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1. Introduction

1.1. Interest of tridiagonal k-Toeplitz matrices. Given a commutative
unital ring K, a tridiagonal matrix T ∈ Mn(K) is k-Toeplitz if the entries
along the main diagonal of T and its adjacent diagonals are periodic sequences
of period k, so that it has the form

T =



a1 b1

c1
. . . . . .
. . . ak bk
. . . ck a1 b1

c1
. . . . . .
. . . ak bk

ck a1
. . .

. . . . . .


n×n

.

T is called reducible if some element bi or ci in the adjacent diagonals is 0,
irreducible otherwise. Observe that general tridiagonal matrices can be treated
as tridiagonal k-Toeplitz matrices by considering n ≤ k.
Tridiagonal matrices appear frequently in many areas of pure and applied

mathematics (see [28]). From the mathematical point of view, tridiagonal ma-
trices appear in problems related to linear recurrence equations of second or-
der, while from the perspective of Physics they appear related to problems
comprising a system in series in which each subsystem is a�ected by (and
only by) its immediate left and right subsystems. Consequently, tridiagonal
k-Toeplitz matrices arise in those contexts when some periodicity of the stud-
ied problem or physical system is assumed. For example, tridiagonal matri-
ces appear in trigonometric polynomials problems ([14]), number-theoretical
problems involving second-order di�erence equations ([5]), the discretization of
elliptic or parabolic partial di�erential equations by �nite di�erence methods
([16, 27, 36]), classical mechanics ([35]), chain models of quantum physics ([4]),
sound propagation theory ([8, 9]), telecommunication system analysis ([22]),
circuit models of wireless power transfer arrays ([2, 3, 1]), etc. Thus, the deter-
minant, the eigenvalues, or the inverse of the associated matrix may be invoked
to solve these problems; and at times, only some speci�c entries of the inverse
are needed (see e.g. [1]). Moreover, any complex square matrix is similar to a
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tridiagonal one (as shown for example by Lanczos' algorithm, [20]), and there-
fore its determinant, spectral properties, and inverse may be computed from
those of its associated tridiagonal matrix.
It is therefore natural that both general and k-Toeplitz tridiagonal matrices

(and variations) have been studied many times independently in the past, in
many di�erent research areas, producing a vast literature in which formulas
for the determinant, spectral properties and inverse abound; but most often
treating speci�c cases, providing solutions with varying degree of explicitness,
presenting unwieldy or ine�cient formulas, or using intricate methods in their
proofs. In particular, most results resort to division (at the least) and are
therefore only suitable over �elds. In addition, formulas are invariably o�ered
without any accompanying complexity analysis (of algorithms based on them),
which hinders the assessment of their e�ciency and the comparison of for-
mulas coming from di�erent works. In contrast, in this paper we treat the
problems in full generality: over commutative unital rings, for all pairs (n, k),
and for all possible entries; we provide explicit solutions (written only in terms
of elementary operations of the ring) through accessible and e�cient universal
formulas, proved by elementary combinatorial and linear algebraic techniques;
and we produce concrete algorithms based on our formulas, together with their
complexity analysis.

1.2. Previous literature. Hereunder we brie�y review some of the most
signi�cant previous works. In his Treatise on the Theory of Determinants
of 1882 ([29]), Muir already studies the determinants of tridiagonal matrices,
which he calls continuants due to their relation to continued fractions ([29,
Example 1 in p.157]), establishes several interesting identities, and devises a
recursive procedure to write a continuant in non-determinant form (in his
own words), that is, as a polynomial expressed in the canonical basis of the
underlying polynomial ring. In the second and much enlarged edition of Muir's
Treatise ([30]), prepared by Metzler up to 1928, the non-determinant form of
a continuant is given by a non-recursive rule for writing each monomial ([30,
Item 545]). Metzler also provides a polynomial formula for the elements of the
adjugate matrix of a tridiagonal matrix in terms of smaller continuants ([30,
Item 555]), from which a formula for the elements of the inverse readily follows.
Their proofs are quite short and simple, and although they lack some rigor
for nowadays standards, their combinatorial nature makes the formulas valid
over any commutative unital ring. Mallik in [24] in essence rediscovered the
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non-determinant form of a continuant (while expressing it more formally) and
Metzler's formula for the elements of the inverse of a tridiagonal matrix, with a
more convoluted elaboration, valid only for irreducible tridiagonal matrices over
�elds (due to divisions). The same restrictions apply to Lewis' formula from
1982 for the elements of the inverse ([21]), based on computing two recurrence
equations with many divisions, which is nevertheless di�erent from (and slightly
less e�cient than) Metzler's.
Presumably, the �rst work studying tridiagonal k-Toeplitz matrices is Egerváry

and Szász's [14] of 1928, in which they determined, in terms of graph theory, the
characteristic polynomial and inverse powers of some symmetric Toeplitz (i.e.,
1-Toeplitz) complex matrices, particular examples which have been rediscov-
ered with less elegant methods many times since (see [11] for more information).
Rózsa in 1969 ([33]) published a formula for the determinant of any irreducible
and symmetric tridiagonal k-Toeplitz matrix over a �eld, which he extended
to non-symmetric complex matrices through similarity (involving the use of
square roots). Rózsa's formula is very interesting in that it is expressed by
means of Chebyshev polynomials of the second kind. Later in 2005, using tools
from the theory of orthogonal polynomials and apparently unaware of Rózsa's
work, da Fonseca and Petronilho generalized Rózsa's formula to any complex
irreducible tridiagonal k-Toeplitz matrix (symmetric or not) and produced an-
other formula for the elements of its inverse, which is in essence Metzler's but
with the corresponding continuants expressed by means of Chebyshev poly-
nomials evaluated on some determinants of smaller matrices (the small cases
k = 2, 3 having been considered previously with similar methods by the authors
in [12]). Previously in 1998, Wittenburg in [35, Section 4] already produced
formulas for the elements of the inverse of any complex tridiagonal k-Toeplitz
matrix, although in terms of smaller continuants1 which he did not compute
explicitly, and through the somewhat convoluted study of a related recurrence
equation.
With regard to spectral properties: Inspired by Rózsa's work, Elsner and

Redhe�er ([15]) studied in 1967 the characteristic polynomial and eigenvectors
of complex tridiagonal k-Toeplitz matrices in the special cases n ≡ 0 (mod k)
and n ≡ k − 1 (mod k) and showed that, in the latter case, the characteristic

1Interestingly, Wittenburg is the only author cited in this section that refers to Muir and Metzler's
book in his referenced work.
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polynomial factorizes through a Chebyshev polynomial of the second kind2

(another result noted many times in the literature in more or less generality,
starting with Egerváry and Szász). The eigenproblem of a complex tridiagonal
k-Toeplitz matrix for any n was studied in 1994-2000 for k = 2 by Gover,
and for k = 2, 3 by Marcellán and Petronilho ([17, 25, 26]), and a solution for
general k was given for irreducible matrices by da Fonseca and Petronilho in
the previously cited paper of 2005 ([13]).
On the other hand, the �rst author devised in [1] an elementary linear algebra

algorithm to compute the entries of the inverse of a complex symmetric k-
Toeplitz matrix with constant upper and lower diagonals, for a �xed k; in
said algorithm, some determinants of smaller tridiagonal k-Toeplitz matrices
needed to be computed, what was achieved through the diagonalization of an
associated 2×2 matrix. The results in this paper are inspired by this algorithm.

1.3. Structure of the paper.

1.3.1. Outline of our general method. In the �rst place, in Section 5
we obtain formulas for the determinant of any tridiagonal k-Toeplitz matrix,
expressed only in terms of sums and products of the underlying commutative
unital ring. Then we write the characteristic polynomial and some eigenvectors
(Section 6), and any element of the inverse (Section 7), as functions of deter-
minants of certain tridiagonal k-Toeplitz matrices, allowing us to apply our
previous formulas and devise speci�c algorithms, whose complexity we analyze
afterwards (Section 8). Throughout the paper, we compare our results with
those found in the literature, when suited.
For the sake of completeness, and although our formulas work equally for

both irreducible and reducible tridiagonal matrices, we study the reducible case
separately (with block-triangular matrices techniques) whenever some extra
knowledge is to be gained, as this study is not completely trivial (since the
matrices are k-Toeplitz and we work over a commutative ring). Moreover,
we already need to resort to block-triangular matrices when working with the
inverse. Elementary notions about these concepts can be found in Section 2.3.
Informally speaking, the theorems and algorithms we develop produce the

universal tridiagonal k-Toeplitz example, which is free in the underlying ring,
the size, the period, and the elements of the diagonals of the matrix. In Section

2This result easily explains the fact that if Fk denotes the kth Fibonacci number, starting with
F0 := 0, and n is divisible by k, then Fn is divisible by Fk ([15, Remark 8]).
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9 we construct two examples which are more concrete: one with �xed size and
period, and a completely speci�c one over Z/60Z.

1.3.2. Determinant. In rough terms, if the Euclidean division of n by k
gives quotient m and remainder r, then inside a tridiagonal k-Toeplitz matrix
of order n we can see m complete �tridiagonal blocks� of period k and one last
incomplete �tridiagonal block� of size r �a �tail�. In the proof of the main
theorem of this paper, Theorem 5.5, we manage to decouple the e�ect of both
parts on the determinant of the matrix, with the e�ect of the complete periods
being encoded by generalized Fibonacci polynomials of order m and the e�ect
of the tail being encoded by some polynomials in 2k variables that we call
continuant polynomials. This decoupling we achieve by solving a second-order
linear di�erence equation with periodic coe�cients (which appears from apply-
ing Laplace's expansion to the determinant twice) by writing it as a 2×2 matrix
di�erence equation and employing recursion, and then applying induction to
show some combinatorial identities that prove the correctness of the associated
polynomial formulas. Theorem 5.5 unveils two related formulas for the deter-
minant of a tridiagonal k-Toeplitz matrix; we show that one of them generalizes
da Fonseca and Petronilho's formula based on Chebyshev polynomials of the
second kind (Remark 5.21).

1.3.3. Generalized Fibonacci polynomials. One of our main contribu-
tions to the subject under study is the application of generalized Fibonacci
polynomials, which happen to �ll the role, over arbitrary commutative unital
rings, that Chebyshev polynomials of the second kind played over the complex
numbers in other papers; speci�cally, the addition of a second variable allows
us to remove the divisions and square roots needed together with Chebyshev
polynomials, showing that the generalized Fibonacci polynomials are indeed
the natural object to consider in this context. We study the properties of gen-
eralized Fibonacci polynomials in Section 3, notably the following elementary
but powerful fact, that we consider of independent interest and which we have
not been able to locate in the literature: By the Cayley-Hamilton theorem,
the powers of a 2 × 2 matrix are linear combinations of the matrix itself and
the identity matrix; those linear combinations are parametrized by generalized
Fibonacci polynomials evaluated on its trace and determinant (Lemma 3.2(2)).

1.3.4. Continuant polynomials. We introduce continuant polynomials and
their properties in Section 4. Continuant polynomials are multivariate polyno-
mials related to the Leibniz expansion of a periodic continuant. They satisfy
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abstract combinatorial de�nitions that allow to prove interesting identities be-
tween them by induction (Lemma 4.7), including some essential recurrence
relations. The de�nitions of continuant polynomials involve some intermediary
divisions, which are carried out in rings of rational functions; this feature allows
to avoid altogether the divisions appearing in other approaches that resort to
recurrence relations.

1.3.5. Spectral properties. The characteristic polynomial of a tridiagonal
k-Toeplitz matrix over K arises as the determinant of a tridiagonal k-Toeplitz
matrix over K[X], which we are already able to determine. We show that
the factorization property of the characteristic polynomial for the case n ≡
k − 1 (mod k) generalizes to any commutative unital ring (Remark 6.4). We
also procure a procedure to construct an eigenvector associated to a given
eigenvalue in Theorem 6.7, which signi�cantly generalizes the previously known
constructions and su�cient conditions for its existence (see Remark 6.9).

1.3.6. Inverse. The entries of the inverse are computed from the adjugate
matrix in Theorem 7.1. The associated submatrices of the �rst minors of a
tridiagonal k-Toeplitz matrix are block triangular with three diagonal blocks:
the middle one is triangular and the two in the extremes are tridiagonal k-
Toeplitz matrices, allowing to write the cofactor from the product of their
determinants, which we are already able to compute.

