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1. Introduction

The Cauchy kernel identity is a classical corner stone in the theory of sym-
metric functions and characters of the linear groups over the complex �eld.
Given two sets of indeterminates X = {x1, . . . , xm} and Y = {y1, . . . , yn} it
asserts that

m∏
i=1

n∏
j=1

1

1− xiyj
=

∑
λ∈Pmax(m,n)

sλ(X)sλ(Y )

where Pmax(m,n) is the set of partitions with at most max(m,n) parts and, for
each such partition λ, sλ(X) and sλ(Y ) are the Schur polynomials in the inde-
terminates X and Y , respectively. In fact the Schur functions sλ(X) and sλ(Y )
can be interpreted as the characters of the irreducible �nite-dimensional rep-
resentations of highest weight λ for the linear Lie algebras glm(C) and gln(C).
The aforementioned Cauchy identity can then be regarded as the character
of the glm × gln bi-module S(Cm × Cn) where S(Cm × Cn) is the symmetric
tensor space associated to Cm×Cn. This can be proved in a very elegant way
(see [13, 33]) by using the Robinson-Schensted-Knuth correspondence. Recall
this is a one-to-one map ψ between the setMm,n of matrices M with m rows,
n columns and entries in Z≥0, and the pairs (P,Q) of semistandard tableaux
both with the same shape λ where P and Q have entries in {1, . . . ,m} and
{1, . . . , n}, respectively. The RSK correspondence has many interesting prop-
erties. In particular, for each matrix M in Mm,n, the greatest integer which
can be obtained by summing up the entries in all the possible paths starting
at position (1, n) and ending at position (m, 1) with steps ←− or ↓ coincides∗
with the longest row in the tableaux P,Q such that ψ(M) = (P,Q). It is
then natural to study percolation models based on the RSK correspondence
where random matrices whose entries follow independent geometric laws are
considered (see [5] for a recent exposition). This type of model has been deeply
studied by Johansson in [17], who proved that the �uctuations of the previ-
ous last passage percolation, once correctly normalized, are controlled by the
Tracy-Widom distribution (de�ned from the study of the largest eigenvalues
of random Hermitian matrices). The RSK correspondence admits various gen-
eralizations which can also be used to get interesting last passage percolation
models. These models involve symmetric polynomials or generalizations of

∗We here consider the paths which are compatible with the version of RSK that will be used in
the paper.
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symmetric polynomials, in particular characters of representations of Lie alge-
bras other than gln (which are also symmetric with respect to the associated
Weyl group). We refer the reader to [7] for a recent survey and numerous new
interesting results in this direction. In a connected area, the dual Cauchy iden-
tity also yields rich random structures as those studied in the recent papers
[3, 31].
In this paper, we shall follow a di�erent approach and consider percolation

models based on the non-symmetric Cauchy kernel as initially studied by Las-
coux in [23]. It was also later considered in [15] just as computations on poly-
nomials. This means that the ordinary Cauchy identity will be replaced by its
non-symmetric analogue∏

1≤j≤i≤n

1

1− xiyj
=
∑
µ∈Zn≥0

κµ(X)κµ(Y ) (1)

where κµ(X) and κµ(Y ) are this time Demazure atoms and Demazure charac-
ters (see � 2.3.4 below for complete de�nitions) in the indeterminates X and Y
(withm = n). It is important to emphasize here that these polynomials are not
symmetric in X and Y . They only correspond to characters of representations
for subalgebras of the enveloping algebra U(gln). It was proved in [23] that the
identity (1) can be obtained by restricting the RSK correspondence ψ to the
set of lower triangular matrices†. Since then, di�erent other proofs have been
proposed, in particular in [1] (using the combinatorics of skyline diagrams)
and [8] (using the combinatorics of crystal bases). The seminal paper [23] also
established generalizations of the formula (1) where positions with nonzero en-
tries are authorized in the matrices outside their lower part. These so-called
extended staircase formulas (see � 3.2 and � 3.3) were then obtained just by
computations on polynomials and thus not related to the RSK correspondence.
This connection was partially done in [2] where other truncated staircases for-
mulas are also proved to be compatible with the RSK correspondence using
the combinatorics of skyline diagrams [28, 29] and Fomin's growth diagrams
[12, 33]. This corresponds to the case where nonzero entries are authorized
only in positions (i, j) with n − p ≤ i ≤ j ≤ q, for p and q two nonnegative
integers such that n ≥ q ≥ p ≥ 1.
The goal of our paper is two-fold. First, we establish all the existing vari-

ants of the non-symmetric Cauchy Kernel identities in the setting of crystal

†In fact, the convention of our paper di�ers from that in [23] which considers matrices with
nonzero entries in positions (i, j) with 1 ≤ i+ j ≤ n+ 1 rather than lower-triangular matrices.
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basis theory and make it compatible with the RSK construction based on bi-
crystals. Recall here that crystals are oriented graphs which can be interpreted
as the combinatorial skeletons of irreducible �nite-dimensional representations
of gln. We refer the reader to [6] and the references therein for a recent expo-
sition. Crystal bases were introduced by Lusztig (for any �nite root system)
[27] and Kashiwara (for classical root systems) [18] in 1990. The graph struc-
ture arises from the action of the so-called Kashiwara operators, which are
certain renormalizations of the Chevalley operators. It was later proved that
crystals coincide with Littelmann's graphs de�ned by using his path model
[25]. Crystal theory allows one to get an illuminating interpretation of the
RSK-correspondence and thus, in particular, of the Cauchy identity. A similar
interpretation was discovered by Choi and Kwon in [8] for the non-symmetric
case (1). Here we complete the picture with the truncated and augmented
staircase formulas. Our second objective is to use the previous compatibility of
the aforementioned map ψ with the generalized Cauchy identities to give the
law of some last passage percolation models where constraints are imposed on
the locations of nonzero positions in the random matrices considered. These
laws will be expressed in terms of Demazure characters and Demazure atoms
and thus will have less symmetries than the existing ones which rather use
symmetric polynomials. There is nevertheless an interesting intersection in the
case xi = yi for any i = 1, . . . , n. Then, the identity (1) becomes symmetric
and can be expanded in terms of Schur functions by using an identity due to
Littlewood (see [8]). This case yields a last passage percolation model already
studied (see [7]).
The paper is organized as follows. In Section 2, we recall the background

on representation theory of gln, the corresponding character theory (its usual
and Demazure versions) and its links with the Coxeter monoid and crystal
basis theory. Some key results for the purposes of this article are established
here for which we did not �nd references in the literature. We also relate the
RSK correspondence with bi-crystal structures and interpret the Cauchy and
non-symmetric Cauchy identities in this context. The non-symmetric Cauchy
identity is in particular obtained as the restriction of the usual RSK to lower
triangular matrices. The goal of Section 3 is to prove that one can also get the
truncated staircase Cauchy identity by restriction of RSK to a relevant subset of
matrices. To this end, we consider parabolic restrictions of Demazure crystals
and show that they admit a simple combinatorial structure. In particular, � 3.3
is devoted to the extended staircase Cauchy identity which is yet obtained by
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restriction of RSK. The idea here is to use suitable adaptations of Demazure
operators (de�ned on polynomials) acting on crystals. It is also explained in
� 3.4 how the extended staircase result allows one to rederive the truncated
staircase identity by making more explicit its formulation and connecting it
to the approach proposed in [1, 2]. Finally in Section 4, we use the previous
combinatorial constructions to get the law of various percolation models in
terms of Demazure characters. In the Appendix 5, for the reader convenience,
Coxeter monoids and Coxeter-theoretic techniques are given.

Acknowledgments: O. A. is partially supported by the Center for Mathemat-
ics of the University of Coimbra - UIDB/00324/2020, funded by the Portuguese
Government through FCT/MCTES. C. L. is partially supported by the Agence
Nationale de la Recherche funding ANR CORTIPOM 21-CE40-001.

2. Background on representations and characters of gln
In this section, we review some classical results about representation theory

of the linear Lie algebra gln = gln(C) over the �eld of complex numbers [14].
Firstly, recall the triangular decomposition gln = gl+n ⊕ h⊕ gl−n of gln into its
upper, diagonal and lower parts.

2.1. Representations and characters. Let Pn be the set of partitions
λ = (λ1 ≥ · · · ≥ λn ≥ 0) with at most n parts. A partition will be
identi�ed with its Young diagram written in French convention (see Exam-
ple 2.9). The �nite-dimensional irreducible polynomial representations of gln
are parametrized by the partitions in Pn. To any λ ∈ Pn, we denote by V (λ)
the corresponding �nite-dimensional representation (or gln-module). By con-
sidering only the action of the (commutative) Cartan subalgebra h on V (λ),
one gets the weight space decomposition

V (λ) =
⊕
µ∈P

V (λ)µ

where the weight space P = Zn≥0 = ⊕ni=1Z≥0ei is regarded as a subset of h∗

and for any µ ∈ P

V (λ)µ = {v ∈ V (λ) | h(v) = µ(h)v for any h ∈ h}.

The symmetric groupSn (which is the Weyl group of gln) acts on P by permut-
ing the coordinates of the weights and one then has dimV (λ)µ = dimV (λ)σ(µ)

for any σ ∈ Sn and any µ ∈ P . The weight space decomposition leads to
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the notion of character of V (λ) which is the polynomial in the indeterminates
x1, . . . , xn de�ned by

sλ =
∑
µ∈P

dimV (λ)µx
µ

where for any µ = (µ1, . . . , µn) ∈ Zn≥0 we use the notation xµ = xµ1

1 · · ·xµnn .
By the previous considerations, the polynomial sλ belongs in fact to the ring
SymZ[x1, . . . , xn] of symmetric polynomials in the indeterminates x1, . . . , xn
with coe�cients in Z. This is the celebrated Schur polynomial which can also be
obtained as the quotient of two skew-symmetric polynomials using the formula

sλ =

∑
σ∈Sn

ε(σ)xσ(λ+ρ)∑
σ∈Sn

ε(σ)xσ(ρ)
,

where ρ = (n− 1, n− 2, . . . , 1, 0).

Remark 2.1. Instead of considering the representation theory of gln, we can
proceed similarly with the representation theory of its enveloping algebra U(gln).
Simple �nite-dimensional U(gln)-modules are still parametrized by the elements
of Pn and we will use the same notation for both representation theories.

2.2. Bruhat order and Coxeter monoid. Recall that Sn is generated by
S = {s1, . . . , sn−1} where for any i = 1, . . . , n−1, si is the simple transposition
(or simple re�ection) �ipping i and i + 1; this yields a realization of Sn as a
Coxeter group. We denote by `(σ) the length of a permutation σ ∈ Sn, de�ned
as the smallest integer k ≥ 0 such that σ = si1 · · · sik , where the sij 's are simple
re�ections. A word of the form si1si2 · · · sik representing σ ∈ Sn and such that
all the sij 's are simple re�ections and `(σ) = k is called a reduced decomposition
of σ. We refer the reader to [4] for basic statements on the symmetric group
viewed as a Coxeter group.
The (strong) Bruhat order ≤ onSn can be de�ned by σ′ ≤ σ inSn if and only

if there is a reduced decomposition of σ admitting a subword (not necessarily
made of consecutive letters) which is a reduced decomposition of σ′, if and
only if every reduced decomposition of σ admits a subword which is a reduced
decomposition of σ′ (see [4, Corollary 2.2.3]). The longest element of Sn is
denoted by σ0. Given any partition λ in Pn, we denote bySλ its stabilizer under
the action of Sn. Each coset in Sn/Sλ contains a unique element of minimal
length and the set of elements of minimal length is denoted by Sλ

n. Then each
σ ∈ Sn admits a unique decomposition of the form σ = uv with v ∈ Sλ,
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u ∈ Sλ
n and `(σ) = `(u) + `(v). One then has a one-to-one correspondence

between the elements of Sλ and the Sn-orbit of λ which we denote by Snλ.
The elementary bubble sort operator πi, 1 ≤ i < n, on the weak composition

α = (α1, α2, . . . , αn) ∈ Zn≥0, sorts the entries in positions i and i + 1 by
swapping αi and αi+1 if αi > αi+1, and �xing α otherwise, namely,

πi(α) =

{
siα if αi > αi+1

α if αi ≤ αi+1.
(2)

Thus elementary bubble sort operators πi, 1 ≤ i < n, satisfy the relations

π2
i = πi (i = 1, . . . , n),

πiπi+1πi = πi+1πiπi+1 (i = 1, . . . , n− 1), πiπj = πjπi, (|i− j| > 1). (3)

It follows from Matsumoto's Lemma [30, 6] that for every w ∈ Sn, we may
write πw to mean πi1πi2 · · · πik , whenever si1si2 · · · sik is a reduced word of w
in Sn. Later we will see that the above set of relations de�ne the so-called
Coxeter monoid Mn [32] (see Section 3.1 ).

Lemma 2.2. Let λ ∈ Pn, w ∈ Sn, and let µ = wλ.

(1) Let t = (i j) be a transposition in Sn with i < j. If µi < µj, then
`(tw) < `(w).

(2) If si1si2 · · · sik is any reduced decomposition of w, then

wλ = πi1πi2 · · · πik(λ) = πw(λ).

