
Pré-Publicações do Departamento de Matemática
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Abstract: We examine a transmission problem driven by a degenerate nonlinear
operator with a natural interface condition. Two aspects of the problem entail
genuine difficulties in the analysis: the absence of representation formulas for the
operator and the degenerate nature of the diffusion process. Our arguments cir-
cumvent these difficulties and lead to new regularity estimates. We prove the local
boundedness of weak solutions and establish an estimate for their gradient in BMO–
spaces. The latter implies solutions are of class C0,Log−Lip across the interface.
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1. Introduction
Transmission problems describe diffusive processes within heterogeneous

media that change abruptly across certain interfaces. They find application,
for example, in the study of electromagnetic conductivity and composite
materials, and their mathematical formulation involves a domain split into
sub-regions, where partial differential equations (PDEs) are prescribed. Since
the PDEs vary from region to region, the problem may have discontinuities
across the interfaces. Consequently, the geometry of these interfaces (which,
in contrast to free boundary problems, are fixed and given a priori) and
the structure of the underlying equations play a crucial role in analysing
transmission problems.

This class of problems first appeared circa 1950, in the work of Mauro
Picone [16], as an attempt to address heterogeneous materials in elasticity
theory. Several subsequent works developed the basics of the theory and
generalised it in various directions [4, 8, 9, 10, 12, 17, 19, 21]. We refer the
interested reader to [5] for a comprehensive account of this literature.

Developments concerning the regularity of the solutions to transmission
problems are much more recent. In [14], the authors study a class of ellip-
tic equations in divergence form, with discontinuous coefficients, modelling
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composite materials with closely spaced interfacial boundaries, such as fibre-
reinforced structures. The main result in that paper is the local Hölder
continuity for the gradient of the solutions, with estimates. The findings
in [14] are relevant from the applied perspective since the gradient of a so-
lution accounts for the stress of the material, and estimating it shows the
stresses remain uniformly bounded, even when fibres are arbitrarily close to
each other. The vectorial counterpart of the results in [14] appeared in [13],
where regularity estimates for higher-order derivatives of the solutions are
obtained. See also the developments reported in [3].

A further layer of analysis concerns the proximity of sub-regions in limiting
scenarios. In [1], the authors examine a domain containing two subregions,
which are ε-apart, for some ε > 0. Within each sub-region, the diffusion
process is given by a divergence-form equation with a diffusivity coefficient
A 6= 1. In the remainder of the domain, the diffusivity is also constant but
equal to 1. By setting A = +∞, the authors examine the case of perfect
conductivity. The remarkable fact about this model is that estimates on the
gradient of the solutions deteriorate as the two regions approach each other.
In [1], the authors obtain blow-up rates for the gradient norm in terms of
ε→ 0. We also notice the findings reported in [2] extend those results to the
context of multiple inclusions and also treat the case of perfect insulation
A = 0. We also refer the reader to [6].

More recently, the analysis of transmission problems focused on the geome-
try of the interface. The minimum requirements on the transmission interface
yielding regularity properties for the solutions are particularly interesting. In
[7], the authors consider a domain split into two sub-regions. Inside each sub-
region, the solution of the problem is required to be a harmonic function, and
a flux condition is prescribed along the interface separating the sub-regions.
By resorting to a representation formula for harmonic functions, the authors
establish the existence of solutions to the problem and prove that solutions
are of class C0,Log−Lip across the interface. In addition, under the assump-
tion that the interface is locally of class C1,α, they prove the solutions are
of class C1,α within each sub-region, up to the transmission interface. This
fact follows from a new stability result allowing the argument to import in-
formation from the case of flat interfaces. In [20], the authors extend the
analysis in [7] to the context of fully nonlinear elliptic operators. Under the
assumption that the interface is of class C1,α, they prove that solutions are of
class C0,α across, and C1,α up to the interface. Furthermore, if the interface
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is of class C2,α, then solutions became C2,α-regular, also up to the interface.
The findings in [20] rely on a new Aleksandrov-Bakelman-Pucci estimate and
variants of the maximum principle and the Harnack inequality.

