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ABSTRACT: We study polynomial identities satisfied by the mutation product xpy—
yqx on the underlying vector space of an associative algebra A, where p, q are fixed
elements of A. We simplify known results for identities in degree 4, proving that
only two identities are necessary and sufficient to generate them all; in degree 5,
we show that adding one new identity suffices; in degree 6, we demonstrate the
existence of a number of new identities.
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1. Introduction

Let A be an associative algebra over a field IF of characteristic 0. Fix two
elements p,q € A and define a new bilinear operation on the underlying
vector space:

T *pg Y = TPY — YqxI.

The resulting nonassociative algebra A,, is called the pg-mutation of A.

Mutation algebras were introduced by theoretical physicists around 1980;
see [8, equation (1.6b)] and [17, equation (66)]. For a survey of early work by
mathematicians on this topic, see [15]. For a detailed exposition of the struc-
ture theory of mutation algebras, see [6]. For mutations of nonassociative
algebras, see [2].
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To motivate the investigation of polynomial identities for mutation alge-
bras, we paraphrase some comments from [6, Preface]. Mutation algebras
are both Lie- and Jordan-admissible, but they also satisfy other more com-
plex identities of higher degree; see [6, Chapter 5]. It is an open problem to
determine a complete set of independent identities satisfied by all mutation
algebras for arbitrary p, ¢. In fact, mutation algebras do not form a variety
defined by polynomial identities. We note that Lie- and Jordan-admissible
algebras were introduced by Albert [1, §IV.1-2].

Polynomial identities for mutation algebras were first studied systemati-
cally by Montaner [14] using the classical techniques of nonassociative al-
gebra [16,18]. That work did not consider the original operation x,, but
decomposed it as the sum of commutative and anticommutative operations:
Ty y = {x,y} + [z, y] where

{a:,y}:%(:z: *pg Y + Y *pg T), [z, y] :%(5’3 *pg Y — Y *pg T)-

For further information about the notion of polarization of a binary opera-
tion, see [12]. Furthermore, the work of Montaner considered identities which
are not necessarily multilinear, but hand calculation restricted the degree of
the identities to n < 4.

We use a different approach which allows us to simplify the known results
in degree 4, to determine a complete set of identities in degree 5, and to
demonstrate the existence of a number of new identities in degree 6:

e We use elementary concepts from the theory of algebraic operads [3,10,11,
13].

e Our main tool is computer algebra, in particular:

— Linear algebra over the rational numbers and finite prime fields: the row
canonical form of a matrix using Gaussian elimination.

— Linear algebra over the integers: the Hermite normal form of a matrix
and the Lenstra-Lenstra-Lovéasz algorithm (LLL, see [5,9]) for lattice
basis reduction.

e We consider only multilinear identities for the original operation x *,, y:
this allows us to use the representation theory of the symmetric group [4] to
decompose the computations into small pieces corresponding to irreducible
representations.
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2. Algebraic Operads

2.1. The free nonsymmetric operad. We write T}, for the set of all
complete rooted plane binary trees with n leaves denoted by asterisks; for
n = 1 there is only the exceptional tree with one leaf and no root, T} = {x}.
Each tree in T, contains n—1 internal nodes (including the root); hence
the size of T,, is the Catalan number %(2:__12). We write U,, for the set of
all association types in degree n: balanced placements of parentheses in a
sequence of n asterisks. There is a bijection u,: T,, — U, defined recursively:
1 (*) = *; for every internal node v with left and right subtrees t; € T,,, and

ty € T, we replace the subtree with root v by ( n, (t1) pin, (t2) ). For example,

COAT T ()

(We omit the outermost pair of parentheses corresponding to the root of the
tree.)

If t, € T,,, and t9 € T, then the partial composition ¢ o; ty € T}, 4p,—1 for
1 < i < n, is obtained by grafting the right tree into the left at position i:
that is, identifying leaf ¢ of ¢; (from left to right) with the root of ¢5. For

P @

In terms of association types, pu,, (t1) o; pn,(t2) corresponds to substitution
of ( pin,(t2)) for argument i of p,, (¢1); we omit the parentheses if noy = 1. For
example, (xx)(kx) og (k) = (k) ((*(kx))%).

