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1. Introduction

The fully nonlinear elliptic integro-differential Isaacs equation

I[u(x), x] := inf
α

sup
β
Lαβu(x) = f(x), x ∈ Ω, (1)

where

Lαβu(x) :=

∫
Rn

(u(x+ y) + u(x− y)− 2u(x))Kα,β(x, y)dy,

appears naturally in competitive stochastic games when two players are al-
lowed to choose from different strategies at every step in order to maximize
the expected value u(x) at the first exit point of the domain Ω ⊂ Rn. For
arbitrary index sets A and B, the kernels {Kα,β(x, y)}α∈A,β∈B are nonnegative
functions measuring the frequency of jumps in the y direction at the point
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x. Further applications and motivations related to nonlocal equations can
be found, for example, in [1, 3, 16].

The large applicability of this type of model reinforces the relevance of
seeking qualitative properties for their solutions. In this paper, we obtain
Cordes-Nirenberg type results for solutions of (1), with f ∈ L∞(Ω). We argue
through an approximation method, associating (1) to a constant coefficients
equation. We are particularly interested in the case where the level sets
of the kernels Kα,β are comparable to sections of a convex solution φ of a
Monge-Ampère equation, as in [10]. Setting vφ : Rn → R as

vφ(y) := φ(y)− φ(0)−Dφ(0) · y,

we note that, due to convexity, vφ ≥ 0, and define the sections Sφr of φ as

Sφr :=
{
vφ < r2

}
.

We will study equation (1) for kernels of the particular form

Kα,β(x, y) = (2− σ)
bα,β(x, y)

vφ
n+σ
2 (y)

, with bα,β : Ω× Rn →
[
Λ−1,Λ

]
(2)

for constants Λ ≥ 1 and σ ∈ (1, 2). Our main result states that if

sup
α∈A,β∈B

(x,y)∈Ω×Rn

|bα,β(x, y)− b(y)| < η, (3)

for a small enough η and b ∈ L∞(Rn), then solutions of (1) are of class
C1,α0

loc (Ω), where α0 is to be specified further.
The regularity theory for fully nonlinear nonlocal elliptic equations was

initiated by Caffarelli and Silvestre in their seminal paper [7]. They treat the
case corresponding to φ = |.|2 and a translation-invariant operator and de-
velop a nonlocal version of the ABP estimate, establish a Harnack inequality
and derive Hölder regularity estimates. Additional regularity assumptions on
the kernels lead to Hölder gradient regularity through a standard cut-off and
integration by parts technique. This theory was the starting point for many
other developments in the nonlocal setting. For example, an anisotropic sce-
nario was considered in [6, 17] and the case of a general convex φ ∈ C2(Rn)
satisfying

γ ≤ det(D2φ) ≤ Γ in Rn, (4)
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for 0 < γ ≤ Γ < ∞, was the object of [10]. In this case, since the sections
of φ are comparable to ellipsoids (see Fritz John’s lemma, in [13]), the ker-
nels can be very degenerate and improved estimates that take into account
the deformation of the sections of φ, which is driven by the Monge-Ampère
equation, are required.

As in the local case, a natural extension is to develop an approximation
theory that allows for the inclusion of coefficients in the operator. In general,
dealing with x−dependant equations can be rather challenging since the de-
pendence could break off the effect of the operator. The case φ = |.|2 was
again dealt with by Caffarelli and Silvestre, who were able to prove in [8] that
if two nonlocal operators are close in an appropriate sense, then the solutions
of the corresponding equations have the same regularity. To prove Hölder
gradient regularity for the solutions, however, the kernels of the constant
coefficient operators needed to have a fair amount of regularity, a restriction
that would be removed by Kriventsov in [15] by means of an approximation
argument. Putting it bluntly, our paper is to [10] what [8] was to [7]. Alter-
native regularity results are also available in different scenarios, and we steer
the interested reader to, e.g., [2, 11, 14, 18, 19].

The heart of the matter in proving gradient Hölder regularity in [8] is to
understand what kind of equation functions of the form

wλ(x) =
1

λ1+α
[u− l](λx) (5)

solve, for an affine function l, and capture their behaviour as λ approaches
zero. The first issue is to somehow force a fair scaling behaviour of the
operator so that (5) still satisfies an elliptic equation in the same class as that
of the equation satisfied by u. The second issue is purely nonlocal: in order to
apply compactness arguments, one needs to extend previous Hölder regularity
results for solutions with certain growth at infinity since this behaviour is
always expected. Therefore, finding suitable weights that control the growth
of the solutions is crucial. The weights must be comparable to the kernels at
infinity so that we can ensure the operator is well-defined at the solutions.
In [8], since the order of the equation is greater than 1, the weights have the
form

W(y) :=
1

1 + |y|n+σ
,
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and so the solutions could have growth comparable to ζαc = |.|1+αc, for any
αc satisfying αc < σ − 1. This is due to the fact that

‖ζαc‖L1(Rn,W) :=

∫
Rn
|y|1+αcW(y)dy <∞.

The main novelty in our problem, with a general convex φ ∈ C2(Rn) satisfy-
ing (4), is that the setting changes in both issues described above. Foremost,
scalings of the form (5) still satisfy an elliptic equation but in a different class
from the original one. More precisely, we need to scale the kernels (3) as

bα,β(λ−, λ−)

v
n+σ
2

φλ

, where φλ = λ−2φ(λ−),

and it is crucial that, although the ellipticity class changes, the φλ still satisfy
(4), with the same bounds. Secondly, since growth at infinity is unavoidable,
one needs to beware the choice of the weights. The reasonable alternative is
to choose

Wφ(y) :=
1

1 + vφ(y)
n+σ
2

,

since it controls the behaviour of (2) at infinity, and so, for some α1 < σ− 1,
we need

‖ζα1
‖L1(Rn,Wφ) <∞. (6)

If scalings were not in use, the basic setting would be then settled to develop
the theory. However, because scaling is imperative in our case, we need to
choose scaled weights Wφλ and find an exponent αλ < σ − 1 such that

‖ζαλ‖L1(Rn,Wφλ
) <∞. (7)

We stress that all these ingredients need to be uniform in λ, so a careful
analysis needs to be performed so that estimates do not degenerate as λ goes
to zero.

Unlike in [8], a regularizing effect on the kernels of the equation occurs
through the scaling procedure. More precisely, the following convergence
holds true (see proposition 5), locally uniformly in Rn:

vφλ(y)
λ→0−−−→ D2φ(0)y · y.

Furthermore, if condition (6) is true, then (7) becomes stable, and we are
able to prove a stability result that allows the kernels to vary (see Lemma
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3). Now, the fact that the family {φλ}λ∈(0,1] satisfies (4) becomes convenient
again, since it makes Hölder estimates from [10] uniform in the parameter
λ. Therefore, we make way to import the regularity theory valid for a nice
equation with kernels comparable, up to a rotation, to that of the fractional
Laplacian, and we may use Kriventsov’s results from [15]. We prove, as
a consequence, C1,α0 regularity estimates for solutions of (1) with kernels
satisfying only (2), (3) and (6), for

α0 < min{α1, α∗},

where α∗ is the exponent obtained in [15] and α1 is from (6). In particular,
if our equation does not have x−dependence, we slightly improve the gra-
dient regularity from [10] since we demand only (6) for the kernels (this is
automatically true in the setting φ = |.|2).