Our gist in this paper is to extend the results of [7] to the nonlinear degen-
erate case of p-harmonic functions in each sub-region. We first prove that
weak solutions, properly defined and whose existence follows from well-known
methods, are locally bounded. The proof combines delicate inequalities with
the careful choice of auxiliary test functions and a cut-off argument to pro-
duce a variant of the weak Harnack inequality. Working under a C1 interface
geometry, our main contribution is an integral estimate for the gradient, lead-
ing to regularity in BMO–spaces. As a corollary, we infer that solutions are of
class C0,Log−Lip across the fixed interface. This transmission problem driven
by the degenerate p-Laplace operator presents genuine difficulties compared
to the Laplacian’s linear case. Firstly, the operator lacks representation for-
mulas, and the strategy developed in [7] is no longer available. Secondly, the
degenerate nature of the problem rules out the approach put forward in [20].
Consequently, one must develop new machinery to examine the regularity of
the solutions.

Another fundamental question concerns the optimal regularity up to the
interface. As mentioned before, results of this type appear in the recent
works [7] and [20]; see also [11]. In the context of the p-Laplacian operator,
the problem remains open. We believe the analysis of the boundary behaviour
of p-harmonic functions may yield helpful information in this direction.

The remainder of this article is organised as follows. Section 2 contains the
precise formulation of the problem, details the existence of a unique solution
and gathers basic material used in the paper. In Section 3, we put forward
the proof of the local boundedness. The proof of the BMO–regularity and
its consequences is the object of Section 4.

2. Setting of the problem and auxiliary results
In this section, we precisely state our transmission problem, introduce the

notion of a weak solution and prove its existence and uniqueness. We then
collect several auxiliary results.

Let Ω ⊂ Rd be a bounded domain and fix Ω1 b Ω. Define Ω2 := Ω \ Ω1

and consider the interface Γ := ∂Ω1, which we assume is a (d− 1)-surface of
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class C1. For a function u : Ω→ R, we set

u1 := u
∣∣
Ω1

and u2 := u
∣∣
Ω2
.

Note that we necessarily have u1 = u2 on Γ. Denoting with ν the unit normal
vector to Γ pointing inwards to Ω1, we write

(ui)ν =
∂ui
∂ν

= Dui · ν, i = 1, 2.

For p > 2 and g ∈ L∞(Γ), we consider the problem of finding a function
u : Ω→ R satisfying{

div(|Du1|p−2Du1) = 0 in Ω1

div(|Du2|p−2Du2) = 0 in Ω2,
(1)

and the additional conditions{
u = 0 on ∂Ω

|Du2|p−2(u2)ν − |Du1|p−2(u1)ν = g on Γ.
(2)

The precise definition of solution we have in mind is the object of the
following definition.

Definition 1. A function u ∈ W 1,p
0 (Ω) is a weak solution of (1)-(2) if∫

Ω

|Du|p−2Du ·Dv dx =

∫
Γ

gv dHd−1, ∀ v ∈ W 1,p
0 (Ω). (3)

We use the Hausdorff measure Hd−1 in the surface integral to emphasise
that ∆pu is a measure supported along the interface, and we write

−∆pu = g dHd−1
∣∣
Γ
.

To justify the former definition, we multiply both equations in (1) by a test
function ϕ ∈ C∞c (Ω), and formally integrate by parts to get∫

Ω1

|Du1|p−2Du1 ·Dϕ dx = −
∫

Γ

(
|Du1|p−2Du1 · ν

)
ϕ dHd−1

and ∫
Ω2

|Du2|p−2Du2 ·Dϕ dx =

∫
Γ

(
|Du2|p−2Du2 · ν

)
ϕ dHd−1.

Adding and using (2), we obtain, by density,∫
Ω

|Du|p−2Du ·Dϕ dx =

∫
Γ

gϕ dHd−1, ∀ϕ ∈ W 1,p
0 (Ω).
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2.1. Existence and uniqueness of a weak solution. To prove the exis-
tence of a unique weak solution to (1)-(2), we resort to standard methods in
the literature. Indeed, the operator A : W 1,p

0 (Ω)→ W−1,p′(Ω) defined by

〈Au, v〉 :=

∫
Ω

|Du|p−2Du ·Dv dx

is bounded, hemicontinuous, strictly monotone and coercive, and hence it
is bijective. Since, due to the trace theorem and Poincaré’s inequality, the
right-hand side in (3) defines an element in W−1,p′(Ω), we obtain the result.