Partial composition is nonassociative but satisfies sequential and parallel
axioms [3, Definition 3.2.2.3] (see also [10,13]). We state these axioms fol-
lowing [11, Definition 11, Figure 1]. If f € T},,, g € T,,, h € T}, then

(foh) Oj+p—19 1§Z§]—1
(fojg)oih: fo (gOZJJrlh) ]§Z§n+]_1
(foz'—n+1h) % g n-l—jSZSm—l—n—l
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Let T denote the disjoint union of the 7;, for n > 1:

T:|_|Tn.

n>1

The set T' together with all partial compositions is isomorphic to the free
nonsymmetric set operad generated by one binary operation w corresponding
to the tree with root and two leaves. (Nonsymmetric means that we have not
yet introduced the action of the symmetric group on the arguments.) Let
T'(n) denote the vector space with basis 7,,. On the direct sum

T = @ T(n),

we extend partial compositions so that they are linear in each factor. The
vector space T together with the extended partial compositions is isomorphic
to the free nonsymmetric vector operad generated by w.

2.2. The free symmetric operad. Consider an integer n > 1 and the set

of indeterminates {z1,...,z,}. We write S,, for the symmetric group of all
n! permutations of {1,...,n}. For each o € S, and t € T,, we obtain the
labelled tree at consisting of ¢ with leaves labelled a(1), ..., a(n) from left to

right. We write LT, for the set of all such labelled trees. Similarly, we apply
the association type p,(t) for t € T,, to the multilinear associative monomial
Tq(1) " " - Ta(n) and obtain the nonassociative monomial ayu,(t). We write LU,
for the set of all such nonassociative monomials. The bijection u,,: T;,, — U,
extends in the obvious way to the bijection Au,,: LT, — LU,. For example,

6 Z (N (z6w5) ((wa(w273))71)

2 3

We extend partial compositions to labelled trees. Consider two labelled
trees at € LT, and fu € LT,. If 1 <17 < m then the partial composition ato;
Bu € LT,,.,_1 must be a tree with m+n—1 leaves labelled by a permutation
in Syan_1. (Simple grafting of one labelled tree onto the other does not
produce a permutation.) This must be done in a manner which is equivariant
with respect to the action of the symmetric group. Following [13, Definion
1.37] with minor changes, we have:

e A leaf of at with label j for 1 < j < a(i) — 1 retains its label.
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e A leaf of Su with label j for 1 < j < n is relabelled j + a(7) — 1.
e A leaf of at with label j for a(i) + 1 < j < m is relabelled j +n — 1.

For example,

Y N N Y &

4 32 1 1 2 4
2 3

Let LT (n) denote the S,-module with linear basis LT,,; we use the natural
left action on labels (not on positions). The direct sum of these S,-modules,

LT =P LT (n),

n>1

together with the bilinear extension of the partial compositions, is isomorphic
to the free symmetric vector operad generated by w. (This binary operation
has no symmetry: it is neither commutative nor anticommutative.)

An ideal 7 in the free symmetric operad LT is a graded subspace (that is,
Z(n) C LT (n) for n > 1) such that

e S, -Z(n) =Z(n): each homogeneous space Z(n) is an S,-module (that is,
closed under the action of the symmetric group), and

oif feZ(m)and g€ LT (n)then fo,g (1 <i<m)andgo, f (1<j<n)
belong to Z(m+n—1) (that is, Z is closed under partial compositions).

The ideal (fi, fo,...) C LT generated by homogeneous elements fi, fo, ...

is the smallest ideal of LT containing fi, fo,... If Z = (f1, fo,...) then we

say that G = {f1, f2,...} is a minimal set of generators for Z if no proper

subset of G generates Z; this condition does not uniquely determine G.