1.3.7. Algorithms and complexity analysis. After introducing the nec-
essary notions in Section 2.5, in Section 8 we conduct a worst-case algebraic
complexity analysis of algorithms based on the previously introduced formulas.
We compare four main algorithms for computing the determinant, all arising
from di�erent ideas used in the proof of Theorem 5.5. We study algorithms
for the case of a general (non-periodic) tridiagonal matrix. We compare the
e�ciency of our algorithms with others based on Lewis' and da Fonseca and
Petronilho's formulas. We �nd the following complexities for our algorithms3:

3For functions f, g : N2 → N, we have f(n, k) = O(g(n, k)) when there exist constants M ∈ N
and c > 0 such that |f(n, k)| ≤ c|g(n, k)| for all n, k ≥M .
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Object Complexity

Determinant O(21 log2(n/k) + 7k)
Char. poly. O(21 log2(n/k) + 7k)
Eigenvector O(6n + k)
Inverse entry O(68 log2(n/k) + 14k)
Full inverse O(5

2n
2 + 2kn)

2. Preliminaries and notation

2.1. Commutative rings. Throughout this paper let K be any commutative
unital ring. If K is a �eld, by K we denote an algebraic closure of K. An
element a ∈ K is a zero divisor if there is 0 6= b ∈ K such that ab = 0;
an element which is not a zero divisor is called regular. Note that 0 is a zero
divisor, and that if a1a2 is a zero divisor with a1, a2 ∈ K then a1 or a2 is a
zero divisor. The annihilator of a ∈ K is Ann(a) := {b ∈ K | ab = 0}; we
have Ann(a) = 0 if and only if a is a regular element. The total quotient ring
Q(K) of K is the localization S−1K with S the set of regular elements; it is
an injective extension of K in which every regular element is a unit.

2.2. Combinatorial objects. In this paper N denotes the natural numbers
with 0 ∈ N, N∗ stands for N \ {0}, an empty summation yields 0, and an
empty product yields the identity of the ambient ring. Notation b · c stands
for the �oor function from Q to Z, and

(
i
j

)
with i, j ∈ N stands for the image

of the corresponding binomial coe�cient under the canonical homomorphism
from Z to K, understanding

(
i
j

)
= 0 when i < j. For k ∈ N∗, a := (a1, . . . , ak)

describes a vector of Kk, if x ∈ K then x := (x, . . . , x) ∈ Kk, and λa + µb
with λ, µ ∈ K, a, b ∈ Kk is the usual linear combination of vectors. Given
a := (a1, . . . , ak) ∈ Kk, we extend it periodically by de�ning ai+k := ai for i ∈
N∗. By Sk we denote the symmetric group on k elements acting on Kk and by
σs ∈ Sk, s ∈ N, the jth cyclic permutation to the left, so that σ0(x1, . . . , xk) =
(x1, . . . , xk), σ1(x1, . . . , xk) = (x2, . . . , xk, x1), σk = σ0, etc.

2.3. Matrices. For n ∈ N∗, Mn(K) denotes the ring of square matrices of
order n overK, In ∈ Mn(K) denotes the identity matrix, and tr(A), det(A), AT

respectively denote the trace, the determinant, and the transpose of matrix
A ∈ Mn(K), which is invertible over K if and only if det(A) is a unit of K ([7,
Corollary 2.21]).
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Consider the matrix A ∈ Mn(K), A = (aij)
n
i,j=1. A is tridiagonal if aij = 0

for all i, j such that |i−j| ≥ 2. The upper main diagonal and lower main diag-
onal of A are, respectively, the vectors (a12, . . . , an−1,n) and (a21, . . . , an,n−1).
A tridiagonal matrix is irreducible if its upper and lower main diagonals have
no zeros, reducible otherwise. Given k ∈ N∗, the matrix A is k-Toeplitz if

ai+k,j+k = aij for all 1 ≤ i, j ≤ n− k.
Given k, n ∈ N∗ and a := (a1, . . . , ak), b := (b1, . . . , bk), c := (c1, . . . , ck) ∈ Kk,
by T k

n (a, b, c) ∈ Mn(K), T kn (a, b, c) = (tij)
n
i,j=1, we denote the tridiagonal k-

Toeplitz matrix such that tii := ai for 1 ≤ i ≤ min(n, k) and ti,i+1 := bi,
ti+1,i := ci for 1 ≤ i ≤ min(n− 1, k), i.e., the vectors a, b, c periodically gener-
ate, respectively, the main, upper main and lower main diagonals of T kn (a, b, c).
A matrix A ∈ Mn(K) is block lower triangular if there exists a nontrivial

partition of A into blocks, the associated partition A = (Aij)
q
i,j=1 of size q

(q > 1), in which the diagonal blocks Aii are square matrices for 1 ≤ i ≤ q and
Aij = 0 if 1 ≤ i < j ≤ q; A is block upper triangular when AT is block lower
triangular (if AT = (Bij)

q
i,j=1 then an associated partition of A is (BT

ji)
q
i,j=1);

and A is block triangular if it is block lower triangular or block upper triangular.
Given two partitions showing A as block triangular, the �ner one is that with
greater size. The following result is well known over �elds.

Theorem 2.3.1 (Determinant of a block triangular matrix).
If A ∈ Mn(K) is block triangular with associated partition A = (Aij)

q
i,j=1 then

det(A) =

q∏
i=1

det(Aii).

Proof : We proceed by induction on the size of the partition. Suppose �rst
A = (aij)

n
i,j=1 is block lower triangular with associated partition of size 2,

A =

(
B 0
C D

)
with B ∈ Mm(K) (m < n), B = (bij)

m
i,j=1, D ∈ Mn−m(K),

D = (dij)
n−m
i,j=1. For permutation σ ∈ Sn denote aσ := sign(σ)

∏n
i=1 ai,σ(i).

Leibniz's formula states det(A) =
∑

σ∈Sn
aσ. Since A is block lower triangular,

aσ = 0 except when σ permutes the �rst m elements among themselves, the
subgroup of Sn of such permutations being isomorphic to Sm × Sn−m, with
σ 7→ (τ, ρ) implying sign(σ) = sign(τ)sign(ρ). Therefore

det(A) =
∑
σ∈Sn

aσ =
∑

(τ,ρ)∈Sm×Sn−m

bτdρ =
∑
τ∈Sm

bτ
∑

ρ∈Sn−m

dρ = det(B) det(D).
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Now suppose the induction hypothesis true; if A = (Aij)
q+1
i,j=1 is an associated

partition of size q + 1 > 2 then an associated partition of A of size q ≥ 2 is

A = (A′ij)
q
i,j=1 with A

′
ij = Aij if i, j < q, A′i,q = 0 for i < q, A′q,j =

(
Aq,j

Aq+1,j

)
for

j < q, and A′qq =

(
Aqq 0
Aq,q+1 Aq+1,q+1

)
; by the induction hypothesis, det(A) =∏q

i=1 det(A′ii) =
∏q−1

i=1 det(Aii) ·det(Aqq) det(Aq+1,q+1), as we wanted to prove.
Finally, if A is block upper triangular, then det(A) = det(AT ) with AT block
lower triangular.

Tridiagonal matrices are not block triangular in general, but they are close
in some senses. For example, the associated submatrices of the �rst minors of
a tridiagonal matrix are block triangular (see the proof of Theorem 7.1). In
addition, reducible tridiagonal matrices are block triangular.

Remark 2.3.2 (Reducible tridiagonal matrices are block triangular).

If T :=


a1 b1
c1 a2 b2

. . . . . . . . .
cn−1 an

 has bi = 0 then

T =



a1 b1

c1
. . . . . .
. . . ai−1 bi−1

ci−1 ai 0
ci ai+1 bi+1

. . . . . . . . .
cn−1 an


is an associated partition of size 2 showing that T is block lower triangular, with
diagonal blocks which are tridiagonal matrices. Analogously, if ci = 0 then T
is block upper triangular with tridiagonal diagonal blocks. If in addition T is
k-Toeplitz, then so are its diagonal blocks; concretely, if T = T kn (a, b, c) then its
�rst diagonal block is T ki (a, b, c), the second one T kn−i(σi(a), σi(b), σi(c)) (which
contains bi = 0 again in the upper main diagonal, and so is reducible and can
be decomposed further by blocks, if n > k + i).
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Given A ∈ Mn(K), its characteristic polynomial is pA(x) := det(xIn−A) ∈
K[x]. An element λ ∈ K is an eigenvalue of A if there is a nonzero column4

vector v ∈ Kn such that Av = λv; we say that v is an eigenvector of A
associated to λ. An element λ ∈ K is an eigenvalue of A if and only if pA(λ)
is a zero divisor of K ([7, Lemma 17.2]).

Lemma 2.3.3 (Eigenvalues of a block triangular matrix).
If A ∈ Mn(K) is block triangular with associated partition A = (Aij)

q
i,j=1 and

λ is an eigenvalue of A then λ is an eigenvalue of Aii for some 1 ≤ i ≤ n.

Proof : Since λ is an eigenvalue of A, pA(λ) = det(λIn−A) is a zero divisor of
K, and since A is block triangular, λIn − A is a block triangular matrix with
associated partition (A′ij)

q
i,j=1, A

′
ij := −Aij if i 6= j, A′ii := λIni − Aii with ni

the order of Aii. By Theorem 2.3.1, det(λIn − A) =
∏q

i=1 det(λIni − Aii), so
pAii

(λ) = det(λIni − Aii) is a zero divisor of K for some 1 ≤ i ≤ n, i.e., λ is
an eigenvalue of Aii for some 1 ≤ i ≤ n.

2.4. Polynomials. Given a polynomial f ∈ Z[x1, . . . , xk, y1, . . . , yk] and vec-

tors a := (a1, . . . , ak), b := (b1, . . . , bk) ∈ Kk, we de�ne the evaluation fa,b as
the image of the evaluation of f into Kk mapping xi 7→ ai and yi 7→ bi for
1 ≤ i ≤ k. Given s ∈ N we de�ne the (cyclic) shift of f by s as

fs := f(xs+1, . . . , xs+k, ys+1, . . . , ys+k)

(recall that, by periodic extension, we denote xi+k := xi, yi+k := yi for all i ∈
N∗). In other words, fs = fσs(x),σs(y) with x := (x1, . . . , xk), y := (y1, . . . , yk).
Observe that shifts are automorphisms of Z[x1, . . . , xk, y1, . . . , yk] and that
(fs1)s2 = fs1+s2 (we say that shifts are additive) for s1, s2 ∈ N. Note that when
a shift and an evaluation have both to be applied, the shift must be applied
�rst, giving

fa,bs = fσs(a),σs(b) = f(as+1, . . . , as+k, bs+1, . . . , bs+k).

2.5. Complexity. After we arrive to formulas for the determinant, spectral
properties, and elements of the inverse of a tridiagonal k-Toeplitz matrix, we
will study in Section 8 the complexity of di�erent algorithms arising from the
formulas and related procedures, in order to compare them in terms of e�-
ciency. We describe now the relevant ideas and make de�nitions in a somewhat
informal manner; a completely rigorous treatment is out of the scope of this

4For ease of reading, we also enumerate column vectors component by component, as in v =
(v1, . . . , vn).
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paper. We make use of algebraic complexity, in the tradition of Ostrowski
and Winograd ([31, 34]); given a commutative ring K, we consider a model of
computation in which:

a) The elementary operations of K (addition, substraction, multiplication,
division if K is a �eld, or Euclidean division if K = Z) have unit cost each.

b) Every intermediate result computed by an algorithm is available for its
subsequent steps.

For our purposes it is enough to consider a Turing machine MK provided
with oracles for the elementary operations of K (for a more speci�c model
of computation, see [6])5. Then, given a mathematical entity X (square root,
inverse of a matrix, determinant, etc.) de�ned over some commutative uni-
tal ring K, the algebraic complexity (or cost) of an algorithm F that com-
putes X in MK , denoted by CF (X) = CKF (X), is the number of elementary
operations needed in K to arrive at the result in the worst case of the al-
gorithm6. When necessary, we write the number x of operations as (x)K to
emphasize the underlying ring. If an algorithm F uses several di�erent rings
K1, . . . , Kp in the computation of X (for example, K for managing elemen-
tary operations and Z for managing exponents)7 then we de�ne its complex-
ity as the external sum CF (X) :=

∑p
i=1 C

Ki

F (X) ∈ Np (e.g. we may have
CF (X) = (100)K + (10)Z). As an example, if F is the algorithm multiplying
m matrices A1, . . . , Am ∈ M2(K) by naive matrix multiplication (rows times
columns) then CF (A1 · · ·Am) = 12(m− 1), since (in worst case) each entry of
the product of two matrices is computed through 2 products and 1 sum, there
are 4 nonzero entries in a 2 × 2 matrix, and m − 1 products of two matrices
are realized.
We will need to compare algorithms which compute families of entities de-

pending on several parameters (n, k, etc.). For this we de�ne our notion of
e�ciency below (not completely operational, but enough for our purposes).
Informally:

a) We will apply �rst a coarse, limit comparison (100 log2 n operations are
more e�cient than n operations), then and only if needed, a �ner compar-
ison (n operations are more e�cient than 2n operations).