Additionally, we remark that the weak solution is the global minimiser of
the functional I : W 1,p

0 (Ω)→ R defined by

I(u) =
1

p

∫
Ω

|Du|p dx−
∫

Γ

gu dHd−1, (4)

whose Euler-Lagrange equation, in its weak formulation, is precisely (3).

2.2. Auxiliary results. We now collect some auxiliary material which will
be instrumental in the proofs of the main results. We start with a technical
inequality (c.f. [18, Lemma 2]).

Lemma 1. Let p > 0, and N ∈ N. Let also a1, . . . , aN , q1, . . . , qN be real
numbers such that 0 < ai < ∞ and 0 ≤ qi < p, for every i = 1, . . . , N .
Suppose that z, z1, . . . , zN are positive real numbers satisfying

zp ≤
N∑
i=1

aiz
qi
i .

Then there exists C > 0 such that

z ≤ C
N∑
i=1

aγii

where γi = (p− qi)−1, for i = 1, . . . , N . Finally, C = C(N, p, q1, . . . , qN).

Although standard in the field, the following result lacks detailed proof in
the literature. We include it here for completeness and future reference.

Lemma 2. Fix R0 > 0 and let φ : [0, R0] → [0,∞) be a non-decreasing
function. Suppose there exist constants C1, α, β > 0, and C2, µ ≥ 0, with
β < α, satisfying

φ(r) ≤ C1

[( r
R

)α
+ µ
]
φ(R) + C2R

β,
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for every 0 < r ≤ R ≤ R0. Then, for every σ ≤ β, there exists µ0 =
µ0(C1, α, β, σ) such that, if µ < µ0, for every 0 < r ≤ R ≤ R0, we have

φ(r) ≤ C3

( r
R

)σ(
φ(R) + C2R

σ
)
,

where C3 = C3(C1, α, β, σ) > 0. Moreover,

φ(r) ≤ C4r
σ,

where C4 = C4(C2, C3, R0, φ(R0), σ).

Proof : For clarity, we split the proof into two steps. First, an induction argu-
ment leads to an inequality at discrete scales; then, we pass to the continuous
case and conclude the argument.

Step 1 - We want to verify that

φ(θn+1R) ≤ θ(n+1)δφ(R) + C2θ
nβRβ

n∑
j=0

θj(δ−β), (5)

for every n ∈ N. We notice it suffices to prove the estimate for σ = β and
work in this setting. For 0 < θ < 1 and 0 < R ≤ R0 the assumption of the
lemma yields

φ(θR) ≤ C1

[(
θR

R

)α
+ µ

]
φ(R) + C2R

β = θαC1(1 + µθ−α)φ(R) + C2R
β.

Choose θ ∈ (0, 1) such that 2C1θ
α = θδ with β < δ < α. Notice that θ

depends only on C1, α, δ. Take µ0 > 0 such that µ0θ
−α < 1. For every

R ≤ R0 we then have

φ(θR) ≤ θδφ(R) + C2R
β (6)

and the base case follows. Suppose the statement has already been verified
for some k ∈ N, k ≥ 2; then

φ(θkR) ≤ θkδφ(R) + C2θ
(k−1)βRβ

k−1∑
j=0

θj(δ−β).
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Thanks to (6), we have

φ(θk+1R) = φ
(
θk(θR)

)
≤ θkδφ(θR) + C2θ

(k−1)β(θR)β
k−1∑
j=0

θj(δ−β)

≤ θkδ
[
θδφ(R) + C2R

β
]

+ C2θ
kβRβ

k−1∑
j=0

θj(δ−β)

= θ(k+1)δφ(R) + C2θ
kδRβ + C2θ

kβRβ
k−1∑
j=0

θj(δ−β)

= θ(k+1)δφ(R) + C2θ
kβRβ

k∑
j=0

θj(δ−β).

Hence, (5) holds for every k ∈ N, and the induction argument is complete.