Moreover, as an additional technical difficulty, we do not assume any sort
of symmetry on the kernels. The aftermath is that many computations in
the paper, such as in Proposition 3 and Lemma 3, must be cautiously done.
Condition (6) is once again instrumental in assuring the estimates are steady
with respect to the parameter λ. It is also important to mention that all of
our estimates are uniform with respect to the parameter σ, which satisfies
σ ≥ σ0 > 1 + α1, with α1 from (6).

The paper is organized as follows: in section 2, after some preliminaries,
we introduce the definitions to be used in the remainder of the paper and
our main assumptions. In section 3, we present the stability result and the
approximation lemma. By applying an iteration procedure, we derive, in
section 4, the gradient regularity estimates for solutions of (1).

2. Preliminaries, definitions and main assumptions

We gather in this section some definitions and auxiliary results, in addition
to stating our main assumption. We start with a simple lemma that will be
instrumental in the sequel.

Lemma 1. Let Ψ1,Ψ2 ∈ C2(Rn) be two convex functions such that

λ1 < det(D2Ψ1), λ2 > det(D2Ψ2),
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for 0 < λ1, λ2 <∞ and define vΨi
(z) := Ψi(z)−Ψi(0)−DΨi(0)·z for i = 1, 2.

For every r > 0, there exists a constant C = C(r,Ψ1,Ψ2) such that

vΨ1
(z) ≤ CvΨ2

(z), ∀z ∈ Br.

Proof : Given r > 0, consider the C2 auxiliary function f : Rn → R defined
by

f(z) := vΨ1
(z)− CvΨ2

(z),

where

C = max
z∈Br

{
λmax(D

2Ψ1(z))

λmin(D2Ψ2(z))

}
≥
(
λ1

λ2

)1/n

.

Then
D2f(z) = D2vΨ1

(z)− CD2vΨ2
(z)

= D2Ψ1(z)− CD2Ψ2(z)

≤ (λmax(D
2Ψ1(z))− Cλmin(D2Ψ2(z)))Id ≤ 0

so f is a concave function in Br and, therefore, stays below any tangent
hyperplane. In particular,

f(z) ≤ f(0) +Df(0) · z = 0, ∀z ∈ Br.

We next define the appropriate notion of solution to our problem.

Definition 1 (Viscosity solution). Let f be a bounded and continuous func-
tion in Rn. We say a function u : Rn → R, upper semicontinuous in Ω, is a
viscosity subsolution in Ω of the equation

I[u(x), x] = f,

and we write I[u(x), x] ≥ f , if, whenever x0 ∈ Ω, N ⊂ Ω is a neighbourhood
of x0, and ϕ ∈ C2(N) satisfies

ϕ(x0) = u(x0) and ϕ(y) > u(y), ∀y ∈ N\{x0},
then, if we choose as test function τ such that

τ :=

{
ϕ in N
u in Rn\N,

we have I[τ(x), x](x0) ≥ f(x0).
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A supersolution is defined analogously, and a solution is a function that is
both a viscosity subsolution and a viscosity supersolution.

The definition of the extremal operators is basically the same as is [10].
These operators are important to define the uniform ellipticity condition
with respect to some class L. Here, L is a set of linear operators L of the
form

L[u](x) =

∫
Rn

(u(x+ y) + u(x− y)− 2u(x))K(y)dy,

for some kernel K.
We say that a nonlocal operator I is elliptic with respect to some class L

if

M−
L [w](x) ≤ I[(u+ w)(x), x](x)− I[u(x), x](x) ≤M+

L [w](x), (8)

where

M−
L [w](x) := inf

L∈L
L[w](x), M+

L [w](x) := sup
L∈L

L[w](x).

In [10], in order to obtain the ABP estimate, a Harnack inequality and Hölder
regularity results, the kernels needed to be in the class L0

φ(σ), which is the
class of linear operators with kernels K satisfying

(2− σ)
1/Λ

vφ(y)
n+σ
2

≤ K(y) ≤ (2− σ)
Λ

vφ(y)
n+σ
2

, (9)

for some Λ ≥ 1. It is known that for the class defined by (9) the extremal
operators have the simple form

M−
L0
φ(σ)

[u](x) = (2− σ)

∫
Rn

1
Λδ

+(u, x, y)− Λδ−(u, x, y)

vφ(y)
n+σ
2

dy

and

M+
L0
φ(σ)

[u](x) = (2− σ)

∫
Rn

Λδ+(u, x, y)− 1
Λδ
−(u, x, y)

vφ(y)
n+σ
2

dy,

where δ(u, x, y) = u(x+y) +u(x−y)−2u(x), δ+(u, x, y) denotes its positive
part and δ−(u, x, y) its negative part. We would like to point out that if
γ = Γ = 1 in equation (4) then Pogorelov’s result (a proof can be found in [12,
Theorem 4.18]) states that φ is a quadratic polynomial. Then vφ(y) = Ay ·y,
for a matrix A satisfying det(A) = 1. Equations with kernels in this form
were studied in [4] in a different setting related to a nonlocal version of the
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Monge-Ampère equation. The interested reader may also appreciate [9] for
a different approach and the more recent contribution in [5].

The requirement that u ∈ L1(Rn,W), for some weightW , allows u to have
a certain growth at infinity. For example, in the classical case of [8], for
operators with kernels satisfying the inequality (9) with φ = |.|2, the natural
choice would be

W(y) =
1

1 + |y|n+σ0
,

simply because this weight controls the tails of the kernels at infinity, and so
the integrals are not singular for σ ≥ σ0.

Therefore, a natural choice for the weight in our setting is

Wφ(y) =
1

1 + vφ(y)
n+σ0

2

, (10)

in order to bound the tails of the kernels K satisfiying (9).
The weight Wφ satisfies three properties that will play an important role

in our analysis. We next state and prove them.

Proposition 1. Assume K is a function that satisfies

K(y) ≤ Λ
(2− σ)

vφ(y)
n+σ
2

.

Then for each r > 0, there exists a constant Cr such that

K(y) ≤ CrWφ(y), for y 6∈ Sφr .
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Proof : Notice that for a kernel K satisfying the assumed bound, we have

K(y) ≤ Λ
(2− σ)

vφ(y)
n+σ
2

= Λ(2− σ)
1 + vφ(y)

n+σ0
2

vφ(y)
n+σ
2

Wφ(y)

= Λ(2− σ)

(
1

vφ(y)
n+σ
2

+ vφ(y)
σ0−σ

2

)
Wφ(y)

≤ Λ(2− σ0)

(
1

rn+σ
+ rσ0−σ

)
Wφ(y)

≤ 2Λ(2− σ0) max
{

1
rn+2 ,

1
r2−σ0

}
Wφ(y)

= CrWφ(y),

for every y 6∈ Sφr , with Cr = C(Λ, σ0, r, n).