2.3. Associativity, nullary operations, and the expansion map. In
general, an n-ary operation (n > 0) on a vector space V' is a multilinear
map f: V"® — V. For n = 1 we have V! = V so a unary operation is
simply a linear operator on V; for n = 0 we have V' = F so a nullary
operation is equivalent to the choice of a constant vector f(1) € V. If we write
End,, (V') for the vector space of all n-ary operations on V', then the direct sum
End(V) = 6,5, End,(V), together with partial compositions (substitution
of the output of one operation for an input of another operation), is the
endomorphism operad of V.
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Let p, ¢ be symbols denoting nullary operations on some underlying vector
space. For n > 1, consider monomials vivs - - - v9,_1 with an odd number
of factors such that the n odd-indexed factors vg;—1 (1 < i < n) form a
multilinear associative monomial x(1) - - Zo(y) for some a € S, and each of
the n — 1 even-indexed factors is either p or q. We write W, for the set of all
such monomials; .5, acts by permuting the odd-indexed factors. For v € W,
and w € W, we define v o, w € Wy,,,1 for 1 < i < m by substituting
w for vy; 1 (with the appropriate change of labels). We write W (n) for the
vector space whose basis consists of all such monomials. The direct sum
W =@, W(n) is a suboperad of the symmetric associative operad with
two nullary operations.

Definition 2.1. The ezpansion map X,: LT(n) — W(n) on monomials
at € LT, is defined recursively. For a leaf with label i, we set X, (i) = ;. If
tu denotes an internal node with left and right subtrees ¢t € LT, and v € LT
with r + s = n then

X (tu) = X, ()pXs(u) — Xs(u)g X, (2).
That is, we replace each internal node by the operation *,,.

If we represent trees by nonassociative monomials and leaf labels by letters
then Xs(ab) = apb — bga and

X3((ab)c) = (apb—bga)pc — cq(apb—bga) = apbpe — bqape — cqapb + cqbqa,
Xs(a(be)) = ap(bpc—cgb) — (bpc—cgb)qa = apbpe — apegb — bpeqa + cqbqa.

(1)

For the expansions in degree 4, see Figure 1.

Definition 2.2. For each n > 1, the expansion map X,,: L7 (n) — W(n)
is a morphism of S,-modules; we write K(n) = ker(X,,). Combining all the
expansion maps we obtain the morphism of operads X : L7 — W with kernel
K =&,~, K(n). The polynomial identities satisfied by x,, for all associative
algebras A and all p,q € A coincide with I, which is an operad ideal in L7 .
These identities are the linear dependence relations among the expansions
of the nonassociative monomials. We refer to IC(n) as the S,-module of all
identities in degree n.

Our ultimate goal is to determine a set of generators for /.
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((ab)e)d +— apbpepd — dgapbpe — cqapbpd + dgeqapb
— bgapcpd + dqbqapc + cqbqapd — dgcqbqa,
(a(be))d — apbpepd — dgapbpe — bpeqapd + dqbpeqa
— apcqbpd + dqapcgb + cqbgqapd — dgcqbqa,
(ab)(ed) — apbpepd — cpdqapb — apbpdqe + dqeqapb
— bgapcpd + cpdgbqa + bqapdqc — dgeqbqa,
a((bc)d) — apbpcepd — bpepdga — apdgbpe + dgbpeqa
— apcqbpd + cqbpdqa + apdqceqb — dqcqbqa,
a(b(ed)) — apbpepd — bpepdga — apepdqb + epdgbqa
— apbpdqc + bpdgcqa + apdqcqb — dqcgbqa.

FIGURE 1. Expansions of basis monomials in degree 4

3. Polynomial Identities in Degree n < 3

Definition 3.1. In a nonassociative algebra, the Lie-admissible identity is

(a,b,c) Z e(0)((a”07)c” — a” (b7¢7)),

oES3

where €: S5 — {£1} is the sign homomorphism. If L(a,b,c) = 0 then the
commutator xy — yx satisfies the Jacobi identity:.

We provide a different proof of the next result using elementary linear
algebra.

Theorem 3.2. [14]. Over a field of characteristic 0, every multilinear poly-
nomial identity in degree n < 3 satisfied by every mutation of every associa-
tive algebra 1s a consequence of the Lie-admissible identity.

Proof: 1t is straightforward to verify that ker X,, = {0} for 1 < n < 2. The
monomial basis of £7(3) consists of 12 elements ordered first by association
type and then by permutation of the variables:

(ab)e, (ac)b, (ba)e, (bc)a, (ca)b, (cb)a, 2)
a(bc), a(cb), blac), b(ca), c(ab), c(ba).

