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1. Introduction

Let Ω ⊂ Rd be open and bounded. We consider functions u : Ω→ R satisfy-
ing a modulus of continuity from below and prove an abstract result. Namely,
under general conditions on the function, geometric control from below �ips,
yielding a modulus of continuity also from above. The abstract conditions
ensuring this �ipping are a weak Harnack inequality and an LpL∞-estimate.
The generality of such requirements encompasses a wide latitude of problems.
For instance, elliptic equations in the divergence form, supersolutions to fully
nonlinear equations, and minimizers and Q-minimizers in the calculus of vari-
ations.
After establishing our abstract result, several consequences follow. In par-

ticular, we prove that functions satisfying a weak Harnack inequality and an
LpL∞-estimate are in the class of viscosity solutions. Also, supersolutions to
fully nonlinear elliptic equations satisfying a geometric control from below (e.g.,

Received December 12, 2022.
This work was partially supported by the Centre for Mathematics of the University of Coimbra

- UIDB/00324/2020, funded by the Portuguese Government through FCT/MCTES. DM is partly
funded by CNPq and FUNCAP (PRONEX). EP is partly funded by FAPERJ (E-26/200.002/2018)
and the Department of Mathematics at the University of Coimbra.

1



2 D. MOREIRA AND E. PIMENTEL

ω-semiconvexity, C0,α or C1,α-moduli of continuity) belong to suitable Hölder
spaces depending on the integrability of the source term.
Our results keep similarities with recent �ndings concerning the obstacle

problem; see, for example, [1]. However, they are available in the fully nonlin-
ear setting, and cover general supersolutions, in line with the Ca�arelli-Kohn-
Nirenberg-Spruck a priori estimate [10].
The analysis of conditions under which a geometric control from below yields

a modulus of continuity from above �rst appeared in the work of Luis Ca�arelli
[7]; see also the series of lectures [9]. In [7], the author examines the role of the
Harnack inequality in the �ipping of a given modulus of continuity, controlling
the function from below. In that context, the author considers functions whose
di�erence with respect to a�ne functions (or constants) satisfy a Harnack in-
equality. Under these conditions, and additional usual assumptions, he proves
the function solves a fully nonlinear elliptic equation. An important application
of the �ndings in [9] is in the realm of homogenization; see, for instance [8].
One-sided control has also played a role in recent developments of the gen-

eral theory of viscosity solutions. For instance, in [6] the authors produce new
(sharp) regularity estimates for semiconvex viscosity supersolutions. Their �nd-
ings resonate in various contexts, including a connection with the celebrated
Ca�arelli-Kohn-Nirenberg-Spruck a priori estimate [10].
In [4], one-sided control is also a critical ingredient. In that paper, the authors

consider fully nonlinear equations with unbounded ingredients. They prove two
(optimal) regularity results for the convex envelope of supersolutions. Compare
Theorems 2.6 and 2.8 in [4]. The importance of one-sided control, in terms of a
semiconvexity condition, is clear in the regularity estimate in [4, Theorem 2.9].
We consider functions satisfying two conditions. The �rst one amounts to a

weak Harnack inequality for non-negative u : B1 → R, centred at x0 ∈ B1.
That is, for ρ > 0 and x0 ∈ B1 such that Bρ(x0) ⊂ B1, we have(∫

Bρ/2(x0)

uεdx

) 1
ε

≤ CWH

(
inf

Bρ(x0)
u+ ρϑχx0(ρ)

)
, [WH]

where ε > 0, χ is a non-negative function, and ϑ > 0 is a �xed exponent. Our
second condition is an LpL∞-estimate centred at x0 ∈ B1

‖u‖L∞(Bρ/2(x0)) ≤ Cp,∞

(∫
Bρ(x0)

|u|pdx

) 1
p

+ σ(ρ)

 , [LpL∞]
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holding for some p > 0, and some modulus of continuity σ(·). As before, ρ > 0
and x0 ∈ B1 are such that Bρ(x0) ⊂ B1.
Our �rst main contribution is an abstract result. Suppose a function u :

B1 → R has a modulus of continuity from below. Suppose further that u − `
satis�es [WH] and [LpL∞] for every a�ne function `. Then the geometric
control from below �ips, yielding a two-sided control for the function. We state
this result in the form of a theorem.

Theorem 1 (Flipping geometry I). Let u : B1 → R. Let x0 ∈ B1/2. Suppose

that u − ` satis�es [WH] and [LpL∞] for every a�ne function `. Suppose

further there exists a modulus of continuity γ(·) such that

inf
Bρ(x0)

(u− `x0) ≥ −γ(ρ),

for every ρ ∈ (0, 1/2). Then

sup
Bρ/4(x0)

(u− `x0) ≤ C
(
σ(ρ) + ρϑχx0(ρ) + γ(ρ)

)
,

where C = C(CWH, Cp,∞).

Notice that, if ϑ ≥ 1, γ(ρ) and σ(ρ) are of order o(ρ), and χ is of order o(1),
as ρ → 0, then u is di�erentiable at x0. A consequence of the arguments in
the proof of Theorem 1 concerns functions u : B1 → R such that u − u(x0)
satis�es [WH] and [LpL∞] for suitable points x0 ∈ B1.
Also, one can take x0 ∈ B1 in the statement of Theorem 1. In that case,

ρ ∈ (0, ρ∗(x0)), with ρ
∗(x0) ∈ (0, 1 − ‖x0‖). This is relevant when applying

the Theorem 1 in the context of interior regularity theory. In that case, for any
Ω′ b B1, one must consider ρ

∗ := ρ∗(x), uniformly in x ∈ Ω′.

Corollary 1 (Flipping geometry II). Let u : B1 → R. Let x0 ∈ B1/2. Suppose

that u−c satis�es [WH] and [LpL∞] for every constant c ∈ R. Suppose further
there exists a modulus of continuity γ(·) such that

inf
x∈Bρ(x0)

(
u− u(x0)

)
≥ −γ(ρ),

for every ρ ∈ (0, 1/2). Then

sup
Bρ/4(x0)

(u− u(x0)) ≤ C
(
σ(ρ) + ρϑχx0(ρ) + γ(ρ)

)
,

where C = C(CWH, Cp,∞).
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The abstract �ndings in Theorem 1 and Corollary 1 have important conse-
quences for nonlinear elliptic problems, which we detail in the paper. The �rst
implication of Theorem 1 concerns the inclusion of a given function in a class
of viscosity solutions. We prove that if u− ` satis�es [WH] and [LpL∞], then u
belongs to a class of viscosity solutions. This class is characterized by ellipticity
constants depending only on the dimension and the data of the problem. This
is the subject of Theorem 2; see Section 5.1.