Proposition 2. The weight Wφ is not singular, i.e., for each r > 0, there
exists a constant Cr such that

sup
z∈Br(y)

Wφ(z) ≤ CrWφ(y).
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Proof :

Wφ(z) =
1

1 + vφ(z)
n+σ0

2

=
1 + vφ(y)

n+σ0
2

1 + vφ(z)
n+σ0

2

Wφ(y)

=
1 + (vφ(y)− vφ(z) + vφ(z))

n+σ0
2

1 + vφ(z)
n+σ0

2

Wφ(y)

≤ 1 + (|vφ(y)− vφ(z)|+ vφ(z))
n+σ0

2

1 + vφ(z)
n+σ0

2

Wφ(y)

≤ 1 + 2
n+σ0

2 (|vφ(y)− vφ(z)|
n+σ0

2 + vφ(z)
n+σ0

2 )

1 + vφ(z)
n+σ0

2

Wφ(y)

≤ 2
n+σ0

2

(
1 +
|vφ(y)− vφ(z)|

n+σ0
2

1 + vφ(z)
n+σ0

2

)
Wφ(y)

≤ C(n, σ0)
(

1 + ρ(r)
n+σ0

2

)
Wφ(y)

= CrWφ(y),

for every z ∈ Br(y), with Cr = C(σ0, r, n) and where ρ is the modulus of
continuity of vφ.

It is important to notice that the modulus of continuity of vφ is the same
as that of φ since D2φ = D2vφ. Therefore, the constant Cr is the same for
any solution Ψ in the Monge-Ampère class

γ < det(D2Ψ) < Γ.

The next statement guarantees that the test functions in Definition 1 are
suitable for our operators. These computations have already been made in
[10], but we need to assure here they are invariant with respect to solutions
of the Monge-Ampère equation.
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Proposition 3. Let g : Rn → R be a function such that g ∈ C2(Br(x)),

‖g‖L1(Rn,Wφ) ≤M and
∣∣g(y)− lDg(x)(y)

∣∣ ≤M |y − x|2, y ∈ Br(x),

where lDg(x)(y) := g(x) + Dg(x) · (y − x). Then, there exists a constant C
such that

|g(x)| ≤ CM (11)

and
|L[g](x)| ≤ CM, ∀L ∈ L0

φ(σ). (12)

Proof : Observe that, for y ∈ Br(0), we have

|δ(g, x, y)| = |2g(x)− g(x+ y)− g(x− y)|

= |2g(x)− g(x+ y)− g(x− y)− lDg(x)(x+ y) + lDg(x)(x+ y)|

≤
∣∣g(x− y)− lDg(x)(x− y)

∣∣+
∣∣g(x+ y)− lDg(x)(x+ y)

∣∣
≤ 2M |y|2.

Using the reverse triangle inequality and multiplying both sides by the weight
Wφ, we obtain

2|g(x)|Wφ(y) ≤ 2M |y|2Wφ(y) + |g(x+ y)|Wφ(y) + |g(x− y)|Wφ(y).

Since Wφ(y) ≤ 1 and |y| ≤ r, integrating over Br(0), we reach

2|g(x)|
∫
Br

Wφ(y)dy ≤ 2Mr2|Br|+
∫
Br

|g(x+ y)|Wφ(y)dy

+

∫
Br

|g(x− y)|Wφ(y)dy.

We now bound the two integrals on the right-hand side using Proposition 2.
To uniformly bound ∫

Br

Wφ(y)dy

from below (independently of scalings of the form λ−2vφ(λx)), we use Lemma
1 to get

1 + vφ(y)
n+σ0

2 = 1 +

[
vφ(y)

|y|2

]n+σ0
2

|y|n+σ0 ≤ C(r, φ, n),
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thus obtaining (11).
To prove (12), we start by choosing η, depending on the modulus of conti-

nuity of φ, such that Sφη ⊂ Br(0). Then, if L ∈ L0
φ(σ), we have∣∣∣∣∫

Sφη

δ(g, x, y)K(y)dy

∣∣∣∣ ≤ (2− σ)ΛM

∫
Sφη

|y|2 1

vφ(y)
n+σ
2

dy

≤ (2− σ)ΛMC

∫
Sφη

|y|2|y|−n−σdy

≤ (2− σ)ΛMC

∫
Br

|y|2|y|−n−σdy

= (2− σ)ΛMC|∂B1|
∫ r

0

s2s−n−σsn−1ds

= C1(Λ, n, C, r)M

The constant C = C(r, φ) is from Lemma (1), which turns out to be invariant
by scalings of the form λ−2φ(λx).

Now we estimate the integral at infinity. Let us separate it into three parts.∫
Rn\Sφη

|g(x+ y)|K(y)dy ≤ Cη

∫
Rn\Sφη

|g(x+ y)|Wφ(y)dy

≤ Cη

∫
Rn\Sφη

|g(x+ y)| sup
z∈B1(x+y)

Wφ(z)dy

≤ CηC1

∫
Rn\Sφη

|g(x+ y)|Wφ(x+ y)dy

≤ C(η, n, σ0, ρ(1)) ‖g‖L1(Rn,Wφ)

≤ C(η, n, σ0, ρ(1))M.

where C1 is the constant from Proposition 2 and ρ stands for the modulus of
continuity of φ.
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We may assume that the kernels are symmetric (but see Remark 1 at the
end of this section) and apply a similar reasoning to get∫

Rn\Sφη
|g(x− y)| sup

z∈B1(x−y)

Wφ(z)dy ≤ C(η, n, σ0, ρ(1))M.

Finally, using (11), we can estimate∫
Rn\Sφη

2|g(x)|K(y)dy ≤ CM

∫
Rn\Sφη

1

vφ(y)
n+σ
2

dy.

Notice that we can show that the quantity∫
Rn\Sφη

1

vφ(y)
n+σ
2

dy

is finite employing the elementary layer-cake formula [12, Lemma A.36] and
the fact that |Sφr | ≈ rn (depending only on the bounds of the Monge-Ampère
equation), as shown in [13]. Indeed,∫

Rn\Sφη

1

vφ(y)
n+σ
2

dy = (n+ σ)

∫ ∞
0

tn+σ−1

∣∣∣∣∣(Rn\Sφη ) ∩

{
1

vφ(y)
1
2

> t

}∣∣∣∣∣ dt
= (n+ σ)

∫ ∞
0

tn+σ−1
∣∣∣(Rn\Sφη ) ∩ S 1

t

∣∣∣ dt
= (n+ σ)

∫ 1
η

0

tn+σ−1
∣∣∣(Rn\Sφη ) ∩ S 1

t

∣∣∣ dt
≤ C(n+ σ)

∫ 1
η

0

tn+σ−1 1

tn
dt

= C
(n+ σ)

σ

1

ησ
.

Putting all estimates together, we obtain that

|L[g](x)| =
∣∣∣∣∫

Rn
δ(g, x, y)K(y)dy

∣∣∣∣ ≤ CM.
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We need to impose an integrability assumption on the solution φ ∈ C2(Rn)
of the Monge-Ampère equation.

[A1] The function ζ : Rn → R defined by ζ(y) = |y|1+α1 satisfies

ζ ∈ L1 (Rn,Wφ) , (13)

for some α1 < σ0 − 1.

A simple example of a function in R2 satisfying the assumption is

φ(y1, y2) = y2
1 + y2

2 +
1

2
sin(y1).

Proposition 4. Let assumption [A1] be in force and let φλ(x) = λ−2φ(λx).
Then

‖ζ‖L1(Rn,Wφλ)
≤ C

(
n, σ0, α1, φ, ‖ζ‖L1(Rn,Wφ)

)
.

Proof : We have

‖ζ‖L1(Rn,Wφλ
) =

∫
Rn
|y|1+α1

1

1 + (λ−2vφ(λy))
n+σ0

2

dy

= λ−n−1−α1

∫
Rn
|z|1+α1

1

1 + (λ−2vφ(z))
n+σ0

2

dz

= λ−n−1−α1(A1 + A2 + A3),

where A1, A2, A3 stand for the integrals of |.|1+α1(1 + (λ−2vφ(.))
n+σ0

2 )−1 over
the sets Bλ, B1\Bλ and Rn\B1, respectively.