5Observe that the bit complexity as de�ned for a usual Turing machine is the algebraic complexity
in MZ2 , while the arithmetic complexity is that in MZ.

6A complexity of 0 or less means that no additional computations are needed from the original
data.

7To achieve this we can work in the Turing machine MK1⊕···⊕Kp .
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b) We will give priority to some parameters over the others; mainly, to n over
k, by considering �rst n variable and k constant (log2 n+ k operations are
more e�cient than n+ log2 k operations), then k variable only if needed.

When algorithms F and G both compute a speci�c entityX inMK , we say that
F is more e�cient than G when computing X if CKF (X) < CKG (X) in N. Now
suppose F and G both compute in MK a family of entities {Xm} indexed by
one parameterm ∈ N, and de�ne their complexity functions f(m) := CKF (Xm),
g(m) := CKG (Xm); we say that f(m) ≡ g(m) when there exists some m0 ∈ N
such that f(m) = g(m) for m > m0, and that f(m) ≺ g(m) if either
f(m) = o(g(m))8 or g(m) = cf(m) with c ∈ Q, c > 1 (these two cases
are not complementary, but are the only ones needed in this paper). Then we
say that F is more e�cient than G if f(m) ≺ g(m). Now suppose that F
and G both compute in MK a family of entities {Xm1,...,mp

} indexed by p > 1
ordered parameters m1, . . . ,mp ∈ N, and de�ne their complexity functions
f(m1, . . . ,mp) := CKF (Xm1,...,mp

), g(m1, . . . ,mp) := CKG (Xm1,...,mp
). We give

priority to smaller indices in the comparison of complexities, hence we say that
f(m1, . . . ,mp) ≺ g(m1, . . . ,mp) (F is more e�cient than G) if, when consid-
ering m2, . . . ,mp �xed as constants, either f(m1) ≺ g(m1) or f(m1) ≡ g(m1)
and f(m2, . . . ,mp) ≺ g(m2, . . . ,mp) (as functions in p− 1 variables)9. Finally,
if F and G both compute a family of entities using q di�erent rings, then in
order to compare their e�ciencies we consider the costs in all rings to be equiva-
lent, and so if CF (Xm1,...,mp

) = (f1(m1, . . . ,mp)K1
, . . . , fq(m1, . . . ,mp)Kq

) then
we use f = f1 + · · ·+ fq as the complexity function of F .

Herein, let us justify that this resorting to algebraic complexity is not su-
per�uous. A ring K is computably presentable (in the usual sense) if it has
an isomorphic presentation (a computable presentation) in which the elemen-
tary operations are computable and the equality relation is decidable, in an
ordinary Turing machine MZ2

. When K is computably presentable, the bit
complexity of an algorithm F over K is de�ned as the algebraic complexity of
F (in MZ2

) for a previously �xed computable presentation of K. Thus, the
usual bit complexity is not well de�ned for arbitrary commutative rings, as
there are many commutative rings which are not computably presentable: to
begin with, no uncountable commutative ring is computably presentable; and

8f(m) = o(g(m)) when lim
m→∞

f(m)

g(m)
= 0. For example we have logm = o(m).

9Our ≺ relation is not connected (e.g. (m2 + 2m3)m1 and (2m2 +m3)m1) are incomparable),
but all the relevant pairs of functions appearing in this paper are comparable.
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there even exist countable noncomputably presentable commutative rings, such
as Q[

√
pi | Ti does not halt], where pi is the ith prime number and Ti is the

ith Turing machine. Moreover, in an ordinary Turing machine, di�erent com-
putable presentations of the same ring may produce di�erent bit complexities
for the same algorithm. In contrast, the use of algebraic complexity allows to
abstractly compare the e�ciency of di�erent algorithms over the same ring, for
an arbitrary ring. In addition, if K is given a computable presentation, then
the bit complexity of an algorithm in this presentation can be found from its al-
gebraic complexity analysis by inserting the bit complexity of each elementary
operation in the corresponding places.

3. Generalized Fibonacci polynomials

De�nition 3.1 (Generalized Fibonacci polynomials).
Given m ∈ N, we de�ne the (bivariate) generalized Fibonacci polynomial of
order m over K as

Um(x, y) :=

b(m−1)/2c∑
i=0

(−1)i
(
m− 1− i

i

)
xm−1−2iyi.

Note that U0(x, y) = 0, U1(x, y) = 1. Since these polynomials were introduced
by Lucas in [23], their sequence is also called the Lucas polynomial sequence of
the �rst kind ([32, p. 2]).

By the Cayley-Hamilton theorem, the powers of a 2 × 2 matrix are linear
combinations of the matrix itself and the identity matrix; as it turns out,
those linear combinations are parametrized by generalized Fibonacci polyno-
mials evaluated on its trace and determinant.

Lemma 3.2 (Properties of generalized Fibonacci polynomials).

(1) For all m ∈ N∗,

Um+1(x, y) = xUm(x, y)− yUm−1(x, y).

(2) If A ∈ M2(K) then, for all m ∈ N∗,

Am = Um(tr(A), det(A))A− det(A)Um−1(tr(A), det(A))I2.
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Proof :

(1) xUm(x, y)− yUm−1(x, y) =

=

b(m−1)/2c∑
i=0

(−1)i
(
m− 1− i

i

)
xm−2iyi +

b(m−2)/2c∑
i=0

(−1)i+1

(
m− 2− i

i

)
xm−2−2iyi+1 =

= xm +

b(m−1)/2c∑
i=1

(−1)i
(
m− 1− i

i

)
xm−2iyi +

bm/2c∑
i=1

(−1)i
(
m− 1− i
i− 1

)
xm−2iyi =

= xm +

bm/2c∑
i=1

(−1)i
((

m− 1− i
i

)
+

(
m− 1− i
i− 1

))
xm−2iyi =

=

bm/2c∑
i=0

(−1)i
(
m− i
i

)
xm−2iyi = Um+1(x, y),

since b(m − 1)/2c = bm/2c when m is odd and
(
m−1−bm/2c
bm/2c

)
= 0 when m

is even.
(2) We proceed by induction. Denote t := tr(A), d := det(A) and Um :=

Um(t, d). The base case A = A is true since U1 = 1, U0 = 0. By the
Cayley-Hamilton theorem A2 = tA− dI2, so if Am = UmA− dUm−1I2 then

Am+1 = AAm = UmA
2−dUm−1A = (tUm−dUm−1)A−dUmI2 = Um+1A−dUmI2

by the previous item.

In some rings we can write generalized Fibonacci polynomials in terms of
Chebyshev polynomials of the second kind, divisions, and square roots.

Remark 3.3 (Generalized Fibonacci polynomials as Chebyshev polynomials).
Given m ∈ N, we de�ne the mth (univariate) Chebyshev polynomial of the

second kind over K as

Um(x) :=

bm/2c∑
i=0

(−1)i
(
m− i
i

)
(2x)m−2i. (3.4)

Through (3.4) we also de�ne U−1(x) := 0. Chebyshev polynomials of the
second kind satisfy the recurrence relation Um+1(x) = 2xUm(x)− Um−1(x).
Let K be a commutative unital ring in which every element is a square. If
t, d ∈ K and d is a regular element, then

√
d is regular and for all m ∈ N we
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have, from De�nition 3.1,

Um(t, d) = (
√
d)m−1Um(t/

√
d, 1),

with the computation done in Q(K) but the result lying in K. If in addition
K is free of 2-torsion (i.e., if 2 is a regular element of K) then by (3.4) we get

Um(t, d) = (
√
d)m−1Um−1(t/(2

√
d)), (3.5)

which writes the generalized Fibonacci polynomial of order m in terms of the
(m− 1)th Chebyshev polynomial of the second kind.

Over �elds we can write the coe�cients of the linear combination of Lemma
3.2(2) in terms of the eigenvalues of the matrix.

Remarks 3.6 (Powers through the eigenvalues).
In these remarks let K be a �eld.

(1) Given A ∈ M2(K) we can also express Um(tr(A), det(A)) in terms of its
eigenvalues λ1, λ2 (possibly equal) in an algebraic closure K of K. By
induction it is easily shown that, for m ∈ N∗,

Um(tr(A), det(A)) =
m−1∑
i=0

λi1λ
m−i−1
2 . (3.7)

Thus by Lemma 3.2(2) (taking into account that det(A) = λ1λ2) we can
express Am in terms of the eigenvalues. This choice makes the formula
dependent on the characteristic char(K) of the �eld: if char(K) 6= 2, the
eigenvalues of A ∈ M2(K) can be found from the characteristic polynomial
by the quadratic formula, but when char(K) = 2 the roots of x2 +ax+ b ∈
K[x] cannot be expressed by radicals when the polynomial is irreducible
over K and a 6= 0, and a di�erent approach is taken (see e.g. [10, Exercise
2.4.6]): its roots are x1 = aR(b/a2) and x2 = x1 + a, where R(y) denotes
a root of x2 + x+ y.

(2) Formula (3.7) can be simpli�ed as follows: if A is nondefective (λ1 6= λ2)
then

Um(tr(A), det(A)) =
λm2 − λm1
λ2 − λ1

, (3.8)

while if A is defective (λ1 = λ2 =: λ) then

Um(tr(A), det(A)) = mλm−1. (3.9)
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Remark: Defectiveness is easy to detect: if char(K) = 2, the matrix
A ∈ M2(K) is defective if and only if tr(A) = 0, i.e., if and only if the
characteristic polynomial is of the form x2 + det(A) (with single eigen-
value

√
det(A) ∈ K). If char(K) 6= 2, by the quadratic formula the

matrix is defective if and only if tr(A)2 − 4 det(A) = 0 (with single eigen-
value tr(A)/2). In any case, the matrix A is defective if and only if
tr(A)2 − 4 det(A) = 0.

In case K is not a �eld, Formula (3.7) still holds if λ1, λ2 are two eigenval-
ues in some overring K such that the characteristic polynomial of A equals
(x−λ1)(x−λ2) in K[x], the simpli�cation in the defective case can always be
done, and the simpli�cation in the nondefective case can be done when λ2−λ1
is a unit of K.

4. Continuant polynomials

In what follows we de�ne and study the multivariate polynomials which en-
code the periodicity in the formula for the determinant. We call them con-
tinuant polynomials since they are closely related to continuants: Continuant
monomials of type p are related to the Leibniz expansion of a continuant.
Continuant polynomials of type α generalize the non-determinant form of a
continuant given by Muir and Metzler in [30, Item 545]. Continuant polyno-
mials of type β and π are generalizations included here to �t the k-Toeplitz
case. We give rigorous, combinatorial de�nitions which allow us to prove sev-
eral elementary but essential properties of continuant polynomials (see Lemma
4.7).

Roughly speaking, given variables x1, . . . , xk and y1, . . . , yk, to build the
monomial pr,k(i1, . . . , im) we start with the product x1 · · · xr and then for each
index ij we substitute two consecutive x variables in the product, xij and xij+1,
with the corresponding y variable yij (so a y variable �weights� like two x vari-
ables), even cyclically: xr and x1 can be substituted together, but with the
caveat that they are not substituted by yr, but by yk.

10 The indices are taken
so that the consecutive substitutions they imply are indeed possible. Then the
polynomial π(r, k) is the sum of all pr,k polynomials for all possible indices, the
polynomial α(r, k) is the sum of those pr,k which do not have the variable yk,
and the polynomial β(r, k) is the sum of those pr,k which do have the variable
yk.