Proof : Recall that, given an element w ∈ Sn, the set N(w) = {t ∈ T | `(tw) <
`(w)} is the set of (left) inversions of w; it satis�es |N(w)| = `(w) and for all
u, v ∈ Sn, we have the equality (see for instance [4, Chapter 1, Exercise 12])

N(uv) = N(u)∆uN(v)u−1, (4)

where ∆ denotes the symmetric di�erence (note that, in particular, the product
uv does not need to be reduced).
The proof of the �rst point is by induction on `(w). If `(w) = 0, then

w = 1 and the set of transpositions t such that `(tw) < `(w) is empty. We
have µ = λ and λi ≥ λj for all j > i in this case. Hence assume that
`(w) > 0. Let s = sk be a simple transposition such that w = sku and
`(w) = `(u) + 1. If sk = t, then i = k, j = k + 1, and `(tw) < `(w),
hence we are done. We can thus assume that t 6= s. Using (4) above we
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have N(w) = N(su) = N(s)∆sN(u)s = {s}∆sN(u)s and using the fact that
s 6= t, we deduce the equivalence

`(tw) < `(w)⇔ `(stsu) < `(u),

denoting sts = (i′ j′), by induction it su�ces to show that νi′ < νj′, where
ν = uλ. We can assume that sts 6= t, otherwise the supports of s and t are
disjoint, hence i′ = i, j′ = j, and νi = µi, νj = µj. We can thus assume that
s ∈ {si−1, si, sj−1, sj}. We treat the case where s = sj, the other cases are
similar. We have sts = (i j + 1), and we have νj = µj+1, νj+1 = µj. On the
other hand, since i is not in the support of (j j + 1), we have νi = µi. Hence
νi = µi < µj = νj+1, which by induction yields `(stsu) < `(u).
Let us prove the second point. We argue by induction on k. If k = 0 then

there is nothing to prove. Assume that k ≥ 1. By induction we have that
si2 · · · sikλ = πi2 · · · πik(λ). Now writing µ = si2 · · · sikλ and i = i1, by the �rst
point we have that µi ≥ µi+1, otherwise we would have `(si1si2 · · · sik) = k− 1,
contradicting the fact that si1si2 · · · sik is reduced. It follows that si1µ = πi1(µ),
hence that wλ = πi1πi2 · · · πik(λ), as required.

Lemma 2.3. Consider the set Snλ, which is in bijection with Sλ
n through

wλ 7→ wλ, where wλ is the representative of minimal length of wSλ. Then
the transitive closure of the relations µ < tµ, if µi > µj, i < j, t is the
transposition (i j) ∈ Sn and µ = (µ1, . . . , µn) ∈ Snλ yields a partial order on
Snλ, which coincides through the aforementioned bijection with the restriction
of the strong Bruhat order on Sn to Sλ

n.

Proof : Assume that µ < tµ, and let w ∈ Sn such that µ = wλ. Denoting
µ′ = twλ = tµ, we have µ′i < µ′j. By point 1 of Lemma 2.2, we have `(w) =
`(ttw) < `(tw), which shows that w < tw in the strong Bruhat order. It
follows that wλ < (tw)λ.
Conversely, let u, v ∈ Sλ

n such that u ≤ v. By de�nition of the strong Bruhat
order, there is a sequence t1, t2, . . . , tk of transpositions such that u < t1u <
t2t1u < · · · < tktk−1 · · · t2t1u. Note that the elements in this sequence are in
Sn but, apart from u and v, not necessarily in Sλ

n. To conclude the proof it
therefore su�ces to show that, if u < tu with u ∈ Sn, t ∈ T , then uλ ≤ tuλ.
Letting µ = uλ, if µi < µj, then by the �rst point of Lemma 2.2 we have
`(tu) < `(u), contradicting u < tu. Hence µi ≥ µj. If µi > µj then we have
µ < tµ. If µi = µj, we have uλ = tuλ. This concludes the proof.
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Lemma 2.4. Let λ ∈ Pn and let σ ∈ Sλ
n. Let µ = σλ and si a simple

re�ection of Sn. We have the equivalences

µi > µi+1 i� `(siσ) = `(σ) + 1 and siσ ∈ Sλ
n,

µi = µi+1 i� siσ /∈ Sλ
n (in which case we must have `(siσ) = `(σ) + 1),

µi < µi+1 i� `(siσ) = `(σ)− 1 (in which case we must have siσ ∈ Sλ
n).

Proof : Assume that w = siσ /∈ Sλ
n. Then `(w) = `(σ) + 1. Since w /∈ Sλ

n,
there is a simple re�ection sj ∈ Sλ such that `(wsj) < `(w). Take any
reduced decomposition sn1

· · · sn` of σ. We have that sisn1
· · · sn` is a reduced

decomposition of w and since `(wsj) < `(w), by the exchange lemma there
is a reduced decomposition of wsj obtained from sisn1

· · · sn` obtained by just
removing a letter. If this letter is not si, we get that `(σsj) = `(σ) − 1,
in contradiction with σ ∈ Sλ

n, since sj ∈ Sλ. We thus have that wsj =
sn1
· · · sn` = σ = siw. It follows that σ

−1siσ = sj ∈ Sλ. This yields σ
−1siσλ =

λ, hence siµ = µ, hence µi = µi+1. Conversely, assume that µi = µi+1. We
thus have siσλ = σλ = µ. Since σ ∈ Sλ

n, by uniqueness of the element of the
element w ∈ Sλ

n such that µ = wλ, we cannot have siσ ∈ Sλ
n. Hence the two

statements in the middle line are equivalent.
Assume that µi > µi+1. Then, since the middle equivalence is already shown,

we know that siσ ∈ Sλ
n. By Lemma 2.2 (1), we must have `(sisiσ) < `(siσ),

forcing `(siσ) = `(σ) + 1. Also by Lemma 2.2 (1), if µi < µi+1, then `(siσ) <
`(σ), yielding `(siσ) = `(σ)− 1.
We thus have shown that, in each line, the left condition implies the right

one (we have even shown that we have equivalence in the middle line). Since
the three conditions on the right are disjoint, we must have equivalence in each
line.

Lemma 2.5. Let σ ∈ Sn and α = σλ. We can obtain the minimal representa-
tive σ̂ ∈ Sλ

n of σ from any πσ = πj1πj2 · · · πjl ∈Mn such that πj1πj2 · · · πjlλ =
α with sj1sj2 · · · sjl a (not necessarily reduced) word of an element of Sn as
follows: for r = l, . . . , 1, delete πjr in πj1πj2 · · · πjl whenever µjr ≤ µjr+1 in
(µ1, . . . , µn) = πjr+1

· · · πjl(λ). The resulting decomposition obtained in this
way is a reduced decomposition πσ̂ in Mn and gives σ̂ ∈ Sλ

n.

Proof : The fact that the resulting decomposition πi1πi2 · · · πik satis�es

πi1πi2 · · · πik(λ) = πσ(λ)
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is clear since a letter πjr is removed whenever its action on πjr+1
· · · πjl(λ)

is trivial. We show by decreasing induction on k that sijsij+1
· · · sik(λ) =

πijπij+1
· · · πik(λ) for all j, and that sij · · · sik is reduced and lies in Sλ

n. If
k = 0 then the result is trivially true. Hence let j ≤ k and assume that
µ := sij+1

· · · sik(λ) = πij+1
· · · πik(λ), and that sij+1

· · · sik is reduced and lies
in Sλ

n. We must have µij > µij+1, otherwise the letter πij would have been
removed. Hence by de�nition of the action of the bubble sort operator πij , we
have πij(µ) = sij(µ), which yields sijsij+1

· · · sik(λ) = πijπij+1
· · · πik(λ). Set-

ting w = sij+1
· · · sk we obtain using Lemma 2.4 (1) that `(sijw) = `(w) + 1

and sijw ∈ Sλ
n, hence sijsij+1

· · · sik is still reduced, and de�nes an element of
Sλ
n.
It only remains to show that τ := si1si2 · · · sik is equal to σ̂. But we have

πτ(λ) = πσ(λ) = πσ̂(λ), which by Lemma 2.2 (2) yields τ(λ) = σ̂(λ). Since
both τ, σ̂ lie in Sλ

n, this forces τ = σ̂, which concludes the proof.

Example 2.6. Let n = 4. We have

π2π2π1π2(3, 2, 2, 1) = π2π2π1(3, 2, 2, 1) = π2π2(2, 3, 2, 1) =

= π2(2, 2, 3, 1) = (2, 2, 3, 1).

Applying the algorithm described in Lemma 2.5 to the word π2π2π1π2 and the
weight λ = (3, 2, 2, 1) yields π̂2π2π1π̂2 = π2π1 = πs2s1

, where the hat over the
bubble sort operator denotes omission. We indeed have π2π2π1π2 = πσ with
σ = s2s1s2 and σ̂ = s2s1 (here Sλ = {1, s2}).

2.3. Crystals.

2.3.1.Abstract crystals. To each partition λ ∈ Pn corresponds a crystal graph
B(λ) which can be regarded as the combinatorial skeleton of the simple module
V (λ). In particular, its vertices label a distinguished basis of V (λ). Its general
structure can be de�ned using the canonical bases introduced by Lusztig [27]
and subsequently studied by Kashiwara under the name of global bases (see
[19] and [20]). It also admits various combinatorial realizations (i.e., vertex
labelings) in terms semistandard tableaux, Littelmann's paths (see [25]) or
semi-skyline (see [29], [1]). We will recall the tableau realization below. The
(abstract) crystal B(λ) is a graph whose set of vertices is endowed with a weight
function wt : B(λ)→ P and with the structure of a colored and oriented graph
given by the action of the crystal operators f̃i and ẽi with i ∈ I = {1, . . . , n−1}.
More precisely, we have an oriented arrow b

i→ b′ between two vertices b and b′
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in B(λ) if and only if b′ = f̃i(b) or equivalently b = ẽi(b
′). We have f̃i(b) = 0

(resp. ẽi(b) = 0) when no arrow i starts from b (resp. ends at b). Here the
symbol 0 should be understood as a sink vertex not lying in B(λ). For any
i ∈ I, the crystal B(λ) can be decomposed into its i-chains which are obtained
just by keeping the i-arrows. For such a chain C, we denote by s(C) and e(C)
its source and target vertices, respectively. There is a unique vertex bλ in B(λ)
such that ẽi(bλ) = 0 for any i ∈ I (that is, bλ is the source vertex of each i-chain
containing bλ) called the highest weight vertex of B(λ) and we have wt(bλ) = λ.
For any b ∈ B(λ), there is a path b = f̃i1 · · · f̃ir(bλ) from bλ to b. Let us denote
by S = {α1, . . . , αn−1} the set of simple roots of gln where αi = ei − ei+1 for
1 ≤ i < n. The weight function wt satis�es

wt(b) = λ−
r∑

k=1

αik.

For any i ∈ I, the crystal B(λ) decomposes into i-chains. Thus, for any vertex
b ∈ B(λ), we can de�ne ϕi(b) = max{k | f̃ki (b) 6= 0} and εi(b) = max{k |
ẽki (b) 6= 0}. We then have

sλ =
∑
b∈B(λ)

xwt(b).

The Weyl groupW also acts on the vertices of B(λ): the action of the simple
re�ection si on B(λ) sends each vertex b on the unique vertex b′ in the i-chain
of b such that ϕi(b

′) = εi(b) and εi(b
′) = ϕi(b). This simply means that b

and b′ correspond by the re�ection with respect to the center of the i-chain
containing b. We shall write

O(λ) = {σ · bλ = bσλ | σ ∈ Sλ
n}

for the orbit of the highest weight vertex bλ of B(λ). Observe that bσλ is then
the unique vertex in B(λ) of weight σλ. The elements of O(λ), called the keys
of B(λ), are those vertices of B(λ) which are completely characterized by their
weight. Thereby, one has a direct correspondence between the keys and the
elements of Sλ

n. For convenience, we often abuse notation and identify the key
bσλ with σ ∈ Sλ

n.
In fact, one can associate a crystal to any �nite-dimensional gln-module by

considering its decomposition into irreducible components. This gln-crystal is
a disjoint union of connected components, each being isomorphic to a highest
weight crystal B(λ), λ ∈ Pn. Given two partitions λ and µ in Pn, the crystal



12 O. AZENHAS, T. GOBET AND C. LECOUVEY

associated to the representation V (λ)⊗V (µ) is the crystal B(λ)⊗B(µ) whose
set of vertices is the direct product of the sets of vertices of B(λ) and B(µ)
and whose crystal structure is given by wt(a ⊗ b) =wt(a)+wt(b) and by the
following rules

ẽi(u⊗ v) =

{
u⊗ ẽi(v) if εi(u) > ϕi(v)
ẽi(u)⊗ v if εi(u) ≤ ϕi(v)

and

f̃i(u⊗ v) =

{
f̃i(u)⊗ v if ϕi(v) > εi(u)

u⊗ f̃i(v) if ϕi(v) ≤ εi(u).
(5)

We adopt the convention that u ⊗ 0 = 0 ⊗ v = 0. A key result in crystal
theory shows that for any partition ν ∈ Pn, the tensor multiplicity cνλ,µ of V (ν)
in V (λ) ⊗ V (µ) (which is a Littlewood-Richardson coe�cient) is equal to the
number of connected components in B(λ) ⊗ B(µ) with highest weight vertex
of weight ν.

2.3.2. Keys and dilatation of crystals. Consider k a positive integer and λ a
partition. There exists a unique embedding of crystals ψk : B(λ) ↪→ B(kλ)
such that for any vertex b ∈ B(λ) and any path b = f̃i1 · · · f̃il(bλ) in B(λ), we
have

ψk(b) = f̃ki1 · · · f̃
k
il
(bkλ).

Since the vertex b⊗kλ is of highest weight kλ in B(λ)⊗k, one gets a particular
realization B(b⊗kλ ) of B(kλ) in B(λ)⊗k with highest weight vertex b⊗kλ . This
thus gives a canonical embedding

θk :

{
B(bλ) ↪→ B(b⊗kλ ) ⊂ B(bλ)

⊗k

b 7−→ b1 ⊗ · · · ⊗ bk
(6)

with important properties given in the following theorem and illustrated in
Example 2.12.

Theorem 2.7. (see [20])

(1) Let σ ∈ Sλ
n. We have θk(bσλ) = b⊗kσλ .