Now,

A1 ≤
∫
Bλ

|z|1+α1dz ≤ C(n)λn+1+α1,

and so λ−n−1−α1A1 ≤ C(n). For A2, we have

A2 ≤ λn+σ0

∫
B1\Bλ

|z|1+α1
1

vφ(z)
n+σ0

2

dz.

By Lemma 1, with r = 1, Ψ1 = |.|2 and Ψ2 = φ, we get a constant C(φ) such
that

|z|2

vφ(z)
≤ C(φ), for z ∈ B1.
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Then

A2 ≤ C(φ, n)λn+σ0

∫
B1\Bλ

|z|1+α1
1

|z|n+σ0
dz

= C(φ, n)λn+σ0

∫ 1

λ

rα1−σ0dr

≤ C(φ, n)λn+σ0
1

σ0 − 1− α1
[λα1−σ0+1 − 1].

Therefore, we get

λ−n−1−α1A2 ≤ C(φ, n, σ0, α1).

Finally, for A3, we have

λ−n−1−α1A3 ≤ λσ0−1−α1

∫
Rn\B1

|z|1+α1
1

vφ(z)
n+σ0

2

dz.

Therefore, if assumption [A1] holds, we can get a uniform bound (in the
parameter λ) for the term A3.

Remark 1. If the kernels are not symmetric, we control the quantity∫
Rn\Sφη

|g(x− y)| 1

vφ(y)
n+σ
2

dy,

using assumption [A1] and a natural growth condition. Indeed, assuming
g : Rn → R is a function such that

|g(y)| ≤ |y|1+α1 for y ∈ Rn\Sφη ,

for some η > 0, we obtain

∫
Rn\Sφη

|g(x− y)| 1

vφ(y)
n+σ
2

dy ≤
∫
Rn\Sφη

|x− y|1+α1
1

vφ(y)
n+σ
2

dy

≤ C(|x|)
∫
Rn\Sφη

|y|1+α1
1

vφ(y)
n+σ
2

dy

≤ C(η, |x|)
∫
Rn\Sφη

|y|1+α1Wφ(y)dy.
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In our main theorem, the growth condition stated above will appear naturally
and is, by no means, restrictive.

3. Approximation results

In this section, we are going to deliver the key lemma of this paper, con-
sisting of showing that if the operators in our class are close in some suitable
sense, then so are their solutions.

We start with a standard result that makes use of the ellipticity structure
to restrict the set of test functions in Definition 1, which is important to
simplify the proof of the stability result. The proof is essentially the same as
in [8], but we include it here for the reader’s convenience.

Lemma 2. In Definition 1, it is enough to consider, as test functions ϕ, qua-
dratic polynomials and, as neighbourhoods N, balls centered at the touching
point.

Proof : Let ϕ ∈ C2(N) be a test function that touches u from above at a point
x0 and, for simplicity, assume x0 = 0. Let Pε be the following polynomial

Pε(x) =
1

2

(
D2ϕ(0) + εIn

)
x · x+∇ϕ(0) · x+ ϕ(0).

From Taylor’s expansion,

ϕ(x) = ϕ(0) +∇ϕ(0) · x+
1

2
D2ϕ(0)x · x+ r2(x), with lim

x→0

r2(x)

|x|2
= 0,

so, given ε > 0, there exists µ > 0 such that, if |x| < µ, then∣∣∣∣ϕ(x)−
(
ϕ(0) +∇ϕ(0) · x+

1

2
D2ϕ(0)x · x

)∣∣∣∣ ≤ ε|x|2 (14)

which implies

ϕ(x) ≤ Pε(x), ∀x ∈ Bµ.

Then Pε ≥ ϕ ≥ u in a neighbourhood Br ⊂ N , with r < µ.
Define

τϕ(x) =

{
ϕ(x) if x ∈ N
u(x) if x 6∈ N.

and

τε(x) =

{
Pε(x) if x ∈ Br

u(x) if x 6∈ Br.
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With 1 denoting the indicator function, we have

τε(x) ≤ τϕ(x) + 2ε|x|21Br , ∀x ∈ Rn,

which is obvious if x /∈ Br; for x ∈ Br, it follows from (14) that

−ε|x|2 ≤ ϕ(x)−
(
ϕ(0) +∇ϕ(0) · x+

1

2
D2ϕ(0)x · x

)
≤ ε|x|2.

So we have,

τϕ(x) = ϕ(x)
≥ ϕ(0) +∇ϕ(0) · x+ 1

2D
2ϕ(0)x · x− ε|x|2

= Pε(x)− 2ε|x|2
= τε(x)− 2ε|x|21Br .

Since Pε is a quadratic polynomial such that Pε ≥ ϕ ≥ u and ϕ touches u
from above at 0, we have Pε(0) = ϕ(0) = u(0). Hence, Pε touches u from
above at 0, and so, by the definition of viscosity subsolution, we have

I[τε(x), x](0) ≥ f(0).

On the other hand, by uniform ellipticity,

I[τϕ(x), x](0)− I[τε(x), x](0) ≥ −M+
L0
φ(σ)

[
2ε|x|21Br

]
(0)

= − supL∈L0
φ(σ) L

[
2ε|x|21Br

]
(0)

≥ −2εC,

where we have used Proposition 3 in the last inequality. Since

I[τε(x), x](0) ≥ f(0),

we have

I[τϕ(x), x](0) ≥ I[τε(x), x](0)− 2Cε, ∀ε > 0.

Consequently, I[τϕ(x), x](0) ≥ f(0).

The following is a simple remark concerning the scalings of the solution of
the Monge-Ampère equation.

Proposition 5. Let φ ∈ C2(Rn) satisfy (4) and define φλ(y) = λ−2φ(λy).
Then the function vφλ(y) converges to vφ0 := D2φ(0)y · y, locally uniformly
as λ→ 0, where φ0(y) = D2φ(0)y · y.
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Proof : By Taylor’s expansion,

vφλ(y) = φλ(y)− φλ(0)−∇φλ(0) · y

= λ−2
(
λ2D2φ(0)y · y + r

(
|λy|2

))
= D2φ(0)y · y + r(|λy|2)

λ2 ,

for y ∈ Bη, with η small enough. Therefore, if λ→ 0,

vφλ(y) −→ D2φ(0)y · y,

locally uniformly.

We now prove the stability lemma that will play a key role in the approxi-
mating results. We will consider the simpler linear case just to highlight the
main ideas.

Lemma 3. Let Ω be open and bounded, and let φ ∈ C2(Rn) be convex and
satisfy (4). Consider the family of scalings {vφλ}λ∈(0,1] and assume there
exists a sequence

(λk, uk, fk, bk) ⊂ R× C(Ω) ∩ L1
(
Rn,Wφλk

)
× L∞(Ω)× L∞(Ω× Rn)

such that

• Ik[uk(x), x] :=

∫
Rn
δ(uk, x, y)

bk(x, y)

vφλk (y)
n+σ
2

dy = fk(x) in the viscosity

sense in Ω;
• uk → u uniformly in Ω and a.e. in Rn;
• |uk(x)| ≤ (1 + ζ(x)) in Rn, for some α1 such that α1 < σ − 1;
• λk → 0;
• fk → f , locally uniformly in Ω;
• bk → b, uniformly in Ω× Rn.