10This phenomenon re�ects the fact that, in the periodic extension of the vector (y1, . . . , yk), the
element �preceding� y1 is yk.
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De�nitions 4.1 (Continuant polynomials).
Given r ∈ Z we denote [r] := {1, . . . , r} if r ≥ 1, [r] := ∅ otherwise. For a
�nite set S ⊆ N∗, by

(
S
m

)
2
withm ∈ N∗ we denote the set of allm-combinations

of the set S satisfying |s− t| ≥ 2 for all s, t ∈ S, and by
(
S
m

)
2c
the subset which

applies this rule also cyclically, i.e., the subset of
(
S
m

)
2
which excludes those

combinations including both min(S) and max(S). For example(
[7]

3

)
2c

= {(1, 3, 5), (1, 3, 6), (1, 4, 6), (2, 4, 6), (2, 4, 7), (2, 5, 7), (3, 5, 7)}.

We also denote
(
S
0

)
2

:= {0} and
(
S
0

)
2c

:= {0} (even if S is empty). Given k, r ∈
N∗ with r ≤ k+1 and considering the ring R := Z[x1, . . . , xk, xk+1, y1, . . . , yk],
we denote

x′i := xi for 1 ≤ i ≤ r, x′r+1 := x1,

y′i := yi for 1 ≤ i < r, y′r := yk,

and de�ne the continuant monomial of type p of R (computed inside the ring
Z(x1, . . . , yk))

pr,k(i1, . . . , im) := x1 · · · xr ·
y′i1

x′i1x
′
i1+1

· · ·
y′im

x′imx
′
im+1

(4.2)

for (i1, . . . , im) ∈
(
[r]
m

)
2c

with 1 ≤ m ≤ br/2c. With the same Formula (4.2)
and de�ning

x′0 := 1, y′0 := x1

we also extend the de�nition of pr,k(i1, . . . , im) to the case i1 = 0, (i2, . . . , im) ∈(
[r]
m−1
)
2c
(the second condition holding when m > 1). So we have

pr,k(0) = x1 · · ·xr, pr,k(0, i) = pr,k(i) for i ∈
(

[r]

m

)
2c

,m ≥ 1.

In addition we de�ne p0,k(0) := 1.
For example,

p6,8(3) = x1x2y3x5x6, p6,8(1, 5) = y1x3x4y5,

p6,8(6) = x2x3x4x5y8, p6,6(3, 6) = x2y3x5y6, p7,6(3, 7) = x2y3x5x6y6,

p3,4(0) = x1x2x3, p3,4(0, 3) = p3,4(3) = x2y4.
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Now, for �xed 0 ≤ r ≤ k we denote in Z[x1, . . . , xk, y1, . . . , yk] the sum of all
the monomials pr,k by π(r, k),

π(r, k) :=

br/2c∑
m=0

∑
i∈([r]

m)
2c

pr,k(i), (4.3)

the sum of those pr,k having degree 0 in yk by α(r, k),

α(r, k) :=

br/2c∑
m=0

∑
i∈([r−1]

m )
2

pr,k(i), (4.4)

and the sum of those pr,k having degree 1 in yk by β(r, k),

β(r, k) :=

b(r−2)/2c∑
m=0

∑
i∈([r−2]−{1}

m )
2

pr,k(i, r). (4.5)

We extend the de�nitions to α(−1, k) = 0 through Formula (4.4) and to
β(k + 1, k) through Formula (4.5).
Note that π(0, k) = 1 = α(0, k), β(0, k) = 0 = β(1, k) and that, for 0 ≤ r ≤ k,

π(r, k) = α(r, k) + β(r, k). (4.6)

For example we have

π(4, 6) =x1x2x3x4 + y1x3x4 + x1y2x4 + x1x2y3 + x2x3y6 + y1y3 + y2y6,

α(4, 6) =x1x2x3x4 + y1x3x4 + x1y2x4 + x1x2y3 + y1y3, β(4, 6) = x2x3y6 + y2y6,

β(6, 5) =x2x3x4x5y5 + y2x4x5y5 + x2y3x5y5 + x2x3y4y5 + y2y4y5.

We call the continuant polynomials of type α, type β, and type π respectively to
the sets of polynomials {α(r, k)}, {β(r, k)}, {π(r, k)} for all valid pairs (r, k)
in each case. The shift by s of continuant polynomials of type α we write as
αs(r, k) := (α(r, k))s.

Lemma 4.7 (Identities with continuant polynomials).
Given k ∈ N∗, in Z[x1, . . . , xk, y1, . . . , yk] we have:

(1) For 1 ≤ r ≤ k + 1,

β(r, k) = ykα1(r − 2, k).

(2) For 0 ≤ r ≤ k − 1,

α(r + 1, k) = xr+1α(r, k) + yrα(r − 1, k).
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(3) For 2 ≤ r ≤ k,

β(r + 1, k) = xrβ(r, k) + yr−1β(r − 1, k).

(4) For 1 ≤ r ≤ k − 1 and 1 ≤ s ≤ k − r,

αs−1(r, k) = xsαs(r − 1, k) + ysαs+1(r − 2, k).

(5) For 0 ≤ r ≤ k − 1,

α(k − 1, k)β(r + 1, k)− α(r, k)β(k, k) = (−1)r+1yky1 · · · yrαr+1(k − r − 2, k).

Proof :

(1) Recall that for 1 ≤ r ≤ k + 1 we have, by de�nition,

α(r − 2, k) =

b(r−2)/2c∑
m=0

∑
i∈([r−3]

m )
2

pr−2,k(i).

Fix some p := pr−2,k(i1, . . . , im) appearing as a term in the above expression
of α(r−2, k), with indices rearranged so that i1 < . . . < im. Then, working
in Z(x1, . . . , xk, y1, . . . , yk), the shift of p by 1 satis�es

(pr−2,k(0))1 = pr−1,k(0)/x1

if m = 0 and

(pr−2,k(i1, . . . , im))1 = pr−1,k(i1 + 1, . . . , im + 1)/x1

with
{

(i1 + 1, . . . , im + 1) | (i1, . . . , im) ∈
(
[r−3]
m

)
2

}
=
(
[r−2]−{1}

m

)
2
ifm ≥ 1;

whence

ykα1(r − 2, k) =

b(r−2)/2c∑
m=0

∑
i∈([r−2]−{1}

m )
2

pr−1,k(i)yk/x1 =

=

b(r−2)/2c∑
m=0

∑
i∈([r−2]−{1}

m )
2

pr,k(i, k) = β(r, k)

by de�nition.
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(2) For r = 1 we have α(2, k) = x1x2 +y1, α(1, k) = x1, α(0, k) = 1, so indeed
α(2, k) = x2α(1, k) + y1α(0, k). For 2 ≤ r ≤ k − 1 consider

α(r + 1, k) =

b(r+1)/2c∑
m=0

∑
i∈([r]

m)
2

pr+1,k(i)

and �x some p := pr+1,k(i1, . . . , im) appearing as a term in the above ex-
pression of α(r+1, k), with indices rearranged so that i1 < . . . < im. Since
im < r + 1 (so yk is not a factor of p), we have that either
� im < r, xr+1 is a factor of p and yr is not, whence p = xr+1pr,k(i1, . . . , im),
or

� im = r, yr is a factor of p and xr+1 is not, whence p = yrpr−1,k(i1, . . . , im−1)
if m ≥ 2 and p = yrpr−1,k(0) if m = 1.

Denote

S1(m) :=

{
(i1, . . . , im) ∈

(
[r]

m

)
2

| i1, . . . , im < r

}
,

S2(m) :=

{
(i1, . . . , im−1, r) ∈

(
[r]

m

)
2

}
and observe that

(
[r]
m

)
2
is the disjoint union of S1 and S2 for 0 ≤ m ≤

b(r + 1)/2c. We have S1(m) =
(
[r−1]
m

)
2
for 0 ≤ m ≤ b(r + 1)/2c and

S2(m) = {(i, r) | i ∈
(
[r−2]
m−1
)
2
} for 2 ≤ m ≤ b(r + 1)/2c; in addition,

since pr+1,k(0, r) = pr+1,k(r) = yrpr−1,k(0), we can substitute S2(1) with

{(i, r) | i ∈
(
[r−2]
0

)
2
}. Therefore

α(r + 1, k)
(a)
=

br/2c∑
m=0

∑
i∈([r−1]

m )
2

xr+1pr,k(i) +

b(r+1)/2c∑
m=1

∑
i∈([r−2]

m−1)2

yrpr−1,k(i) =

(b)
= xr+1

br/2c∑
m=0

∑
i∈([r−1]

m )
2

pr,k(i) + yr

b(r−1)/2c∑
m=0

∑
i∈([r−2]

m )
2

pr−1,k(i) =

= xr+1α(r, k) + yrα(r − 1, k),

where to rewrite the bounds of summations we have applied:
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• In the �rst term at the RHS of (a), that b(r + 1)/2c = br/2c when r is
even, while we cannot simultaneously have m = b(r + 1)/2c and im < r
when r is odd.
• In the second term at the RHS of (a), that we cannot simultaneously
have m = 0 and im = r.
• In the second term at the RHS of (b), that b(r+1)/2c−1 = b(r−1)c/2.

(3) Using item (1) and the fact that the shift by 1 is an automorphism of the
polynomial ring we get, for 2 ≤ r ≤ k,

β(r + 1, k) = ykα1(r − 1, k) = yk(xr−1α(r − 2, k) + yr−2α(r − 3, k))1 =

= (xr−1)1ykα1(r − 2, k) + (yr−2)1ykα1(r − 3, k) = xrβ(r, k) + yr−1β(r − 1, k).

(4) With arguments similar to those of item (2), applied now to the variables
of lowest index, we are going to show that

α(r, k) = x1α1(r − 1, k) + y1α2(r − 2, k).

From this, since the shift by s − 1 is an automorphism of the polynomial
ring, and shifts are additive, we get the desired consequence:

αs−1(r, k) = (x1)s−1(α1(r − 1, k))s−1 + (y1)s−1(α2(r − 2, k))s−1 =

= xsαs(r − 1, k) + ysαs+1(r − 2, k).

We expose the arguments with less detail than in item (2). Recall that

α(r, k) =

br/2c∑
m=0

∑
i∈([r−1]

m )
2

pr,k(i)

and �x some p := pr,k(i1, . . . , im) with i1 < · · · < im. Then either
� i1 6= 1, x1 is a factor of p (since r ≥ 1) and y1 is not, whence
p = x1(pr−1,k(i1 − 1, . . . , im − 1))1 if i1 > 0 and
p = x1(pr−1,k(0, i2 − 1, . . . , im − 1))1 if i1 = 0, or

� i1 = 1, y1 is a factor of p and x1 is not, whence
p = y1(pr−2,k(i2 − 2, . . . , im − 2))2 if m ≥ 2 and p = y1(pr−2,k(0))2 if
m = 1.

For i = (i1, . . . , im) ∈
(
S
m

)
2
with i1 < · · · < im and z ∈ N, i1 ≥ z or i1 = 0

and i2 ≥ z (or m = 1), we de�ne i− z := (i1 − z, . . . , im − z) when i1 ≥ z
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and i− z := (0, i2 − z, . . . , im − z) when i1 = 0 and i2 ≥ z. Then

α(r, k) =

br/2c∑
m=0

∑
i∈([r−1]−{1}

m )
2

x1(pr−1,k(i− 1))1 +

br/2c∑
m=1

∑
i∈([r−1]−{1,2}

m−1 )
2

y1(pr−2,k(i− 2))2 =

= x1

b(r−1)/2c∑
m=0

∑
i∈([r−2]

m )
2

pr−1,k(i)


1

+ y1

b(r−2)/2c∑
m=0

∑
i∈([r−3]

m )
2

pr−2,k(i)


2

=

= x1α1(r − 1, k) + y1α2(r − 2, k).

(5) Fixed k we proceed by strong induction on r. We need two base cases.
First, for r = 0 we have β(k, k) = ykα1(k − 2, k) by item (1). Therefore,
since β(1, k) = 0 and α(0, k) = 1, this shows

α(k − 1, k)β(1, k)− α(0, k)β(k, k) = (−1)1ykα1(k − 2, k).

Second, for r = 1 we have k− 1 ≥ 1 and then items (1,4) and the fact that
β(2, k) = yk allow us to show that

α(k − 1, k)β(2, k)− α(1, k)β(k, k) = α(k − 1, k)yk − x1ykα1(k − 2, k) =

= yk(α(k − 1, k)− x1α1(k − 2, k)) = yky1α2(k − 3, k).