Step 2 - Next, we pass from the discrete to the continuous case. In partic-
ular, we claim that

φ(r) ≤ C3

( r
R

)β(
φ(R) + C2R

β
)
,

for every 0 < r ≤ R ≤ R0.
Indeed,

φ(θk+1R) ≤θ(k+1)δφ(R) + C2θ
kβRβ 1

1− θδ−β

=θ(k+1)δφ(R) + C2R
β θ

(k+1)β

θβ − θδ
≤C3θ

(k+1)β
(
φ(R) + C2R

β
)
,

for every k ∈ N. Taking k ∈ N such that θk+2R ≤ r < θk+1R, up to relabeling
the constant C3, we get

φ(r) ≤φ(θk+1R) ≤ C3θ
(k+1)β

(
φ(R) + C2R

β
)

=C3θ
(k+2)βθ−β

(
φ(R) + C2R

β
)

≤C3

( r
R

)β(
φ(R) + C2R

β
)
.
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Finally, one notices

φ(r) ≤ C3
1

Rβ
0

(
φ(R0) + C2R

β
0

)
rβ =: C4r

β,

and the proof is complete.

3. Local boundedness
In this section, we prove the local boundedness for the weak solutions to

the problem. Our argument is inspired by the one put forward in [18].

Theorem 1 (Local Boundedness). Let u ∈ W 1,p
0 (Ω) be the weak solution

to (1)-(2). Then for any BR := BR(x0) b Ω, there exists a constant C =
C
(
d, p, R, ‖g‖L∞(Γ)

)
> 0 such that

‖u‖L∞(BR/2) ≤ CR−
d
p

(
‖u‖Lp(BR) +R

d
p+1‖g‖L∞(Γ)

)
and

‖Du‖Lp(BR/2) ≤ CR−1
(
‖u‖Lp(BR) +R

d
p+1‖g‖L∞(Γ)

)
.

Proof : Fix R > 0 such that BR b Ω and set k := R‖g‖L∞(Γ). Define u : Ω→
R as

u(x) := |u(x)|+ k

for all x ∈ Ω. Fix q ≥ 1 and ` > k. For t ∈ R, denote t := |t| + k. To ease
the presentation, we split the remainder of the proof into four steps.

Step 1 - Let F : [k,∞)→ R be defined as

F (s) :=

{
sq if k ≤ s ≤ `

q`q−1s− (q − 1)`q if ` < s.

Then F ∈ C1
(
[k,∞)

)
and F ∈ C∞

(
[k,∞) \ {`}

)
. Let G : R→ R be defined

as

G(t) := sgn(t)
(
F (t)F ′(t)p−1 − qp−1kβ

)
, ∀t ∈ R,

where β = p(q − 1) + 1 > 1. A simple computation yields

G′(t) =

{
q−1βF ′(t)p if |t| < `− k
F ′(t)p if |t| > `− k.

Notice that

|G(u)| ≤ F (u)F ′(u)p−1
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and

uF ′(u) ≤ qF (u).

Step 2 - In this step, we introduce auxiliary test functions, which build upon
the former inequalities. Fix 0 < r < R. Let η ∈ C∞c (BR), 0 ≤ η ≤ 1, η = 1
in Br, |Dη| ≤ (R − r)−1. Let v = ηpG(u). Since G ∈ C1

(
R \ {±(`− k)}

)
is

continuous, with bounded derivative, it follows that G(u) ∈ W 1,p(Ω). Hence
v is an admissible test function. We have

Dv =

{
pηp−1G(u)Dη + ηpG′(u)Du if u 6= ±(`− k)

pηp−1G(u)Dη if u = ±(`− k).

Set w(x) = F
(
u(x)

)
. Notice that q−1β ≥ 1; hence G′(u) ≤ q−1βF ′(u)p.

Notice also that |Du| = |Du|.
Using the trace theorem and the Poincaré inequality, we get∫

Ω

|Du|p−2Du ·Dv dx ≤ ‖g‖L∞(Γ)

∫
Γ

|v| dHd−1 ≤ C

∫
Ω

|Dv| dx. (7)

Now we estimate the left-hand side of (7) from below. We get∫
B1

|Du|p−2Du ·Dv dx =

∫
B1

|Du|p−2Du ·
(
pηp−1G(u)Dη + ηpG′(u)Du

)
dx

=p

∫
B1

ηp−1G(u)|Du|p−2Du ·Dη dx

+

∫
B1

ηpG′(u)|Du|p dx

≥− p
∫
B1

ηp−1F (u)F ′(u)p−1|Du|p−1|Dη| dx

+

∫
B1

ηpF ′(u)p|Du|p dx

=− p
∫
B1

ηp−1w|Dw|p−1|Dη| dx

+

∫
B1

ηp|Dw|p dx

≥− p‖wDη‖Lp(B1)‖ηDw‖p−1
Lp(B1) + ‖ηDw‖pLp(B1). (8)
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We also control the right-hand side of (7) by computing