Then,

I[u(x), x](x) =

∫
Rn
δ(u, x, y)

b(x, y)

vφ0(y)
n+σ
2

dy = f(x), x ∈ Ω,

in the viscosity sense, where φ0 is as in Proposition 5.
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Proof : We do the proof only for supersolutions. To prove that

I[u(x), x](x) ≤ f(x),

we need to show that, given ϕ ∈ C2(x), touching u from below at x, we have
I[τ(x), x](x) ≤ f(x), where

τ(x) =

{
ϕ(x) if x ∈ Nx

u(x) if x 6∈ Nx,

where Nx is a neighborhood of x. By lemma (2), it is enough to consider
as test functions quadratic polynomials p and neighbourhoods Nx = Br(x).
Since uk converges uniformly to u in Ω, for large values of k, we can find xk
and dk such that p + dk touches uk at xk, with xk → x and dk → 0, when
k →∞. Since Ik[uk(x), x] ≤ fk in the viscosity sense in Ω, if we define

τk(x) =

{
p+ dk in Br(x)
uk in Rn\Br(x),

then Ik[τk(x), x](xk) ≤ fk(xk). Clearly, τk → τ , uniformly in Br(x).
Now, let z ∈ Br/4(x). By the triangle inequality,

|Ik[τk(x), x](z)− I[τ(x), x](z)|

≤ |Ik[τk(x), x](z)− Ik[τ(x), x](z)|+ |Ik[τ(x), x](z)− I[τ(x), x](z)|.

From the ellipticity condition, and denoting, by simplicity, φλk with φk, we
obtain

Ik[τk(x), x](z)− Ik[τ(x), x](z) ≤ M+
L0
φk

(σ)
[τk − τ ](z)

≤ |M+
L0
φk

(σ)
[τk − τ ](z)|

and

Ik[τ(x), x](z)− Ik[τk(x), x](z) ≤ M+
L0
φk

(σ)
[τ − τk](z)

≤ |M+
L0
φk

(σ)
[τ − τk](z)|.

Hence,

|Ik[τk(x), x](z)− Ik[τ(x), x](z)|
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≤ max
{
|M+
L0
φk

(σ)
[τk − τ ](z)|, |M+

L0
φk

(σ)
[τ − τk](z)|

}
≤ sup

L∈L0
φk

(σ)

|L[τk − τ ](z)|

≤
∫
Rn
|δ(τk − τ, z, y)|Λ(2− σ)

vφk(y)
n+σ
2

dy.

For points y ∈ Br/2, we have z + y ∈ Br(x). Therefore, τ − τk = dk, which
implies δ(dk, z, y) = 0. Plugging this into the above inequality, we get

|Ik[τk(x), x](z)− Ik[τ(x), x](z)|

≤
∫
Rn\Br/2

|δ(τk − τ, z, y)|Λ(2− σ)

vφk(y)
n+σ
2

dy

≤
∫
Rn\Sφkµ

|(τk − τ)(z + y)|Λ(2− σ)

vφk(y)
n+σ
2

dy

+

∫
Rn\Sφkµ

|(τk − τ)(z − y)|Λ(2− σ)

vφk(y)
n+σ
2

dy

+2|(τk − τ)(z)|
∫
Rn\Sφkµ

Λ(2− σ)

vφk(y)
n+σ
2

dy,

where we choose µ = µ(r) such that

Sφkµ ⊂ Br/2, ∀k ∈ N.

Now we apply Propositions 1 and 2 to get∫
Rn\Sφkµ

|(τk − τ)(z + y)|Λ(2− σ)

vφk(y)
n+σ
2

dy
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≤ Cµ

∫
Rn\Sφkµ

|(τk − τ)(z + y)|Wφk(y)dy

≤ CµC

∫
Rn\Sφkµ

|(τk − τ)(y + z)|Wφk(y + z)dy

≤ C ‖τk − τ‖L1
(
Rn\Sφkµ ,Wφk

) .
Furthermore, by computations made in the proof of Proposition (3), we ob-
tain ∫

Rn\Sφkµ

Λ(2− σ)

vφk(y)
n+σ
2

dy ≤ n+ 2

σ0µσ0

and so

|Ik[τk(x), x](z)− Ik[τ(x), x](z)|

≤ C1 ‖τk − τ‖L1
(
Rn\Sφkµ ,Wφk

) + C2|τk(z)− τ(z)|

+

∫
Rn\Sφkµ

|(τk − τ)(z − y)|Λ(2− σ)

vφk(y)
n+σ
2

dy.

Since uk → u, a.e. in Rn, we get that τk → τ , a.e. in Rn. Therefore, by
Proposition 4, assumption [A1] and the growth assumption we obtain, by the
dominated convergence theorem, that

‖τk − τ‖L1
(
Rn\Sφkµ ,Wφk

) −→ 0.

Note that, by the same computations made in Remark 1, we get∫
Rn\Sφkµ

|(τk − τ)(z − y)| Λ(2− σ)

vφk(y)
n+σ
2

dy

≤ C (µ, |z|,Λ)

∫
Rn\Sφkµ

|y|1+α1Wφk(y)dy,

= C (µ,Ω,Λ) ‖ζ‖
L1
(
Rn\Sφkµ ,Wφk

)
≤ C,

where we used assumption [A1], along with Proposition 4, to get a uniform
bound on the weighted norm.
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Now, notice that, for every z ∈ Br/4(x), we have τ ∈ C2(B3r/4(z)) and thus

Ik[τ(x), x](z)→ I[τ(x), x](z), uniformly in Br/4(x) when k →∞.

Therefore, we can combine this with Lemma 1, Proposition 4 and assumption
[A1] to get

|δ(τ, z,−)|

∣∣∣∣∣ bk(z,−)

vφk(−)
n+σ
2

− b(z,−)

vφ0(−)
n+σ
2

∣∣∣∣∣ ∈ L1(Rn),

uniformly in z. Since

bk(z, y)

vφk(y)
n+σ
2

−→ b(z, y)

vφ0(y)
n+σ
2

, a.e. ∈ Rn,

we get, again using the dominated convergence theorem, that

|Ik[τ(x), x](z)− I[τ(x), x](z)|

≤
∫
Rn
|δ(τ, z, y)|

∣∣∣∣∣ bk(z, y)

vφk(y)
n+σ
2

− b(z, y)

vφ0(y)
n+σ
2

∣∣∣∣∣ dy −→ 0.

We thus obtain

Ik[τk(x), x](z)→ I[τ(x), x](z), (15)

uniformly in Br/4(x).
Finally, we have

|Ik[τk(x), x](xk)− I[τ(x), x](x)| ≤ |Ik[τk(x), x](xk)− I[τ(x), x](xk)|
+|I[τ(x), x](xk)− I[τ(x), x](x)|

and, using (15)) and the continuity of I[τ(x), x], we obtain

|Ik[τk(x), x](xk)− I[τ(x), x](x)| → 0,

when k →∞. Since xk → x and fk → f locally uniformly,

I[τ(x), x](x) = lim
k→∞
Ik[τk(x), x](xk) ≤ lim

k→∞
fk(xk) = f(x),

and therefore I[τ(x), x](x) ≤ f(x).