(2) Let b ∈ B(λ). When k has su�ciently many factors, there exist ele-
ments σ1, . . . , σk in Sλ

n such that θk(b) = bσ1λ ⊗ · · · ⊗ bσkλ. Moreover,
in this case
(a) the elements bσ1λ and bσkλ in θk(b) do not then depend on k,
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(b) up to repetition, the sequence (σ1λ, . . . , σkλ) in θk(b) does not de-
pend on the realization of the crystal B(λ) and we have σ1 ≥ σ2 ≥
· · · ≥ σk.

From Assertion 2 of the above theorem, we can de�ne the keys of an element
in B(λ)‡.

De�nition 2.8. Let b ∈ B(λ), then the keys K+(b) and K−(b) of b are de�ned
as follows:

K+(b) = bσ1λ and K−(b) = bσkλ.

In particular, K+(bσλ) = K−(bσλ) = bσλ for any σ ∈ Sλ
n. The orbit O(λ) is

simultaneously the set of left and right keys of B(λ).

2.3.3.Tableau realization. Recall that each partition λ in Pn can be identi�ed
with its Young diagram. A semistandard tableau T of shape λ is then a �lling
of λ by letters in the ordered alphabet An = {1 < · · · < n} whose rows weakly
increase from left to right and columns strictly increase from bottom to top.
The row reading of T is the word w(T ) of A∗n obtained by reading each row
from right to left starting with the bottom row and ending with the top row.
The weight of T is the vector wt(T ) ∈ Zn≥0 whose i-th entry records the number
of i's in the �lling of T , for i = 1, . . . , n.

Example 2.9. For n = 4 the tableau

T =
3 4
2 2 4
1 1 2

is a semistandard tableau of shape λ = (3, 3, 2, 0) with row reading w(T ) =
21142243 and weight wt(T ) = (2, 3, 1, 2).

One can realize B(λ) using the semistandard tableaux of shape λ just by
describing the action of the crystals operators f̃i and ẽi, i = 1, . . . , n−1 on each
such tableau. Assume that i is �xed in {1, . . . , n− 1} and T is a semistandard
tableau of shape λ. Let wi(T ) be the subword of w(T ) obtained by keeping

‡We dot use the terminology "left" and "right" keys as in the original de�nition [22] based on the
tableaux model since it does not �t with the positions of bσ1λ and bσkλ in θk(b) with the convention
of this paper.
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only the letters i and i + 1 in w(T ). Now delete recursively all the factors
i(i+ 1) in wi(T ). This eventually yields a subword w̃i(T ) of w(T ) of the form

w̃i(T ) = (i+ 1)a(i)b.

When b > 0 (resp. a > 0), f̃i(T ) (resp. ẽi(T )) is obtained by replacing in T
the letter of w(T ) corresponding to the leftmost letter i (resp. to the rightmost
i + 1) surviving in w̃i(T ) by i + 1 (resp. by i). When b = 0 (resp. a = 0),
we set f̃i(T ) = 0 (resp. ẽi(T ) = 0) where 0 is understood as a sink vertex
as before. This just means that in this case, there is no arrow i starting at T
(resp. no arrow i ending at T ). Observe that with the notation of the previous
paragraph one gets

εi(T ) = a and ϕi(T ) = b.

Also, it is easy to compute the action of si = (i, i+ 1) ∈ Sn on T : the tableau
si.T is obtained by replacing in T the a − b rightmost letters i + 1 (resp. the
b−a leftmost letters i) of w̃i(T ) by i (resp. by i+1) when a ≥ b (resp. a < b).

Example 2.10. By resuming Example 2.9, one gets

f̃1(T ) = 0 and ẽ1(T ) =
3 4
2 2 4
1 1 1

f̃2(T ) =
3 4
2 2 4
1 1 3

and ẽ2(T ) = 0 with s2.T =
3 4
2 3 4
1 1 3

f̃3(T ) =
4 4
2 2 4
1 1 2

and ẽ3(T ) =
3 3
2 2 4
1 1 2

With the above de�nition of the crystal operators, it is easy to check that
the set of semistandard tableaux of shape λ admits the structure of an oriented
and connected graph isomorphic to the abstract crystal B(λ) (see [19]). In
particular its unique highest weight vertex is the Yamanouchi tableau Tλ whose
i-th row only contains letters i for any i = 1, . . . , n. In fact the orbitO(λ) is also
easy to describe in this model: it exactly contains the so-called key tableaux of
shape λ which are the semistandard tableaux in which each column is contained
in the column located immediately at its left. Their weights correspond to the
orbit of λ ∈ Zn under the action of Sn.
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Example 2.11. For n = 3, the six key tableaux (or simply keys) of shape
λ = (2, 1, 0) are

2
1 1

,
3
1 1

,
2
1 2

,

3
2 2

,
3
1 3

,
3
2 3

Example 2.12. For n = 3, λ = (2, 1, 0) and k = 2, the crystal B(λ) and its
dilatation B(λ)⊗2 are as follows:

2
1 1

1

↙
2

↘
2
1 2

3
1 1

2↓ 1↓
2
1 3

3
1 2

2↓ 1↓
3
1 3

3
2 2

1

↘
2

↙
3
2 3
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2
1 1

⊗ 2
1 1

1
2

↙
2

2

↘
2
1 2

⊗ 2
1 2

3
1 1

⊗ 3
1 1

2
2 ↓ 1

2 ↓
3
1 3

⊗ 2
1 2

3
2 2

⊗ 3
1 1

2
2 ↓ 1

2 ↓
3
1 3

⊗ 3
1 3

3
2 2

⊗ 3
2 2

1
2

↘
2

2

↙
3
2 3

⊗ 3
2 3

K+

(
2
1 3

)
=

3
1 3

, K−
(

2
1 3

)
=

2
1 2

, K+

(
3
1 2

)
=

3
2 2

,

K−
(

3
1 2

)
=

3
1 1

.

Remark 2.13.

(1) In the previous example, the dilatation of the crystal with k = 2 su�ces
to obtain the left and right keys. In general, we need to compute the
dilatation with k given by the maximum of the lengths of the i-chains
with i ∈ {1, . . . , n− 1} in B(λ).

(2) The left and right keys associated to a semistandard tableau can be com-
puted in a more e�cient way than the one obtained from De�nition 2.8
by using the Jeu de Taquin procedure [22, 13]. This was in fact the
initial de�nition from [22]. One can also use the semi-skyline model
[16, 29] to realize the crystal B(λ) in a way which makes the keys very
easy to read o� (but the crystal structure becomes then more complicated
to describe [29, 1, 2]). The advantage of De�nition 2.8 is that it is in-
dependent of the realization of the crystal B(λ) and strongly connected
to general properties of Sn viewed as a Coxeter group.
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(3) In the notation of � 2.1, we have O(λ) = {u.Tλ | u ∈ Sλ
n}. This gives

a direct correspondence between the keys and the elements of Sλ
n. If we

denote by Ku the key u.Tλ associated to u ∈ Sλ
n, it then becomes easy

to read the Bruhat order. Indeed, we have u ≤ v if and only if for each
box of the Young diagram λ, the letter obtained in Ku is less than or
equal to the one obtained in Kv.

(4) The character sλ associated to the partition λ is the Schur function and
the tableau realization of crystals allows one to recover its expression

sλ =
∑

T∈B(λ)

xwt(T ). (7)

2.3.4.Crystals of Demazure modules. Let λ be a partition and σ ∈ Sn. Up to
scalar multiplication, there exists a unique vector vσλ in V (λ) of weight σ(λ).
The Demazure module associated to vσλ is the U(gl+n )-module de�ned by

Vσ(λ) := U(gl+n ) · vσλ.
Demazure [10] introduced the character κσ,λ of Vσ(λ) and showed that it can
be computed by applying to xλ a sequence of divided di�erence operators given
by any reduced decomposition of σ. More precisely, for any i ∈ {1, . . . , n− 1},
de�ne the linear operator Di on Z[x1, . . . , xn] by

Di(P ) =
xiP − xi+1(si · P )

xi − xi+1
.

Demazure proved that such operators satisfy the relations

D2
i = Di for any i = 1, . . . , n− 1,

DiDi+1Di = Di+1DiDi+1 for any i = 1, . . . , n− 2,

DiDj = DjDi for any i, j = 1, . . . , n− 1 such that |i− j| > 1.

Thus, given any reduced decomposition σ = si1 · · · si` of σ, by Mastumoto's
Lemma the operator Dσ = Di1 · · ·Di` only depends on σ and not on the chosen
reduced decomposition. He also showed that

κσ,λ = Dσ(xλ) ∈ Z[x1, . . . , xn]

is the (Demazure) character of Vσ(λ). In particular, we have κid,λ = xλ and
κσ0,λ

= sλ and

Di(κσ,λ) =

{
κsiσ,λ if `(siσ) = `(σ) + 1,
κσ,λ otherwise.

(8)
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Later Kashiwara [19] and Littelmann [25] de�ned a relevant notion of crystals
for the Demazure modules. To this end, for any σ ∈ Sn, consider the Demazure
atom

Bσ(λ) = {b ∈ B(λ) | K+(b) = bσλ}.
In particular, Bid(λ) = {bλ}.
By de�nition we have Bσ(λ) = Bσ′(λ) whenever σ and σ′ belong to the

same left coset of Sn/Sλ. Writing σ = uv with u ∈ Sλ
n and v ∈ Sλ, we get

Bσ(λ) = Bu(λ) from the characterization of the strong Bruhat order. Thus we
can assume that σ belongs to Sλ

n. We then get B(λ) =
⊔

σ∈Sλ
n

Bσ(λ). There also

exists a notion of opposite Demazure module: for any σ ∈ Sn, it is de�ned by
V σ(λ) := Uq(gl

−
n ) · vσλ, for which it is relevant to de�ne the opposite Demazure

atom

B
σ
(λ) = {b ∈ B(λ) | K−(b) = bσλ}.

In particular we have B
σ0

(λ) = {bσ0λ}.
Given σ and σ′ in Sλ

n, we shall write bσλ ≤ bσ′λ when σ ≤ σ′ (recall that ≤
denotes the strong Bruhat order on Sn).

De�nition 2.14. The Demazure crystal Bσ(λ) and opposite Demazure crystal

Bσ(λ) are de�ned by

Bσ(λ) =
⊔

σ′∈Sλ
n,σ
′≤σ

Bσ′(λ) = {b ∈ B(λ) | K+(b) ≤ bσλ}, (9)

Bσ(λ) =
⊔

σ′∈Sλ
n,σ≤σ′

B
σ′

(λ) = {b ∈ B(λ) | K−(b) ≥ bσλ},

In particular we have Bid(λ) = {bλ}, Bσ0(λ) = {bσ0λ} and Bσ0
(λ) = B(λ) =

Bid(λ).

To compute the Demazure crystal Bσ(λ), it therefore su�ces to

• compute the key map K+ on B(λ).
• compute the strong Bruhat order on Sλ

n, or alternatively on the vertices
of O(λ).

Example 2.15. Let us resume Example 2.12 with the tableaux model. For
n = 3 and λ = (2, 1, 0), consider σ = s1s2. We get

K+(Ts1s2
) =

3
2 2
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and Bσ(λ) contains exactly the tableaux T such that K+(T ) ≤ K+(Ts1s2
) (recall

that this means that each entry in T is less than or equal to its corresponding
entry in Ts1s2

). These are all the tableaux in B(λ) except

T1 =
2
1 3

, T2 =
3
1 3

and T3 =
3
2 3

for which we have

K+(T1) = T2, K+(T2) = T2 and K+(T3) = T3.

The following theorem gathers results established by Kashiwara and Littel-
mann (see Assertion 2 of Proposition 9.1.3 and Theorem 9.2.4 in [20]). For
convenience, we extend f̃i and ẽi, i ∈ {1, . . . , n− 1}, to B(λ) t {0} by setting
them to map 0 to 0.

Theorem 2.16. Let λ ∈ Pn.
(1) We have κσ,λ =

∑
b∈Bσ(λ) x

wt(b).

(2) For any reduced decomposition si1 · · · si` of σ, we have

Bσ(λ) = {f̃k1

i1
· · · f̃k`i` (bλ) | (k1, . . . , k`) ∈ Z`≥0} \ {0}.

(3) For any i-chain C in B(λ) and any σ ∈ Sn, only the three following
situations can appear

C ∩ Bσ(λ) = ∅, C ∩ Bσ(λ) = C or C ∩ Bσ(λ) = s(C),

where we recall that S(C) denotes the source vertex of the chain C.

Remark 2.17. By the previous theorem, for any σ ∈ Sn and i ∈ {1, . . . , n−
1} such that `(siσ) = `(σ) + 1 and siσλ 6= σλ, we have Bσ(λ) ⊂ Bsiσ(λ).
Moreover, for any i-string C ⊆ B(λ), either Bsiσ(λ) ∩ C = Bσ(λ) ∩ C = ∅,
Bsiσ(λ)∩C = Bσ(λ)∩C = C, or s(C) = Bσ(λ)∩C in which case C ⊆ Bsiσ(λ).

2.3.5. Additional remarks.

(1) The computation of the key map on B(λ) from the de�nition by dilata-
tion of crystals becomes quickly untractable when λ is far enough in the
interior of the Weyl chamber. But as explained in � 2.3.3 it becomes
much easier if we use the tableaux realization of crystals.

(2) One can also de�ne the Demazure atom polynomials κσ,λ =
∑

b∈Bσ(λ) x
wt(b).

In fact, they can also be obtained without using the crystal theory di-
rectly from the linear operatorsD′i = Di−id, i = 1, . . . , n−1. These op-
erators still satisfy the braid relations, but here (D′i)

2 = −D′i (see [23]).
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Then for any reduced decomposition σ = σi1 · · ·σi`, we have

κσ,λ := D′i1 · · ·D
′
i`
(xλ) =

∑
b∈Bσ(λ)

xwt(b).