C

∫
B1

|Dv| dx =C

∫
B1

up−1

up−1 |pη
p−1G(u)Dη + ηpG′(u)Du| dx

≤Ck1−pp

∫
B1

up−1ηp−1|G(u)Dη| dx

+ Ck1−p
∫
B1

up−1ηpG′(u)|Du| dx

≤C
∫
B1

up−1ηp−1F (u)F ′(u)p−1|Dη| dx

+ Cq−1β

∫
B1

up−1ηpF ′(u)p|Du| dx

≤C
∫
B1

ηp−1qp−1F (u)p−1F (u)|Dη| dx

+ Cq−1β

∫
B1

qp−1F (u)p−1ηpF ′(u)|Du| dx

=Cqp−1

∫
B1

(ηw)p−1w|Dη| dx

+ Cqp−2β

∫
B1

(ηw)p−1η|Dw| dx

≤Cqp−1‖ηw‖p−1
Lp(B1)‖wDη‖Lp(B1)

+ Cqp−2β‖ηw‖p−1
Lp(B1)‖ηDw‖Lp(B1). (9)

From (7), combining (9) with (8), we get

‖ηDw‖pLp(Ω) ≤p‖wDη‖Lp(Ω)‖ηDw‖p−1
Lp(Ω)

+ Cqp−1‖ηw‖p−1
Lp(Ω)‖wDη‖Lp(Ω)

+ Cqp−1‖ηw‖p−1
Lp(Ω)‖ηDw‖Lp(Ω), (10)

where we have used

β = pq − p+ 1 ≤ pq − p+ q ≤ pq + q = (p+ 1)q.

Step 3 - Set

z =
‖ηDw‖Lp(Ω)

‖wDη‖Lp(Ω)
, ζ =

‖ηw‖Lp(Ω)

‖wDη‖Lp(Ω)
.
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By dividing (10) for ‖wDη‖pLp(Ω), we have

zp ≤pzp−1 + Cqp−1
‖ηw‖p−1

Lp(Ω)

‖wDη‖p−1
Lp(Ω)

+ Cqp−1
‖ηw‖p−1

Lp(Ω)

‖wDη‖p−1
Lp(Ω)

‖ηDw‖Lp(Ω)

‖wDη‖Lp(Ω)

=pzp−1 + Cqp−1ζp−1 + Cqp−1ζp−1z.

An application of Lemma 1, implies

z ≤ C
(
p+ q

p−1
p ζ

p−1
p + qζ

)
≤ Cq(1 + ζ),

giving

‖ηDw‖Lp(Ω) ≤ Cq
(
‖ηw‖Lp(Ω) + ‖wDη‖Lp(Ω)

)
. (11)

Using the Sobolev inequality, we get

‖ηw‖Lp∗(Ω) ≤C‖D(ηw)‖Lp(Ω)

≤C
(
‖wDη‖Lp(Ω) + ‖ηDw‖Lp(Ω)

)
≤C
[
‖wDη‖Lp(Ω) + Cq

(
‖ηw‖Lp(Ω) + ‖wDη‖Lp(Ω)

)]
and so

‖ηw‖Lp∗(Ω) ≤ Cq
(
‖ηw‖Lp(Ω) + ‖wDη‖Lp(Ω)

)
. (12)

Recall that η = 1 in Br and |Dη| ≤ (R− r)−1. Hence, (11) becomes

‖Dw‖Lp(Br) ≤Cq

[(∫
BR

wp dx

) 1
p

+
1

R− r

(∫
BR

wp dx

) 1
p

]

=Cq‖w‖Lp(BR)

(
1 +

1

R− r

)
=Cq

R− r + 1

R− r
‖w‖Lp(BR)

≤Cqdiam(B1) + 1

R− r
‖w‖Lp(BR)

≤Cq 1

R− r
‖w‖Lp(BR).