The monomial basis of W(3) consists of 24 elements ordered first by lex order
of the pair of nullary operations (pp, pq, qp, qq) and then by permutation of
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the variables:

apbpc, apcpb, bpapc, bpcpa, cpapb, cpbpa,
apbqc, apcgb, bpaqc, bpceqa, cpagb, cpbqa, (3)
aqbpe, aqepb,  bgape, bgcpa, cqapb, cqbpa,
aqbqc, aqcgb, bqagc, bgcqa, cqaqb, cqbqa.

The expansion map Xs3: L7 (3) — W(3) is determined by its values on the
nonassociative monomials with the identity permutation of the arguments;
see (1). We apply all permutations in S3 to the arguments a, b, ¢ and store
the coefficients of the monomials in the 24 x 12 matrix F3 representing X3
with respect to the ordered bases; see Figure 2. That is, the (i, j) entry of
FEj3 is the coefficient of the ith associative monomial (3) in the expansion of
the jth nonassociative monomial (2). It is easy to check that this matrix has
rank 11 and hence nullity 1, and that a basis for its nullspace is the coefficient

vector of the Lie-admissible identity. ]
r 1 . . | o
1 . . . T .
. 1 . . . 1 .
. .1 . . . o1 .
. . 1 . . . 1 .
. . 1 . . 1
. . . 1 . .1 .
. . | .1 . :
. . . -1 .1
. . .1 .1 . .
. : S R . |
) . . - ) -1
. -1 -1 . . . .
. . -1 -1 . . .
-1 -1 . . . . .
i .21 —1 . i )
-1 -1 . . . . .
. -1 -1 . . .
. 1 . . . 1
1 . . .1
1 . . . 1
1 . 1 .
. 1 . . . . 1
1 . . . . | . |

FIGURE 2. The matrix FE5 representing the expansion map X3
(here a dot represents a zero entry)
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4. Polynomial Identities in Degree n =4

Montaner [14] (see also [6, Chapter 5]) showed that every identity in de-
gree n < 4 satisfied by every mutation algebra is a consequence of the Lie-
admissible identity, the Jordan-admissible identity, and two further identities;
furthermore, none of these identities is a consequence of the other three. In
this section we use computer algebra to simplify this result: we discover two
new multilinear identities in degree 4, which are not consequences of the Lie-
admissible identity, and which generate all identities in degree 4 (including
the Jordan-admissible identity).

Definition 4.1. In a nonassociative algebra, the linearized Jordan identity
1S
((be)a)d + ((bd)a)e + ((ed)a)b — (ab)(cd) — (ac)(bd) — (ad)(bc).

If we expand each nonassociative product zy as the anticommutator zy + yx
then we obtain the Jordan-admissible identity:

J(CL b, c,d) = ((bc)a)d + ((bd)a)c + ((cb)a)d + ((cd)a)b + ((db)a)c + ((dc)a)b
+ (a(b )) + (a(bd))c + (a(cb))d + (a(cd))b + (a(db))c + (a(dc))b — (ab)(cd)

— (ab)(dc) — (ac)(bd) — (ac)(db) — (ad)(bc) — (ad)(cb) — (ba)(cd) — (ba)(dc)

— (be)(ad) — (be)(da) — (bd)(ac) — (bd)(ca) — (ca)(bd) — (ca)(db) — (cb)(ad)

— (eb)(da) — (cd)(ab) — (cd)(ba) — (da)(bc) — (da)(cb) — (db)(ac) — (db)(ca)
( ¢)(ab) — (dc)(ba) + b((cd)a) + b((dc)a) + c¢((bd)a) + c((db)a) + d((bc)a)

+ d((cb)a) + bla(cd)) + b(a(de)) + c(a(bd)) + c(a(db)) + d(a(be)) + d(a(cb)).

If J(a,b,c,d) = 0 then the anticommutator zy + yz satisfies the Jordan
identity:.