(3) Rather than labeling the Demazure crystals and the Demazure char-
acters of B(λ) by elements of Sλ

n, it is often convenient to label them
directly by the elements of the orbit Snλ. Given µ ∈ Snλ such that
µ = σλ with σ ∈ Sλ

n, we will write Bµ, Bµ instead of Bσ(λ), Bσ(λ) and
κµ, κµ instead of κσ,λ and κσ,λ

�. Note that κσ0λ = sλ.
(4) Demazure characters {κµ : µ ∈ Nn} and Demazure atoms {κ̄µ : µ ∈ Nn}

both form linear Z-bases for Z[x1, . . . , xn]. The operators Di act on
Demazure characters κµ via elementary bubble sort operators πi on the
entries of the weak composition µ = (µ1, . . . , µn) as follows

Di(κµ) =

{
κsiµ if µi > µi+1

κµ if µi ≤ µi+1

⇔ Di(κµ) = κπi(µ). (10)

(5) We will adopt the usual convention of [23], identifying each µ ∈ Zn such
that µm+1 = · · · = µn = 0 with (µ1, . . . , µm) ∈ Zm. This notation is
compatible with the de�nition of the Demazure characters since for any
µ ∈ Zm, we have sµ(x1, . . . , xm) = sµ(x1, . . . , xn). It is also compatible
with the tableaux realization of the crystals because for any such µ ∈
Zm, the Demazure crystal Bµ(λ) only contains tableaux with letters in
{1, . . . ,m}.

(6) The Demazure and opposite Demazure crystals and atoms can be con-
nected using the Lusztig-Schützenberger involution on the crystal B(λ)
de�ned as follows. Let σ0 be the longest element of Sn (de�ned by
σ0(i) = n + 1 − i for any i = 1, . . . , n). For any b = f̃i1 · · · f̃ir(bλ),
set ι(b) = ẽn−i1 · · · ẽn−ir(bσ0λ) where wt(ιb) = σ0wt(b). One can prove
that the map ι is an involution on B(λ) reversing the arrows and �ip-
ping the labels i and n − i, and reversing the weight. We then have

�This notation should not be confused with the subset consisting of those vertices in B(λ) with
weight µ sometimes also denoted B(λ)µ in the literature.
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K−(b) = σ0.K+(ι(b)). This implies that, for any reduced decomposi-
tion σ = si1 · · · si` ∈ Sλ

n, we get

Bσ(λ) = ι(Bσ0σ(λ)) = {ẽk1

n−i1 · · · ẽ
k`
n−i`(bσ0λ) | (k1, . . . , k`) ∈ Z`≥0} \ {0} and

(11)

B
σ
(λ) = ι(Bσ0σ(λ)). (12)

(7) There is also a notion of opposite Demazure character κσλ for the opposite
Demazure module V σ(λ). It satis�es κσλ =

∑
b∈Bσ(λ) x

wt(b) and using the

involution ι and (11), we have in fact

κσλ(x1, . . . , xn) = κµ(x1, . . . , xn) = κσ0µ(xn, . . . , x1)

where µ = σλ. Since B
σ
(λ) = ι(Bσ0σ(λ)) we similarly have

κσλ(x1, . . . , xn) = κµ(x1, . . . , xn) = κσ0µ(xn, . . . , x1) =
∑

b∈B
σ
(λ)

xwt(b).

2.4. Bicrystals and RSK correspondence. Let m and n be two positive
integers. Denote byMm,n the set of matrices with m rows and n columns with
entries in Z≥0. The set Mm,n is endowed with the structure of a (glm, gln)-
bicrystal. This means that we can de�ne on Mm,n two commuting¶ families

of crystal operators ẽi, f̃i, i = 1, . . . ,m− 1 and êj, f̂j, j = 1, . . . , n− 1 so that
Mm,n is a crystal for both glm and gln. In fact Mm,n is the crystal of the
(glm, gln)-module of the symmetric space S(Cm × Cn) (see [9, 24, 23]).
One can de�ne the crystal operators directly on Mm,n or from the RSK

correspondence. This is a bijection

ψ :

{Mm,n →
⊔

λ∈Pmin(m,n)

Bm(λ)×Bn(λ)

A 7−→ (P (A), Q(A))

where we use the tableaux realization‖ of crystals so that P (A) and Q(A)
are semistandard tableaux with the same shape on the alphabets {1, . . . ,m}
and {1, . . . , n}, respectively. We refer to [13] for a complete description of

¶i.e., two operators chosen in each family commute with each other.
‖Here we have written Bm(λ) and Bn(λ) to make apparent the fact that we have a glm × gln-

crystal.
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the combinatorial procedure (illustrated in the example below) based on the
Schensted column insertion procedure∗∗.

Example 2.18. Assume m = 4 and n = 3 and consider the matrix

A =


2 2 0
1 0 1
2 1 1
0 1 1

 .

It can �rst be encoded as a tensor product of n = 3 row tableaux on the alphabet
{1, 2, 3, 4} where mi,j gives the number of letters i in the j-th component of
the tensor product:

LA = 1 1 2 3 3 ⊗ 1 1 3 4 ⊗ 2 3 4 .

One then applies the column insertion procedure from left to right. This means
that we begin by reading the second column (this gives 4311 with the convention
of � 2.3.3) and then compute the column insertions

1→ 1→ 3→ 4→ 1 1 2 3 3 .

We thus get the tableau

3 4
1 1 1 1 2 3 3

in which we successively insert the letters corresponding to the reading 432 of
the third row. This gives the tableau

P (A) =
4
2 3 3 4
1 1 1 1 2 3 3

.

The so-called "recording tableau" Q(A) is obtained by �lling with letters i the
new boxes appearing during the insertion of row i (the �rst row being considered
as inserted in the empty tableau at the beginning of the procedure). We thus get

Q(A) =
3
2 2 3 3
1 1 1 1 1 2 2

.

∗∗The convention that we use agrees with that of [21] to which we refer for another description
of the RSK procedure and the connection with biwords.
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Finally

ψ(A) = (P (A), Q(A)).

Observe that we also have

ψ(tA) = (Q(A), P (A))

where tA is the transpose of the matrix A.

In any matrix A inMm,n, one can consider all the paths π starting at position
(i, j) = (1, n) (northeast corner of A) and ending at position (i, j) = (m, 1)
(southwest corner of A) where the authorized steps have the form (i, j) →
(i+ 1, j) or (i, j)→ (i, j − 1). To any path π, we associate its time t(π), given
by the sum of the entries along the path. Here, one can imagine that the path
stops for a duration ai,j at position (i, j). We set

p(A) = max
π path in A

t(π).

The following theorem gathers a few results about the RSK correspondence
that we shall use later.

Theorem 2.19.

(1) The map ψ is bijective.
(2) For any matrix A inMm,n we have P (tA) = Q(A) and Q(tA) = P (A).
(3)Mm,n has the structure of a bicrystal: given A ∈ Mm,n, the action of

the operators õ = ẽi, f̃i, i = 1, . . . ,m−1 and ô = êj, f̂j, j = 1, . . . , n−1
satis�es

õ(A) = ψ−1(õP (A), Q(A)) and ô(A) = ψ−1(P (A), ôQ(A)).

(4) For any matrix A, the integer p(A) is equal to the length of the longest
row of the tableau P (A) (or Q(A)). It also equals the length of a longest
decreasing sequence of the word read o� from LA.

Example 2.20. Resuming Example 2.18, one checks that p(A) = 7. A longest
decreasing word of the word w(LA) = 332114311432 read o� from LA is given
by 33211 11, which has length 7. This subword corresponds in the matrix A to
the path

a1,3 = 0→ a1,2 = 2→ a1,1 = 2→ a2,1 = 1→ a3,1 = 2→ a4,1 = 0.
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The weight of the matrix A is the monomial in the set of variables X =
{x1, . . . , xn} and Y = {y1, . . . , ym} de�ned by

(xy)A =
∏

1≤i≤m,1≤j≤n
(xiyj)

ai,j .

On the one hand, using that 1
1−xiyj =

∑+∞
ai,j=0(xiyj)

ai,j , we can write∏
1≤i≤m,1≤j≤n

1

1− xiyj
=

∑
A∈Mm,n

(xy)A.

On the other hand, observing that, from RSK, we have (xy)A = xwt(P (A))ywt(Q(A)),
we obtain a Cauchy-like identity using the bijection ψ and (7):∏

1≤i≤m,1≤j≤n

1

1− xiyj
=

∑
A∈Mm,n

xwt(P (A))ywt(Q(A)) =

=
∑

λ∈Pmin(m,n)

sλ(x1, . . . , xm)sλ(y1, . . . , yn).

Remark 2.21. Recall the rule given in (5) for the action of ẽi, f̃i on a tensor
product of crystals. The action of any operator f̃i, ẽi, i = 1, . . . ,m − 1 on a
matrix A can be computed from P (A) but also from the product of row tableaux
LA appearing in Example 2.18 just by concatenating their reading words. In
particular when f̃i (resp. ẽi) acts on the j-th component of LA, the matrix
f̃i(A) (resp. ẽi(A)) is obtained from A just by changing ai,j into ai,j − 1 and
ai+1,j into ai+1,j+1 (resp. ai,j into ai,j+1 and ai+1,j into ai+1,j−1). Similarly,

when f̂j (resp. êj) acts on A, there is an integer i ∈ {1, . . . ,m} such that f̂j(A)
(resp. êj(A)) is obtained from A by changing ai,j into ai,j − 1 and ai,j+1 into
ai,j+1 + 1 (resp. ai,j into ai,j + 1 and ai,j+1 into ai,j+1 − 1).

2.5. Restriction of the RSK correspondence. Let D be any subset of
{1, . . . ,m} × {1, . . . , n} and write MD

m,n for the subset of Mm,n containing
the matrices A such that ai,j 6= 0 only if (i, j) ∈ D. In general, the set
ψ(MD

m,n) is not stable by the glm×gln-crystals operators. Nevertheless, whenD
corresponds to the Young diagram of a �xed partition Λ, it follows from Remark
2.21 thatD = DΛ is stable under the action of the operators f̃i, i = 1, . . . ,m−1
and êj, j = 1, . . . , n − 1. The case where m = n and % = (n, n − 1, . . . , 1) is
particularly interesting. In matrix coordinates, we indeed get that

D% = {(i, j) | 1 ≤ j ≤ i ≤ n}.
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The following theorem, initially established in [23] using the combinatorics
of tableaux, has been reproved in [21] using Littelmann paths and in [1] using
semi-skyline diagrams combinatorics. In these di�erent versions, the convention
for the crystals is not the same and we here follow the one from [21] which is
compatible with Kashiwara and Littelmann convention for the tensor products
of crystals, which is the most usual one. Later Fu and Lascoux [15] reproved
this theorem using properties of divided di�erences.

Theorem 2.22. The restriction of the RSK correspondence ψ to MD%
n,n gives

a one-to-one correspondence

ψ :MD%
n,n →

⊔
λ∈Pn

⊔
σ∈Sλ

n

B
σ
(λ)× Bσ(λ).

Then by considering the weights of the elements in both sides, we get the
Cauchy-like identity∏

1≤j≤i≤n

1

1− xiyj
=
∑
λ∈Pn

∑
σ∈Sλ

n

κσλ(x)κσ,λ(y). (13)

Remark 2.23. Observe that, using Remark 2.3.5, namely (12) and (9), we
have ⊔

λ∈Pn

⊔
σ∈Sλ

n

B
σ
(λ)× Bσ(λ) =

⊔
λ∈Pn

⊔
σ∈Sλ

n

ι
(
Bσ0σ(λ)

)
× Bσ(λ)

=
⊔

µ=(µ1,...,µn)∈Zn
ι
(
Bσ0µ

)
× Bµ (14)

where {λ} = Snµ ∩ Pn in each product set of the disjoint union. This gives∏
1≤j≤i≤n

1

1− xiyj
=
∑
µ∈Zn≥0

κµ(x)κµ(y) =
∑
µ∈Zn≥0

κσ0µ(xn, . . . , x1)κµ(y1, . . . , yn).

Note that in [23] the rows of the Young diagram % are counted from bottom
to top, from 1 to n, whereas here they are counted from n to 1 according to
the matrix notation. Replacing xi with xn−i+1 in (13), one recovers Lascoux's
non-symmetric Cauchy identity from [23]∏

i+j≤n+1

1

1− xiyj
=
∑
µ∈Zn≥0

κµ(xn, . . . , x1)κµ(y)

=
∑
µ∈Zn≥0

κσ0µ(x1, . . . , xn)κµ(y1, . . . , yn).
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3. Operations on Demazure crystals and re�ned RSK

3.1. Parabolic restriction in Demazure crystals and truncated stair-

cases. Let p, n be two integers with 1 ≤ p ≤ n. The subset Ip = {1, . . . , p −
1} ⊆ {1, . . . , n− 1} with I := In, de�nes a Levi subalgebra gIp of gln isomor-
phic to glp obtained by considering the matrices with zero entries in positions
(i, j) with i > p or j > p. We set gIn := gln. The algebra gIp has Weyl group
Sp = 〈si | i ∈ Ip〉 and root system RIp = R ∩ span〈αi | i ∈ Ip〉, where R
denotes the root system of the Weyl group Sn of gln. Its cone of dominant
weights can be identi�ed with Pp. Given λ ∈ Pp =

⊕p
i=1 Zei, let us denote

by Bp(λ) the subcrystal of the gln-crystal Bn(λ) := B(λ) = B(λ, 0n−p) ob-
tained by keeping only the vertices connected to its highest weight vertex bλ
by i-arrows with i ∈ Ip. It follows from the general theory of crystals that
Bp(λ) is a realization of the glp-crystal associated to λ. In terms of characters,
this corresponds to the specialization xp+1 = · · · = xn = 0 in the character
sλ(x) of B(λ). For the tableaux realization of crystals, we recover with Bp(λ)
the crystal realization of glp-crystals by tableaux of shape λ with entries in
the alphabet [p] as a subcrystal of the crystal B(λ) of tableaux of shape λ
in the alphabet [n]. Given u ∈ Sp, we will denote by Bp,u(λ),Bu

p(λ),Bp,u(λ)

and B
u
p(λ) the Demazure, opposite Demazure and atoms associated to u in the

glp-crystal Bp(λ).
The Coxeter monoid associated to the symmetric group Sn is the monoid Mn

with generators si, i = 1, . . . , n− 1 and relations

sisj = sjsi for any i, j = 1, . . . , n− 1 such that |i− j| > 1

sisi+1si = si+1sisi+1 for any i = 1, . . . , n− 2,

s2
i = si for any i = 1, . . . , n− 1.