Fig. 1. The modulus of continuity γ, touching u at x0 from below,
�ips to produce a modulus of continuity from above at x0, denoted
with γ. However, the qualitative properties of γ are a�ected by two
ingredients, namely: the factor σ(·) in the [LpL∞] property, and
χ in [WH]. As a result, the one-side control encoded by γ yields
two-side information on the function. The latter may deteriorate,
depending on the e�ects of σ and χ appearing in the abstract
conditions [WH] and [LpL∞].

After establishing this inclusion, we turn to the regularity theory. This im-
portant class of problems has known many recent advances, as several authors
have worked in detail in various directions. The range of recent developments
includes boundary regularity and di�erentiability [5, 28, 32], improved regular-
ity under di�erentiability conditions [31, 2], perturbative and approximation
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methods [33, 34, 30], non-uniformly elliptic problems [3, 22, 14], regularity
for elliptic variational problems [11, 12, 15, 16], and estimates via potential
methods [13, 27, 26, 25, 24, 29] to name just a very few references.
As concerns regularity theory, the Theorem 1 and Corollary 1 are conse-

quential. Let u ∈ C(B1), and d/2 ≤ p0 < d be the exponent such that the
Aleksandrov-Bakelman-Pucci estimate holds for (λ,Λ)-elliptic equations whose
right-hand side is in Lp(B1), for p0 < p. If u is a semiconvex viscosity super-
solution in the presence of a right-hand side f ∈ Lp(B1), for p0 < p < d,

Corollary 1 implies u ∈ C2−dp
loc (B1). The result also provides estimates and ex-

tends results in [4] to the range p0 < p < d. This fact is the content of the
Theorem 3.
We observe that semiconvexity is a global property. Conversely, a uniform

C0,α or C1,α-modulus of continuity from below prescribes only a local geomet-
ric control. Our �ndings resonate also in this setting. We prove that viscosity
supersolutions with a C0,α-modulus of continuity from below are Hölder con-
tinuous, if the right-hand side is in Lp, for p0 < p. Stemming from Corollary
1, this result also yields estimates.
When it comes to �ipping a C1,α-modulus of continuity, we resort to Theorem

1. This is because to access information at the level of the gradient, we must
subtract a tangent plane from the function under analysis. We consider super-
solutions with a C1,α-modulus of continuity from below and right-hand side in
Lp, for p > d. Here, we prove C1,β-estimates, for some β ∈ (0, 1) universal. As
before, our �ndings include estimates in terms of the usual quantities.
A further instance where Corollary 1 is consequential concerns the so-called

De Giorgi class; see, for instance, [19, 18]. Typically it comprises functions
satisfying Caccioppoli inequalities, at any side and any truncation level. It
includes solutions to elliptic equations in the divergence form as well as mini-
mizers and Q-minimizers in the calculus of variations. Therefore the relevance
of abstract results holding at the full generality of the De Giorgi class. In [18]
the authors prove that functions in this class satisfy two properties; namely:
a weak Harnack inequality and an LpL∞-estimate. Hence, Corollary 1 and its
consequences are available for functions in the De Giorgi class.
We examine the causality involving the LpL∞-estimates and Hölder conti-

nuity. Indeed, it is classical in the literature that the former operates as an
ingredient in the proof of the latter. We establish a converse to this fact: a func-
tion satisfying a modulus of continuity from below satis�es an LpL∞-estimate.
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Our �rst result in this direction concerns functions with a modulus of conti-
nuity of the zeroth order from below. That is, if a translation of the function
satis�es a modulus of continuity from below, an LpL∞-estimate is available. In
addition, we consider functions satisfying a modulus of continuity from below
at the level of the gradient. In this case, the assumption is that the function
subtracted a tangent plane has some geometric control from below. Here, an
LpL∞-estimate is also available. The strategies used in both proofs di�er, as
in the second case the control of the gradient is pivotal.
The remainder of this manuscript is organized as follows. Section 2 gathers

preliminary facts and basic material we use in the paper. The proofs of The-
orem 1 and Corollary 1 are the subject of Section 3. In Section 4 we derive
LpL∞-estimates for functions satisfying one-sided geometric control. Finally,
the paper details various consequences of the abstract results to nonlinear el-
liptic problems; this is the content of Section 5.

2. Preliminaries

In what follows, we gather preliminary material used throughout the paper.
We start with a rigorous description of the conditions appearing in our abstract
results.

[WH] Let u : B1 → R be nonnegative. Suppose χ is a non-negative function,
and let ϑ > 0. We say u satis�es [WH] centred at x0 ∈ B1 if there exists
ε > 0 such that(∫

Bρ/2(x0)

uεdx

) 1
ε

≤ CWH

(
inf

Bρ/2(x0)
u+ ρϑχx0(ρ)

)
,

for every ρ > 0 and x0 ∈ B1 whenever Bρ(x0) ⊂ B1.

[LpL∞] Let u : B1 → R and σ : [0,+∞) → [0,+∞). We say u : B1 → R
satis�es an LpL∞-estimate centred at x0 ∈ B1 if there exists Cp,∞ > 0
such that

‖u‖L∞(Bρ/2(x0)) ≤ Cp,∞

(∫
Bρ(x0)

|u|pdx

) 1
p

+ σ(ρ)


for some p > 0, and every ρ > 0 and x0 ∈ B1 whenever Bρ(x0) ⊂ B1.

Our reasoning combines [WH] and [LpL∞]. A necessary condition for both
inequalities to match sits in the exponents ε > 0 and p > 0, which must agree
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in [WH] and [LpL∞]. Although there is no a priori reason for this to be the
case, the next lemma ensures this is always possible.

Lemma 1 (LpLq-interpolation). Let u : B1 → R and take ρ > 0 and x0 ∈ B1

such that Bρ(x0) ⊂ B1. Suppose that u satis�es

‖u‖L∞(Bρ/2(x0)) ≤ C

(∫
Bρ(x0)

|u|pdx

) 1
p

+ σ(ρ)

 ,
for some p > 0. Then there exists C > 0, depending only on p, q and the

dimension d, such that

‖u‖L∞(Bρ/2(x0)) ≤ C

(∫
Bρ(x0)

|u|qdx

) 1
q

+ σ(ρ)


for every q > 0.