Definition 4.2. In a nonassociative algebra, we consider the following iden-
tities where (z,y,2) = (zy)z — x(yz) and x oy = xy + ya:

H(a,b,c,d) = ((a,¢,b) + (b,a,c) + (¢,b,a))d —Z ((a”b7)(<7d) — a”((b7c7)d)),

o€ES;
I(a,b,c,d) = (be,a,d) = (a,bc,d) + (a,d,be) + (b,aod,c) — (b,d,c)oa
— (b,a,c) od.
In identity H, the first three terms include a cyclic sum of associators [7,

Equation (5)], and each term in the summation can be written as the differ-
ence of two associators.
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The next result improves [14, Theorem 2.3]: we have only two new iden-
tities in degree 4, not three. In addition, even though our new identities H
and [ are multilinear, each contains only 18 nonassociative monomials (after
expanding the associators and anticommutators), whereas the new identities
of [14] have 48 monomials (the Jordan-admissible identity), 20 monomials
(identity F), and 52 monomials (identity K). Furthermore, our new identi-
ties have only coefficients 41, whereas identity K has coefficients 1, 2, 4, 6.
Finally, we show that the new identities also generate the consequences of
the Lie-admissible identity, and thus the latter do not need to be considered.

Theorem 4.3. Fvery identity in degree 4 satisfied by every mutation algebra
follows from the identities H and I from Definition 4.2.

Proof: We first consider the expansion matrix. The monomial basis of LT (4)
consists of 120 elements ordered first by association type and then by lex
order of permutations o € Sy (indicated by superscripts):

((a”b7)e?)d?, (a®(b°c?))d?, (a®b7)(c7d?), a’((b7c?)d”), a’(b?(c7d?)).

(4)

The monomial basis of W(4) consists of 192 elements ordered first by lex

order of the triple of nullary operations and then by lex order of permutations
o€ Sy

a’pb’pcpd®, a’pb’pcqd’, a’pb®qc’pd’, a’pb®qc’qd?,

a’qb’pcpd’, a’qb’pcfqd’, a’qb’qc’pd®, a’qb’qcqd’.

(5)

The expansion map Xy: L7 (4) — W(4) is determined by its values on the
nonassociative monomials with the identity permutation of the arguments
(Figure 1). We apply all permutations in Sy to the arguments a, b, ¢, d in the
expansions and store the coefficients in the 192 x 120 matrix F, representing
X4 with respect to the ordered bases (4) and (5). The (i,j) entry of Ej is
the coefficient of the ith associative monomial in the expansion of the jth
nonassociative monomial. Thus each column of E4 contains 1 and —1 each
four times.

Next, we consider the consequences of the Lie-admissible identity. The
identity L(a,b,c) € LT (3) is skew-symmetric:

L(a%,b7,¢%) = €e(o)L(a, b, c).

We write £ C LT for the operad ideal generated by L; clearly £ C K. The
homogeneous component £(4) is generated as an Sy;-module by the partial
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compositions
Lolw— L(w(a,b),c,d) = L(ab, ¢, d),
woy L =w(L(a,b,c),d) = L(a,b, c)d, (6)
wog L = w(a L(b,c,d)) = aL(b,c,d).

We refer to the elements of £(4) as the old identities in degree 4. Applying
all permutations o € Sy to the generators (6) allows us to represent £(4) as
the row space of the 72 x 120 matrix Cy; whose columns are labelled by the
monomials (4). The row space of Cj is a subspace (in fact an Sy-submodule)
of the nullspace of the matrix Ey. We set o4 = rank(Cy) and write C for the
04 X 120 matrix in RCF (row canonical form) whose row space equals that
of 04.

Finally, we consider the new identities. The elements of the nullspace of
Ey are the coefficient vectors of K(4). We set ay = nullity(Fy) and write Ny
for the ay x 120 matrix in RCF whose row space is the nullspace of E4. The
rows of Ny span the Sy;-module of all identities in degree 4. Clearly the row
space of Cy4 is a subspace of the row space of Ny, and hence o4 < as. The
quotient K(4)/L(4) is the Si-module of new identities in degree 4, and its
dimension is a4 — 04.

Let A,O C{1,...,120} be the column indices of the leading 1s in N, and
C} respectively. A linear basis of K(4)/L(4) corresponds to (the cosets of)
the rows of Ny whose leading 1s have column indices in A\ O. It is straight-
forward using the module generators algorithm [4] to compute a subset of
this linear basis which represents a set of Sy;-module generators for the quo-
tient module. Computations with the computer algebra system SageMath
show that a4 = 88 and hence N4 has rank ny, = 32; the nonzero entries of
Ny are :i:1 +1, —5. For each row of Ny, we multlply the coefficients by the
LCM of thelr denomlnators to obtain integers and then divide by the GCD
of these integers to obtain vectors with relatively prime integer coefficients.
The squared Euclidean lengths of the resulting vectors with multiplicities in
parentheses are

12 (4), 18 (4), 42 (8), 48 (2), 56 (1), 60 (4), 64 (1), 72(2), 74 (3), 82 (1), 100 (2).