Now pick 2 ≤ r ≤ k − 1 and suppose that

α(k− 1, k)β(r′, k)− α(r′− 1, k)β(k, k) = (−1)r
′
yky1 · · · yr′−1αr′(k− r′− 1, k)

for r′ ∈ {r, r−1}. Then by items (2,3), the induction hypothesis, and item
(4),

α(k − 1, k)β(r + 1, k)− α(r, k)β(k, k) =

=α(k − 1, k)(xrβ(r, k) + yr−1β(r − 1, k))− (xrα(r − 1, k) + yr−1α(r − 2, k))β(k, k) =

=xr(α(k − 1, k)β(r, k)− α(r − 1, k)β(k, k))+

+yr−1(α(k − 1, k)β(r − 1, k)− α(r − 2, k)β(k, k)) =

=xr(−1)ryky1 · · · yr−1αr(k − r − 1, k) + yr−1(−1)r−1yky1 · · · yr−2αr−1(k − r, k) =

=(−1)r+1yky1 · · · yr−1(αr−1(k − r, k)− xrαr(k − r − 1, k)) =

=(−1)r+1yky1 · · · yr−1yrαr+1(k − r − 2, k).
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De�nition 4.8 (Continuant polynomials of type α).
Inside Z[x1, . . . , xk, y1, . . . , yk], we extend the de�nition of polynomials of type
α to α(n, k) for n > k through the recurrence relation of Lemma 4.7(2), de-
noting xk+i := xi for all i ∈ N∗. For example, we have

α(4, 3) = x1α(3, 3) + y3α(2, 3) = x21x2x3 + x1y1x3 + x21y2 + x1x2y3 + y1y3.

5. Determinant

De�nition 5.1 (Universal determinants).
Given k, n ∈ N∗ we call the universal determinant of tridiagonal k-Toeplitz
matrices of size n to the polynomial D(n, k) ∈ Z[x1, . . . , xk, y1, . . . , yk] de�ned
by

D(n, k) := det(T kn (x1, . . . , xk, 1, . . . , 1, y1, . . . , yk)).

We also de�ne D(0, k) := 1, D(−1, k) := 0.
The shift by s of universal determinants we write as Ds(n, k) := (D(n, k))s.

Lemma 5.2 (Identities of universal determinants).
Consider Z[x1, . . . , xk, y1, . . . , yk]. Then:

(1) For n ∈ N∗,

D(n, k) = xnD(n− 1, k)− yn−1D(n− 2, k).

(2) For n ∈ N∗ and s ∈ N,

Ds(n, k) = xs+1Ds+1(n− 1, k)− ys+1Ds+2(n− 2, k).

Proof :

(1) For n ∈ {1, 2} the result is true. For n ≥ 3, applying Laplace's expansion
to D(n, k) along the last column,∣∣∣∣∣∣∣∣∣
x1 1

y1
. . . . . .
. . . xn−1 1

bn−1 xn

∣∣∣∣∣∣∣∣∣ = xn

∣∣∣∣∣∣∣∣∣
x1 1

y1
. . . . . .
. . . xn−2 1

yn−2 xn−1

∣∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣∣
x1 1

y1
. . . . . .
. . . xn−2 1

0 yn−1

∣∣∣∣∣∣∣∣∣ ,
we get D(n, k) = xnD(n− 1, k)−D′(n, k), with the auxiliary determinant
D′ satisfying D′(n, k) = yn−1D(n− 2, k) by Laplace's expansion along its
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last row: ∣∣∣∣∣∣∣∣∣
x1 1

y1
. . . . . .
. . . xn−2 1

0 yn−1

∣∣∣∣∣∣∣∣∣ = yn−1

∣∣∣∣∣∣∣∣∣
x1 1

y1
. . . . . .
. . . xn−3 1

yn−3 xn−2

∣∣∣∣∣∣∣∣∣ .
(2) An argument similar to the previous one, applying Laplace's expansion to

D(n, k) along the �rst column, then Laplace's expansion to the resulting
auxiliary determinant along the �rst row, gives

D(n, k) = x1D1(n− 1, k)− y1D2(n− 2, k).

Now, since the shift by s is an automorphism of the polynomial ring, and
shifts are additive, we get

Ds(n, k) = (x1)s(D1(n− 1, k))s − (y1)s(D2(n− 2, k))s =

=xs+1Ds+1(n− 1, k)− ys+1Ds+2(n− 2, k).

The determinant of any tridiagonal k-Toeplitz matrix is an evaluation of a
universal determinant.

Lemma 5.3. Let K be a commutative unital ring. Given k, n ∈ N∗ and
a, b := (b1, . . . , bk), c := (c1, . . . , ck) ∈ Kk, put di := bici for 1 ≤ i ≤ k and

d := (d1, . . . , dk). Then det(T kn (a, b, c)) = Da,d(n, k).

Proof : Consider the ring R := Z(x1, . . . , xk, y1, . . . , yk, z1, . . . , zk) and the ma-
trix T kn (x1, . . . , xk, y1, . . . , yk, z1, . . . , zk). Let ϕi denote the operation on A ∈
Mn(R) consisting on �rst dividing the ith column of A by Yi :=

∏i−1
j=1 yi, then

multiplying the ith row of the resulting matrix by Yi. We have det(A) =
det(ϕi(A)) for all 1 ≤ i ≤ n. Then det(A) = det(ϕn(ϕn−1(· · · (ϕ2(A)) · · · )))
implies

det(T kn (x1, . . . , xk, y1, . . . , yk, z1, . . . , zk)) = Dx,w(n, k)

with x := (x1, . . . , xk), w := (y1z1, . . . , ykzk). Therefore, by evaluation,

det(T kn (a, b, c)) = Da,d(n, k).

The solution over K of the nth term of the k-periodic linear recurrence
equation of second order zn = anzn−1 − bn−1zn−2 with an, bn ∈ K, n ∈ N∗,
ak+i = ai, bk+i = bi for i ∈ N∗, and initial conditions z−1 := 0, z0 := 1 is unique;
since this recurrence relation is satis�ed by both the evaluation Da,b(n, k) of



TRIDIAGONAL k-TOEPLITZ MATRICES 27

the universal determinant of k-Toeplitz matrices of size n (Lemma 5.2(1)) and

the evaluation αa,9b(n, k) of the polynomial of type α (Lemma 4.7(2)), we get

Da,b(n, k) = αa,9b(n, k) (5.4)

for all n, k ∈ N. When n ≤ k, this identity (through Lemma 5.3) gives the
determinant of a general tridiagonal matrix. The next theorem shows that when
n > k the determinant of a tridiagonal k-Toeplitz matrix can, in addition, be
written as a linear combination of two of the �rst 2k continuant polynomials
of type α (the evaluations of α(0, k), . . . , α(2k − 1, k)), or equivalently, of the
�rst k continuant polynomials and �rst k shifted continuant polynomials of
type α; a linear combination whose coe�cients are, in essence, evaluations of
generalized Fibonacci polynomials.

Theorem 5.5 (Determinant of a tridiagonal k-Toeplitz matrix).
Let K be a commutative unital ring. Given k < n ∈ N∗ and a, b := (b1, . . . , bk),
c := (c1, . . . , ck) ∈ Kk, put di := bici for 1 ≤ i ≤ k, d := (d1, . . . , dk)

and d := d1 · · · dk. Denote U(i) := Ui(π
a,9d(k, k), d) for i ∈ N and write

n = mk + r by Euclidean division. Then

det(T kn (a, b, c)) =U(m)αa,9d(k + r, k)− dU(m− 1)αa,9d(r, k) (5.6)

=U(m+ 1)αa,9d(r, k) + dkd1 · · · drU(m)αa,9dr+1(k − r − 2, k).
(5.7)

In particular, if r = k−1 then det(T kn (a, b, c)) is a multiple of det(T kk−1(a, b, c)):

det(T kmk+k−1(a, b, c)) = U(m+ 1)αa,9d(k − 1, k) = U(m+ 1) det(T kk−1(a, b, c)).
(5.8)

Proof : By Lemma 5.3 we have det(T kn (a, b, c)) = Da,d(n, k). Put a0 := ak, d0 :=
dk, d−1 := dk−1. From the recurrence relation of universal determinants (Lemma
5.2(1)) we get the k-periodic second-order linear recurrence equation

Da,d(n, k) = arD
a,d(n− 1, k)− dr−1Da,d(n− 2, k), (5.9)

which can be written in matrix form as(
Da,d(n, k)

Da,d(n− 1, k)

)
=

(
ar −dr−1
1 0

)(
Da,d(n− 1, k)

Da,d(n− 2, k)

)
. (5.10)
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De�ne As :=

(
as −ds−1
1 0

)
for 0 ≤ s ≤ k (note A0 = Ak), which has det(As) =

ds−1, and A := AkAk−1 · · ·A1. Observe that we also have(
Da,d(1, k)

Da,d(0, k)

)
=

(
a1
1

)
=

(
a1 −dk
1 0

)(
1
0

)
= A1

(
1
0

)
.

Therefore, by recursion on (5.10), for n = mk + r we have(
Da,d(n, k)

Da,d(n− 1, k)

)
= ArAr−1 · · ·A1 · Am

(
1
0

)
, (5.11)

understanding Ar · · ·A1 = I2 when r = 0. Denote A(s) := As · · ·A1 for
1 ≤ s ≤ k (note A(k) = A). Let us show by induction on s that

A(s) =

(
αa,9d(s, k) βa,9d(s+ 1, k)

αa,9d(s− 1, k) βa,9d(s, k)

)
. (5.12)

From De�nitions 4.1, in the ringZ[x1, . . . , xk+1, y1, . . . , yk] we compute β(2, k) =
yk, π(1, k) = x1, β(1, k) = 0, α(1, k) = x1, α(0, k) = 1, so(

αa,9d(1, k) βa,9d(2, k)

αa,9d(0, k) βa,9d(1, k)

)
=

(
a1 −dk
1 0

)
= A1 = A(1).

This shows the base case. Now assume that (5.12) is true for a �xed 1 ≤ s ≤
k − 1. Then

A(s+ 1) =As+1A(s) =

(
as+1 −ds

1 0

)(
αa,9d(s, k) βa,9d(s+ 1, k)

αa,9d(s− 1, k) βa,9d(s, k)

)
=

=

(
as+1α

a,9d(s, k)− dsαa,9d(s− 1, k) as+1β
a,9d(s+ 1, k)− dsβa,9d(s, k)

αa,9d(s, k) βa,9d(s+ 1, k)

)
=

=

(
αa,9d(s+ 1, k) βa,9d(s+ 2, k)

αa,9d(s, k) βa,9d(s+ 1, k)

)
by Lemma 4.7(2,3), as we needed to show.
Now, by (5.11) and setting A(0) := I2, we get(

Da,d(n, k)

Da,d(n− 1, k)

)
= A(r)Am

(
1
0

)
, (5.13)
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so Da,d(n, k) equals the (1, 1) entry of A(r)Am. Since by (5.12)

A = A(k) =

(
αa,9d(k, k) βa,9d(k + 1, k)

αa,9d(k − 1, k) βa,9d(k, k)

)
,

we get tr(A) = αa,9d(k, k) + βa,9d(k, k) = πa,9d(k, k). In addition we have

det(A) = det(A(k)) =
∏k

s=1 det(As) = d1 · · · dk = d. Thus by Lemma 3.2(2),

if U(i) := Ui(π
a,9d(k, k), d) then Am = U(m)A − dU(m − 1)I2, so the �rst

column of Am is (
U(m)αa,9d(k, k)− dU(m− 1)

U(m)αa,9d(k − 1, k)

)
. (5.14)

By (5.12), if r > 0 then the �rst row of A(r) is(
αa,9d(r, k) βa,9d(r + 1, k)

)
, (5.15)

and the same holds for A(0) = I2, since α
a,9d(0, k) = 1, βa,9d(1, k) = 0. Using

(5.14) and (5.15) in (5.13) we get

Da,d(n, k) =

U(m)(αa,9d(k, k)αa,9d(r, k) + αa,9d(k − 1, k)βa,9d(r + 1, k))− dU(m− 1)αa,9d(r, k).
(5.16)

Observe that if k ≤ n < 2k then m = 1, so U(1) = 1, U(0) = 0 and we get

αa,9d(k, k)αa,9d(r, k) + αa,9d(k − 1, k)βa,9d(r + 1, k) = Da,d(k + r, k) = αa,9d(k + r, k)
(5.17)

because of (5.4), giving Formula (5.6)

Da,d(n, k) = U(m)αa,9d(k + r, k)− dU(m− 1)αa,9d(r, k).
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In addition, we can rewrite (5.16) as

Da,d(n, k) =

(1)
= αa,9d(r, k)(U(m)(πa,9d(k, k)− βa,9d(k, k))− dU(m− 1))+

+ U(m)αa,9d(k − 1, k)βa,9d(r + 1, k)) =

(2)
= αa,9d(r, k)(U(m+ 1)− U(m)βa,9d(k, k)) + U(m)αa,9d(k − 1, k)βa,9d(r + 1, k)) =

= U(m+ 1)αa,9d(r, k) + U(m)(αa,9d(k − 1, k)βa,9d(r + 1, k)− αa,9d(r, k)βa,9d(k, k)) =

(3)
= U(m+ 1)αa,9d(r, k) + U(m)dkd1 · · · drαa,9dr+1(k − r − 2, k), (5.18)

using (1) πa,9d(k, k) = αa,9d(k, k)+βa,9d(k, k), (2) the de�nition of U(i) and the
recurrence relation for the generalized Fibonacci polynomials (Lemma 3.2(1)),

and (3) Lemma 4.7(5). Finally, if r = k − 1 then αa,9dr+1(k − r − 2, k) =

αa,9dr+1(−1, k) = 0 and Da,d(n, k) = U(m+ 1)αa,9d(r, k) by (5.18).