We are now ready for the approximation lemma. It plays an important
role in the subsequent analysis.
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Lemma 4. Assume σ ≥ σ0 > 1 + α1 and φ ∈ C2(Rn) is a convex function
satisfying (4) and assumption [A1]. Let φ0 be the function from Proposition
5. Given M > 0, a modulus of continuity ρ and ε > 0, there exist a small
η > 0, λ > 0 and a large R0 > 0 such that, if

• −η < inf
α∈A

sup
β∈B

∫
Rn
δ(w,−, y)

bαβ(−, y)

vφλ(y)
n+σ
2

dy < η, in the viscosity sense in

Sφ01 ;

• for every α and β, b(y)−η < bαβ(x, y) < b(y)+η, ∀x ∈ Sφ01 , ∀y ∈ Rn;

• |w(y)− w(x)| ≤ ρ(|y − x|), ∀x, y ∈ BR0
;

• |w(x)| ≤M(1 + ζ(x)), ∀x ∈ Rn,

then, there exist a function w0 : Rn → R such that

• |w0(x)| ≤M (1 + ζ(x)), ∀x ∈ Rn;

•
∫
Rn
δ(w0,−, y)

b(y)

vφ0(y)
n+σ
2

dy = 0, in the viscosity sense in Sφ01 ;

• |w − w0| < ε in Sφ01 .

Proof : Suppose, by contradiction, the lemma is false. Then, there exist se-
quences Rk, ηk, wk, λk, bk such that

Rk →∞, ηk → 0, λk → 0 and bk → b uniformly in Sφ01 × Rn

and

−ηk <
∫
Rn
δ(wk, x, y)

bk(x, y)

vφλk (y)
n+σ
2

dy < ηk

in the viscosity sense in Sφ01 but

sup |wk − w0| ≥ ε in Sφ01 , (16)

for all w0 solution of ∫
Rn
δ(w0, x, y)

b(y)

vφ0(y)
n+σ
2

dy = 0.

By Proposition 5,

vφλk (x) −→ D2φ(0)x · x = vφ0(x),
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locally uniformly and thus almost everywhere in Rn. On the other hand, the
wk have a uniform modulus of continuity in BRk, where Rk → ∞, so, up to
subsequences, wk → w uniformly on compacts and thus almost everywhere
in Rn. By Lemma 3, we pass to the limit to get∫

Rn
δ(w, x, y)

b(y)

vφ0(y)
n+σ
2

dy = 0 in Sφ01 .

Since wk → w uniformly in Sφ01 , for k sufficiently large we have a contradiction
with (16).

4. Regularity for variable coefficients

This section is devoted to the proof of the main theorem of the paper.

Theorem 1. Let σ ≥ σ0 > 1, let φ ∈ C2(Rn) be a convex function satisfying

(4) and assumption [A1], and let u be a viscosity solution to (1) in Sφ2 . There
exists 0 < η � 1 such that if

sup
α∈A,β∈B

(x,y)∈Sφ2×Rn

|bα,β(x, y)− b(y)| < η,

for b ∈ L∞(Rn), then u ∈ C1,α0(Sφ1 ) and the following estimate holds

‖u‖C1,α0(Sφ1 ) ≤ C
(
‖u‖L∞(Rn) + ‖f‖L∞(Sφ2 )

)
,

for 0 < α0 < min{α∗, α1}, where α1 is from assumption [A1] and α∗ is from
Theorem 3. The constant C depends only on n,Λ, σ0, α∗, γ and Γ.

The idea is to iterate the approximation lemma (Lemma 4) to quotients of
the form

[u− l](λ−)

λ1+α0
,

where l is an affine function and λ > 0 and α0 are to be chosen in the sequel.
To assure that Lemma 4 can be applied for every small enough λ, the first
step is to grant a modulus of continuity to solutions that grow at infinity.
This is done using a standard technique.

Theorem 2. Assume σ > σ0 > 1 and w ∈ C
(
Sφ2

)
satisfies, for M > 0 and

ζ from [A1],

|w(x)| ≤M(1 + ζ(x)), x ∈ Rn,
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and solves
M+
L0
φ(σ)

w ≥ −C0, M−
L0
φ(σ)

w ≤ C0

in the viscosity sense in Sφ2 . Then, there exists α > 0 and a radius ρ such

that w ∈ Cα
(
Sφρ

)
and

‖w‖Cα(Sφρ ) ≤ C∗

(
sup
Sφ2

|w|+ C0 + C ‖ζ‖L1(Rn,Wφ)

)
for some universal constant C∗.

Proof : Define w(x) = 1Sφ2
(x)w(x) and notice that for x ∈ Sφ1 ,

Lw(x) =

∫
Rn
δ(w, x, y)K(y)dy

= Lw(x) +

∫
Rn

(w(x+ y)1Sφ2
(x+ y)− w(x+ y))K(y)dy

+

∫
Rn

(w(x− y)1Sφ2
(x− y)− w(x− y))K(y)dy

= Lw(x)−
∫
Rn\Ω+

w(x+ y)K(y)dy −
∫
Rn\Ω−

w(x− y)K(y)dy,

where

Ω+ = {y ∈ Rn : x+ y ∈ Sφ2 } and Ω− = {y ∈ Rn : x− y ∈ Sφ2 }.

Now, if d = dist(∂Sφ1 , ∂S
φ
2 ), we have

Bd(0) ⊂ Ω+,Ω−.

Therefore, from the growth assumption for w, we can estimate∣∣∣∣∫
Rn\Ω+

w(x+ y)K(y)dy

∣∣∣∣ ≤ C

∫
Rn\Bd

|y|1+α1
1

vφ(y)
n+σ
2

dy

≤ C(d) ‖ζ‖L1(Rn,Wφ) .

The same computations are valid for the other term, and we get

M+
L0
φ(σ)

w(x) ≥M+
L0
φ(σ)

w(x)− C ‖ζ‖L1(Rn,Wφ) ≥ −(C0 + C ‖ζ‖L1(Rn,Wφ)),
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for x ∈ Sφ1 . The same calculations apply to M−
L0
φ(σ)

leading to

M−
L0
φ(σ)

w(x) ≤ C0 + C ‖ζ‖L1(Rn,Wφ) ,

for x ∈ Sφ1 . We now apply a scaled version of [10, Theorem 6.2], to get
the existence of α ∈ (0, 1) and a small radius ρ, depending on λ,Λ, σ0 and
dimension, such that

‖w‖Cα(Sφρ ) ≤ C∗
(

sup
Rn
|w|+ C0 + C ‖ζ‖L1(Rn,Wφ)

)
.

Since w = w in Sφ2 , we also have

‖w‖Cα(Sφρ ) ≤ C∗

(
sup
Sφ2

|w|+ C0 + C ‖ζ‖L1(Rn,Wφ)

)
.

This constant C∗ depends on the constant τ from [10, Proposition 3.1], the

norm of the normalization mapping of the section Sφγρ/2,Λ, σ0 and dimension,

where γ stands for the standard engulfing constant and ρ is the constant
from [10, Theorem 5.1].

Remark 2. We will apply the theorem above for the scaled family {φλ}, with
λ ∈ (0, 1]. Since we need uniform estimates, we must assure that the estimate
above does not degenerate as λ varies in the interval (0, 1]. From Proposition
4 we can uniformly bound the quantity ‖ζ‖L1(Rn,Wφλ

). On the other hand,

the quantity dλ = dist(∂Sφλ1 , ∂Sφλ2 ) is uniformly bounded above and below
away from zero. We can also bound uniformly the norm of the normalization
mapping of Sφλγρ/2 by making use of [12, Corollary 4.7].