For the proof of Lemma 1, we refer the reader to [23, Remark 4.4]. Part
of our analysis concerns the properties of viscosity solutions to fully nonlinear
equations. To properly state our �ndings, we gather a few notions and facts in
this realm.
Let 0 < λ ≤ Λ be �xed constants and denote with S(d) ∼ R

d(d+1)
2 the space

of symmetric matrices of order d. We de�ne the Pucci extremal operators
M±

λ,Λ : S(d)→ R as

M+
λ,Λ(M) := Λ

∑
ei>0

ei + λ
∑
ei<0

ei

and
M−

λ,Λ(M) := λ
∑
ei>0

ei + Λ
∑
ei<0

ei,

where e1, e2, . . . , ed stand for the eigenvalues of M . We notice that any sym-
metric matrix M can be written as M = M+ −M−, where M+ stands for
the positive part of M , and M− stands for its negative part. For convenience,
we recall a de�nition of the extremal operators in terms of those quantities;
indeed,

M+
λ,Λ(M) = ΛTr(M+)− λTr(M−)

and
M−

λ,Λ(M) = λTr(M+)− ΛTr(M−).
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Once these operators are available, one introduces the class of viscosity solu-
tions.
Let 0 < λ ≤ Λ be �xed constants, and f ∈ Lp(B1) ∩ C(B1). The class of

viscosity subsolutions S(λ,Λ, f) gathers the functions u ∈ C(B1) satisfying

M+
λ,Λ(D2u) ≥ f (1)

in the viscosity sense. Similarly, the class of viscosity supersolutions S(λ,Λ, f)
comprises every u ∈ C(B1) such that

M−
λ,Λ(D2u) ≤ f (2)

in the viscosity sense. The class of viscosity solutions S(λ,Λ, f) intersects both,
i.e.,

S(λ,Λ, f) := S(λ,Λ, f) ∩ S(λ,Λ, f).

Meanwhile, the inequalities in (1) and (2) imply inequalities in terms of
matrix norms. In fact, for M ∈ S(d),

M−
λ,Λ(M) ≤ C0

yields ∥∥M+
∥∥ ≤ dΛ

λ

∥∥M−∥∥+
C0

λ
.

Similarly, if
M+

λ,Λ(M) ≥ C0

one obtains ∥∥M−∥∥ ≤ dΛ

λ

∥∥M+
∥∥− C0

λ
.

This observation motivates an alternative de�nition of the viscosity class. It
relies on inequalities relating to the positive and negative parts of D2P , where
P is a paraboloid tested against the solutions.

De�nition 1 (Class of viscosity solutions). Let L1, L2 > 0 be constants de-

pending solely on λ, Λ, and the dimension d. We say that u ∈ C(B1) is in

the class S(L1, L2, C0) if, whenever a paraboloid P touches u from above at

x0 ∈ B1, we have

‖(D2P (x0))
−‖ ≤ L1

∥∥(D2P (x0))
+
∥∥+ L2 · C0.

Similarly, we say that u ∈ C(B1) is in the class S(L1, L2, C0) if whenever a

paraboloid P touches u from below at xo ∈ B1, we have

‖(D2P (x0))
+‖ ≤ L1

∥∥(D2P (x0))
−∥∥− L2 · C0.
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We proceed with a lemma comparing the opening of paraboloids that are
ordered in some neighbourhood. Before stating the lemma, we introduce some
notation. Let M ∈ Rd2be a square matrix. We denote with λmin(M) the
smallest eigenvalue of M ; with λmax(M) we denote the largest eigenvalue of
M .

Lemma 2 (Comparable openings). Let P (x) := A|x−x0|2, where A ≥ 0. Let
Q be a paraboloid such that P touches Q from above at some x0 ∈ Rd. Then

A ≥ ‖(D2Q(x0))
+‖.

Proof : We start by supposing (D2Q(x0))
+ 6= 0, as otherwise the statement of

the lemma trivially holds. In this case,

λmax(D2Q(x0)) = ‖(D2Q(x0))
+‖.

Without loss of generality, suppose x0 ≡ 0 and the a�ne part of Q is identically
zero. The latter assumption is not restrictive, as the argument focuses on
the second derivative of Q. Furthermore, let B := {e1, . . . , ed} denote an
orthonormal basis such that

Q(x) =
∑
λi>0

λix
2
i +

∑
λi<0

λix
2
i ,

where Q(ei) = λiei. Denote with emax the eigenvector associated with the
eigenvalue λmax(D2Q(x0)). Because P touches Q from above in Bδ, we have

A

∣∣∣∣δ2emax

∣∣∣∣2 = P

(
δ

2
emax

)
≥ Q

(
δ

2
emax

)
= λmax

(
δ

2

)2

.

Hence

A ≥ ‖(D2Q(x0))
+‖

and the proof is complete.

We proceed with the de�nition of ω-semiconvexity.

De�nition 2 (ω-semiconvex function). Let ω : [0,+∞)→ [0,+∞) be a mod-

ulus of continuity. We say that u : B1 → R is ω-semiconvex if

u(tx+ (1− t)y) ≤ tu(x) + (1− t)u(y) + t(1− t)|x− y|ω(|x− y|),

for every x, y ∈ B1 and every t ∈ [0, 1].
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Remark 1 (Semiconvexity and a�ne translations). Let u : B1 → R. Let
`(x) := `0 + `1 · x, where `0 ∈ R and `1 ∈ Rd. Set v := u + `. If u is
ω-semiconvex, so is v. In fact,

v(tx+ (1− t)y) = u(tx+ (1− t)y) + t`0 + t`1 · x+ (1− t)`0 + (1− t)`1 · y
≤ t(u(x) + `(x)) + (1− t)(u(y) + `(y))

+ t(1− t)|x− y|ω(|x− y|)
= tv(x) + (1− t)v(y) + t(1− t)|x− y|ω(|x− y|),

for every x, y ∈ B1 and every t ∈ [0, 1].

We proceed with a lemma ensuring that ω-semiconvex functions satisfy [LpL∞],
with a precise contribution from the modulus of continuity ω.

Lemma 3 (LpL∞-estimate for ω-semiconvex functions). Let u ∈ L1(B1) be an
ω-semiconvex function. There exists C > 0 such that

sup
Bρ/2

|u| ≤ C

(∫
Bρ

|u|pdx

) 1
p

+ ρω(ρ)


for every ρ ∈ (0, 1] and every p ≥ 1. In particular, C = C(p, d, ω(1)).

It follows from Lemma 3 that ω-semiconvex functions satisfy [LpL∞] with
σ(t) := tω(t). For a proof of this result, we refer the reader to [4, Proposition
8.2, item (b)]. In the sequel, we include information on the subdi�erentials
of ω-semiconvex functions. Given an ω-semiconvex function u : B1 → R, its
subdi�erential at x ∈ B1 is denoted with ∂ωu(x), and de�ned as

∂ωu(x) :=
{
P ∈ Rd | u(y) ≥ u(x) + 〈P, y − x〉 − |y − x|ω(|y − x|), ∀ y ∈ B1

}
.

Lemma 4 (Subdi�erential estimates). Let u : B1 → R be a bounded function.

