We claim
that either UT2 ∈ varL(B) or UT ε2 ∈ varL(B). Let q the largest integer such
that Jq 6= 0 and Jq+1 = 0. We shall prove the claim by induction on q. If
q = 1, then since AiJAk ⊆ J , by Lemma 5.2 we are done. So, let us assume
that q > 1. If AiJAk ⊆ Jq, then by Lemma 5.2 we are done also in this
case. So, let us suppose that AiJAk * Jq. Then since Jq is an L-ideal of B,

B = B/J q is an L-algebra such that B = Ai ⊕ Ak + J where Ai
∼= Ak

∼= F ,
J
q

= 0 and AiJ Ak 6= 0. Then by the inductive hypothesis we have that
either UT2 ∈ varL(B) or UT ε2 ∈ varL(B) and since varL(B) ⊆ varL(B) the
claim is proved. Since B is a L-subalgebra of A, we have proved that either
UT2 ∈ varL(A) or UT ε2 ∈ varL(A), a contradiction, and the theorem is proved.
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As a consequence we have the following.

Corollary 5.5. If L is a finite dimensional solvable Lie algebra, then the
algebras UT2 and UT ε2 are the only finite dimensional L-algebras generating
varieties of almost polynomial growth.
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