Observe that this is exactly the same relations as those satis�ed by the De-
mazure operators and the map si 7−→ Di yields a faithful representation of the
monoid Mn on Z[x1, . . . , xn]. There is a canonical bijection between Sn and
Mn sending any reduced decomposition of σ ∈ Sn to the same (still reduced)
decomposition σ ∈ Mn. Given any σ ∈ Sn and a reduced decomposition
σ = si1 · · · si`, we write σIp for the element of Sp obtained by the following
procedure.

Algorithm 3.1.

(1) Remove all the sia in σ such that ia /∈ Ip. This yields a word in the
generators of Mn, which may not be reduced.
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(2) Calculate the element of Mn represented by the word obtained in (1),
and denote it σIp ∈Mn.

(3) The element σIp†† is the element of Sp associated to σIp through the
canonical bijection W −→Mn.

Lemma 3.2. The element σIp obtained by Algorithm 3.1 does not depend on
the initial reduced decomposition chosen for σ.

Proof : See the appendix (Lemma 5.1) for a general proof in arbitrary Coxeter
groups.

We give an example of this algorithm in Example 3.3 below.

For σ 6= 1, σIp = 1 if and only if σ ∈ S[p,n]. Note that σ
Ip
0 is the longest

element of Sp; indeed, writing σ
[p]
0 for the longest element of Sp viewed inside

Sn, we have `(σ0) = `(σ
[p]
0 ) + `(σ

[p]
0 σ0), since σ0 has every element of Sn

appearing as a pre�x. Chosing a reduced decomposition of σ0 beginning by a

reduced decomposition of σ
[p]
0 and applying Algorithm 3.1 to this decomposition

yields an element in Mn which is of the form σ
[p]
0 x for some x ∈ Sp. Using

the fact that `(wv) ≥ `(w) for all w,v ∈ Mn, we see that we must have

σ
[p]
0 x = σ

[p]
0 .

Example 3.3. Consider the reduced decomposition σ = s1s2s3s1s2 in S4 and
choose p = 3, hence I3 = {1, 2}. We then get in Mn

σIp = s1s2ŝ3s1s2 = s1s2s1s2 = s2s1s2s2 = s2s1s2 = s1s2s1.

Therefore, σI3 = s2s1s2 = s1s2s1 ∈ S3.

Proposition 3.4. Consider σ in Sn. The set S
≤σ
p = {v ∈ Sp | v ≤ σ} admits

σIp has unique maximal element for ≤, that is

S≤σp = {v ∈ Sp | v ≤ σIp}.

Proof : See the appendix (Lemma 5.2) for a general proof in arbitrary Coxeter
groups.

Now, set Bp(λ) = ι(Bp(λ)) where ι is the involution in B(λ) de�ned in
Remark 2.3.5. Since

Bp(λ) = {f̃k1

i1
· · · f̃kNiN (bλ) | i1, . . . , iN ∈ [p−1], N ≥ 1, (ki1, . . . , kiN ) ∈ ZN≥0}\{0},

††Note that σIp is not the minimal length element in σSp in general.
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we get

Bp(λ) = {ẽki1i1 · · · ẽ
kiN
iN

(bσ0(λ,0n−p)) |
i1, . . . , iN ∈ [n− p+ 1, n− 1], N ≥ 1, (ki1, . . . , kiN ) ∈ ZN≥0} \ {0}.

One can observe that Bp(λ) also has the structure of a glp-crystal but this
time for the root system with set of simple roots {αn−p+1, . . . αn−1}. The cor-
responding character is obtained from the specialization x1 = · · · = xn−p = 0
in the character sλ(x) of B(λ).

Corollary 3.5. For any σ ∈ Sn, we have the following equalities of sets

1 : Bσ(λ) ∩Bp(λ) = Bp,σIp(λ), B
σ
(λ) ∩Bp(λ) =

{
∅ if σ /∈ Sp,

B
σ
p(λ) else.

2 : Bσ(λ) ∩Bp(λ) =

{
∅ if σ /∈ Sp,
Bσ
p(λ) else,

Bσ(λ) ∩Bp(λ) =

{
∅ if σ /∈ Sp,
Bp,σ(λ) else.

3 : Bσ(λ) ∩Bp(λ) =

{
∅ if σ /∈ Sp,
ι(Bp,σ0σ(λ)) else,

B
σ
(λ) ∩Bp(λ) =

{
∅ if σ /∈ σ0Sp,
ι(Bp,σ0σ(λ)) else.

4 : Bσ(λ) ∩Bp(λ) = ι(Bp,σ0σIp(λ)), Bσ(λ) ∩Bp(λ) =

{
∅ if σ /∈ σ0Sp,

ι(B
σ0σ
p (λ)) else.

Proof : For the equalities in the �rst point, we have

Bσ(λ) ∩Bp(λ) = {b ∈ Bp(λ) | K+(b) ≤ bσλ}
= {b ∈ Bp(λ) | K+(b) ≤ bσIpλ} = Bp,σIp(λ)

where the second equality follows from Proposition 3.4 since K+(b) belongs to
Sp for any b ∈ Bp(λ).
For the second equality of the �rst point, we also obtain

B
σ
(λ) ∩Bp(λ) = {b ∈ Bp(λ) | K−(b) = σ}.

But K−(b) belongs to Sp for any b ∈ Bp(λ). Therefore, by de�nition of the
strong Bruhat order, σ ≤ K−(b) is only possible when σ ∈ Sp, whence the
result. Similarly, for the set equalities of the second point we have

Bσ(λ) ∩Bp(λ) = {b ∈ Bp(λ) | K−(b) ≥ σ}.
We have that K−(b) belongs to Sp and thus if σ ≤ K−(b), then σ also belongs
to Sp by de�nition of the Bruhat order. Therefore

Bσ(λ) ∩Bp(λ) =

{
∅ if σ /∈ Sp

Bσ
p(λ) otherwise
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as claimed. Finally we can write

Bσ(λ) ∩Bp(λ) = {b ∈ Bp(λ) | K+(b) = σ}

and we get the result by using that K+(b) ∈ Sp for any b in Bp(λ). The
third and fourth set equalities are easily deduced from the two previous ones
by applying the involution ι and using the relation (11).

3.2. Truncated staircase. In the following, we �x p and q two nonnegative
integers such that n ≥ q ≥ p ≥ 1. We consider the Young diagram

Dp,q = {(i, j) | n− p+ 1 ≤ i ≤ n, 1 ≤ j ≤ q} ∩D%

de�ned by using the matrix coordinates (i, j). It is the intersection ofD% with a
quarter of plane de�ned by the lines i = p and j = q (in Cartesian coordinates).
When n− p+ 1 ≤ q, we get the Young diagram (see Figure 1)

Dp,q = DΛ(p,q) with Λ(p, q) = (qn−q+1, q − 1, . . . , n− p+ 1).

We have in particular Dn,n = DΛ(n,n) = D%. Observe that if n − p + 1 > q,
there are also other Young sub-diagrams appearing but they all reduce to a
rectangle and thus do not yield anything new.

p
n

q

Figure 1. The truncated Ferrers shape Λ(p, q), in green, �tting
the p by q rectangle so that the staircaseD% of size n is the smallest
one containing Λ(p, q). If p ≤ q, (p, p − 1, . . . , 1) is the biggest
staircase inside Λ(p, q).

De�nition 3.6. For any µ = (µ1, . . . , µp) ∈ Zp≥0, let λ ∈ Pp and τ ∈ Sλ
p such

that µ = τλ. By applying σ0 ∈ Sn to µ, one gets σ0µ = σ0τ(λ, 0n−p). We set

µ̃ = (σ0τ)Iq(λ, 0q−p, 0n−q).

Note that µ̃ has its last n− q entries equal to zero because (σ0τ)Iq ∈ Sq. We
will see in � 3.4 that it also has its �rst q − p entries equal to zero.
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Example 3.7. Consider µ = (1, 3, 2) and let q = 4 and n = 5. Then letting
λ = (3, 2, 1), we have

σ0µ = (0, 0, 2, 3, 1) = s2s1s3s2s4s3s1(3, 2, 1, 0, 0).

We have

(s2s1s3s2s4s3s1)
I4 = s2s1s3s2s3s1

which gives µ̃ = s2s1s3s2s3s1(λ) = (0, 1, 2, 3, 0).

Theorem 3.8. With the above notation, the restriction of the RSK correspon-

dence ψ toMDΛ(p,q)
n,n gives a one-to-one correspondence

ψ :MDΛ(p,q)
n,n →

⊔
µ∈Zp≥0

ι(Bp,µ)× Bq,µ̃.

In particular, we have∏
(i,j)∈DΛ(p,q)

1

1− xiyj
=

∑
(µ1,...,µp)∈Zp≥0

κ(µp,...,µ1)(xn, . . . , xn−p+1)κµ̃(y1, . . . , yq).

Proof : By Theorem 2.22 together with (14), the restriction of the map ψ from

MD%
n,n toMDΛ(p,q)

n,n gives

ψ(MDΛ(p,q)
n,n ) =

⊔
λ∈Pn

⊔
σ∈Sλ

n

B
σ
(λ) ∩Bp(λ)× Bσ(λ) ∩Bq(λ)

=
⊔

µ∈Zn≥0

B
µ ∩Bp(λ)× Bµ ∩Bq(λ).

By Corollary 3.5, we have B
σ
(λ) ∩ Bp(λ) = ∅ unless σ ∈ σ0S

λ
p , λ ∈ Pp

and then B
σ
(λ) ∩ Bp(λ) = ι(Bp,σ0σ(λ)). We also obtain in this case that

Bσ(λ) ∩Bq(λ) = Bq,σIq (λ). We thus get

ψ(MDΛ(p,q)
n,n ) =

⊔
λ∈Pp

⊔
σ∈Sλ

n∩σ0Sp

ι(Bp,σ0σ(λ))×Bq,σIq (λ).

As usual, one can replace the two disjoint unions on Pp × Sλ
n ∩ σ0S

λ
p by a

simple disjoint union on Zp≥0 by setting µ = σ0σλ with σ ∈ Sλ
p . To determine

σIq(λ) from µ, we can compute λ by reordering its coordinates; one then gets
µ̂ = σ0µ, and σ ∈ Sλ

n ∩ σ0Sp is determined by the equality µ̂ = σλ. Finally,
one computes σIq by applying Algorithm 3.1 to σ. In particular µ̂ has its �rst
n− p coordinates equal to zero and can be written µ̂ = (0n−p, µp, . . . , µ1) with
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(µ, 0n−p) = σ0.µ̂ = (µ1, . . . , µp, 0
n−p). Therefore, σIq(λ) = µ̃ as introduced in

De�nition 3.6. By considering all the partitions λ in Pp, we thus obtain

ψ(MDΛ(p,q)
n,n ) =

⊔
µ∈Zp≥0

ι(Bp,µ)× Bq,µ̃

with µ̃ = σIqλ in each set of the disjoint union. Finally, we get the Cauchy-like
identity by considering the characters of both sides of the set equality.

3.3. Demazure operators on crystals and augmented staircases. Con-
sider a partition λ in Pn and any subset Ω of B(λ). We de�ne the character of
Ω by setting

char(Ω) = char(Ω)(x1, . . . , xn) =
∑
b∈Ω

xwt(b).

Observe that

char(ι(Ω)) =
∑
b∈Ω

xσ0wt(b) = char(Ω)(xn, . . . , x1). (15)

For any i = 1, . . . , n − 1, denote by ∆i(Ω) the subset of B(λ) obtained from
Ω by applying operators f̃ki , k ≥ 0 to the vertices in Ω, that is

∆i(Ω) = {b ∈ B(λ) | ∃k ∈ Z≥0, ẽ
k
i (b) ∈ Ω}.

By Remark 2.17, for any σ ∈ Sn and any i = 1, . . . , n− 1, we have

∆i(Bσ(λ)) = Bπi(σλ) =

{
Bsiσ(λ) if `(siσ) = `(σ) + 1 and siσλ 6= σλ,
Bσ(λ) if `(siσ) = `(σ)− 1 or siσλ = σλ,

(16)

that is,

∆i(Bµ) = Bπi(µ) with µ = σλ,

where πi is as de�ned in (2). In particular, we have ∆2
i (Bσ(λ)) = ∆i(Bσ(λ)).