Suppose u is ω-semiconvex. Then ∂ωu(x) is non-empty, compact, and convex,

for every x ∈ B1. In addition, let K ⊂ B1 be a compact set. Hence,

sup
x∈K

sup
P∈∂ωu(x)

|P | ≤ 2

( ‖u‖L∞(B1)

dist(K, ∂B1)
+ ω

(
dist(K, ∂B1)

))
.

We notice this result holds for any convex domain Ω ⊂ Rd instead of B1. For
a proof of Lemma 4, we refer the reader to [6, Proposition 5.1]. We continue
with an inequality for bounded nonnegative functions de�ned on intervals.
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Lemma 5. Fix ρ > 0 and let Φ : [ρ,R] → R be a bounded nonnegative

function. Suppose that for ρ ≤ t < s ≤ R we have

Φ(t) ≤ θΦ(s) +
C1

(s− t)α
+ C2,

where θ ∈ (0, 1), C > 0, and α > 0. Then

Φ(ρ) ≤ C(α, θ)

(
C1

(R− ρ)α
+ C2

)
.

For a proof of Lemma 5, we refer the reader to [21, Lemma 6.1].

3. Flipping geometry: an abstract result

In the sequel we combine [WH] and [LpL∞] to establish our abstract results;
we start with the proof of the Theorem 1.

Proof of Theorem 1: We argue by combining [WH] and [LpL∞], and resorting
to previous results. Start by �xing x0 ∈ B1 and ρ > 0 such that Bρ(x0) ⊂ B1;
de�ne the auxiliary function v : Bρ → R as

v(x) := u(x)− `x0(x) + γ(ρ),

for some a�ne function `x0 such that `x0(x0) = u(x0). Clearly, v is nonnegative.
By assumption, u− `x0 satis�es [WH] centred at x0 ∈ B1; hence,(∫

Bρ/2(x0)

vε

) 1
ε

≤ CWH

(
inf

Bρ/2(x0)
v + ρϑχx0(ρ)

)
≤ CWH

(
v(x0) + ρϑχx0(ρ)

)
= CWH

(
γ(ρ) + ρϑχx0(ρ)

)
. (3)

Moreover, the fact that u and v di�er by an a�ne function builds upon [LpL∞]
to yield

‖v‖L∞(Bρ/4(x0)) ≤ Cp,∞

(∫
Bρ/2(x0)

vpdx

) 1
p

+ σ(ρ)

 .
Because of Lemma 1, the former inequality becomes

‖v‖L∞(Bρ/4(x0)) ≤ C

(∫
Bρ/2(x0)

vεdx

) 1
ε

+ σ(ρ)

 , (4)
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for the same ε > 0 as in [WH]. Hence, by combining (3) and (4) we obtain

sup
Bρ/4(x0)

v ≤ C
[
CWH

(
γ(ρ) + ρϑχx0(ρ)

)
+ σ(ρ)

]
. (5)

On the other hand, the de�nition of v implies

sup
Bρ/4(x0)

u(x)− `x0(x) ≤ sup
Bρ/4(x0)

v. (6)

Finally, combine (5) and (6), and notice that 0 < ρ� 1 was taken arbitrarily
to complete the proof.

Remark 2. In some applications, the LpL∞-estimate may appear prescribed in
balls whose radii di�er from the ones in [LpL∞], as in Propositions 1 and 2. In
this case, Theorem 1 and Corollary 1 still hold true, under minor adjustments
in the passage from (3) to (4).

As a consequence of the Theorem 1, we infer the �ipping of moduli of conti-
nuity at the level of the function. That is, in the case where u− u(x0) satis�es
[WH] and [LpL∞] for x0 ∈ B1. This is the content of Corollary 1, whose proof
we discuss in the sequel.

Proof of Corollary 1: The proof follows along the same lines as in the proof of
Theorem 1. It su�ces to consider the constant a�ne function ` ≡ u(x0).

Remark 3 (Gradient regularity vis-a-vis modulus of continuity for the func-
tion). We notice a fundamental di�erence between Theorem 1 and Corollary
1, regarding the regularity of the function u. Indeed, for a truly a�ne map
`(x) := a + b · x, with b 6= 0, we �ip information for the function subtracted
a tangent plane. As a consequence, the analysis yields regularity at the level

of the gradient. Conversely, if we are in the context of Corollary 1, where
`(x) := a, the �ipping yields a modulus of continuity for the function.

Remark 4 (One-sided regularity implies two-sided regularity). We have chosen
to present Theorem 1 and Corollary 1 as �ipping from below. That is, given
a modulus of continuity from below, the weak Harnack inequality and the lo-
cal maximum principle produce a related modulus of continuity from above.
However, by supposing that ` − u also satis�es [WH] and [LpL∞], the reverse
implication holds. Given a modulus of continuity from above, the weak Har-
nack inequality combines with the LpL∞-estimates and generates a modulus
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of continuity from below. Indeed, suppose ` − u satis�es [WH] and [LpL∞].
Suppose further

sup
Bρ(x0)

(
u(x)− `(x)

)
≤ γ(ρ)

for some modulus of continuity γ(·), some a�ne function ` with `(x0) = u(x0),
and 0 < ρ � 1 and x0 ∈ B1 such that Bρ(x0) ⊂ B1. De�ne w : Bρ(x0) → R
as

w(x) := γ(ρ) + `(x)− u(x)

and notice that w ≥ 0. Arguing as in the proof of Theorem 1, we obtain

sup
Bρ/4(x0)

(
`(x)− u(x)

)
≤ C

(
γ(ρ) + ρϑχx0(ρ) + σ(ρ)

)
.

This is the same as

inf
Bρ/4(x0)

(
u(x)− `(x)

)
≥ −C

(
γ(ρ) + ρϑχx0(ρ) + σ(ρ)

)
.

In conclusion, if both ` − u and u − ` satisfy [WH] and [LpL∞], one-sided
regularity implies two-sided regularity.

Remark 5. Let L denote a purely second-order linear operator and suppose
g ∈ Lq(B1). Let u : B1 → R be such that |Lu| ≤ g. Then ` − u and u − `
satisfy [WH] and [LεL∞]. As a consequence, a one-sided modulus of continuity
available for u yields a two-sided regularity estimate. The same conclusion is
available in the context of fully nonlinear operators, as long as u satis�es

M−
λ,Λ(D2u) ≤ |g| and M+

λ,Λ(D2u) ≥ −|g|
in B1.