Similarly, (12) becomes

‖w‖Lp∗(Br) ≤ Cq
1

R− r
‖w‖Lp(BR). (13)
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We claim that F` ≤ F`+1, for every ` ∈ N, ` > k. The only non-trivial case
is when ` < t ≤ `+ 1. In this case, we have

F`(t) = q`q−1t− (q − 1)`q

and

F`+1(t) = t
q
.

Let f : (`, `+ 1]→ R be defined by

f(t) = t
q − q`q−1t+ (q − 1)`q.

We have f ′(t) = qt
q−1 − q`q−1 > 0, for every t ∈ (`, `+ 1], and hence f is an

increasing function. Since limt→` f(t) = 0, we have f ≥ 0 in (`, ` + 1], and
so F` ≤ F`+1. Letting ` → ∞ in (13), since 0 ≤ F` ≤ F`+1 for every ` ∈ N,
` > k, by the Monotone Convergence Theorem, we obtain

(∫
Br

uqp
∗
dx

) 1
p∗

≤ Cq
1

R− r

(∫
BR

uqp dx

) 1
p

.

Set

s := qp and γ := p∗/p = d/(d− p);

then (∫
Br

usγ dx

) 1
pγ

≤ Cq
1

R− r

(∫
BR

us dx

) 1
p

.

Raising both sides of the previous inequality to p/s, one gets

(∫
Br

usγ dx

) 1
sγ

≤ C
p
s

(
s

p

)p
s( 1

R− r

)p
s

(∫
BR

us dx

) 1
s

. (14)
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Set sj = sγj and rj = r+ 2−j(R− r), for every j ∈ N0. Iterating (14), which
holds for every s ≥ p, we have(∫

Brj+1

usjγ dx

) 1
sjγ

≤C
p
sj

(
sj
p

) p
sj

2
p
sj

(j+1)
( 1

R− r

) p
sj

(∫
Brj

usj dx

) 1
sj

=C
p

sj−1γ

(
sj−1γ

p

) p
sj−1γ

2
p

sj−1γ
(j+1)

( 1

R− r

) p
sj−1γ

×
(∫

Brj

usj−1γ dx

) 1
sj−1γ

≤C(j, p, s, d)
( 1

R− r

)p
s

∑j
k=0 γ

−k(∫
BR

us dx

) 1
s

,

where

C(j, p, s, d) := C
p
s

∑j
k=0 γ

−k
(
s

p

)p
s

∑j
k=0 γ

−k

γ
p
s

∑j
k=0 kγ

−k
2
p
s

∑j
k=0(k+1)γ−k.

Notice that r < rj, for every j ∈ N0, the series are convergent and in partic-
ular

∑∞
k=0 γ

−k = d/p. By letting j →∞, we get

sup
Br

u ≤ C

(
1

(R− r)d

∫
BR

us dx

) 1
s

. (15)

Step 4 - Now, we can choose some parameters in the former inequalities to
complete the proof. By choosing q = 1, setting r := R/2, and recalling that
u = |u|+ k, we get

‖u‖L∞(BR/2) ≤‖u‖L∞(BR/2) ≤ CR−
d
p

(
‖u‖Lp(BR) +R

d
pk
)
.

The second inequality in the theorem follows by setting q = 1 and r := R/2
in (13), obtaining

‖Du‖Lp(BR/2) =‖Du‖Lp(BR/2) (16)

≤CR−1‖u‖Lp(BR)

≤CR−1
(
‖u‖Lp(BR) + ‖k‖Lp(BR)

)
≤CR−1

(
‖u‖Lp(BR) +R

d
pk
)
.
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4. Gradient regularity estimates in BMO–spaces
In this section, we prove the main result of this paper. We start with a

lemma, where we denote byW 1,p
f (Ω) the affine space of functions w ∈ W 1,p(Ω)

such that

w − f ∈ W 1,p
0 (Ω).

Lemma 3. Let w ∈ W 1,p(BR). Let also h ∈ W 1,p
w (BR) be such that ∆ph = 0

in BR, in the weak sense. Then there exists C = C(d, p) > 0 such that∫
BR

|Dw|p − |Dh|p dx ≥ C

∫
BR

|D(w − h)|p dx.