We sort the rows of the new integer matrix, also called N4, by increasing
length. Further SageMath computations show that o4 = 19, which implies
that the quotient module /C(4)/£(4) has dimension 13.

We next use the module generators algorithm again to determine the small-
est subset of the shortest rows of N, which generates the quotient module
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KC(4)/L£(4). We obtain two identities and verify that neither is a consequence
of the other. The first has 18 terms and coefficients £1 (squared length 18);
the second has 33 terms and coefficients +1,+2 (squared length 42).

We can obtain better results using linear algebra over the integers; this
requires replacing the RCF by the HNF (Hermite normal form), and applying
the LLL algorithm [5] to determine shorter integer vectors.

The entries of the matrix Ey belong to {0, £1}. We compute the HNF of
the transpose EY, denoted by V', and a square matrix U with det(U) = +1
such that UE, = V. Since E} has rank 88, the bottom 32 rows of V are
zero, and hence the bottom 32 rows of U form a matrix N whose rows form
a lattice basis of the left nullspace of E} (the right nullspace of Ej). (By
a lattice basis we mean a set of free generators for a submodule of a free
Z-module.)

After applying the LLL algorithm to the lattice generated by the rows
of N, we obtain a matrix Ny, whose nonzero entries are £1 and whose
rows have the following squared Euclidean lengths with multiplicities given
in parentheses:

12 (13), 18(12), 24 (1), 26(1), 28(1), 32(3), 34(1).

Further computations show that the quotient module XC(4)/L£(4) is generated
by two rows of Ny with squared length 18. These are the coefficient vec-
tors of the identities I(a,b,c,d) and H(a,b, c,d). Moreover, the S;-module
generated by I(a,b,c,d) and H(a,b,c,d) has dimension 32, so it coincides
with IC(4). u

Remark 4.4. Since the dimension of K(4) is 32 and the permutation of
variables of a multilinear identity of degree 4 can produce at most 4! = 24

linearly independent identities, a lower bound on the number of generators of
KC(4) as an Sy-module is [32/24] = 2. Therefore the set of generators {H, I}
of (4) has minimum cardinal.

Corollary 4.5. Consider these three consequences of the Lie-admaissible iden-
tity:

P(a,b,c,d) = L(ab,c,d), Q(a,b,c,d) = L(a,b,c)d, R(a,b,c,d) = aL(b,c,d).
Then

P(a,b,c,d) = I(c,a,b,d) — I(d,a,b,c),

Q(a,b,c,d) = H(a,c,b,d) — H(a,b,c,d),
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2R(a,b,c,d) = Y e(o)(H(a, b7, ¢7,d7) + I(a, 1", ¢, d°) + I(c”, a, 1, d°))

2J(a,b,c,d) =Y (H(a,b",¢,d) + I(a, 1", ", d°) + I(c”, a, 1", d°))

0ES3

+ Z H(b, %, d’?, a),

0ES,

where J(a,b,c,d) stands for the Jordan-admissible identity.

Proof: Straightforward computation. |

5. Polynomial Identities in Degree 5

In degree 5 there are 14 association types and hence 14 - 5! = 1680 mul-
tilinear nonassociative monomials; there are 5! - 2* = 1920 associative pg-
monomials.

Recall that in degree 4, identities H and I from Definition 4.2 generate
the kernel C(4) of the expansion map as an Sy-module. Each identity U in
degree 4 produces six consequences in degree 5:

U(ab,c,d,e), Ula,bc,d,e), Ula,b,cd,e), U(a,b,c,de), U(a,b,c,d)e, aU(b,c,d,e).

Theorem 5.1. Fvery identity in degree 5 satisfied by every mutation algebra
follows from the consequences of H and I in degree 4, and the new identity
G in degree 5 displayed in Figure 5.

Proof: The proof is similar to that of degree 4. We order the monomial bases
of LT (5) and W(5) as in Theorem 4.3. We need to perform computations
on the 1920 x 1680 matrix E5 representing the expansion map X5 : LT (5) —
W(5) (with respect to the monomial bases above). To this end, we use the
class of rational sparse matrices in SageMath.