4. Local LpL∞-estimates

In this section, we prove that a modulus of continuity from below implies
an LpL∞-estimate. To some extent, our result reverses the usual implication
available in the literature. Namely, that LpL∞-estimates combined with en-
ergy inequalities yield Hölder-continuity. We mention, for instance, the role of
L2L∞-estimates in De Giorgi's solution of Hilbert's XIX problem [17]; see also
[18, 19].
More precisely, the results in the present section reverse this usual implication

in the following sense. Fix R > 0; by requiring u ∈ L∞(BR) to have a uniform
modulus of continuity from below in BR/2, we prove an L

pL∞-estimate in BR/16.
Our �ndings include moduli of continuity from below both at the level of the



14 D. MOREIRA AND E. PIMENTEL

function as well as at the level of �rst-order derivatives. We proceed with the
former.

Proposition 1 (Local LpL∞-estimates I). Fix R > 0, and let u ∈ L∞(BR).
Let σ : [0,∞)→ [0,∞) be a modulus of continuity. Suppose

u(x) ≥ u(y)− σ(|x− y|),
for every x ∈ BR/2, and every y ∈ BR/8(x). For every p ∈ (0,∞) there exists
a positive constant C = C(d, p) such that

‖u‖L∞(BR/16) ≤ C

((∫
BR

|u|p
) 1

p

+ σ(R)

)
.

Proof : We split the proof of the proposition into three steps.

Step 1 - We start by producing pointwise bounds for u in BR/2. Indeed, let
z ∈ BR/2; for any y ∈ BR/8(z) ⊂ BR we have

u(y) ≥ u(z)− σ(|y − z|) ≥ u(z)− σ(R),

since σ(·) is nondecreasing. As a consequence,

u(z) ≤
∫
BR/8(z)

u(y)dy + σ(R) ≤ 8d
∫
BR

|u(y)|dy + σ(R). (7)

Step 2 - On the other hand, for z, y ∈ BR/16, we have |y − z| ≤ R/8. The
monotonicity of σ(·) then implies

u(y) ≤ u(z) + σ(R). (8)

Let ξ ∈ C∞0 (B1) be such that 0 ≤ ξ ≤ 1, with

ξ(x) ≡

{
1 in BR/32

0 in Rd \BR/16.

Multiplying both sides of (8) by ξ and integrating over BR/32, we get

u(z)

∫
BR/16

ξ(y)dy ≥ −

(∫
BR/16

|u(y)|dy +

∫
BR/16

σ(R)dy

)
.

Because ∫
BR/16

ξ(y)dy ≥
|BR/16|

2d
,
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the former inequality becomes

u(z) ≥ − 2d

|BR/16|

(∫
BR/16

|u(y)|dy +

∫
BR/16

σ(R)dy

)

≥ −32d
(∫

BR

|u(y)|dy + σ(R)

)
. (9)

By combining (9) and (7), we get

‖u‖L∞(BR/16) ≤ 32d
(∫

BR

|u(y)|dy + σ(R)

)
and complete the proof in the case p = 1. The monotonicity of the average
yields the result for every p > 1 as well. It remains to verify the case p ∈ (0, 1).

Step 3 - If p ∈ (0, 1), the result follows from elementary inequalities combined
with Lemma 5. Let 0 < R/16 ≤ t < s ≤ R and take x0 ∈ BR/16. Apply the
statement of the proposition for p = 1 to obtain

|u(x0)| ≤ sup
B(s−t)/16(x0)

|u(x)|

≤ C

(
1

(s− t)d

∫
Bs

|u(x)|dx+ σ(R)

)
≤ C

(
sup
Bs

|u|1−p 1

(s− t)d

∫
Bs

|u(x)|pdx+ σ(R)

)
.

By applying Young's inequality with ε ≡ 1/2C and taking the supremum in
x0 ∈ Bt, one gets

sup
Bt

|u(x)| ≤ 1

2
sup
Bs

|u(x)|+ C

(
2Cp(1− p)

1−p
p

(s− t)
d
p

(∫
Bs

|u(x)|pdx
) 1

p

+ σ(R)

)
.

Now, Lemma 5 implies

sup
BR/16

|u(x)| ≤ C(p, C)

((
16

15R

)d
p
(∫

BR

|u(x)|pdx
) 1

p

+ σ(R)

)

≤ C(p, C, d)

((∫
BR

|u(x)|pdx
) 1

p

+ σ(R)

)
and �nishes the proof.
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Our next result derives an LpL∞-estimate for functions satisfying a modulus
of continuity at the level of �rst-order derivatives.

Proposition 2 (Local LpL∞-estimates II). Let u ∈ L∞(BR) for some R > 0
�xed, though arbitrary. Let σ : [0,∞) → [0,∞) be a modulus of continuity.

Suppose that for every y ∈ BR/2 there exists Py ∈ Rd such that

u(x) ≥ u(y) + 〈Py, x− y〉 − |x− y|σ(|x− y|), (10)

for every x ∈ BR/8(y). For every p ∈ (0,∞), there exists a positive constant

C = C(d, p) such that

‖u‖L∞(BR/32) ≤ C

((∫
BR

|u|p
) 1

p

+Rσ(R)

)
.

Proof : For ease of presentation, we split the proof into four steps. We start by
supposing u ∈ C1(BR) and resorting to (10).

Step 1 - Suppose u ∈ C1(BR); hence Py ≡ Du(y). Using this fact, and
averaging both sides of (10) in BR/8(y), one obtains∫

BR/8(y)

u(x)dx ≥ u(y) +

∫
BR/8(y)

〈Du(y), x− y〉 dx−Rσ(R)

≥ u(y) + 〈Du(y), y − y〉 −Rσ(R)

= u(y)−Rσ(R),

where the second inequality follows from the harmonicity of 〈Du(y), x− y〉 in
x. Observe that

BR/8(y) ⊂ B5R/8 ⊂ B3R/4(y);

hence,

u(y) ≤
∫
BR/8(y)

u(x)dx+Rσ(R) ≤ 6d

(∫
B3R/4(y)

|u(x)|dx+Rσ(R)

)
, (11)

for every y ∈ BR/2. Next, we produce a lower bound for u(y).

Step 2 - Let x, y ∈ BR/16 ⊂ BR/2. Because |x − y| ≤ R/8, we have y ∈
BR/8(x). Then

u(x) ≥ u(y) + 〈Du(y), x− y〉 −Rσ(R), (12)
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where we used the monotonicity of σ. As before, consider ξ ∈ C∞0 (BR) with
0 ≤ ξ ≤ 1, such that

ξ(x) ≡

{
1 in BR/32

0 in Rd \BR/16.