As seen from the proof of Theorem 5.5, the polynomials of type α in the
second period can also be written as a function of the polynomials of types
α, β in the �rst period.

Corollary 5.19. For 0 ≤ r < k,

α(k + r, k) = α(k, k)α(r, k) + α(k − 1, k)β(r + 1, k).

Proof : Apply (5.17) of the proof of Theorem 5.5 toK := Z[x1, . . . , xk, y1, . . . , yk].

Probably there are no other cases apart from r = k − 1, depending only on
k and r, for which the determinant of a general tridiagonal k-Toeplitz matrix
factors11. On the other hand, if some entry of the upper or lower main diagonal
is zero, then the determinant factors.

Corollary 5.20 (Determinant of a reducible tridiagonal k-Toeplitz matrix).
Let K be a commutative unital ring. Given k, n ∈ N∗ and a, b := (b1, . . . , bk),
c := (c1, . . . , ck) ∈ Kk, write n = mk + r by Euclidean division, put di := bici
for 1 ≤ i ≤ k and d := (d1, . . . , dk). Suppose bi1 = . . . = biq = 0 (q ≥ 1, n > i1,
1 < i2 < · · · < iq ≤ k) or ci1 = . . . = ciq = 0 and put iq+1 := i1 + k, i0 := iq.

11We have checked that the universal determinants of tridiagonal k-Toeplitz matrices of size n
are irreducible for k, n ≤ 10 except when r = k − 1.
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Let r′ := r + k, p := 0 if r ≤ i1 and r′ := r and p ∈ N∗ be such that
ip < r ≤ ip+1 otherwise. Then

det(T kn (a, b, c)) = αa,9d(i1, k)

q∏
j=1

(αa,9dij
(ij+1 − ij, k))m+mjαa,9dip

(r′ − ip, k)

withmj :=

{
1 if j < p
0 if j ≥ p

for 1 ≤ j < q andmq :=

{
0 if p > 0 or m = 0
−1 if p = 0

.

Proof : If ci1 = . . . = ciq = 0 then T kn (a, b, c)T is a tridiagonal k-Toeplitz

matrix with zeros in the upper main diagonal satisfying det(T kn (a, b, c)T ) =
det(T kn (a, b, c)), so without loss of generality we study only the case with
bi1 = . . . = biq = 0. By Remark 2.3.2, T kn (a, b, c) is a block lower triangular
matrix with tridiagonal k-Toeplitz matrices as diagonal blocks, which repeat
periodically. Concretely, the �rst diagonal block (since n > i1) is T

k
i1

(a, b, c);
then the array of diagonal blocks

T ki2−i1(σi1(a), σi1(b), σi1(c))), . . . , T
k
iq−iq−1(σiq−1(a), σiq−1(b), σiq−1(c))),

T kk+i1−iq(σiq(a), σiq(b), σiq(c)))

repeats m − 1 times (if m > 1, otherwise it does not appear); after that, the
array

T ki2−i1(σi1(a), σi1(b), σi1(c))), . . . , T
k
iq−iq−1(σiq−1(a), σiq−1(b), σiq−1(c)))

appears again if m > 0 (it does not appear otherwise); and the last diagonal
blocks depend on the relative position of r with respect to the indices i1, . . . , iq:
if r ≤ i1 (what implies m > 0) then only one block more appears, namely

T kk+r−iq(σiq(a), σiq(b), σiq(c)),

while if on the contrary there is p ∈ N∗ such that ip < r ≤ ip+1 then the ending
array of blocks is

T kk+i1−iq(σiq(a), σiq(b), σiq(c))), T
k
i2−i1(σi1(a), σi1(b), σi1(c))), . . .

. . . , T kip−ip−1(σip−1(a), σip−1(b), σip−1(c))), T
k
r−ip(σip(a), σip(b), σip(c))).

By Theorem 2.3.1 the determinant of a block triangular matrix is the product
of the determinants of its diagonal blocks, and by (5.4), for s, t, k ∈ N,

det(T kt (σs(a), σs(b), σs(c))) = αa,9ds (t, k).

The result follows.
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Remark 5.21 (Da Fonseca and Petronilho's formula).
In [13, Section 4], Da Fonseca and Petronilho give a formula for the entries

of the inverse of a complex irreducible tridiagonal k-Toeplitz matrix, based
on a sequence of polynomials {Qnk+j} described in terms of determinants and
Chebyshev polynomials. In this remark we show that their formula is a par-
ticular case of ours, by showing that Qnk+j is in fact the determinant of the
tridiagonal k-Toeplitz matrix of order nk + j, and that the de�nitory formula
of Qnk+j, once the determinants are explicitly expressed as polynomials and
the Chebyshev polynomials are related to generalized Fibonacci polynomials
as in Remark 3.3, coincides with Formula (5.7) for the determinant given in
Theorem 5.5.
Since the notation used in [13] diverges from ours, for ease of comprehension

we include a table with the correspondence of notations:

Parameter da Fonseca&Petronilho Brox&Albuquerque Parameter d.F.&P. B.&A.

Diagonal var. zi xi or ai Matrix size N n
Nondiag. var. wi yi or di = bici Period k k

Nondiag. product w2 d Quotient n m
Tridiag. det. ∆ α Remainder j r

In order to show the equivalence of formulas, we now translate the relevant
objects from [13] to our setting. In the following any de�nition is as given in [13].

Fixed k ∈ N∗, consider z1, . . . , zk ∈ C, w1, . . . , wk ∈ C∗ and w2 :=
∏k

i=1wi.
For any 0 ≤ j < k they de�ne

∆

(
z1, . . . , zj

w1, . . . , wj−1
; 0

)
:=

∣∣∣∣∣∣∣∣∣∣∣∣∣

z1 1 0 · · · · · · 0

w1 z2 1 . . . . . . ...

0 w2 z3
. . . . . . 0

... . . . . . . . . . . . . ...

... . . . . . . . . . zj−1 1
0 · · · 0 · · · wj−1 zj

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We put z := (z1, . . . , zk), w := (w1, . . . , wk) ∈ Ck. We have, by (5.4),

∆

(
z1, . . . , zj

w1, . . . , wj−1
; 0

)
= αz,9w(j, k). (5.22)
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Substituting k − j − 2 in place of j and shifting the determinant by j + 1, in
addition we get

∆

(
zj+2, . . . , zk−1
wj+2, . . . , wk−2

; 0

)
= αz,9wj+1 (k − j − 2, k). (5.23)

They also de�ne

πk

(
z1, . . . , zk
w1, . . . , wk

; 0

)
:=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z1 1 0 · · · 0 0 1

w1 z2 1 . . . 0 0 0

0 w2 z3
. . . 0 0 0

...
... . . . . . . . . . ...

...

0 0 0 . . . zk−2 1 0

0 0 0 . . . wk−2 zk−1 1
wk 0 0 · · · 0 wk−1 zk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

which can be translated to our setting through the following expansion:

πk

(
z1, . . . , zk
w1, . . . , wk

; 0

)
=

=

∣∣∣∣∣∣∣∣∣∣∣

z1 1 0 · · · 1

w1 z2
. . . . . . ...

0 . . . . . . . . . 0
... . . . . . . zk−1 1
0 · · · 0 wk−1 zk

∣∣∣∣∣∣∣∣∣∣∣
+ (−1)k+1wk

∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0 1

z2 1 . . . 0 0
... . . . . . . . . . ...

0 0 . . . 1 0

0 0 . . . zk−1 1

∣∣∣∣∣∣∣∣∣∣∣
=

=

∣∣∣∣∣∣∣∣∣∣∣

z1 1 0 · · · 0

w1 z2
. . . . . . ...

0 . . . . . . . . . 0
... . . . . . . zk−1 1
0 · · · 0 wk−1 zk

∣∣∣∣∣∣∣∣∣∣∣
+ (−1)k+1

∣∣∣∣∣∣∣∣∣
w1 z2 · · · 0

0 . . . . . . ...
... . . . . . . zk−1
0 · · · 0 wk−1

∣∣∣∣∣∣∣∣∣+

+ (−1)k+1wk


∣∣∣∣∣∣∣∣∣
1 0 · · · 0

z2
. . . . . . ...

... . . . . . . 0
0 · · · zk−1 1

∣∣∣∣∣∣∣∣∣+ (−1)k

∣∣∣∣∣∣∣∣∣∣∣

z2 1 0 · · · 0

w2
. . . . . . . . . ...

0 . . . . . . . . . 0
... . . . . . . . . . 1
0 · · · 0 wk−1 zk−1

∣∣∣∣∣∣∣∣∣∣∣

 =

=αz,9w(k, k) + (−1)k+1w2/wk + (−1)k+1wk − wkαz,9w1 (k − 2, k).
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Thus, since −wkαz,9w1 (k − 2, k) = βz,9w(k, k) by Lemma 4.7(5) (with r = 0),
and αz,9w(k, k) + βz,9w(k, k) = πz,9w(k, k), we get

πk

(
z1, . . . , zk
w1, . . . , wk

; 0

)
+ (−1)k(wk + w2/wk) = πz,9w(k, k). (5.24)

For n ∈ N they de�ne

Un,k

(
z1, . . . , zk
w1, . . . , wk

; 0

)
:= wnUn

(
1

2w

(
πk

(
z1, . . . , zk
w1, . . . , wk

; 0

)
+ (−1)k(wk + w2/wk)

))
where Um(x) denotes as before the mth Chebyshev polynomial of the second
kind. Therefore, by Formulas (5.24) and (3.5) we see that

Un,k

(
z1, . . . , zk
w1, . . . , wk

; 0

)
= Un+1(π

z,9w(k, k), w2) (5.25)

with Um(x, y) the generalized Fibonacci polynomial of order m, as before.
Lastly, for n ∈ N∗ and 0 ≤ j < k they de�ne

Qnk+j

(
z1, . . . , zk
w1, . . . , wk

; 0

)
:=∆

(
z1, . . . , zj

w1, . . . , wj−1
; 0

)
Un,k

(
z1, . . . , zk
w1, . . . , wk

; 0

)
+

+wkw1 · · ·wj∆
(

zj+2, . . . , zk−1
wj+2, . . . , wk−2

; 0

)
Un−1,k

(
z1, . . . , zk
w1, . . . , wk

; 0

)
.

Putting U(i) := Ui(π
z,9w(k, k), w2), by (5.22), (5.23) and (5.25) we arrive at

Qnk+j

(
z1, . . . , zk
w1, . . . , wk

; 0

)
= αz,9w(j, k)U(n+1)+wkw1 · · ·wjαz,9wj+1 (k−j−2, k)U(n)

which equals det(T knk+j(z, b, c)) by Formula (5.7) of Theorem 5.5, for any b :=

(b1, . . . , bk), c := (c1, . . . , ck) ∈ Ck such that bici = wi for 1 ≤ i ≤ k.