Corollary 1. Assume σ > σ0 > 1 and w ∈ C
(
Sφ2r

)
satisfies

M+
L0
φ(σ)

w ≥ −C0, M−
L0
φ(σ)

w ≤ C0 in Sφ2r,

with |w| ≤M(1+ζ) in Rn. Then, there exists α > 0 such that w ∈ Cα
(
Sφr/2

)
and

‖w‖Cα(Sφrρ) ≤ C∗

(
sup
Sφ2r

|w|+ C0 + C ‖ζ‖L1(Rn,Wφ)

)
, (17)

for some constant C∗.
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Proof : Let w∗ be the following auxiliary function

w∗(x) :=
1

max{1, r1+α1, rσ}
w(rx).

Then

M+
L0
φr

(σ)
w∗ ≥ −C0, M−

L0
φr

(σ)
w∗ ≤ C0 in Sφr2 ,

for φr(x) = r−2φ(rx) and |w∗| ≤M(1 + ζ) in Rn. By the previous theorem,

‖w∗‖Cα(Sφrρ ) ≤ C∗

(
sup
Sφr2

|w∗|+ C0 + C ‖ζ‖L1(Rn,Wφ)

)
.

Rescaling back to w, we get (17), where C∗ has the same dependence as in
the previous theorem, replacing for the norm of the normalization mapping
of the section Sφrγρ/2.

We also need gradient Hölder regularity estimates for solutions of the limit
equation ∫

Rn
δ(u, x, y)

b(y)

vφ0(y)
n+σ
2

dy = 0, x ∈ Sφ01 . (18)

It is interesting to note that we will not make use of the C1,α regularity results
from [10] since our kernels do not necessarily satisfy the assumptions therein.
Instead, due to the regularizing effect of the scalings, we will make use of the
results from [15] after a suitable change of variables.

Theorem 3. Let σ ≥ σ0 > 1. Assume v ∈ C
(
S
φ0
1

)
∩ L1 (Rn,Wφ0) is a

viscosity solution of∫
Rn
δ(v, x, y)

b(y)

vφ0(y)
n+σ
2

dy = 0 in Sφ01 ,

where K(y) = b(y)/vφ0(y)
n+σ
2 ∈ L0

φ0
(σ). Then, there exists α∗ such that

v ∈ C1,α∗
(
Sφ01/2

)
and

‖v‖C1,α∗(Sφ01/2)
≤ C

(
sup
S
φ0
1

|v|+ ‖v‖L1(Rn,Wφ0)

)
,

where C > 0 is a universal constant.
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Proof : We remark that vφ0(y) = D2φ(0)y · y. Since φ solves (4), we get
that, in particular, the matrix D2φ(0) has only positive eigenvalues, and
so is invertible. Therefore, it may be decomposed in the following form
D2φ(0) = SDSt, where S is an orthogonal matrix and D is diagonal with
the eigenvalues of D2φ(0). Since the eigenvalues are nonnegative, the matrix
D has a square root, which we will denote by B :=

√
D. Then

D2φ(0)y · y = Qy ·Qy,

where Q := BSt. Notice that

x ∈ Sφ01 ⇐⇒ D2φ(0)x · x < 1 ⇐⇒ |Qx| < 1 ⇐⇒ x ∈ Q−1(B1),

that is, Q(Sφ01 ) = B1. Now, define w = v ◦Q−1. Since v ∈ C(Sφ01 ), we obtain
w ∈ C(B1). For the growth condition, we have∫

Rn
|w(z)| 1

1 + |z|n+σ0
dz =

∫
Rn
|v(Q−1z)| 1

1 + |z|n+σ0
dz

= | det(Q)|
∫
Rn
|v(y)| 1

1 + |Qy|n+σ0
dy

= | det(Q)|
∫
Rn
|v(y)|Wφ0(y)dy,

that is

‖w‖
L1
(
Rn, 1

1+|.|n+σ0

) = det(Q) ‖v‖L1(Rn,Wφ0)
.

We then obtain that w ∈ C(B1) ∩ L1
(
Rn, 1

1+|.|n+σ0

)
. It is straightforward to

check that the function w solves in the viscosity sense∫
Rn
δ(w,−, z) b(y)

|y|n+σ2
dy = 0 in B1,

where b(y) = b(Q−1y). By [15, Theorem 4.1], there exists α∗ such that

‖w‖C1,α∗(B1/2) ≤ C

(
‖w‖

L1
(
Rn, 1

1+|.|n+σ0

) + ‖w‖L∞(B1)

)
.

Rescalling back to v, we obtain

‖v‖C1,α∗(Sφ01/2)
≤ C

(
‖v‖L1(Rn,Wφ0)

+ ‖v‖
L∞(Sφ01 )

)
,



NONLOCAL EQUATIONS WITH DEFORMING KERNELS 29

where C(C, |Q|, |Q−1|).

We are now ready to deliver the proof of the main theorem in its discrete
version.

Theorem 4. Let σ ≥ σ0 > 1, let φ ∈ C2(Rn) satisfy (4) and assumption

[A1], and let u be a viscosity solution to (1) in Sφ2R. There exists a small
η > 0 and a large R > 0 such that if

sup
y∈Rn
|bαβ(x, y)− b(y)| < η, ∀α ∈ A,∀β ∈ B, ∀x ∈ Sφ2R,

‖u‖L∞(Rn) ≤ 1

and

‖f‖L∞(Sφ2R) ≤ η,

then we can find universal constants θ, λ, C2 > 0 and a sequence of linear
functions lk = ak + bk · x such that

sup
Bθλk

|u− lk| ≤ λk(1+α0)

|ak+1 − ak| ≤ λk(1+α0)

|bk+1 − bk| ≤ C2λ
kα0,

for every k ∈ N. The exponent α0 satisfies α0 < min{α∗, α1}, where α1 is
from assumption [A1] and α∗ is from Theorem 3.

Proof : We proceed by induction. For step k = 0, take l0 = l1 = 0. Assume
the result holds up to order k, and let us show it also holds for k+ 1. Define

wk(x) =
1

λk(1+α0)
[u− lk](λkx), x ∈ Rn

and consider θ so small that

Bθ ⊂ Sφ01 .

Observe first that the scaled function

φλk(y) := λ−2kφ(λky), y ∈ Rn
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solves the same Monge-Ampère equation

det
(
D2φλk(y)

)
= F (λky) = F (y),

with the right-hand side satisfying the same bounds as F , γ < F < Γ, and
that the level sets of φλk are related with the level sets of φ by

vφλk (y) = λ−2kvφ(λ
ky).

Now wk solves an equation with the same ellipticity constants (but rescaled
kernels), namely

inf
α∈A

sup
β∈B

∫
Rn
δ(wk, x, y)

bαβ(λkx, λky)

vφλk (y)
n+σ
2

dy = λk(σ−1−α0)f(λkx)

for x ∈ λ−kSφ2R = S
φλk
2Rλ−k

. Since, due to (13),

σ − 1− α0 ≥ σ0 − 1− α0 > α1 − α0 > 0

and λ < 1, we have∥∥∥λk(σ−1−α0)f(λkx)
∥∥∥
L∞(λ−kSφ2R)

≤ ‖f‖L∞(Sφ2R) ≤ η.

