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Abstract: Let Ord be the category of (pre)ordered sets. Unlike Ord{X, whose
behaviour is well-known, not much can be found in the literature about the lax
comma 2-category Ord{{X. In this paper we show that, when X is complete, the
forgetful functor Ord{{X Ñ Ord is topological. Moreover, Ord{{X is complete and
cartesian closed if and only if X is. We end by analysing descent in this category.
Namely, when X is complete and cartesian closed, we show that, for a morphism
in Ord{{X, being pointwise effective for descent in Ord is sufficient, while being
effective for descent in Ord is necessary, to be effective for descent in Ord{{X.
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Introduction
Janelidze-Galois theory [7, 8] neatly gives a common ground for many Galois-

type theories, prominently including Magid’s Galois theory of commutative
rings, Grothendieck’s theory of étale covering of schemes, and central extension
of groups. There is a deep connection between Janelidze-Galois theory and
factorization systems [9, 2].
Motivated by this connection and the theory of lax orthogonal factorization

systems [3, 4], we have started a project whose aim is to investigate two-
dimensional extensions of the basic ideas and results of Janelidze-Galois theory.
It has been noticeable that the so-called lax comma 2-categories play an

important role in our work (c.f. [5]). Although they are quite natural (ap-
pearing, for instance, in [14] and [15, 2.2]), it seems that the literature still
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lacks a systematic study of their fundamental properties; namely, topologicity,
exponentiability, and descent.
Since these properties are essential to our endeavour, we give herein an expos-

ition on the lax comma 2-categories of Ord, the 2-category of ordered sets (also
called preordered sets). We prove that the forgetful functor Ord{{X Ñ Ord is
topological. Moreover, we show that Ord{{X is complete and cartesian closed
if and only if X is. We end by analysing descent in this category. Namely,
when X is complete and cartesian closed, we show that, for a morphism in
Ord{{X, being pointwise effective for descent in Ord is sufficient, while being
effective for descent in Ord is necessary, to be effective for descent in Ord{{X.
Although further enriched and 2-dimensional aspects of lax comma objects

are essential to our project (see, for instance, [5] for an overall view of our
ongoing work’s setting), they are not relevant to the present note and, hence,
will not be dealt herein.
The main intent of this paper is threefold: (1) give an exposition of lax

comma 2-categories of Ord, showing some of its nice properties; (2) provide
background to our future work in descent and Galois theory regarding Ord-
enriched categories; (3) give a guiding template for our most general systematic
study of lax comma 2-categories. Finally, we also want to pick the community’s
attention to the problem of studying lax comma 2-categories, showing that,
even in the case of Ord, there are still facets to be better explored.

1. The forgetful functor U : Ord{{X Ñ X
Let X be an ordered set. Here by order it is meant a reflexive and transitive

binary relation, not necessarily antisymmetric (also called preorder).
The category Ord{{X has as objects monotone maps a : Y Ñ X, where

Y is an ordered set, and as morphisms f : pY, aq Ñ pZ, bq monotone maps
f : Y Ñ Z such that a ď bf :

Y

ď
a   

f
// Z

b~~

X

with the usual composition. Given two morphisms f, g : pY, aq Ñ pZ, bq, we
say that f ď g if fpyq ď gpyq for all y P Y , that is to say, if f ď g in Ord.
This makes Ord{{X an Ord-enriched category.
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The category Ord{X is a non-full subcategory of Ord{{X, having the same
objects, and morphisms f : pY, aq Ñ pZ, bq those morphisms in Ord{{X such
that a “ bf . The Ord-enrichment in Ord{X is the same as Ord{{X; that is,
the inclusion Ord{X Ñ Ord{{X is locally full.
These two categories have very different behaviour, as we will see throughout

this text. We start by comparing the two locally full forgetful functors of the
diagram

Ord{X

U $$

// Ord{{X

Uzz

Ord

It is well-known that the forgetful functor U : Ord{X Ñ Ord is Ord-comonadic,
and therefore it reflects isomorphisms, and creates (Ord-weighted) colimits and
absolute equalizers. Moreover, the category Ord{X is complete but U does not
preserve limits in general; indeed, it preserves equalizers and pullbacks but
not products: in Ord{X the terminal object is 1X : X Ñ X, and products are
formed via pullbacks. On the contrary, the forgetful functor U : Ord{{X Ñ Ord
does not reflect isomorphisms, but in turn it is topological [6]:

Theorem 1.1. If X is a complete ordered set, then the forgetful functor
U : Ord{{X Ñ Ord is topological.