Suppose further

|Dξ| ≤ C

R
,

for some constant C > 0. Multiply (12) by ξ and integrate over BR/16 to get

u(x)

∫
BR/16

ξ(y)dy ≥
∫
BR/16

u(y)ξ(y)dy +

∫
BR/16

〈Du(y), x− y〉 ξ(y)dy

−Rσ(R)

∫
BR/16

ξ(y)dy. (13)

We continue with the analysis of the term involving Du; because ξ ≡ 0 on
∂BR/16, one obtains

0 =

∫
BR/16

divy
(
u(y)ξ(y)(x− y)

)
dy

=

∫
BR/16

〈Du(y), x− y〉 ξ(y)dy +

∫
BR/16

u(y)divy
(
ξ(y)(x− y)

)
dy.

Notice that ∣∣divy
(
ξ(y)(x− y)

)∣∣ ≤ C

uniformly in x, y ∈ BR/16, for some C > 0 depending only on the dimension.
Hence, the previous equality yields∫

BR/16

〈Du(y), x− y〉 ξ(y)dy ≤ C

∫
BR/16

|u(y)|dy.

Therefore, (13) becomes

u(x)

∫
BR/16

ξ(y)dy ≥ −(1 + C)

∫
BR/16

u(y)dy −Rσ(R)

∫
BR/16

ξ(y)dy.

Recalling that ∫
BR/16

ξ(y)dy ≥
|BR/16|

2d
,
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and arguing as before, one concludes that

u(x) ≥ −24d(C + 1)

(∫
BR/16

|u(y)|dy +Rσ(R)

)
. (14)

Step 3 - By combining (11) and (14) we get

‖u‖L∞(BR/16) ≤ C

(∫
BR/16

|u(y)|dy +Rσ(R)

)
and prove the result for p = 1. The case p > 1 follows from the monotonicity
of the average. Finally, we address the case 0 < p < 1 through the same
interpolation argument as in the proof of Proposition 1.
In the sequel, we remove the assumption u ∈ C1(BR) and complete the proof

in the general setting.

Step 4 - Suppose u ∈ C(BR) satis�es (10), for some P ∈ Rd. Next, we show
that a molli�cation of u also satis�es (10).
Fix 0 < ε� 1. Let x0 ∈ BR/4 and y ∈ Bε, so that x0 − y ∈ BR/4+ε ⊂ BR/2.

For x ∈ BR/16(x0), we have x− y ∈ BR/16(x0 − y). Hence,

u(x− y) ≥ u(x0 − y) + 〈P, x− x0〉 − |x− x0|σ(|x− x0|). (15)

On the other hand, let (ηε)ε>0 be a family of standard symmetric mollifying
kernels. Denote with uε(x) the molli�cation of u with respect to ηε; that is,

uε(x) :=

∫
Bε

u(x− y)ηε(y)dy.

Multiplying (15) by ηε and integrating over Bε we get

uε(x) ≥ uε(x0) + 〈P, x− x0〉 − |x− x0|σ(|x− x0|)

for every x0 ∈ BR/4 and x ∈ BR/16(x0).
Because uε ∈ C1(BR), we have

‖uε‖L∞(BR/16) ≤ C

(∫
BR/16

|uε(y)|dy +Rσ(R)

)
,

where the constant C > 0 depends only on the dimension. By letting ε → 0
one recovers the estimate for u and completes the proof.
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We notice the proofs of Propositions 1 and 2 are inspired by ideas in [20].
In addition to their intrinsic interest, those results are useful in the analysis
of several consequences of the Theorem 1 and Corollary 1 to the theory of
nonlinear elliptic problems. In the sequel, we detail several such consequences.

5. Consequences for nonlinear elliptic problems

In what follows we detail some consequences of the Theorem 1 and Corollary
1. We start with the inclusion of functions satisfying [WH] and [LpL∞] in a
class of viscosity solutions.

5.1. Weak Harnack, LpL∞-estimates and viscosity classes. Suppose
u ∈ C(B1) belongs to the class S(λ,Λ, f), with f ∈ L∞(B1) ∩ C(B1). It is
well-known that u satis�es the weak Harnack inequality as well as an LpL∞-
estimate. Our next result establishes the opposite implication. That is, if
a function satis�es [WH] and [LpL∞], then it is a supersolution to a fully
nonlinear uniformly elliptic equation.

Theorem 2. Let u ∈ C(B1). For any a�ne function `(·), suppose u + `
satis�es [WH], with f ∈ L∞(B1) and ϑ ≡ 2. Suppose also that u + ` satis�es
[LpL∞] with σ(t) := At2, for some A ≥ 0. Then

u ∈ S
(
L,L,A+ ‖f‖L∞(B1)

)
,

where L = L(CWH, Cp,∞).

Proof : For the sake of presentation, we split the proof into three steps.

Step 1 - Suppose that P (x) is a paraboloid touching the graph of u from
below at x0 in Bδ(x0) ⊂ B1. For simplicity, we suppose x0 ≡ 0 and write

P (x) = P (0) +DP (0) · x+
〈
D2P (0)x, x

〉
.

Set A := ‖(D2P (0))−‖; we claim that〈
D2P (0)x, x

〉
≥ −A|x|2 (16)

for every x ∈ Rd. Indeed, by choosing an appropriate basis, we can write〈
D2P (0)x, x

〉
=
∑
ei>0

eix
2
i +

∑
ei<0

eix
2
i ,
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for some d-uple (e1, . . . , ed). Thus〈
D2P (0)x, x

〉
≥ −

∑
ei<0

|ei|x2
i ≥ −A

∑
ei<0

x2
i ≥ −A|x|2,

which yields (16), verifying the claim.

Step 2 - By assumption, u(x) ≥ P (x) in Bδ. Hence,

u(x)− P (0)−DP (0) · x ≥ −A|x|2,
for every x ∈ Bδ. Denoting `(x) := P (0) +DP (0) · x, we conclude that

inf
Bδ

(u− `) ≥ −Aδ2.

An application of Theorem 1 yields

sup
Bδ/4

(u− `) ≤ C
(
A+ ‖f‖L∞(B1) + A

)
δ2, (17)

where C = C(CWH, Cp,∞). De�ne T (x) as

T (x) := C
(
A+ ‖f‖L∞(B1) + A

)
|x|2.

Step 3 - From (17) we infer that v := u−` touches T (x) from below at x0 ≡ 0
in Bδ/4. In addition, because P touches u from above at x0 ≡ 0, we have

v(x) ≥
〈
D2P (0)x, x

〉
in Bδ, with equality at x = 0. We conclude that〈

D2P (0)x, x
〉
≥ C

(
A+ ‖f‖L∞(B1) + A

)
|x|2

in Bδ/4, with equality at x = 0. The de�nition of A builds upon Lemma 2 to
yield ∥∥∥(D2P (x0)

)+
∥∥∥ ≤ C

(
A+ ‖f‖L∞(B1) +

∥∥∥(D2P (x0)
)−∥∥∥)

and complete the proof.