This thus gives

∑
b∈∆i(Bσ(λ))

xwt(b) = Di

 ∑
b∈Bσ(λ)

xwt(b)

 = Di(κσ,λ) = κπi(σλ) (17)

and by using (8) one can interpret ∆i as an operator on Demazure crystals
analogous to the operator Di on Demazure characters. For the atoms, we get
the following lemma.
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Lemma 3.9. For any σ in Sn and any si such that `(siσ) = `(σ) + 1 and
siσλ 6= σλ, we have

∆i(Bσ(λ)) = Bσ(λ)
⊔

Bsiσ(λ)

and

κsiσ,λ + κσ,λ =
∑

b∈∆i(Bσ(λ))

xwt(b) = Di

 ∑
b∈Bσ(λ)

xwt(b)

 = Di(κλ,σ). (18)

Proof : For any b in B(λ) and i = 1, . . . , n−1, we have by de�nition of the key
K+

K+(f̃i(b)) ∈ {K+(b), siK+(b)}.
This gives

∆i(Bσ(λ)) ⊂ Bσ(λ)
⊔

Bsiσ(λ).

Conversely, it is clear that Bσ(λ) ⊂ ∆i(Bσ(λ)) by de�nition of ∆i. Now,
if b′ belongs to Bsiσ(λ), we have K+(b′) = siσ with εi(bK+(b′)) > 0 because
`(siσ) = `(σ) + 1. By the tensor product rules in crystals (5), there exists an
integer k such that K+(ẽki b

′) = σ, that is such that ẽki b
′ ∈ Bσ(λ). This shows

the inclusion Bsiσ(λ) ⊂ ∆i(Bσ(λ)). The equality of characters follows from the
equality of sets.

Remark 3.10.

(1) Here again, we can reformulate (16) and Lemma 3.9 by setting µ = σλ.
Using Lemma 2.4, this gives

∆i(Bµ) =

{
Bsiµ if µi > µi+1,
Bµ otherwise,

and
∆i(Bµ) = Bµ

⊔
Bsiµ if µi > µi+1.

(2) Observe that Lemma 3.9 does not remain true when µi < µi+1. In this
case, we indeed have ∆i(Bµ) = Bµ whereas Di(κµ) = 0, as can be seen
from (18). Thus, to mimic the action of the operator Di on κλ,σ at the
level of its associated Demazure atoms, we need to replace the action of
∆i on Bµ(λ) by

∆̇i(Bµ) =

 ∆i(Bµ) = Bµ

⊔
Bsiµ if µi > µi+1

∆i(Bµ) = Bµ if µi = µi+1,
∅ if µi < µi+1.

(19)
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We then always have

char(∆̇i(Bµ)) = Di(κµ).

We may linearize the action described in (19) above by de�ning an action
of the monoid of Demazure operators Di on a free Z-module of rank |Sλ

n|
generated by the formal symbols {c̄σλ : σ ∈ Sλ

n}, written
⊕

σ∈Sλ
n
Zc̄σλ, by

setting

Di(c̄σλ) =

 c̄σλ + c̄siσλ if µ = σλ satis�es µi > µi+1

c̄σλ if µ = σλ satis�es µi = µi+1,
0 if µ = σλ satis�es µi < µi+1.

(20)

These operators satisfy the braid relations together with the relations D2
i =

Di, hence for every w ∈ Sn we can write Dw to mean Di1Di2 · · ·Dik , where
si1si2 · · · sik is a reduced decomposition of w in Sn. Note that the conditions
on the weight µ can be entirely reformulated in terms of the Weyl group Sn

(Lemma 2.4).
The following lemma establishes crucial properties of the action of the op-

erators Dw on the basis {c̄σλ : σ ∈ Sλ
n}, which will be used in the proof of

Theorem 3.15 below.

Lemma 3.11. We have

(1) Let A ⊆ Sλ
n and w ∈ Sn. Then there exists B ⊆ Sλ

n such that

Dw

(∑
σ∈A

c̄σλ

)
=
∑
σ∈B

c̄σλ.

(2) Let τ, τ ′ ∈ Sλ
n with τ 6= τ ′, w ∈ Sn. Then there are A1, A2 ⊆ Sλ

n with
A1∩A2 = ∅ such that Dw(c̄τλ) =

∑
σ∈A1

c̄σλ and Dw(c̄τ ′λ) =
∑

σ∈A2
c̄σλ.

Proof : Let us �rst prove the �rst point. By induction on the length `(w) of
w, it su�ces to prove the result for w = si, where i ∈ {1, 2, . . . , n − 1}.
Let A = A1

⊔
A2

⊔
A3, where A1 = {σ ∈ A | µ = σλ satis�es µi > µi+1},

A2 = {σ ∈ A | µ = σλ satis�es µi < µi+1}, and A3 = {σ ∈ A | µ =
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σλ satis�es µi = µi+1}. By (20) we have

Di

(∑
σ∈A

c̄σλ

)
= Di

(∑
σ∈A1

c̄σλ

)
+Di

(∑
σ∈A2

c̄σλ

)
+Di

(∑
σ∈A3

c̄σλ

)
=

=

(∑
σ∈A1

(c̄σλ + c̄siσλ)

)
+ 0 +

∑
σ∈A3

c̄σλ

=
∑
σ∈A1

c̄σλ +
∑
σ∈siA1

c̄σλ +
∑
σ∈A3

c̄σλ.

To conclude the proof, it su�ces to notice that siA1 ⊆ {σ ∈ Sλ
n | µ =

σλ satis�es µi < µi+1}, hence the union A1

⋃
siA1

⋃
A3 is still disjoint. There-

fore setting B := A1

⊔
siA1

⊔
A3 we get the result.

We now prove the second point. By the �rst point, there is B ⊆ Sλ
n such

that Dw(c̄τλ + c̄τ ′λ) =
∑

σ∈B c̄σλ. But, still by the �rst point, there are also
A1, A2 ⊆ Sλ

n such that Dw(c̄τλ) =
∑

σ∈A1
c̄σλ and Dw(c̄τ ′λ) =

∑
σ∈A2

c̄σλ. We
thus have∑

σ∈B

c̄σλ = Dw(c̄τλ + c̄τ ′λ) = Dw(c̄τλ) +Dw(c̄τ ′λ) =
∑
σ∈A1

c̄σλ +
∑
σ∈A2

c̄σλ,

which forces B to be the disjoint union of A1 and A2.

In [23] Lascoux gave other non-symmetric Cauchy type identities for any
partition Λ ∈ Pn. The idea is to consider the largest staircase ρΛ = (m,m −
1, . . . , 1) contained in the Young diagram of Λ. Then one can choose a box b
at position (i0, j0), in Cartesian coordinates, in the augmented staircase (m+
1,m, . . . , 1) which is not in Λ. The diagonal Li,j : j− i = j0− i0, in Cartesian
coordinates, cuts Λ in a northwest part and a southeast part corresponding to
the boxes above and below Li,j, respectively. Now �ll the boxes (i, j), in the
n×n matrix convention, of the NW part of Λ by i−1 (i.e., by the n×n matrix
row index minus one), and the boxes (i, j) of the SE part by j−1 (i.e., by the
index of the column minus one). Let σ(Λ, NW ) = si1 · · · sia be the element
of Sn where the word i1 · · · ia is obtained from right to left column reading of
the NW part of Λ, each column being read from top to bottom. Similarly, let
σ(Λ, SE) = sj1 · · · sjb be the element of Sn where the word j1 · · · jb is obtained
from top to bottom row reading of the SE part of Λ, each row being read from
right to left.
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Example 3.12. Let n = 8 and Λ = (7, 4, 2, 2, 2). Take (i0, j0) = (3, 3). We
have m = 4 and ρΛ = (4, 3, 2, 1),

Λ =

3 3
� 4
� � N
� � � 3
� � � � 4 5 6

,

and we have σ(Λ, NW ) = s3s4s3, and σ(Λ, SE) = s3s6s5s4.

The following theorem was established in [23] and reproved in [2].

Theorem 3.13. With the previously introduced notation, we have∏
(i,j)∈Λ

1

1− xiyj
=

∑
(µ1,...,µm)∈Zm

Dσ(Λ,NW )κ(µm,...,µ1)(xn, . . . , xn−m+1)•

•Dσ(Λ,SE)κ(µ1,...,µm)(y1, . . . , ym),

where Dσ(Λ,NW ) = Di1 · · ·Dia and Dσ(Λ,SE) = Dj1 · · ·Djb.

Remark 3.14.

(1) By setting (µ1, . . . , µm) = σλ with σ ∈ Sm and λ ∈ Pm, we get by (15)

κ(µm,...,µ1)(xn, . . . , xn−m+1) = char
(
ι
(
B(µm,...,µ1)

))
= char

(
B

(µ1,...,µm)
)
.

(2) Observe that both decompositions si1 · · · sia and sj1 · · · sjb of σ(Λ, NW )
and σ(Λ, SE) are reduced.

By using the operators ∆i on Demazure crystals, one can now deduce from
this identity of characters an analogue of Theorem 2.22 for the augmented
staircases.

Theorem 3.15. With the previously introduced notation, the restriction of the
RSK correspondence ψ toMDΛ

n,n gives a one-to-one correspondence

ψ :MDΛ
n,n →

⊔
(µ1,...,µm)∈Zm≥0

ι
(

∆̇ι
σ(Λ,NW )(B(µm,...,µ1))

)
×∆σ(Λ,SE)

(
B(µ1,...,µm)

)
(21)

where ∆σ(Λ,SE) = ∆j1 · · ·∆jb and ∆̇ι
σ(Λ,NW ) = ∆̇n−i1 · · · ∆̇n−ia.

‡‡

‡‡It follows from the de�nition of ∆̇ that product sets of the form ∅ ×U can appear in the right
hand side of (21) and then ∅ × U = ∅ as usual.
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Proof : First we need to prove that the right hand side I of (21) is indeed a
disjoint union. To this end, �rst observe that for any ν ∈ Zm≥0, we have

∆̇ι
σ(Λ,NW )(Bν) = ∅ ⇐⇒ Dι

σ(Λ,NW )(κν) = 0.

When ∆̇ι
σ(Λ,NW )(Bν) 6= ∅, by point (1) of Lemma 3.11 we get the existence of

a set Aν ⊂ Snλ such that

Dι
σ(Λ,NW )(κν) =

∑
δ∈Aν

κδ and hence ∆̇ι
σ(Λ,NW )(Bν) =

⊔
δ∈Aν

Bδ.

Now by point (2) of Lemma 3.11, we must have Aν ∩Aν′ = ∅ for any ν ′ ∈ Zm
distinct from ν. Observe also that ∆σ(Λ,SE)

(
B(µ1,...,µm)

)
is a Demazure crystal

by Lemma 3.9. We also get that⊔
(µ1,...,µm)∈Zm≥0

∆̇ι
σ(Λ,NW )(B(µm,...,µ1))

is a disjoint union of atoms because ι is a crystal involution. This permits to
conclude that the set

I ⊂
⊔
λ∈Pn

B(λ)×B(λ) = ψ(Mn,n) (22)

is indeed a disjoint union composed of Cartesian products sets of an opposite
atom and a Demazure crystal which all lie in ψ(Mn,n). Indeed, the Cartesian
products sets so obtained from distint sequences (µ1, . . . , µm) cannot intersect.
Now, by Theorem 2.22 and its alternative formulation (14), the RSK corre-

spondence onMn,n restricts to a bijection

ψ :MDρΛ
n,n →

⊔
(µ1,...,µm)∈Zm

ι
(
B(µm,...,µ1)

)
× B(µ1,...,µm).

Then, the pre-image ψ−1(I) ⊂ Mn,n (which is well-de�ned by (22)) is ob-

tained as the image of MDρΛ
n,n under compositions of crystal operators of the

form f̂k1

j1
· · · f̂kbjb and ẽl1i1 · · · ẽ

la
ia
(because the involution ι changes each f̃n−i into

ẽi). By Remark 2.21, this shows that ψ−1(I) is contained in MDρΛ
n,n . To get

the equality ψ−1(I) =MDρΛ
n,n , it su�ces to consider the characters of both sets

which coincide thanks to Theorem 3.13, Equalities (17) and Remark (3.14).
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3.4. The southeast approach for µ̃. We now resume the notation of � 3.3
and in particular consider integers p and q such that 1 ≤ p ≤ q ≤ n and
n − q + 1 ≤ p to perform an augmentation in the SE part of the staircase
ρ = (p, p − 1, . . . , 1) as an alternative way to describe the truncated staircase
from � 3.2. As illustrated by the �gure below, the element σ(Λ(p, q), SE) ∈ Sq

is obtained from top to bottom row reading of the SE part of the augmented
staircase, each row being read from right to left. We thus get the following
reduced decomposition in Sq:

σ(Λ(p, q), SE) =

p−(n−q)−1∏
i=1

(si+n−p−1 . . . si)

n−q∏
i=0

(sq−1 . . . sp−(n−q)+i). (23)

1 2

. . . . . .

n-p

. . .

. . .

. . .

p-
n+q

p . . . q-1

...

q-1

q

p

Figure 2. The labels in Λ(p, q)/ρ, Λ(p, q) = (qn−q+1, q −
1, . . . , , n− p+ 1), ρ = (p, . . . , 1) the maximal staircase contained
in Λ, indicate the column index of Λ minus one. The reading word,
from right to left and from the top to bottom, de�nes the reduced
word σ(Λ(p, q), SE).

Resuming the notation of De�nition 3.6, let µ = (µ1, . . . , µp) ∈ Zp≥0 and

λ ∈ Pp such that µ = τλ, τ ∈ Sλ
p , with 1 ≤ p ≤ q ≤ n and p − (n − q) ≥

1⇔ q ≥ n− p+ 1. Let σ̂0τ ∈ Sλ
p such that σ̂0τλ = σ

[p]
0 µ with σ

[p]
0 the longest

element of Sp (also recall that σ0 is the longest element of Sn). We build on
[1, Proposition 3] to show the following proposition.