Proof : Given a family pfi : Y Ñ pZi, biqqiPI of monotone maps (where I may
be a proper class), we define a : Y Ñ X by apyq “

Ź

iPI bipfipyqq. Then, by
construction, a is monotone and a ď bf ; that is, for each i P I, fi : pY, aq Ñ
pZi, biq is a morphism in Ord{{X. Moreover, given any family of morphisms
pgi : pW, cq Ñ pZi, biqqiPI and a monotone map h : W Ñ Y such that fih “ gi
for every i, then it is easily checked that c ď ah, i.e. h : pW, cq Ñ pY, aq
is a morphism in Ord{{X (and clearly the unique whose image under U is
h : W Ñ Y ).

Corollary 1.2. The category Ord{{X is (co)complete if, and only if, X is
(co)complete.

Proof : It remains to check that X is complete provided that Ord{{X is. Let
pxiqiPI be a family of elements of X and consider the identities p1 Ñ p1, xiqqiPI
(here we will use the same notation for the element x of X and the constant
map Y Ñ X which assigns x to every element of Y ). The initial structure x on
1, with respect to this family, is clearly

Ź

iPI xi in X: so that p1, xq Ñ p1, xiq
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is a morphism, x ď xi for every i; the universal property of the lifting gives
that, if y P X is such that y ď xi for every i P I, then y ď x.
For the corresponding result for cocompleteness the proof is analogous.

From now on, X is a complete ordered set. We find it worth to describe how
limits and colimits are built in Ord{{X. Given a family pXi, aiqiPI of objects
of Ord{{X, the structure a :

ś

Xi Ñ X in the product
ś

Xi is defined by
a ppxiqiq “

Ź

i aipxiq, while the structure in its coproduct
š

Xi is given by
b :

š

Xi Ñ X, with bpyq “ aipyq when y P Xi. Equalisers are built as
expected: given morphisms f, g : pY, aq Ñ pZ, bq, its equaliser is m : pM “

ty P Y ; fpyq “ gpyqu,paq Ñ pY, aq, where pa is the restriction of a to M .
Coequalisers are given by Kan extensions, as we show next.

Lemma 1.3. Given morphisms f, g, h in Ord{{X as in the diagram

Y

a   

f
//

g
// Z

ď

h //

b
��

W

c~~

ď

X

h is the coequaliser of f, g in Ord{{X if, and only if:
(1) h is the coequaliser of f, g in Ord;
(2) c is the right Kan extension of b along h.

Proof : Assume that h : pZ, bq Ñ pW, cq is the coequaliser of f, g in Ord{{X.
Since the forgetful functor into Ord is topological, h is the coequaliser of f, g
in Ord. To check that c is the right Kan extension of b along h, let c1 : W Ñ X
be such that b ď c1h. Then, by the universal property of the coequaliser,
there exists t : pW, cq Ñ pW, c1q such that th “ h; surely t “ 1W since h is an
epimorphism, and therefore c ď c1 as claimed.
Conversely, assume that h : pZ, bq Ñ pW, cq satisfies conditions (1), (2). Then

trivially hf “ hg, and, for any h1 : pZ, bq Ñ pW 1, c1q with h1f “ h1g there is a
(unique) monotone map t : W Ñ W 1 such that th “ h1. Since, by assumption,
b ď c1h1 “ c1th, by (2) we conclude that c ď c1t, that is, t : pW, cq Ñ pW 1, c1q is
a morphism in Ord{{X and our conclusion follows.