Therefore, wk solves

−η < inf
α∈A

sup
β∈B

∫
Rn
δ(wk, x, y)

bαβ(λkx, λky)

vφλk (y)
n+σ
2

dy < η (19)

for x ∈ λ−kSφ2R = S
φλk
2Rλ−k

.
Let φ0 be the function from Proposition 5 and take R large such that

Sφ01 ⊂ Sφ2R. Then, since φ0 is 2-homogeneous,

S
φλk
2Rλ−k

= λ−kSφ2R ⊃ λ−kSφ01 = Sφ0
λ−k
⊃ Sφ01 ,

so that (19) holds for Sφ01 for every k ∈ N. From Corollary 1, wk is Hölder

continuous in S
φλk
Rρ . Notice that, by Lemma 1 with Ψ1 = φλk,Ψ2 = |.|2 and

radius R0, we obtain for large R

BR0
⊂ S

φλk
Rρ ,

and so wk is Hölder continuous in BR0
, where R0 is from Lemma 4. We

can now apply Lemma 4 to the function wk, finding h : Rn → R satisfying
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h ∈ C(Sφ01 ), |h| ≤ (1 + ζ) in Rn,∫
Rn
δ(h, x, y)

b(y)

vφ0(y)
n+σ
2

dy = 0,

in the viscosity sense in Sφ01 , and |wk − h| < ε in Sφ01 , for some small ε to be
chosen later. By Theorem 3, we obtain

‖h‖C1,α∗(Sφ01/2)
≤ C2.

Letting l̄(x) = h(0) +∇h(0) · x, we have, by the mean value theorem,

|h(x)− l̄(x)| ≤ [∇h]
Cα∗(S

φ0
1/2)
|x|1+α∗

≤ C2|x|1+α∗

for x ∈ Bθ/2.
Since |wk| ≤ 1 in Bθ, we have |h| ≤ 1 + ε in Bθ and then |h(0)| ≤ 1 + ε.

Also, by C1,α∗ estimates, we have |∇h(0)| ≤ C2. Therefore, we have the
following estimates

|wk − l̄| ≤ |wk − h|+ |h− l̄|

≤ ε(η,R) + C2|x|1+α∗ in B θ
2

|wk − l̄| ≤ |wk − h|+ |h|+ |l̄|

≤ 3ε(η,R) + 2 + C2|x| in Bθ\B θ
2

|wk − l̄| ≤ |wk|+ |l̄|

≤ |x|1+α1 + |h(0)|+ |∇h(0)| |x|

≤ |x|1+α1 + 1 + ε(η,R) + C2|x| in Rn\Bθ.

Let us now fix λ > 0, to be chosen later, such that ε ≤ λ1+α∗. Define

lk+1(x) := lk(x) + λk(1+α0)l̄(λ−kx),
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and

wk+1(x) =
1

λ(k+1)(1+α0)
[u− lk+1](λ

k+1x)

=
1

λ1+α0
[wk − l̄](λx).

We have the following estimates for the scaling above:

|wk+1(x)| ≤ λ−1−α0(ε+ C2λ
1+α∗|x|1+α∗) in λ−1B θ

2

|wk+1(x)| ≤ λ−1−α0(3ε+ 2 + C2λ|x|) in λ−1Bθ\λ−1B θ
2

|wk+1(x)| ≤ λ−1−α0(λ1+α1|x|1+α1 + 1 + ε+ C2λ|x|) in Rn\λ−1Bθ.

Using the fact that ε ≤ λ1+α∗ ≤ 1, we obtain

|wk+1(x)| ≤ λα∗−α0(1 + C2|x|1+α∗) in λ−1B θ
2

|wk+1(x)| ≤ 5λ−1−α0 + C2λ
−α0|x| in λ−1Bθ\λ−1B θ

2

|wk+1(x)| ≤ λα1−α0|x|1+α1 + 2λ−1−α0 + C2λ
−α0|x| in Rn\λ−1Bθ.

Notice now that for λ ≤ 1/2, we obtain

Bλ−1θ/2 ⊃ Bθ.

Recalling that α0 < min{α1, α∗}, we have, by the first estimate above,

|wk+1(x)| ≤ λα∗−α0(1 + C2|x|1+α∗)
≤ λα∗−α0(1 + C2)
≤ 1

in Bθ, as long as λ is chosen such that

λ ≤
(

1

1 + C2

) 1
α∗−α0

.
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We will choose λ so small that |wk+1(x)| ≤ |x|1+α1 outside Bθ as well. A
point x ∈ Rn\Bθ must be in one of the sets

Bλ−1θ/2, Bλ−1θ\Bλ−1θ/2 or Rn\Bλ−1θ.

If, for instance, x ∈ Bλ−1θ/2, we have θ ≤ |x| < λ−1θ/2, and so

|wk+1(x)| ≤ λα∗−α0(1 + C2|x|1+α∗)
≤ λα∗−α0(θ−1−α1 + C2|x|α∗−α1)|x|1+α1

≤ 3θ−1−α1λα1−α0(1 + C2)|x|1+α1

≤ λα∗−α0θ−1−α1|x|1+α1 + C2λ
α∗−α0|x|α∗−α1|x|1+α1

≤
(
λα∗−α0θ−1−α1 + C2θ

α∗−α1.

.max
{(

1
2

)α∗−α1 λα1−α0, λα∗−α0

})
|x|1+α1

≤ |x|1+α1,

as long as λ is chosen small such that(
λα∗−α0θ−1−α1 + C2θ

α∗−α1 max

{(
1

2

)α∗−α1

λα1−α0, λα∗−α0

})
≤ 1,

recall that both α∗ − α0 and α1 − α0 are positive and that α∗ − α1 may be
positive or negative.

Now, if x ∈ Bλ−1θ\Bλ−1θ/2, we have λ−1θ/2 ≤ |x| < λ−1θ. By the second
estimate, we obtain

|wk+1(x)| ≤ 5λ−1−α0 + C2λ
−α0|x|

= 5λα1−α0λ−1−α1 + C2λ
α1−α0λ−α1|x|

≤ 2λα1−α0 max{5, C2}
(
θ
2

)−1−α1 |x|1+α1

≤ |x|1+α1,

as long as we choose λ so small that

2λα1−α0 max{5, C2}
(
θ

2

)−1−α1

≤ 1.

Finally, if x ∈ Rn\Bλ−1θ, we have |x| ≥ λ−1θ. By the third estimate, we get

|wk+1(x)| ≤ λα1−α0|x|1+α1 + 2λ−1−α0 + C2λ
−α0|x|

≤ λα1−α0
(
1 + 2θ−1−α1 + C2θ

−α1
)
|x|1+α1

≤ |x|1+α1,
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as long as we take λ small such that

λα1−α0
(
1 + 2θ−1−α1 + C2θ

−α1
)
≤ 1.

We choose λ such that all of the above conditions hold, and we get

|wk+1(x)| ≤ |x|1+α1, x ∈ Rn\Bθ,

and so |wk+1| ≤ (1 + ζ) in Rn as desired.
Notice as well that, for x ∈ Bλk+1θ and |wk+1| ≤ 1 in Bθ, we have

|u(x)− lk+1(x)| = λ(k+1)(1+α0)|wk+1(λ
−(k+1)x)|

≤ λ(k+1)(1+α0).

By the definition of lk+1, we have ak+1 = ak + λk(1+α0)h(0) and bk+1 = bk +
λkα0∇h(0) and so the theorem is proven.

The full regularity estimate of Theorem 1 follows as in [8], using a covering
argument.
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