Proposition 3.16. The element µ̃ introduced in De�nition 3.6 satis�es

µ̃ = (σ0τ)Iq(λ, 0n−p) = πσ(Λ(p,q),SE)πσ̂0τ(λ, 0
n−p) = πσ(Λ(p,q),SE)(σ

[p]
0 µ, 0

n−p)



38 O. AZENHAS, T. GOBET AND C. LECOUVEY

where σ(Λ(p, q), SE) ∈ Sq is de�ned as in (23). Equivalently, π(σ0τ)Iq and
πσ(Λ(p,q),SE)πσ̂0τ have the same action on (λ, 0n−p) and therefore by Lemma 2.2 (2),

and Lemma 2.5 they correspond to the same minimal representative inS
(λ,0n−p)
n .

Proof : On the one hand we have

σ0τ(λ, 0n−p) = σ0(µ, 0
n−p) = (0n−p, µp, . . . , µ2, µ1) (24)

We will show that the product

p∏
i=1

(πi+n−p−1 · · · πi)πσ̂0τ

of bubble sort operators has the same action on (λ, 0n−p). We have

p∏
i=1

(πi+n−p−1 · · · πi)πσ̂0τ(λ, 0
q−p, 0n−q) =

=

p∏
i=1

(πi+n−p−1 · · · πi)(σ[p]
0 µ, 0

q−p, 0n−q) (25)

=

p−(n−q)−1∏
i=1

(πi+n−p−1 · · · πi)· (26)

·
n−q∏
i=0

(πq−1+i · · · πp−(n−q)+i)(µp, . . . , µn−q+1, . . . , µ1, 0
q−p, 0n−q) (27)

The bubble sort operators in (25) act on the weak composition

(σ
[p]
0 µ, 0

n−p) = (µp, . . . , µ1, 0
n−p),

shifting n− p times to the right each of the p entries of σ
[p]
0 µ. This is done by

shifting n− p times in σ
[p]
0 µ, �rst in (27), the last n− q + 1 entries and then,
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in (26), the remaining �rst p− (n− q)− 1 ≥ 0 entries. That is,

(26), (27) =

=

p−(n−q)−1∏
i=1

(πi+n−p−1 · · · πi) ·
n−q∏
i=0

(πq−1+i · · · πp−(n−q)+i)(µp, . . . , µn−q+1, . . . , µ1, 0
q−p, 0n−q)

=

p−(n−q)−1∏
i=1

(πi+n−p−1 · · · πi)·

· (πq−1 · · · πp−(n−q)) · · · (πn−2 · · · πp−1)(πn−1 · · · πp)(µp, . . . , µn−q+1, . . . , µ1, 0
q−p, 0n−q)
(28)

=

p−(n−q)−1∏
i=1

(πi+n−p−1 · · · πi)(µp, . . . , µn−q+2, 0
n−p, µn−q+1, . . . , µ1)

= (πn−p · · · π1) · · · (πq−2 · · · πp−(n−q)−1)(µp, . . . , µn−q+2, 0
n−p, µn−q+1, . . . , µ1)

= (0n−p, µp, . . . , µn−q+2, µn−q+1, . . . , µ1).

The product

p−(n−q)−1∏
i=1

(πi+n−p−1 · · · πi) ·
n−q∏
i=0

(πq−1+i · · · πp−(n−q)+i)πσ̂0τ (29)

is a reduced decomposition in Mn of an element from S
(λ,0n−p)
n which acts on

(λ, 0n−p) in the same way as σ0τ .

Therefore the minimal representative of σ0τ in S
(λ,0n−p)
n is the minimal rep-

resentative of the element u with reduced decomposition in Sn

p−(n−q)−1∏
i=1

(si+n−p−1 · · · si) ·
n−q∏
i=0

(sq−1+i · · · sp−(n−q)+i)σ̂0τ

and hence

uIq =

p−(n−q)−1∏
i=1

(si+n−p−1 · · · si) ·
n−q∏
i=0

(sq−1+i · · · sp−(n−q)+i)σ̂0τ

Iq

,

which can be calculated using Algorithm 3.1. Note that uIq and (σ0τ)Iq may
not be equal in Mn, but they have the same action on (λ, 0n−p): indeed, if u0 is
the common minimal representative in S(λ,0n−p), the elements σ0τ and u can be
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written in the form u0uλ and u0xλ with uλ, xλ ∈ Sλ and `(σ0τ) = `(u0)+`(uλ),
`(u) = `(u0) + `(xλ) respectively. By de�nition of Algorithm 3.1, we then have

(σ0τ )
Iq = u0

Iquλ
Iq and uIq = u0

Iqxλ
Iq (where the product is in Mn; see also

Remark 5.5 from the Appendix). It follows that (σ0τ)Iq and uIq are (now in

Sn) of the form u
Iq
0 v and u

Iq
0 z for some v, z ∈ S(λ,0n−p) respectively, and the

second factors v and z thus have trivial action on (λ, 0n−p).
Passing to Mn we have a reduced decomposition

u =

p−(n−q)−1∏
i=1

(πi+n−p−1 · · · πi) ·
n−q∏
i=0

(πq−1+i · · · πp−(n−q)+i)πσ̂0τ

 ,

hence the �rst step of Algorithm 3.1 yields the word

p−(n−q)−1∏
i=1

(πi+n−p−1 · · · πi) ·

(
n−q∏
i=0

(πq−1+i · · · πp−(n−q)+i)

)Iq

πσ̂0τ ,

hence

uIq =

p−(n−q)−1∏
i=1

(πi+n−p−1 · · · πi) ·
n−q∏
i=0

(πq−1 · · · πp−(n−q)+i)πσ̂0τ = πσ(Λ(p,q),SE)πσ̂0τ .

(30)

Note that we omitted in (29) the operators with indices≥ q, to obtain πσ(Λ(p,q),SE)

with σ(Λ(p, q), SE) the reduced decomposition in Sq given in (23). Hence
(σ0τ)Iq and πσ(Λ(p,q),SE)πσ̂0τ have the same action on (λ, 0n−p) and the reduced

decomposition of the latter explicitly provides (σ0τ)Iq in S
(λ,0n−p)
n . This gives

the desired result.

We now give a simple algorithm for computing µ̃ = (σ0τ)Iq(λ, 0n−p). Recall
that n− q + 1 ≤ p.

Theorem 3.17. With the previous notation, we have

µ̃ = πσ(Λ(p,q),SE)(σ
[p]
0 µ, 0

n−p) = (0q−p, α1, . . . , αp, 0
n−q)

where α = (α1, . . . , αp) ∈ Zp≥0 is computed by the following algorithm: for i
running from p to 1

• for j = i + 1, . . . , p, successively ignore in σ
[p]
0 µ = (µp, . . . , µ1) the

rightmost entry equal to αj,
• set ki = min{i, n− q + 1},
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• then αi is the maximum element among the remaining rightmost ki
entries of (µp, . . . , µ1).

Example 3.18. Let n = 6, p = 4, q = 5, n− q + 1 = 2,

(a) If µ = (2, 1, 2, 3) and σ
[4]
0 µ = (3, 2, 1, 2) = π3(3, 2, 2, 1) then α =

(1, 3, 2, 2) is obtained as follows: α4 = 2 is the maximum among the right-
most min{4, 2} = 2 entries of (3, 2, 1, 2), α3 = 2 is the maximum among the
rightmost min{3, 2} = 2 entries of (3, 2, 1), α2 = 3 is the maximum among
the rightmost min{2, 2} = 2 entries of (3, 1), α1 = 1 is the maximum among
the rightmost min{1, 2} = 1 entries of (1).

(b) If µ = (1, 2, 3, 2) and σ
[4]
0 µ = (2, 3, 2, 1) = π1(3, 2, 2, 1) then α =

(1, 2, 3, 2) is given by α4 = 2 is the maximum among the rightmost min{4, 2} =
2 entries of (2, 3, 2, 1), α3 = 3 is the maximum among the rightmost min{3, 2} =
2 entries of (2, 3, 1), α2 = 2 is the maximum among the rightmost min{2, 2} =
2 entries of (2, 1), α1 = 1 is the maximum among the rightmost min{1, 2} = 1
entries of (1).

Proof : The bubble sort operators in

πσ(Λ(p,q),SE) =

p−(n−q)−1∏
i=1

(πi+n−p−1 · · · πi) ·
n−q∏
i=0

(πq−1 · · · πp−(n−q)+i)

= (πn−p · · · π1) · · · (πq−1 · · · πp−(n−q)−2)(πq−2 · · · πp−(n−q)−1)· (31)

· (πq−1 · · · πp−(n−q)) · · · (πq−1 · · · πp−1)(πq−1 · · · πp) (32)

act on the weak composition

(µp, . . . , µ1, 0
q−p, 0n−q),

�rst in (32), shifting q − p times to the right the last n − q + 1 entries,
µn−q+1, . . . , µ1, of (µp, . . . , µn−q+1, . . . , µ1), and one checks that it sorts them
in ascending order (µn−q+1, . . . , µ1)↑, to get

(µp, . . . , µn−q+2, 0
q−p, (µn−q+1, . . . , µ1)↑, 0

n−q). (33)

Let αp be the entry q of (33). Next, the operators in (31) act similarly on
the resulting vector (33), reordering in ascending order

µn−q+2 and (µn−q+1, . . . , µ1) \ {αp},
that is, ignoring the entry q, in (µn−q+1, . . . , µ1)↑, (33), to get the vector

(µp, . . . , µn−q+3, 0
q−p, (µn−q+2, (µn−q+1, . . . , µ1) \ {αp})↑, αp, 0n−q). (34)
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Let αp−1 be the entry q− 1 of (34). Then reordering µn−q+3 with the just new
previous vector (34), ignoring the entries q− 1 and q, and so on. Observe that

after some point, the number of remaining entries in σ
[p]
0 µ is less than n− q+ 1

and just the i remaining entries are considered.

Let us give two examples illustrating the notation and the results of Propo-
sition 3.16 and Theorem 3.17:

Example 3.19. Let n = 6, p = 4, q = 5 and Λ = (52, 4, 3) where n− p+ 1 =
6− 4 + 1 = 3 < q and n− q + 1 = 2,

Λ =

� 1 2
� � 2 3
� � � 3 4
� � � � 4

σ(Λ(4, 5), SE) = s2s1 s3s2 s4s3 s4,

(a) Let µ = (2, 1, 2, 3) = τλ ∈ Z4
≥0, and λ = (3, 2, 2, 1), σ̂0τλ = s3λ =

(3, 2, 1, 2) = σ
[4]
0 µ. Then on the one hand we have

σ0τ(3, 2, 2, 1, 0, 0) = σ0(2, 1, 2, 3, 0, 0) = σ0(µ, 0
2) = (0, 0, 3, 2, 1, 2).

On the other hand, mimicking the proof of Proposition 3.16, we have πσ̂0τ = π3

and the product of the bubble sort operators

p∏
i=1

(πi+n−p−1 · · · πi)πσ̂0τ

is given in this case by π2π1π3π2π4π3π5π4π3 and we have

π2π1π3π2π4π3π5π4π3(3, 2, 2, 1, 0, 0) = (0, 0, 3, 2, 1, 2) = σ0τ(3, 2, 2, 1, 0, 0).

The decomposition s2s1s3s2s4s3s5s4s3 is reduced and lies in Sλ
6 . We calculate

(π2π1π3π2π4π3π5π4π3)
I5 = π2π1π3π2π4π3π̂5π4π3 = π2π1π3π2π4π3π4π3

= π2π1π3π2π4π4π3π4 = π2π1π3π2π4π3π4.
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Note that (π2π1π3π2π4π3π5π4π3)
I5 = πσ(Λ(4,5),SE) in this case. Now we have

πσ(Λ(4,5),SE)π3(3, 2, 2, 1, 0, 0) = πσ(Λ(4,5),SE)(3, 2, 1, 2, 0, 0) =

= π2π1π3π2π4π3π4(3, 2, 1, 2, 0, 0)

= π2π1π3π2π4π3(3, 2, 1, 0, 2, 0)

= π2π1π3π2π4(3, 2, 0, 1, 2, 0)

= π2π1π3π2(3, 2, 0, 1, 2, 0)

= π2π1π3(3, 0, 2, 1, 2, 0) = π2π1(3, 0, 1, 2, 2, 0)

= π2(0, 3, 1, 2, 2, 0)

= (0, 1, 3, 2, 2, 0) = (0, α, 0).

Note that α was also computed in part (a) of Example 3.18.
(b) Let µ = (1, 2, 3, 2) = τλ ∈ Z4

≥0, and λ = (3, 2, 2, 1), σ̂0τλ = s1λ =

(2, 3, 2, 1) = σ
[4]
0 µ. Then on the one hand we have

σ0τ(3, 2, 2, 1, 0, 0) = σ0(1, 2, 3, 2, 0, 0) = σ0(µ, 0
2) = (0, 0, 2, 3, 2, 1).

On the other hand, mimicking the proof of Proposition 3.16, we have πσ̂0τ = π1

and the product of the bubble sort operators
∏p

i=1(πi+n−p−1 · · · πi)πσ̂0τ is given
in this case by π2π1π3π2π4π3π5π4π1 and we have

π2π1π3π2π4π3π5π4π1(3, 2, 2, 1, 0, 0) = (0, 0, 2, 3, 2, 1) = σ0τ(3, 2, 2, 1, 0, 0).

The decomposition s2s1s3s2s4s3s5s4s1 is reduced and lies in Sλ
6 . We calculate

(π2π1π3π2π4π3π5π4π1)
I5 = π2π1π3π2π4π3π4π1 = πσ(Λ(4,5),SE)π1.

Now we have

πσ(Λ(4,5),SE)π1(3, 2, 2, 1, 0, 0) = π2π1π3π2π4π3π4π1(3, 2, 2, 1, 0, 0)

= (0, 1, 2, 3, 2, 0) = (0, α, 0).

Note that α was also computed in part (b) of Example 3.18.