Remark 1.4 (Weighted (co)limits). We refer to [1, pages 7 & 8] for Ord-enriched
weighted (co)limits. Recall that an Ord-enriched category is Ord-(co)complete
whenever it has conical (co)limits and the so-called Ord-(co)tensors, called
herein Ord-(co)powers (see, for instance, [12, Theorem 3.73] for the general
enriched setting).
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We establish herein that, when X is (co)complete, Ord{{X is Ord-complete
and cocomplete. More precisely, assuming that X is (co)complete, the conical
(co)limits described in Section 1 are Ord-enriched. Furthermore, for a pair
pW, pY, aqq P Ordˆ Ord{{X:

– the Ord-copower W b pY, aq is given by pW ˆ Y,W b aq where
W b apw, yq “ apyq.

– the Ord-power W& pY, aq is given by
`

Y W , aJ
˘

where

aJpfq “
ľ

wPW

apfpwqq,

in which Y W is the exponential in Ord.

2. Exponentiability
In order to investigate under which conditions Ord{{X is a cartesian closed

category, we first recall two well-known results.
First of all, the (complete) ordered set X, as a thin category, is cartesian

closed if, and only if, it is an Heyting algebra; that is, it has a binary operation
X ˆX Ñ X, assigning to each pair px, yq an element yx such that z ď yx if
and only if z ^ x ď y, for every x, y, z P Z. This is in fact equivalent to X
being a frame, i.e. in X arbitrary joins distribute over finite meets.
Secondly, Ord is a cartesian closed category. For each ordered set Y , the

right adjoint functor p qY to p q ˆ Y : OrdÑ Ord assigns to each ordered set Z
the set ZY “ tf : Y Ñ Z ; f is a monotone mapu, equipped with the pointwise
order; that is, for f, g P ZY , f ď g if, for all y P Y , fpyq ď gpyq.
On the contrary, Ord{X is not cartesian closed in general. The following

result can be found in [16].

Theorem 2.1. Given a monotone map a : Y Ñ X, the functor

p q ˆ pY, aq : Ord{X Ñ Ord{X

has a right adjoint if, and only if, for all y0 ď y1 in Y , x P X, if
apy0q ď x ď apy1q, then there exists y P Y with y0 ď y ď y1 and apyq “ x.

Again, Ord{{X behaves differently:

Theorem 2.2. For a complete ordered set X, the following assertions are
equivalent:

(i) X is cartesian closed;
(ii) Ord{{X is cartesian closed.
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Proof : (i)ñ(ii): Given two objects a : Y Ñ X and b : Z Ñ X in Ord{{X, in
order to define pZ, bqpY,aq first we consider the ordered set ZY as defined above,
and then the map ba : ZY Ñ X defined by

bapfq “
ľ

yPY

bpfpyqqapyq.

The map ba is monotone: if f, g : Y Ñ Z are monotone maps, with f ď g,
then, for every y P Y ,

bpfpyqqapyq ^ apyq ď bpfpyqq ď bpgpyqq ñ bpfpyqqapyq ď bpgpyqqapyq.

The monotone map ev is a morphism in Ord{{X

ZY ˆ Y

ď
ba^a $$

ev // Z

b��

X

since, by definition of ba, for all f P ZY and y P Y ,

bapfq ^ apyq “
ľ

y1PY

bpfpy1qqapy
1q
^ apyq ď bpfpyqqapyq ^ apyq ď bpfpyqq.

To check its universality let c : W Ñ X be an object and h : pW, cq ˆ pY, aq Ñ
pZ, bq a morphism in Ord{{X. Then h : W Ñ ZY , with hpwq : Y Ñ Z defined
by hpwqpyq “ hpw, yq for every w P W and y P Y , is a morphism in Ord{{X:

cpwq^apyq ď bphpw, yqq ñ cpwq ď bphpwqpyqqapyq ñ cpwq ď
ľ

yPY

bphpwqpyqqapyq.