Remark 6 (Su�cient conditions to become a solution). In Theorem 2 we sup-
pose that u + ` satis�es [WH] and [LpL∞] to conclude u ∈ S. By supposing
that −u+ ` satis�es [WH] and [LpL∞] for any a�ne function `, one concludes
u ∈ S. Hence, the proof of Theorem 2 yields the following: suppose u ∈ C(B1)
is such that (±u+`) satisfy [WH] and [LpL∞]; then u is in the class S := S∩S.
C.f. [7, Theorem 4].



FLIPPING REGULARITY AND NONLINEAR ELLIPTIC PROBLEMS 21

5.2. Hölder continuity for ω-semiconvex supersolutions. In what fol-
lows we study ω-semiconvex supersolutions to fully nonlinear equations. The
distinctive feature concerns the integrability of the source term, which is strictly
below the dimension and above the so-called Escauriaza's exponent.
Let u ∈ C(B1) be an ω-semiconvex viscosity solution to

M−(D2u) ≤ f in B1, (18)

where f ∈ Lq(B1), for p0 ≤ q < d. As a consequence of Corollary 1, we
conclude that u is locally Hölder-continuous, with estimates depending on the
data of the problem.

Theorem 3 (Hölder continuity in the Escauriaza range). Let u ∈ S(λ,Λ, f)
in B1. Suppose u is an ω-semiconvex function and f ∈ Lq(B1), for p0 ≤
q < d. Then u ∈ C

2−d/q
loc (B1). In addition, there exists a positive constant

C = C(d, q, λ,Λ, ω) such that

‖u‖C2−d/q(B1/2) ≤ C
(

1 + ω(1) + ‖u‖L∞(B1) + ‖f‖Lq(B1)

)
.

Proof : We start by noticing that translations of u satisfy [WH] and [LpL∞].
Indeed, for any c ∈ R, de�ne v := u + c. Clearly, v ∈ S(λ,Λ, f). Moreover,
Remark 1 ensures that v is ω-semiconvex. Hence, because v ∈ S(λ,Λ, f),
we infer it satis�es [WH]. In addition, the ω-semiconvexity of v builds upon
Lemma 3 to ensure that v satis�es [LpL∞]. In the sequel, we choose c ≡ u(x0)
for an arbitrary x0 ∈ B1/2, estimate some ingredients and resort to Corollary
1. For the sake of clarity, we split the proof into three steps.

Step 1 - The ω-semiconvexity of u ensures that

u(x)− u(x0) ≥ 〈P, x− x0〉 − |x− x0|ω(|x− x0|)
for every x ∈ B1, P ∈ ∂ωu(x0), and x0 ∈ B1/2 �xed, though arbitrary. We
continue by producing a modulus of continuity for u(x)− u(x0) from below.
Let δ0 ∈ (0, 1/4) be such that ω(δ0) ≤ 1/2. De�ne δ1 > 0 as

δ1 := sup{t ∈ (0, 1/4) | ω(t) ≤ 1/2};
clearly, 0 < δ0 ≤ δ1 ≤ 1/4. For every ρ ∈ (0, δ1) and x ∈ Bρ(x0), we get

| 〈P, x− x0〉 − |x− x0|ω(|x− x0|)| ≤
(
|P |+ ω(|x− x0|)

)
|x− x0|

≤
(
|P |+ ω(δ1)

)
ρ

≤
(
|P |+ 1

)
ρ. (19)
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On the other hand, because P ∈ ∂ωu(x0), Lemma 4 ensures that

|P | ≤ 8
(
‖u‖L∞(B1) + ω(1)

)
. (20)

Combining (19) and (20) one gets

| 〈P, x− x0〉 − |x− x0|ω(|x− x0|)| ≤ 8
(
‖u‖L∞(B1) + ω(1) + 1

)
ρ,

and concludes

inf
Bρ(x0)

(
u− u(x0)

)
≥ −8

(
‖u‖L∞(B1) + ω(1) + 1

)
ρ. (21)

Step 2 - The discussion before Step 1 ensures that v := u− u(x0) falls within
the scope of the Corollary 1. As a consequence, the modulus of continuity in
(21) yields

sup
Bρ/4(x0)

(
u− u(x0)

)
≤ C1

(
1 + ω(1) + ‖u‖L∞(B1) + ‖f‖Lq(B1)

)
ρ2−dq , (22)

for every ρ ∈ (0, δ1), where C1 = C1(CWH, Cp,∞). For simplicity, we de�ne the
constant M as

M := C1

(
1 + ω(1) + ‖u‖L∞(B1) + ‖f‖Lq(B1)

)
;

hence (22) becomes

sup
Bρ/4(x0)

(
u− u(x0)

)
≤Mρ2−dq .

Step 3 - To complete the proof, let x, y ∈ B1/2. Two cases arise; suppose �rst
that |x− y| ≤ δ1. By setting ρ := |x− y| we conclude

|u(x)− u(y)| ≤Mρ2−dq = M |x− y|2−
d
q .

Conversely, if |x− y| > δ1, we obtain

|u(x)− u(y)|
|x− y|2−

d
q

≤
2‖u‖L∞(B1)

δ
2−dq
1

.

In any case, one gets

|u(x)− u(y)| ≤

M +
2‖u‖L∞(B1)

δ
2−dq
1

 |x− y|2−dq
and completes the proof.
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5.3. Flipping Hölder continuity for supersolutions. In what follows we
consider supersolutions u ∈ S(λ,Λ, f), with f ∈ Lq(B1) both for p0 ≤ q ≤ d
and q > d. However, instead of working under a (global) ω-semiconvexity
condition, we suppose u has a (local) Hölder modulus of continuity from below.
Therefore, we focus on supersolutions satisfying a (local) Hölder estimate

from below. Our conclusion is that u ∈ Cα(B1), with estimates. That is, the
one-sided Hölder modulus of continuity becomes a two-sided regularity result,
provided u ∈ S(λ,Λ, f). Our �ndings are the subject of the next theorem.

Theorem 4. Fix 0 < λ ≤ Λ. Let u ∈ C(B1) be a viscosity solution to

M−
λ,Λ(D2u) ≤ f in B1,

where f ∈ Lq(B1), for p0 ≤ q < d. Suppose there exist α ∈ (0, 1) and Cα > 0
such that

inf
Bρ(x0)

(
u− u(x0)

)
≥ −Cαρα (23)

for every x0 ∈ B1/2. Then u ∈ Cγ
loc(B1), with

γ := min

{
α, 2− d

q

}
,

and there exists C = C(d, q, λ,Λ, α) such that

‖u‖Cγ(B1/2) ≤ C
(
Cα + ‖u‖L∞(B1) + ‖f‖Lq(B1)

)
.