The kernel IC(5) of the expansion map is an Ss-module of dimension 778
(comprising all identities). The twelve consequences (in degree 5) of identities
H and I generate the Ss-module O(5) of old identities, which has dimension
747. Hence the quotient module IC(5)/O(5) of new identities has dimension
31. We compute the HNF, denoted by V', of Ef and a square matrix U with
det(U) = =1 such that UEL = V. The bottom 778 rows of U produce a
matrix N whose rows form a lattice basis of the right nullspace of E5. Next,
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we apply the LLL algorithm to the lattice generated by the rows of N to
obtain the matrix Nyzz; we find that the Ss-module K(5)/O(5) is generated
by one row of Ny;; having 48 nonzero £1 entries, which is the coefficient
vector of identity G(a,b,c,d, e). The computations required around 4GB of
RAM, and had a runtime of 90 minutes, in an AMD Ryzen 5 5600X processor
at 3.70GHz running SageMath 9.2 on Windows 10. |

G(a,b,c,d,e) = Z (o) ({e, d,a’(c°b)} — ({e,d,b}a”)c” + (e, b,a%(c°d))
c€S2({a,c})
T€S2({d,e})

— ((ea”)c?,b,d) + (e,d, (ba”)c?) — (e, (ba”)c?,d) + ((e,b,d)a”)c® — a’(c (e, d, b))

+((d7a%)e?)(eb) — d7(a?(c?(e7D))) + d™(((e7b)a”)c”) — dT(((ffTa")C")b)) :

where {z,y, z} := (zy)z + y(zz), and Sa({x,y}) denotes Sy acting on the set {x,y}.

FIGURE 3. The new identity in degree 5

Remark 5.2. The dimension of K(5) is 778 and permuting the variables
of a multilinear identity of degree 5 can produce at most 5! = 120 linearly
independent identities, so a lower bound on the number of generators of K(5)
as an Ss-module is [778/120] = 7. In Theorem 5.1 we have obtained a set
with 13 generators: the 12 consequences of identities H and [ plus a new
identity G. In fact, it can be checked that K(5) is already generated by
identity G, the consequences of identity I, and consequences H(ab,c,d,e),
H(a,b,c,d)e and aH (b, c,d, e) of identity H. Therefore an upper bound on
the minimum number of generators of IC(5) as an Ss-module is 10.

6. Polynomial Identities in Degree 6

In degree 6 there are 42 association types and hence 42 - 6! = 30240 mul-
tilinear nonassociative monomials, and there are 6! - 2° = 23040 associative
pg-monomials. So, to represent the expansion map Xg as a whole we would
need to use a matrix of size 30240 x 23040, which is too large to manipulate
with our computer system. We use the representation theory of the sym-
metric group to reduce the problem to a set of matrices of smaller sizes and
demonstrate the existence of a number of new identities in degree 6. We
choose a set of conjugacy class representatives in S¢ and calculate the matri-
ces representing these permutations on the modules of old and all identities.
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Comparing the traces of these matrices with the character table of Sg, we
obtain the multiplicities of the irreducible representations of the Sg-modules.

Theorem 6.1. For each of the 11 partitions A of 6, the following table con-
tains the multiplicity of each irreducible representation in the Sg-modules of
all identities (the kernel of the expansion map), the old identities (the con-
sequences of the identities of lower degree), and the quotient module of new
identities (the difference of the previous two multiplicities):

A6 51 42 411 33 321 3111 222 2211 21111 111111
1 5 9 10 5 16 10 5 9 o} 1

(M)
all(A) |41 205 369 410 205 656 410 205 369 205 41
(A) 129 136 237 268 131 422 267 131 236 133 28
new(A) |12 69 132 142 74 234 143 74 133 72 13

Furthermore, the dimension of the quotient module of new identities is

) “new()) dim(\) = 10449.
A

Proof: These methods have been described in detail in [4, §§2.4-2.7]. |

Conjecture 6.2. The kernel of the expansion map in all degrees, that is, the
operad ideal K = @, -, (n) (see Definition 2.2), is not finitely generated.
In other words, no finite set of identities generates all the identities satisfied
by all mutation algebras.
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