Therefore p qˆpY, aq has a right adjoint p qpY,aq assigning pZY , baq to each pZ, bq
in Ord{{X.
(ii)ñ(i): Assuming that Ord{{X is cartesian closed, for each x P X, let

pW, cq “ pX, 1Xq
p1,xq be the exponential in Ord{{X. It is easily checked that

W – Ordp1, Xq – X. We will show that yx “ cpyq, where y : 1 Ñ X is the
map assigning y to the only element of 1, for y P X. Using

W ˆ 1

ď
c^x ##

ev // X

1X~~

X
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one concludes that cpyq^x ď y; moreover, from the universality of ev it follows
that, if z ^ x ď y, then the morphism y : p1, zq ˆ p1, xq Ñ pX, 1Xq

1ˆ 1

ď
z^x ""

y
// X

1X~~

X

induces, by universality of ev, a morphism u : p1, zq Ñ pW, cq such that evpuˆ
1q “ y, and thus z ď cpyq as required.

A careful analysis of this proof allows us to conclude the following

Corollary 2.3. Let X be a complete ordered set and pY, aq an object of Ord{{X.
The following conditions are equivalent:

(i) pY, aq is exponentiable in Ord{{X;
(ii) For all y P Y , apyq is exponentiable in X.

Proof : (i) ñ (ii) is shown exactly as in the Theorem above, observing that to
define the exponentials with exponent pY, aq we only need exponentials in X
with exponent apyq, for y P Y .
(ii) ñ (i): Assuming that pY, aq is exponentiable, let pW, cq “ pX, 1XqpY,aq.

Then it is easy to check that W “ tf : Y Ñ X ; f is monotoneu. Let x P X,
and g : Y Ñ X be defined by gpyq “ x for all y P Y . Then, on one hand,
cpgq ^ apyq ď x because ev : pW, cq ˆ pY, aq Ñ pX, 1Xq is a morphism in
Ord{{X, and, on the other hand, if z P X is such that z ^ apyq ď x then
the map h : p1, zq ˆ pY, aq Ñ pX, 1Xq constantly equal to x is a morphism in
Ord{{X and so there is h : p1, zq Ñ pW, cq such that evphˆ1q “ h. Necessarily
hp˚q “ g and therefore z ď cpgq.

3. Descent
We could not find a reference on the literature on the behaviour of the change-

of-base functors for morphisms of Ord{X. Indeed their study does not provide
extra information since they reduce to change of base functors for morphisms
in Ord: if f : pY, aq Ñ pZ, bq is a morphism in Ord{X, then pulling back along
f in Ord{X is the same as pulling back along f in Ord:

ppOrd{Xq{pZ, bq
f˚

// pOrd{Xq{pY, aqq – pOrd{Z
f˚

// Ord{Y q

since, for any pY, aq, pOrd{Xq{pY, aq is isomorphic to Ord{Y and pullbacks are
formed exactly in the same way.
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This is not the case for Ord{{X as we show next. We will investigate effective
descent morphisms in Ord{{X, showing in particular that being effective for
descent in Ord is necessary but not sufficient for a morphism to be effective for
descent in Ord{{X.
Throughout we assume that X, as a category, is complete and cartesian

closed (i.e., X is a complete Heyting algebra).
We start by characterizing (stable) regular epimorphisms in Ord{{X.

Lemma 3.1. For a morphism f : pY, aq Ñ pZ, bq in Ord{{X, the following
conditions are equivalent:

(i) f is a regular epimorphism in Ord{{X;
(ii) f is a regular epimorphism in Ord and

p@z P Zq bpzq “
ł

fpyqďz

apyq. (3.i)

Proof : What remains to show is that (3.i) is equivalent to b “ ranfa. Given a
regular epimorphism f : Y Ñ Z in Ord and a monotone map a : Y Ñ X, (3.i)
defines a monotone map b : Z Ñ X such that a ď bf . Moreover, if a ď b1f
for some monotone map b1 : Z Ñ X, then, for every z P Z and y P Y with
fpyq ď z, apyq ď c1pfpyqq ď c1pzq, and so c ď c1. The converse is shown
analogously.