A striking distinction between Theorem 4 and Theorem 3 sits in a local-
global dichotomy. In fact, under an ω-semiconvexity condition, the modulus
of continuity satis�ed by the supersolution is globally below u. This is not the
case under the assumptions of the Theorem 4. As a consequence, the LpL∞-
estimates recalled in Lemma 3 are not available, and we resort to Proposition
1. In what follows, we present the proof of the Theorem 4.

Proof of Theorem 4: We aim at applying Corollary 1 to u − u(x0), for any
x0 ∈ B1/2. Because

M−
λ,Λ(D2u) ≤ f in B1,

we also have v := u− u(x0) ∈ S(λ,Λ, f). Hence, v satis�es [WH]. In addition,

inf
Bρ(x0)

(
v − v(x0)

)
= inf

Bρ(x0)

(
u− u(x0)

)
≥ −Cαρα,
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and Proposition 1 ensures that v satis�es [LpL∞]. An application of Corollary
1 yields

sup
Bρ/4(x0)

(
u− u(x0)

)
≤ C

(
Cαρ

α + ρ2−dq‖f‖Lq(B1)

)
, (24)

for every x0 ∈ B1/2, and every ρ ∈ (0, 1/8). By combining (23) and (24), we
obtain ∣∣u(x)− u(x0)

∣∣ ≤ C
(
Cα + ‖f‖Lq(B1)

)
|x− x0|γ (25)

provided x0 ∈ B1/2, x ∈ Bρ(x0), and ρ ∈ (0, 1/4).
To complete the proof, we consider arbitrary x, y ∈ B1/2 and examine two

cases. First, suppose |x − y| ≤ 1/8; hence, the estimate in (25) is available.
Suppose otherwise; that is, |x− y| > 1/8. Then we have∣∣u(x)− u(y)

∣∣
|x− y|γ

≤ 23γ+1‖u‖L∞(B1).

In any case, we conclude∣∣u(x)− u(x0)
∣∣ ≤ (23γ+1 + C

) (
Cα + ‖u‖L∞(B1) + ‖f‖Lq(B1)

)
|x− x0|γ

and complete the proof.

The result in Theorem 4 has a counterpart at the level of the gradient. I.e.,
if a supersolution u : B1 → R has a C1,α-modulus of continuity from below, it
is indeed C1,γ-continuous, where the smoothness degree γ ∈ (0, 1) depends on
the data of the problem. This is the content of the next theorem.

Theorem 5. Fix 0 < λ ≤ Λ. Let u ∈ C(B1) be a viscosity solution to

M−
λ,Λ(D2u) ≤ f in B1,

where f ∈ Lq(B1), for q > d. For every x0 ∈ B1/2, suppose there exist an

a�ne function `x0(·), α ∈ (0, 1), and Cα > 0 such that

inf
Bρ(x0)

(
u− `x0

)
≥ −Cαρ1+α, (26)

for every ρ ∈ (0, 1/2). Then u ∈ C1+γ
loc (B1), with

γ := min

{
α, 1− d

q

}
.

Moreover, there exists C = C(d, q, λ,Λ, α) such that

‖u‖C1+γ(B1/64) ≤ C
(
Cα + ‖f‖Lq(B1)

)
.
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Proof : Because the extremal operatorM−
λ,Λ is invariant by a�ne translations,

we have
M−

λ,Λ

(
D2(u+ `)

)
≤ f in B1,

for every a�ne function `. Hence, u + ` satis�es [WH] with f . In addition,
Proposition 2 ensures u+ ` satis�es [LpL∞]. Theorem 1 implies

sup
Bρ/4(x0)

(
u− `x0

)
≤ C

(
Cαρ

1+α + ‖f‖Lq(B1)ρ
2−dq
)
, (27)

where C = C(d, p) is the same as in Proposition 2.
By combining (26) with (27) one concludes there exists an a�ne function `,

satisfying `(x0) = u(x0), such that

−C1ρ
1+γ ≤ inf

Bρ/4(x0)

(
u(x)− `(x)

)
≤ sup

Bρ/4(x0)

(
u(x)− `(x)

)
≤ C1ρ

1+γ,

for

C1 := C
(
Cαρ

1+α + ‖f‖Lq(B1)ρ
2−dq
)
,

where C > 0 is universal. A straightforward application of Lemma 9.1 in [4]
completes the proof.

We close this section with a discussion on the so-called De Giorgi class. It
comprises a wide latitude of functions: from solutions to elliptic equations in
divergence form to minimizers and Q-minimizers of variational integrals.

5.4. De Giorgi classes. In what follows we mention the De Giorgi class as
a collection of functions satisfying [WH] and [LpL∞]. The De Giorgi class is
de�ned in terms of energy inequalities on super-level sets. To be more precise,
we proceed with a de�nition.

De�nition 3 (De Giorgi classes). We say that u ∈ W 1,p
loc (Ω) is in the De

Giorgi class. be an open set. A function u ∈ W 1,p
loc (Ω) is in the De Giorgi class

DG±p (Ω) if, for every BR(y) ⊂ Ω, 0 < σ < 1, and k > 0, we have∫
BσR(y)

|D(u− k)±|pdx ≤ C1

(1− σ)pRp

∫
BR(y)

|(u− k)±|pdx (28)

+ C1

[
χp +

(
R−

dε
p k
)p]
|A±k,R|

1−pd+ε,

where C1 > 0, χ > 0, and ε ∈ (0, p/d) are constants, and

A±k,R :=
{
x ∈ BR(y) | (u− k)± > 0

}
.
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We de�ne DGp(Ω) := DG+
p (Ω) ∩DG−p (Ω).

In [19] the authors prove that functions in the De Giorgi class DG+
p (Ω) satisfy

[WH] and [LpL∞]. As a consequence, those functions fall within the scope of
the Corollary 1. We conclude that functions in the DG+

p (Ω) are entitled to the
conclusions of Theorems 3 and 4. Rigorously put, one concludes:

Proposition 3 (De Giorgi class). Let Ω ⊂ Rd and suppose (u+ c) ∈ DG−p (Ω),
for every c ∈ R. Suppose further there exists a modulus of continuity γ(·) such
that

inf
x∈Bρ(x0)

(
u− u(x0)

)
≥ −γ(ρ),

for every x0 ∈ B1/2 and ρ ∈ (0, 1/4). Then

sup
Bρ/4(x0)

(u− u(x0)) ≤ C
(
χρ

dε
p + γ(ρ)

)
,

where C = C(d, p, C1, ε).

Proof : The result follows directly from Corollary 1 combined with Proposition
1 and the Theorem 2 in [19].
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