In the same vein, it can be easily shown that Rózsa's formula for the deter-
minant of a symmetric irreducible tridiagonal k-Toeplitz matrix over C ([33,
Theorem]) is a particular case of Formula (5.7).
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6. Spectral properties

We show how to compute the characteristic polynomial and some eigenvec-
tors of a tridiagonal k-Toeplitz matrix through determinants of other related
tridiagonal k-Toeplitz matrices.

Corollary 6.1 (Char. polynomial of a tridiagonal k-Toeplitz matrix).

Let K be a commutative unital ring. Given k, n ∈ N∗ and a, b := (b1, . . . , bk),
c := (c1, . . . , ck) ∈ Kk, put di := bici for 1 ≤ i ≤ k and d := (d1, . . . , dk).
If n ≤ k (i.e, if we are considering a general tridiagonal matrix) then

pT k
n (a,b,c)

(x) = αx−a,9d(n, k).

If n > k write n = mk+r by Euclidean division, put d := d1 · · · dk, and denote
Ux(i) := Ui(π

x−a,9d(k, k), d) for i ∈ N; then

pT k
n (a,b,c)

(x) =Ux(m)αx−a,9d(k + r, k)− dUx(m− 1)αx−a,9d(r, k) (6.2)

=Ux(m+ 1)αx−a,9d(r, k) + dkd1 · · · drUx(m)αx−a,9dr+1 (k − r − 2, k).
(6.3)

In particular, if r = k − 1 then pT k
n (a,b,c)

factors as

pT k
n (a,b,c)

(x) = Ux(m+ 1)αx−a,9d(k − 1, k).

Moreover, if T kn (a, b, c) is reducible with bi1 = . . . = biq = 0 (q ≥ 1, n > i1,
i1 < i2 < · · · < iq) or ci1 = . . . = ciq = 0, putting iq+1 := i1 + k, i0 := iq,
r′ := r + k and p := 0 if r ≤ i1 or r′ := r and p ∈ N∗ such that ip < r ≤ ip+1

otherwise, then pT k
n (a,b,c)

factors as

pT k
n (a,b,c)

= αx−a,9d(i1, k)

q∏
j=1

(αx−a,9dij
(ij+1 − ij, k))m+mjαx−a,9dip

(r′ − ip, k)

withmj :=

{
1 if j < p
0 if j ≥ p

for 1 ≤ j < q andmq :=

{
0 if p > 0 or m = 0
−1 if p = 0

.



36 J. BROX AND H. ALBUQUERQUE

Proof : Since (5.4) and Theorem 5.5 give formulas for the determinant of any
tridiagonal k-Toeplitz matrix over any commutative unital ring, they can be
used to compute pT k

n (a,b,c)
= det(xIn − T kn (a, b, c)) = det(T kn (x − a,−b,−c))

over K[x]. Moreover, if T kn (a, b, c) is reducible with bi1 = . . . = biq = 0 or

ci1 = . . . = ciq = 0 then the same happens to T kn (x− a,−b,−c), and Corollary
5.20 applies.

Remark 6.4 (Finding the eigenvalues in the case r = k − 1).
The factorization of the characteristic polynomial found in Corollary 6.1 in

the special case r = k − 1,

pT k
n (a,b,c)

(x) = Um+1(π
x−a,9d(k, k), d)αx−a,9d(k − 1, k), (6.5)

generalizes the same phenomenon shown in the literature for the complex num-
bers many times before (e.g. [14, (7)],[33, Corollary],[15, Remark 5],[13, The-
orem 5.1],[4, (2.6),(2.12)]), where it is used to ease the computation of the
eigenvalues of the matrix. Speci�cally, if d 6= 0, writing the factorization in
terms of a Chebyshev polynomial of the second kind (see Remark 3.3),

pT k
n (a,b,c)

(x) = (
√
d)mUm(πx−a,9d(k, k)/2

√
d)αx−a,9d(k − 1, k), (6.6)

we �nd that the eigenvalues are either roots of αx−a,9d(k − 1, k) (a polynomial
of degree k − 1) or roots of Um(ρ(x)) (a polynomial of degree n − k + 1)

with ρ(x) := πx−a,9d(k, k)/(2
√
d); in particular the roots of the Chebyshev

polynomial can be found by solving the m = bn/kc polynomial equations of
degree k

ρ(x) = cos
iπ

m+ 1
for 1 ≤ i ≤ m

(by the well-known trigonometric properties of Chebyshev polynomials over
C).
More in general, if K is an integral domain with char(K) 6= 2 then the factor-
ization in (6.6) can be used to subdivide the problem in the same way (with

solutions in an algebraic closure Q(K) of its �eld of fractions). Over an arbi-
trary commutative unital ringK we can still use (6.5) to subdivide the problem,

since if pT k
n (a,b,c)

(λ) is a zero divisor of K for λ ∈ K then Um+1(π
λ−a,9d(k, k), d)

or αλ−a,9d(k − 1, k) must be a zero divisor of K.
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Theorem 6.7 (Eigenvectors of a tridiagonal k-Toeplitz matrix).
Let λ be an eigenvalue of T kn (a, b, c) and pick 0 6= z ∈ Ann(pT k

n (a,b,c)
(λ)). Put

di := bici, d := (d1, . . . , dk).

a) For 1 ≤ i ≤ n de�ne

vzi (λ) := z
n−1∏
j=i

bj ·Dλ−a,d(i− 1, k).

If vzi (λ) 6= 0 for some 1 ≤ i ≤ n then (vz1(λ), . . . , vzn(λ)) is an eigenvector
of T kn (a, b, c) associated to λ.

b) For 1 ≤ i ≤ n de�ne

wz
i (λ) := z

i−1∏
j=1

cj ·Dλ−a,d
i (n− i, k).

If wz
i (λ) 6= 0 for some 1 ≤ i ≤ n then (wz

1(λ), . . . , wz
n(λ)) is an eigenvector

of T kn (a, b, c) associated to λ.

Proof : The equation T kn (a, b, c)v = λv for v = (v1, . . . , vn) ∈ Kk is equivalent
to the system of equations

bivi+1 = (λ− ai)vi − ci−1vi−1, 1 ≤ i ≤ n (6.8)

with c0 := 0, bn := 0. Denote vzi := vzi (λ). Since by Lemma 5.2(1)

Dλ−a,d(i, k) = (λ− ai)Dλ−a,d(i− 1, k)− bi−1ci−1Dλ−a,d(i− 2, k)

for all i ∈ N∗, we have

biv
z
i+1 = zbi

n−1∏
j=i+1

bj ·Dλ−a,d(i, k) =

= z
n−1∏
j=i

bj ·
(

(λ− ai)Dλ−a,d(i− 1, k)− bi−1ci−1Dλ−a,d(i− 2, k)
)

=

= (λ− ai)z
n−1∏
j=i

bj ·Dλ−a,d(i− 1, k)− ci−1z
n−1∏
j=i−1

bj ·Dλ−a,d(i− 2, k) =

= (λ− ai)vzi − ci−1vzi−1
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for 1 ≤ i ≤ n − 1. Moreover, since λ is an eigenvalue of T kn (a, b, c) and
z ∈ Ann(pT k

n (a,b,c)
(λ)), for i = n we get

(λ− an)vzn − cn−1vzn−1 = z((λ− an)Dλ−a,d(n− 1, k)− bn−1ci−1Dλ−a,d(n− 2, k)) =

= zDλ−a,d(n, k) = zpT k
n (a,b,c)

(λ) = 0.

Therefore vz1, . . . , v
z
n comprise a solution of Equations (6.8), and generate an

eigenvector associated to λ if the solution is nontrivial.
Now denote wz

i := wz
i (λ). Similarly, since by Lemma 5.2(2)

Dλ−a,d
i−1 (n− i+ 1, k) = (λ− ai)Dλ−a,d

i (n− i, k)− biciDλ−a,d
i+1 (n− i− 1, k)

for 1 ≤ i ≤ n, we have

ci−1w
z
i−1 = zci−1

i−2∏
j=1

cj ·Dλ−a,d
i−1 (n− i+ 1, k) =

= z

i−1∏
j=1

cj ·
(

(λ− ai)Dλ−a,d
i (n− i, k)− biciDλ−a,d

i+1 (n− i− 1, k)
)

=

= (λ− ai)z
i−1∏
j=1

cj ·Dλ−a,d
i (n− i, k)− biz

i∏
j=1

cj ·Dλ−a,d
i+1 (n− i− 1, k) =

= (λ− ai)wz
i − biwz

i+1

for 2 ≤ i ≤ n. Moreover, since λ is an eigenvalue of T kn (a, b, c) and z ∈
Ann(pT k

n (a,b,c)
(λ)), for i = 1 we get

(λ− a1)wz
1 − b1wz

2 = z((λ− a1)Dλ−a,d
1 (n− 1, k)− b1c1Dλ−a,d

2 (n− 2, k)) =

= zDλ−a,d
0 (n, k) = zDλ−a,d(n, k) = zpT k

n (a,b,c)
(λ) = 0.

Therefore wz
1, . . . , w

z
n comprise a solution of Equations (6.8), and generate an

eigenvector associated to λ if the solution is nontrivial.

Remark 6.9 (Theorem 6.7 generalizes previous results).
The formulas given in Theorem 6.7 for the eigenvectors of a tridiagonal k-

Toeplitz matrix of order n over any commutative unital ring generalize those for
irreducible complex matrices found in [4, Theorems 2.1 and 2.2] for n = 2, 3,
in which the condition bi, ci > 0 for all 1 ≤ i ≤ k is imposed. In fact, to
get a (nonzero) eigenvector in Theorem 6.7a) (resp. b)) over C, or more in
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general over any integral domain, it is enough that bi 6= 0 (resp. ci 6= 0) for
all 1 ≤ i ≤ k, for in that case v11(λ) =

∏n−1
j=1 bi (resp. w

1
n(λ) =

∏n−1
j=1 ci) is

nonzero. Over an arbitrary commutative unital ring, to get vz1(λ) 6= 0 (resp.
wz
n(λ) 6= 0) it is enough that bi (resp. ci) is a regular element for all 1 ≤ i ≤ k.

If the tridiagonal k-Toeplitz matrix is reducible, Theorem 6.7 still applies,
but the computations can be simpli�ed.

Remark 6.10 (Eigenvectors of a reducible tridiagonal k-Toeplitz matrix).

Suppose bi = 0 (the reasonings are analogous for block upper triangular
matrices). Then T kn (a, b, c) is block triangular with associated partition of
size 2 and diagonal matrices, say, T1 of order i and T2 of order n − i, which
are again tridiagonal k-Toeplitz matrices (see Remark 2.3.2), and bottom-left

block C :=

0 · · · ci
... . . . ...
0 · · · 0

. By Lemma 2.3.3, an eigenvalue λ of T kn (a, b, c) is an

eigenvalue of T1 or of T2. The equation by blocks for an eigenvector (v1, v2),
v1 ∈ K i, v2 ∈ Kn−i, of T kn (a, b, c) associated to λ is(

T1 0
C T2

)(
v1
v2

)
= λ

(
v1
v2

)
⇔
{

T1v1 = λv1
Cv1 + T2v2 = λv2

}
. (6.11)

a) Suppose λ is an eigenvalue of T2. We see from (6.11) that if v2 is an
eigenvector of T2 associated to λ, then (0, v2) is an eigenvector of T kn (a, b, c)
associated to λ.

b) Suppose now that λ is an eigenvalue of T1 which is not an eigenvalue of
T2.

12 This implies that det(λIn−i − T2) is a regular element of K, so it
is a unit of Q(K) and λIn−i − T2 is invertible over Q(K). Then if v1 is
an eigenvector of T1 associated to λ and v2 = (λIn−i − T2)−1Cv1, we see
from (6.11) that (v1, v2) is an eigenvector of T kn (a, b, c) associated to λ over
Q(K), which generates an eigenvector over K after multiplication by the
denominators of all entries of (λIn−i − T2)−1.

c) Moreover, if λ is an eigenvalue of T1 and ci is a zero divisor, then (zv1, 0)
with v1 an eigenvector of T1 associated to λ and 0 6= z ∈ Ann(ci) is an
eigenvector of T kn (a, b, c) if zv1 6= 0.