Proof : Fix τ ∈ [0, 1] and define vτ := τw + (1− τ)h. We have∫
BR

|Dw|p − |Dh|p dx =

∫ 1

0

d

dτ

(∫
BR

|Dvτ |p dx

)
dτ

=p

∫ 1

0

∫
BR

|Dvτ |p−2Dvτ ·D(w − h) dx dτ. (17)

Since h ∈ W 1,p
w (BR) and ∆ph = 0 in BR, we also get∫

BR

|Dh|p−2Dh ·D(w − h) dx = 0.

Hence,

p

∫ 1

0

∫
BR

|Dvτ |p−2Dvτ ·D(w − h) dx dτ

=p

∫ 1

0

∫
BR

(|Dvτ |p−2Dvτ − |Dh|p−2Dh) ·D(w − h) dx dτ

=p

∫ 1

0

1

τ

∫
BR

(|Dvτ |p−2Dvτ − |Dh|p−2Dh) ·D(vτ − h) dx dτ, (18)

where the last equality relies on the fact that vτ − h = τ(w− h). Combining
(17) and (18), and using a standard monotonicity property (recalling p > 2),
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we obtain∫
BR

|Dw|p − |Dh|p dx ≥C
∫ 1

0

1

τ

∫
BR

|D(vτ − h)|p dx dτ

=C

∫ 1

0

τ p−1 dτ

∫
BR

|D(w − h)|p dx

=C

∫
BR

|D(w − h)|p dx,

and the proof is complete.

The following result concerns the decay of the excess of the gradient of
p-harmonic functions with respect to its average. Its proof can be found in
[15, Lemma 5.1].

Proposition 1. Let h ∈ W 1,p(BR) be a weak solution of the p-Laplace equa-
tion in BR. Then there exist constants C = C(d, p) > 0 and α ∈ (0, 1) such
that, for every r ∈ (0, R], we have∫

Br

|Dh− (Dh)r|p dx ≤ C
( r
R

)d+pα
∫
BR

|Dh− (Dh)R|p dx.

The next proposition provides a control on the decay of the excess for
arbitrary Sobolev functions.

Proposition 2. Let w ∈ W 1,p(BR). Let also h ∈ W 1,p
w (BR) satisfy ∆ph = 0

in BR, in the weak sense. Then there exists C = C(d, p) > 0 such that, for
every 0 < r ≤ R, we have∫

Br

|Dw − (Dw)r|p dx ≤C
( r
R

)d+pα
∫
BR

|Dw − (Dw)R|p dx

+ C

∫
BR

|Dw −Dh|p dx,

where α ∈ (0, 1) is the same as in Proposition 1.

Proof : Let r ∈ (0, R]. We have∫
Br

|Dw − (Dw)r|p dx ≤2p−1

∫
Br

|Dw − (Dh)r|p dx

+ 2p−1

∫
Br

|(Dw)r − (Dh)r|p dx. (19)
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Similarly, ∫
Br

|Dw − (Dh)r|p dx ≤2p−1

∫
Br

|Dw −Dh|p dx

+ 2p−1

∫
Br

|Dh− (Dh)r|p dx. (20)

Applying Hölder’s inequality, we get∫
Br

|(Dw)r − (Dh)r|p dx =|Br|
∣∣∣∣ 1

|Br|

∫
Br

Dw −Dh dx

∣∣∣∣p
≤|Br|1−p

[
|Br|

p−1
p

(∫
Br

|Dw −Dh|p dx

) 1
p

]p
=

∫
Br

|Dw −Dh|p dx. (21)

Combining (19), (20) and (21), we obtain∫
Br

|Dw − (Dw)r|p dx ≤C
∫
Br

|Dh− (Dh)r|p dx

+ C

∫
Br

|Dw −Dh|p dx.

Changing the roles of w and h, and integrating in the ball BR, we get∫
BR

|Dh− (Dh)R|p dx ≤C
∫
BR

|Dw − (Dw)R|p dx

+ C

∫
BR

|Dw −Dh|p dx. (22)

Now, Proposition 1 implies∫
Br

|Dw − (Dw)r|p dx ≤C
( r
R

)d+pα
∫
BR

|Dh− (Dh)R|p dx

+ C

∫
BR

|Dw −Dh|p dx. (23)
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Combining (22) with (23), we finally get∫
Br

|Dw − (Dw)r|p dx ≤C
( r
R

)d+pα
∫
BR

|Dw − (Dw)R|p dx

+ C
( r
R

)d+pα
∫
BR

|Dw −Dh|p dx

+ C

∫
BR

|Dw −Dh|p dx

≤C
( r
R

)d+pα
∫
BR

|Dw − (Dw)R|p dx

+ C

∫
BR

|Dw −Dh|p dx

and the proof is complete.