Proposition 3.2. For a morphism f : pY, aq Ñ pZ, bq in Ord{{X, the following
conditions are equivalent:

(i) f is a stable regular epimorphism in Ord{{X;
(ii) f is a stable regular epimorphism in Ord, that is, for each z0 ď z1 in Z

there exist y0 ď y1 in Y with fpyiq “ zi (i “ 0, 1), and

p@z P Zq bpzq “
ł

fpyq“z

apyq. (3.ii)

Proof : (i) ñ (ii): The forgetful functor U : Ord{{X Ñ Ord preserves regu-
lar epimorphisms and pullbacks, hence every stable regular epimorphism in
Ord{{X is also stably a regular epimorphism in Ord. If (3.ii) does not hold,
that is, if there exists z P Z with bpzq ą

Ž

fpyq“z apyq, then we consider the
pullback of f along g : p1, bpzqq Ñ pZ, bq with gp˚q “ z. It is easy to check that
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in the pullback diagram

f´1pzq

aπ1
00

π2 //

π1
��

1

g
��

bpzq

pp

Y

ď
a $$

f
// Z

b~~

X

π2 is not a regular epimorphism in Ord{{X since it does not satisfy (3.i).

(ii) ñ (i): If f : pY, aq Ñ pZ, bq satisfies (ii), for any pullback diagram in
Ord{{X

Y ˆZ W

aπ1^cπ2
00

π2 //

π1
��

W

g
��

c

oo

Y

ď ď
a

%%

f
// Z

ě
b~~

X

by assumption π2 is a regular epimorphism in Ord, so it remains to be shown
that π2 satisfies (3.i): for any w P W , cpwq ď bpgpwqq “

Ž

fpyq“gpwq apyq; hence

cpwq ď bpgpwqq ^ cpwq “ p
ł

fpyq“gpwq

apyqq ^ cpwq

“
ł

fpyq“gpwq

papyq ^ cpwqq (X is cartesian closed)

ď
ł

fpy1q“gpw1q, w1ďw

paπ1 ^ cπ2qpy
1, w1q.
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Next we investigate effective descent morphisms in Ord{{X. We will show
that, for a given morphism f : pY, aq Ñ pZ, bq in Ord{{X,

p@z0 ď z1 ď z2 in Zq pDy0 ď y1 ď y2 in Y q : fpyiq “ zi pi “ 0, 1, 2q
and apy0q “ bpz0q

(3.iii)
ó

f is effective for descent in Ord{{X

ó

p@z0 ď z1 ď z2 in Zq pDy0 ď y1 ď y2 in Y q : fpyiq “ zi pi “ 0, 1, 2q. (3.iv)

We start by showing the latter implication.

Theorem 3.3. If f : pY, aq Ñ pZ, bq is effective for descent in Ord{{X, then
Uf : Y Ñ Z is effective for descent in Ord.

Proof : With f : pY, aq Ñ pZ, bq also its pullback fK along pZ,Kq Ñ pZ, bq

pY,Kq
fK //

1
��

pZ,Kq

1
��

pY, aq
f
// pZ, bq

is effective for descent. Observing that the change of base functors of fK in
Ord{{X and of UfK “ Uf in Ord are isomorphic:

p pOrd{{Xq{pZ,Kq
f˚K // pOrd{{Xq{pY,Kq q – p Ord{Z

pUfq˚
// Ord{Y q

we conclude that Uf is effective for descent in Ord, which, thanks to [10,
Proposition 3.4], is equivalent to (3.iv).