4. Last passage percolation in a Young diagram

4.1. LPP on rectangle Young diagrams. We resume the notation of � 2.4.
Let u1, . . . , um and v1, . . . , vm be two sets of real numbers in the interval [0, 1[
and consider a family wi,j of independent random variables, with values in Z≥0,
and such that

P(wi,j = k) = (1− uivj)(uivj)k for any k ∈ Z≥0. (35)
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In other words, each wi,j follows a geometric distribution of parameter uivj. We
then obtain a random matrix W with values inMm,n whose entry at position
(i, j) is de�ned as wi,j for 1 ≤ i ≤ m and 1 ≤ j ≤ m. Since the random
variables wi,j are independent, for any A ∈Mm,n we get

P(W = A) =

( ∏
1≤i≤m,1≤j≤n

(1− uivj)

)
(uv)A

where (uv)A =
∏

1≤i≤m,1≤j≤n(uivj)
ai,j .

Now consider the paths in the matrices inMm,n starting at entry (1, n) and
ending at entry (m, 1) with possible steps←− or ↓. The length of such a path is
de�ned as the sum of all the entries that it contains. Let us de�ne de map perc
which associates to each matrix A inMm,n the maximum of the length path of
all possible aforementioned paths in the matrix A. By Assertion 4 of Theorem
2.19, the integer perc(A) coincides with the longest row of the tableaux P (A)
and Q(A). This is the last passage percolation associated to A. We then de�ne
the random variable G = perc ◦ W . Thanks to the above observation and
Theorem 2.19, it becomes easy to give the law of the random variable G. Set
∆m,n =

∏
1≤i≤m,1≤j≤n(1−uivj). The following theorem was established in [17].

Theorem 4.1. For any nonnegative integer k, we have

P(G = k) = ∆m,n

∑
λ∈Pmin(m,n)|λ1=k

sλ(u)sλ(v).

In fact the results in [17] also give a law of large numbers of the variable G
and also a Tracy-Widom renormalization theorem, both of which are outside
the scope of this note.

4.2. LPP on staircases and non-symmetric Cauchy Kernel. Thanks
to Theorem 2.22, the non-symmetric Cauchy kernel identity also yields an
interesting last percolation model. This time, we assume m = n and only
consider independent random variables wi,j when 1 ≤ j ≤ i ≤ n with geometric
distributions as in (35). This de�nes a lower random square matrix L with
nonnegative integer entries and we get

P(L = A) =
∏

1≤j≤i≤n
(1− uivj)(pq)A.

One can interpret this model as follows. Consider paths from position (1, n) to
position (n, 1) where only the entries in the lower part of A contribute to the
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length of the paths. We can then de�ne the random variable L = perc ◦ L and
try to determine its law. Since Theorem 2.22 gives a bijective correspondence
obtained as the restriction to lower triangular matrices of the RSK map de�ned
on Mn,n, the value of L still corresponds to the length of the largest part of
the partitions appearing in the right hand side of (13). By Remark 2.23, this
yields the following theorem.

Theorem 4.2. For any nonnegative integer k we have

P(L = k) = Sn
∑

µ∈Zn≥0|max(µ)=k

sµ(u)sµ(v)

= Sn
∑

µ∈Zn|max(µ)=k

sσ0(µ)(un, . . . , u1)sµ(v1, . . . , vn),

where

Sn =
∏

1≤j≤i≤n
(1− uivj).

4.3. LPP and parabolic restrictions in non-symmetric Cauchy Ker-

nel. Given p and q as in � 2.1, one can similarly use Theorem 3.8 to study the
percolation model on random matrices Tp,q with nonnegative random integer
coe�cients having zero entries in each position (i, j) such that i ≤ n − p and
j > q. Each random variable wi,j with i ≥ n − p + 1 and j ≤ q follows a
geometric distribution of parameter uivj. Using the same arguments as in �
3.1, we can obtain the law of the random variable Tp,q = perc ◦ Tp,q.

Theorem 4.3. For any nonnegative integer k, we have

P(Tp,q = k) = Tp,q
∑

(µ1,...,µp)∈Zp≥0|max(µ)=k

s(µp,...,µ1)(un, . . . , un−p+1)sµ̃(v1, . . . , vq),

where

Tp,q =
∏

(i,j)∈DΛ(p,q)

(1− uivj).

4.4. LPP and augmented staircases. We now resume the notation of �
3.3. For a �xed partition Λ in Pn, we consider random matrices AΛ with
nonnegative random integer coe�cients having zero entries in each position
(i, j) such that (i, j) /∈ Λ. Here again each random variable wi,j for (i, j) ∈ Λ
follows a geometric distribution of parameter uivj. Let us de�ne the random
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variable AΛ = perc ◦ AΛ. Then, by Theorems 3.13 and 3.15, we get the law of
AΛ.

Theorem 4.4. For any nonnegative integer k, we have

P(AΛ = k) = TΛ

∑
(µ1,...,µm)∈Zm|max(µ)=k

σ(Λ,NW )s(µm,...,µ1)(un, . . . , un−m+1)

Dσ(Λ,SE)s(µ1,...,µm)(v1, . . . , vm),

where
TΛ =

∏
(i,j)∈DΛ

(1− uivj).

5. Appendix

Let (W,S) be a Coxeter system. Let MW be the attached Coxeter monoid,
that is, the monoid with generators a copy S of S, the same braid relations as
(W,S), and relations s2 = s for all s ∈ S replacing the relations s2 = 1 for
all s ∈ S. Here by braid relations we mean the de�ning relations st · · · ts · · · ,
where t 6= s and both sides are strictly alternating products of s and t with
ms,t = mt,s factors, where ms,t is the entry of the Coxeter matrix. These
relations �rst appeared in work of Demazure [11, Section 5.6], and the Coxeter
monoid was �rst investigated by Richardson and Springer [32, Section 3.10].
It is well-known (and a consequence of Matsumoto's Lemma) that there is a
canonical set-theoretic bijection betweenW andMW : it just sends any reduced
decomposition of an element of W or MW to the same decomposition.
Let I ⊆ S, w ∈ W and s1s2 · · · sk a reduced decomposition of w. Consider

the subword si1si2 · · · si` of s1s2 · · · sk consisting of those letters in s1s2 · · · sk
lying in I. Set

M((s1, s2, . . . , sk), I) := si1si2 · · · si` ∈MW .

Lemma 5.1. The element M((s1, s2, . . . , sk), I) is independent of the choice
s1s2 · · · sk of reduced decomposition for w, and we simply denote it byM(w, I).

Proof : By Matsumoto's Lemma, we know that any two reduced decompositions
of w are related by applying a sequence of braid relations. It therefore su�ces
to show that applying a braid relation to a reduced word for w does not change
the element of MW obtained by keeping only those letters in the words which
lie in I.
Let s1s2 · · · sk be the �rst reduced decomposition of w, and s′1s

′
2 · · · s′k be

the one obtained after application of a single braid relation. A braid relation
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involves only two letters s, t ∈ S (s 6= t). Then s1s2 · · · sk (as a word) is
of the form xsts · · · y while s′1s

′
2 · · · s′k is of the form xtst · · · y. If s, t /∈ I,

then it is clear that the two subwords of s1s2 · · · sk and s′1s
′
2 · · · s′k consisting

of those letters which are not in I coincide, hence that M((s1, s2, . . . , sk), I) =
M((s′1, s

′
2, . . . , s

′
k), I). If s, t ∈ I, then the two subwords di�er by a single

braid relation, which holds in MW , hence de�ne the same element of MW .
Finally, if only one letter among s and t, say s, is in I, then since t /∈ I, it
follows that the substring sts · · · contributes k consecutive copies of s to the
subword of s1s2 · · · sk obtained by deleting the letter not in S, while tst · · ·
contributes k or k − 1 copies of s to the subword of s′1s

′
2 · · · s′k, depending on

whether ms,t is odd or even. Moreover, since s appears in both sides of the
braid relation sts · · · = tst · · · , then at least one copy of s is contributed in each
word. Thanks to the relation s2 = s, these consecutive copies of s get reduced
to s in MW , again yielding M((s1, s2, . . . , sk), I) = M((s′1, s

′
2, . . . , s

′
k), I).

We denote by ≤ the strong Bruhat order on W (or MW ). We recall that,
for u, v ∈ W , the following three conditions are equivalent (see [4, Corollary
2.2.3])

(1) u ≤ v,
(2) There is a reduced decomposition of v having a reduced decomposition

of u as a subword,
(3) Every reduced decomposition of v has a reduced decomposition of u as

a subword.

Lemma 5.2. (1) Let s1s2 · · · sk be a word in the generators of MW and
1 ≤ i1 < i2 < · · · < i` ≤ k such that si1si2 · · · si` is a reduced decompo-
sition of an element w of W . Let s′1s

′
2 · · · s′m be a word obtained from

s1s2 · · · sk by applying a single de�ning relation of MW . Then there is a
sequence 1 ≤ j1 < j2 < · · · < j` ≤ m such that s′j1s

′
j2
· · · s′j` is a reduced

decomposition of w.
(2) Let s1s2 · · · sk and s′1s

′
2 · · · s′m be two (not necessarily reduced) words for

the same element w of MW . Let Ω1 (resp. Ω2) be the set of elements
of W having a reduced decomposition which is a subword of s1s2 · · · sk
(resp. s′1s

′
2 · · · s′m). Then Ω1 = Ω2. In particular, this set Ω(w) depends

only on w, and we have

Ω(w) = {x ∈ W | x ≤ w}.
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Proof : The second point is an immediate corollary of the �rst one; the last
statement is used by taking as word s1s2 · · · sk any reduced decomposition of
w.
Let us show the �rst point. The result is clear if the relation which is ap-

plied to the word s1s2 · · · sk is s → s2 or s2 → s, since in the case where
we have to consecutive copies of s in the �rst or the last word, then at most
one can contribute to a reduced decomposition as ss is not reduced in W .
Hence si1si2 · · · si` also appears as a reduced word of s′1s

′
2 · · · s′m in this case.

Hence assume that the relation which is applied is a braid relation w1 =
st · · · → ts · · · = w2. That is, we have k = m and (as words) s1s2 · · · sk =
s1s2 · · · siw1sjsj+1 · · · sk while s′1s

′
2 · · · s′k = s1s2 · · · siw2sjsj+1 · · · sk.

Denote by p the number `(w1) of factors in either side of the braid rela-
tion. The subword u of w1 which contributes to the reduced word si1si2 · · · sik
is necessarily and alternating product of s and t, otherwise it is not reduced.
Moreover, it contributes a subword u of si1si2 · · · sik which is made of consecu-
tive letters, the letters before that subword (resp. after that subword) coming
from s1s2 · · · si (resp. sjsj+1 · · · sk). If `(u) < p, then u has a unique reduced
decomposition, and w2 also has u as a subword. Hence the claim holds true
in this case. If `(u) = p, then the whole left side w1 of the braid relation is
contributed as a consecutive subword of si1si2 · · · sik . Replacing that subword
by the right side ts · · · of the braid relation yields the required subword of
s′1s
′
2 · · · s′k. It stays reduced as it is just obtained from a reduced decomposi-

tion by applying a braid relation.

Proposition 5.3. Let w ∈ W . The set w≤I := {x ∈ W | x ∈ WI and x ≤ w}
is equal to {x ∈ W | x ≤ M(w, I)}. In particular, it has a unique maximal
element for ≤, given by M(w, I).

Proof : Let s1s2 · · · sk be a reduced decomposition of w.
Let x ∈ w≤I . Since x ≤ w, there is a subword sj1sj2 · · · sjm, 1 ≤ j1 < j2 <
· · · < jm ≤ k which is a reduced decomposition of x. Since x ∈ WI , all
the letters of sj1sj2 · · · sjm lie in I. In particular, the reduced decomposition
sj1sj2 · · · sjm is a subword of the subword si1si2 · · · si` of s1s2 · · · sk consisting of
those letters which lie in I. Putting Lemmas 5.1 and 5.2 (2) together we get
that x ≤M(w, I).
To conclude the proof, it therefore su�ces to see that M(w, I) ≤ w. By

Lemma 5.2 (2), we know that any (not necessarily reduced) word for M(w, I)
in MW has a subword which is a reduced word for M(w, I), as this property



NON SYMMETRIC CAUCHY KERNEL AND LPP 49

is independent of the chosen word, and it holds if we take any reduced decom-
position of M(w, I) in MW . But by de�nition of M(w, I), there is a subword
if s1s2 · · · sk which is a (not necessarily reduced) decomposition of M(w, I) in
MW . Hence s1s2 · · · sk must have a reduced decomposition ofM(w, I) appear-
ing as a subword.

Example 5.4. Let W be of type A3 and let w = s1s2s3s1s2. The list of reduced
words for w is given by

• s1s2s3s1s2,
• s1s2s1s3s2,
• s2s1s2s3s2,
• s2s1s3s2s3,
• s2s3s1s2s3.

Extracting the subword with letters in I from every such decomposition yields

• s1s2s1s2,
• s1s2s1s2,
• s2s1s2s2,
• s2s1s2,
• s2s1s2.

In MW we get

• s1s2s1s2 = s1s1s2s1 = s1s2s1,
• s1s2s1s2 = s1s1s2s1 = s1s2s1,
• s2s1s2s2 = s2s1s2 = s1s2s1,
• s2s1s2 = s1s2s1,
• s2s1s2 = s1s2s1.

Note that the obtained is element is distinct from wI , the element from the
canonical decomposition w = wIwI , which is given here by s1s2.

Remark 5.5. It is a consequence of the de�nition of M(w, I) and Lemma 5.1
that if u, v ∈ W with `(uv) = `(u) + `(v), then M(uv, I) = M(u, I)M(v, I)
(where the product is taken in MW ).
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