We now state and prove our main theorem.

Theorem 2 (Gradient regularity in BMO–spaces). Let u ∈ W 1,p
0 (Ω) be the

weak solution to (1)-(2). Then Du ∈ BMOloc(Ω). Moreover, for every Ω′ b
Ω,

‖Du‖BMO(Ω′) ≤ C,

where C = C(p, d, ‖g‖L∞(Γ), diam(Ω), dist(Ω′, ∂Ω)) > 0.

Proof : Let x0 ∈ Γ, and let R > 0 be such that BR := BR(x0) b Ω. Let
h ∈ W 1,p

u (BR) be the weak solution of ∆ph = 0 in BR. Since h = u on ∂BR

in the trace sense, we can extend h in Ω \ BR such that h = u in Ω \ BR.
This implies that h ∈ W 1,p

0 (Ω) and hence, since u is the global minimizer of
(4), we have

1

p

∫
Ω

|Du|p dx−
∫

Γ

gu dHd−1 ≤ 1

p

∫
Ω

|Dh|p dx−
∫

Γ

gh dHd−1. (24)

Set ΓR = BR ∩ Γ. Since h = u in Ω \BR, (24) becomes

1

p

∫
BR

|Du|p dx−
∫

ΓR

gu dHd−1 ≤ 1

p

∫
BR

|Dh|p dx−
∫

ΓR

gh dHd−1
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from which, applying the Trace Theorem, Hölder’s inequality and Poincaré’s
inequality, follows

1

p

∫
BR

|Du|p dx− 1

p

∫
BR

|Dh|p dx ≤
∫

ΓR

gu dHd−1 −
∫

ΓR

gh dHd−1

≤‖g‖L∞(Γ)

∫
ΓR

|u− h| dHd−1

≤C
∫
BR

|u− h| dx+ C

∫
BR

|D(u− h)| dx

≤CRdp−1p ‖u− h‖Lp(BR)

+ CRdp−1p ‖D(u− h)‖Lp(BR)

≤CRdp−1p ‖D(u− h)‖Lp(BR). (25)

Let us consider the left-hand side of (25). Using Lemma 3, we get

1

p

∫
BR

|Du|p dx− 1

p

∫
BR

|Dh|p dx ≥C(d, p)

∫
BR

|Du−Dh|p dx

=C‖D(u− h)‖pLp(BR). (26)

Combining now (25) with (26), we get

‖D(u− h)‖p−1
Lp(BR) ≤ CRdp−1p

and, raising both sides to p/(p− 1), we obtain∫
BR

|D(u− h)|p dx ≤ CRd.

From Proposition 2, we get∫
Br

|Du− (Du)r|p dx ≤ C
( r
R

)d+pα
∫
BR

|Du− (Du)R|p dx+CRd, ∀r ∈ (0, R]

and, applying Lemma 2, we reach∫
Br

|Du− (Du)r|p dx ≤ Crd, ∀r ∈ (0, R].

Hence, Du ∈ BMOloc(Ω) and the proof is complete.

As a corollary to Theorem 2, we obtain a modulus of continuity for the
solution u in C0,Log−Lip-spaces.
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Corollary 1 (Log-Lipschitz continuity estimates). Let u ∈ W 1,p
0 (Ω) be the

weak solution to problem (1)-(2). Then u ∈ C0,Log−Lip
loc (Ω). Moreover, for

every Ω′ b Ω,

‖u‖C0,Log−Lip(Ω′) ≤ C
(
‖u‖L∞(Ω) + ‖g‖L∞(Γ)

)
,

where C = C(p, d, diam(Ω), dist(Ω′, ∂Ω)) > 0.

Indeed, a function whose partial derivatives are in BMO belongs to the
Zygmund class (cf. [22]). Because functions in the latter have a C0,Log−Lip

modulus of continuity, the corollary follows.
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