To show that (3.iii) is sufficient for f to be effective for descent, we will make
use of the chain of pullback preserving (faithful) inclusions

Ord{{X
Π // rXop,Ords // rXop,Rels // rXop,Gphs, (3.v)

where ΠpY, aq : Xop Ñ Ord is defined by ΠpY, aqpxq “ Yx “ ty P Y ; x ď
apyqu, ΠpY, aqpx ě x1q is the inclusion of Yx in Yx1 and Πpf : pY, aq Ñ pZ, bqqx
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is the (co)restriction Yx Ñ Zx of f , and the following Theorem, that can be
found, for instance, in [11, pag. 260] or [13, Theorem 1.4].
Theorem 3.4. Let A and B be categories with pullbacks. If F : A Ñ B is a
fully faithful pullback preserving functor and F pfq is of effective descent in B,
then f is of effective descent if, and only if, it satisfies the following property:
whenever the diagram below is a pullback in B, there is an object A in A such
that F pAq – B

F pP q //

��

B

��

F pY q
F pfq

// F pZq.

Indeed, using (3.v) we will show that in rXop,Ords a natural transformation
is effective for descent if, and only if, it is pointwise effective for descent in Ord,
and that f is effective for descent in Ord{{X provided that Πf is effective for
descent in rXop,Ords.
Proposition 3.5. In rXop,Gphs a morphism α : F Ñ G is effective for descent
if, and only if, it is an epimorphism.
Proof : The category rXop,Gphs is a topos.
Proposition 3.6. For a morphism α : F Ñ G in rXop,Rels, the following
conditions are equivalent:

(i) α is effective for descent;
(ii) α is a stable regular epimorphism;
(iii) α is a regular epimorphism;
(iv) p@x P Xq αx is a regular epimorphism in Rel;
(v) p@x P Xq p@pz0, z1q P Gpxqq pDpy0, y1q P F pxqq : αxpy0, y1q “ pz0, z1q;
(vi) p@x P Xq αx is effective for descent in Rel.

Proof : Applying Theorem 3.4 for the inclusion rXop,Rels Ñ rXop,Gphs, and
knowing that pullbacks in rXop,Rels are formed pointwise and regular epi-
morphisms are pullback stable, one concludes that (i)ô(ii)ô(iii)ô(iv). The
characterizations of regular epimorphisms and effective descent morphisms in
Rel of [10, Propositions 2.1 and 3.3] give (iv)ô(v)ô(vi).
Theorem 3.7. In rXop,Ords a morphism α : F Ñ G is effective for descent
if, and only if,

p@x P Xq αx is effective for descent in Ord. (3.vi)
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Proof : Now we apply Theorem 3.4 to the full inclusion rXop,Ords Ñ rXop,Rels.
Since it preserves pullbacks, to prove that α : F Ñ G satisfying (3.vi) is effective
for descent in rXop,Ords it is sufficient to show that in the pullback diagram

F ˆG H
ρ
//

π
��

H

β
��

F α
// G

if F ˆG H belongs to rXop,Ords, then also H does. For each x P X, consider
the pullback diagram

F pxq ˆGpxq Hpxq
ρx //

πx
��

Hpxq

βpxq
��

F pxq αx

// Gpxq.

If αx is effective for descent in Ord, then Hpxq P Ord since F pxq ˆGpxq Hpxq
does by assumption.
Conversely, let us assume that α is effective for descent, and let x P X and

z0 ď z1 ď z2 in Gpxq. Consider the functor H : Xop Ñ Rel defined by

Hpx1q “

$

&

%

tpz0, z1q, pz1, z2qu if x1 – x
tpz0, z0qu if x1 ă x
H otherwise.

with Hpx2 ě x1q : Hpx2q Ñ Hpx1q given byHÑ Hpx1q if x2 ę x, the constant
map Hpx2q Ñ Hpx1q if x1 ă x and x2 ď x, and the identity otherwise. Since
by assumption α is effective for descent and H does not belong to rXop,Ords
(since Hpxq is not transitive), also F ˆG H does not belong to rXop,Ords.
If x1 fl x, then F px1q ˆGpx1q Hpx

1q is either H or isomorphic to F px1q, hence
an ordered set. Therefore there must exist x1 – x (and so we may consider
x1 “ x since images of isomorphic elements will be isomorphic too) so that
F pxq ˆGpxq Hpxq, that is,

tppy, y1q, pz0, z1qq ; αxpy, y
1
q “ pz0, z1quY tppy, y

1
q, pz1, z2qq ; αxpy, y

1
q “ pz1, z2qu

is not an ordered set. Failure of transitivity at F pxq ˆGpxq Hpxq means that,
necessarily, there exist ppy, y1q, pz0, z1qq and ppy1, y2q, pz1, z2qq in F pxq ˆGpxq

Hpxq; then πxpy, y1q and πxpy1, y2q gives that y ď y1 ď y2 in F pxq. Computing
now αx gives αxpyq “ z0, αxpy1q “ z1 and αxpy2q “ z2.
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Theorem 3.8. If f : pY, aq Ñ pZ, bq is a morphism in Ord{{X satisfying
(3.iii), that is,

p@z0 ď z1 ď z2 in Zq pDy0 ď y1 ď y2 in Y q : fpyiq “ zi pi “ 0, 1, 2q
and apy0q “ bpz0q,

then f is effective for descent in Ord{{X.

Proof : Let f : pY, aq Ñ pZ, bq satisfy the condition above. Applying Theorem
3.4, what we need to show is that, given a pullback diagram in rXop,Ords

UpP, cq
ρ

//

Uπ
��

G

β
��

UpY, aq
Uf
// UpZ, bq

G – UpW,dq for some d : W Ñ X in Ord{{X.
First we show that, for every x P X, Gpx ě Kq : Gpxq Ñ GpKq is an injective

map:

PK
ρK //

πK

��

GpKq

βK

��

Px
ρx //

``

πx
��

Gpxq

;;

βx
��

Yx
fx

//

~~

Zx

$$

YK
fK

// ZK.

Indeed, if w1, w2 P Gpxq are such that Gpx ě Kqpw1q “ Gpx ě Kqpw2q “ w,
then βxpw1q “ βxpw2q. Let y P Yx be such that fxpyq “ βxpw1q. Then
py, w1q and py, w2q belong to Px, hence they also belong to PK “ P , with
ρKpy, w1q “ ρKpy, w2q “ w, πKpy, w1q “ πKpy, w2q “ y; hence w1 “ w2.
Therefore also the maps Gpx1 ě xq : Gpx1q Ñ Gpxq are injective, and so we
may assume they are inclusions.
Now we consider W “ GpKq and define d : W Ñ X by

dpwq “
ł

tx P X ; w P Gpxqu.

Then:
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– w P Gpdpwqq: if z “ βKpwq, then, for all x P X, if w P Gpxq then
z P Zx, i.e. x ď bpzq; hence dpwq ď bpzq, and so Z P Zdpwq. Let
y P Ydpwq be such that fpyq “ z. Then, for all x P X, if w P Gpxq then
py, wq P Px, or, equivalently, x ď cpy, wq, which implies dpwq ď cpy, wq.
Hence w P Gpcpy, wqq Ď Gpdpwqq.

– d is monotone: it follows from the fact that, for each x P X, Gpxq is
upwards-closed; indeed, if w ď w1 in W and w P Gpxq, then βKpwq ď
βKpw

1q and both belong to Zx. Let y ď y1 in Yx be such that fpyq “
βKpwq and fpy1q “ βKpw

1q. Then py, wq ď py1, w1q in P and py, wq P Px
implies py1, w1q P Px, since Px is upwards-closed. This gives w1 P Gpxq
as claimed.

Remark 3.9. As we pointed out at the beginning of this section, Uf effect-
ive for descent in Ord does not imply f : pY, aq Ñ pZ, bq effective for descent
in Ord{{X, since it does not even imply that f is a regular epimorphism in
Ord{{X. It is an open problem to know whether every stable regular epimorph-
ism f with Uf effective for descent in Ord is effective for descent in Ord{{X.
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