Associated eigenvectors of T1 or T2 may then be computed as in Theorem 6.7.
Now let (A1, . . . , Aq) be the array of diagonal blocks of the �nest partition

12If λ is an eigenvalue of both T1 and T2 then item a) applies.
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showing T kn (a, b, c) as block lower triangular; then these blocks repeat in a
speci�c pattern (see the proof of Theorem 6.8). Di�erent choices of T1 and T2
to cover this array will produce di�erent possibilities with di�erent matrix sizes
to which apply Theorem 6.7. In addition, if λ is an eigenvalue of T kn (a, b, c)
then it is an eigenvalue of some Ai (Lemma 2.3.3) and of all of its copies; so, in
order to apply item b) for λ, it is necessary that all copies of Ai are considered
inside T1. Suppose that λ is an eigenvalue of Ai but not of any other Aj except
for the copies of Ai; then it is possible to compute an eigenvector of T kn (a, b, c)
associated to λ by applying Theorem 6.7 only to Ai: Let Ap be the last copy
of Ai in (A1, . . . , Aq), and consider the partition of T kn (a, b, c) of size 2 with
T1 covering (A1, . . . , Ap−1) and T2 covering (Ap, . . . , Aq); we apply item a) to
dispose of T1, whence we need to compute an eigenvector of T2 associated to
λ, for which we apply item b) to T2 with partition T ′1 = Ap and T

′
2 covering

(Ap+1, . . . , Aq), getting an eigenvector of Ap associated to λ by an application
of Theorem 6.7.

7. Inverse

The formula of the next theorem generalizes those found in [35] and [13] for
irreducible matrices over the complex numbers, and coincides with [30, Item
555] generalized to k-Toeplitz matrices. To prove it, we write the entries of the
inverse of a nonsingular tridiagonal k-Toeplitz matrix in terms of determinants
of smaller tridiagonal k-Toeplitz matrices. This can be done because the sub-
matrices giving rise to its cofactors are block triangular, with diagonal blocks
which are either triangular or tridiagonal k-Toeplitz matrices.

Theorem 7.1 (Inverse of a tridiagonal k-Toeplitz matrix).
Let K be a commutative unital ring. Fixed n ∈ N, k ∈ N∗, a, b := (b1, . . . , bk),
c := (c1, . . . , ck) ∈ Kk, put di := bici for 1 ≤ i ≤ k and d := (d1, . . . , dk). If

Da,d(n, k) is a unit of K then T kn (a, b, c) is invertible and the (i, j) entry of its
inverse is given by

(−1)i+j
j−1∏
p=i

bp

i−1∏
p=j

cp
Da,d(min(i, j)− 1, k)Da,d

max(i,j)(n−max(i, j), k)

Da,d(n, k)
.
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Proof : Denote T kn := T kn (a, b, c) and suppose det(T kn ) = Da,d(n, k) is a unit of
K. We compute its inverse through its adjugate matrix, so that the (r, s) entry
of (T kn )−1 is

Csr
det(T kn )

, (7.2)

where Csr := (−1)r+s det(Asr) is the cofactor obtained from the submatrix
Asr of T

k
n formed by removing the sth row and the rth column. Thus if T kn =

(tij)
n
i,j=1 and Ars = (aij)

n−1
i,j=1 we have

aij =


tij, if i < r, j < s
ti+1,j, if i ≥ r, j < s
ti,j+1, if i < r, j ≥ s
ti+1,j+1, if i ≥ r, j ≥ s

.

Since tij = 0 if |j − i| ≥ 2, this implies that Ars is a block upper triangular
matrix when r ≤ s and a block lower triangular matrix when r ≥ s, with three
diagonal blocks. When r ≤ s we have

Ars =


A1 br−1 rth row

cr ar+1

cr+1
. . .
. . . bs

sth col
A2


whereA1, A2 are again tridiagonal k-Toeplitz matrices, concretelyA1 = T kr−1(a, b, c)

and A2 = T kn−s(σs(a), σs(b), σs(c)). Since the middle diagonal block Ac is up-
per triangular with main diagonal composed from the lower main diagonal of
T kn , its determinant is

det(Ac) = crcr+1 · · · cs−1.
Analogously, when r ≥ s we get T ks (a, b, c), Ab, and T

k
n−r(σr(a), σr(b), σr(c))

as the diagonal blocks of the partition of Ars, with Ab lower triangular with
main diagonal composed from the upper main diagonal of T kn and determinant
det(Ab) = bs · · · br−1. Thus, since the determinant of a block triangular matrix
is the product of the determinants of its diagonal blocks (Theorem 2.3.1), we
get

det(Ars) =

{
cr · · · cs−1 det(T kr−1(a, b, c)) det(T kn−s(σs(a), σs(b), σs(c)), if r ≤ s
bs · · · br−1 det(T ks−1(a, b, c)) det(T kn−r(σr(a), σr(b), σr(c))) if s ≤ r

.
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The result now follows from (7.2).

Clearly, if det(T kn (a, b, c)) is not a unit of K but is a regular element, then
T kn (a, b, c) is invertible over Q(K) and Theorem 7.1 still applies.

8. Algorithms and complexity analysis

Our previous results provide formulas for the determinant, spectral proper-
ties, and elements of the inverse of a tridiagonal k-Toeplitz matrix. We now
conduct a worst-case algebraic complexity analysis on algorithms based on
those formulas, showing that they are not only of theoretical value, but can
also be used to produce e�cient computations. We also show the complexity
for general (non-periodic) tridiagonal matrices, and compare the e�ciency of
our formulas against those of Da Fonseca-Petronilho and of Lewis.
In the following, the complexity functions of the algorithms depend in general

on the parameters n,m, k, r, where n = mk+r by Euclidean division. In order
to compare e�ciencies, we consider these parameters ordered as they are listed
above (see Section 2.5), i.e., when comparing e�ciencies we give priority to n
and m over k, considering a priori k as a �xed constant, and to k over r.

8.1. Computation of generalized Fibonacci polynomials. We study the
complexity of computing Um(x, y) and Um−1(x, y) together, as needed in some
of the algorithms. We can compute Um(x, y) with x, y ∈ K by iterating the
recurrence relation (Lemma 3.2(1))

Um(x, y) = xUm−1(x, y)− yUm−2(x, y)

starting from U0 = 0, U1 = 1. This computation requires 3(m− 1) operations
in K and includes the value of Um−1(x, y) as a subproduct, so its complexity is

Crecurrence(Um(x, y), Um−1(x, y)) = 3(m− 1).

This computation is more e�cient than the evaluation over the de�nition in
3.1.13 We can do better if m is big enough: In [18, Figure 1], the authors
present a faster divide-and-conquer algorithm for the computation of the Lucas

13Let N := b(m − 1)/2c + 1. The evaluation of Um(x, y) from Um(x, y) =∑N−1
i=0 (−1)i

(
m−1−i

i

)
xm−1−2iyi requires the computation of N powers of x, N powers of y, N − 1

binomial coe�cients (which can be recurrently computed in 4 operations each), 2N products of
them, and N − 1 sums, a total of 9N − 5 > 3(m− 1) operations; to this we would need to add the
cost of computing Um−1(x, y).
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sequence of the �rst kind14, based on the binary expansion of m and the well-
known index formulas of Lucas sequences (e.g. U2m−1(x, y) = U 2

m(x, y) −
yU 2

m−1(x, y)). This algorithm actually works over any commutative unital ring.
We include it here for the reader convenience15:

Algorithm 8.1.1 Divide-and-conquer computation of Um(x, y) ([18, Figure
1])

Inputs m = 2s
∑blog2mc

i=s mi2
i−s (ms = 1); x, y ∈ K

Output Um(x, y)

1: Uh = 1;Vl = 2;Vh = x;Ql = 1;Qh = 1
2: for i from blog2mc to s+ 1 by -1 do
3: Ql = Ql ·Qh

4: if mi = 1 then
5: Qh = Ql · y; Uh = Uh · Vh; Vl = Vh · Vl − x ·Ql; Vh = Vh · Vh − 2 ·Qh

6: else

7: Qh = Ql; Uh = Uh · Vl −Ql; Vh = Vh · Vl − x ·Ql; Vl = Vl · Vl − 2 ·Ql

8: end if

9: end for

10: Ql = Ql ·Qh;Qh = Ql ·y;Uh = Uh ·Vl−Ql;Vl = Vh ·Vl−x ·Ql;Ql = Ql ·Qh

11: for i from 1 to s do
12: Uh = Uh · Vl; Vl = Vl · Vl − 2 ·Ql; Ql = Ql ·Ql

13: end for

14: return Uh

In general, with this strategy we do not get the value of Um−1(x, y) as a
subproduct of the computation of Um(x, y), so we have to run the algorithm
twice to compute both. This algorithm contains two di�erent loops: the sec-
ond one for the ending zeros of the binary expansion of m, which contains 5
elementary operations per cycle, and the �rst for the rest of digits, with 10
elementary operations per cycle; there is also a small number of operations
between cycles. Therefore the worst case is produced when either m is an odd

14The presentation of Um(x, y) given by this algorithm is not canonical over K[x, y]; on the
contrary, we get a compact presentation which explains its e�ciency. For example, U7(x, y) is given
as x(x2 − 2y)(x(x2 − 2y)− xy)− y3.

15There is a typo in the original code of the algorithm: the line Vh = Vh − 2 ∗ Qh should read
Vh = Vh ∗ Vh − 2 ∗Qh instead, as at the end of line 5 of our code.
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number and m − 1 is only divisible by 2 once (i.e., when m is congruent to
3 mod 4) or when their roles are reversed (m congruent to 2 mod 4). Both
cases are equivalent, so we analyze the �rst. We need blog2mc divisions in Z
to produce the binary expansion of m, and then we get the expansion of m− 1
in one operation in Z. In worst case, Um(x, y) requires (9)K + (1)Z elementary
operations (sums, multiplications, and a parity check) for each of the blog2mc
steps of the �rst loop, and 3 ending operations in K. Note that since m is
not a power of 2, blog2(m − 1)c = blog2mc. The computation of Um−1(x, y)
requires (9)K + (1)Z operations in each of the blog2mc − 1 steps of the �rst
loop, 8 intermediate operations, and 5 operations in K in a single step of the
second loop. Thus the total number of operations is

Cdivide-and-conquer(Um(x, y), Um−1(x, y)) = (18blog2mc+ 7)K + (3blog2mc)Z.

The divide-and-conquer algorithm is more e�cient than the recurrence one, as
its complexity is logarithmic with m instead of linear.

Remark 8.1.2 (Computing Um(x, y) via a Chebyshev polynomial).
For rings with enough square roots and free of 2-torsion, the computation

of Um(x, y) can be produced via a Chebyshev polynomial when y is a regular
element (see Remark 3.3). From Formula (3.5) we get

Um(x, y) = (
√
y)m−1Um−1(x/(2

√
y))

where Um(x) is as before the mth Chebyshev polynomial of the second kind
and the computation is done in Q(K). Since the known computing strategies
for Chebyshev polynomials are analogous to those of Lucas sequences, the most
e�cient one being a divide-and-conquer algorithm equivalent to Algorithm 8.1.1
(see [19]), there seems to be no real gain in switching to Chebyshev polynomials.
In addition, with this strategy we also need to compute (

√
d)m−1, which requires

the computation of a square root when m is even.

8.2. Computation of continuant polynomials. We show that their de�-
nitions are not very e�cient when computing continuant polynomials of types
α, β, π, the recurrence equations of Lemma 4.7 providing much better results.
We work only with polynomials of type α; polynomials of type β are similar,
while π(r, k) = α(r, k) + β(r, k).
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1. Polynomials of type α from their de�nition. From Formula 4.4,

α(r, k) =

br/2c∑
m=0

∑
i∈([r−1]

m )
2

pr,k(i).

We can show that
∣∣∣([r−1]m

)
2

∣∣∣ =
(
r−1−m
m

)
, which is true for m = 0 by def-

inition, by establishing the bijection f :
(
[r−1−m]

m

)
→

(
[r−1]
m

)
2
given by

f(i1, . . . , im) := (i1, i1 + 1, . . . , im, im + 1) for m ∈ N∗. Then, since each

monomial pr,k(i) with i ∈
(
[r−1]
m

)
2
is the product of r −m variables, we get

Cde�nition(α(r, k)) =

br/2c∑
m=0

(
r −m− 1

m

)
(r −m− 1)− 1

(although some products could be reused to reduce the complexity16), which
is quite large: Cde�nition(α(r, k)) ≥ (r − 2)2 already for r ≥ 2.

2. Polynomials of type α from their recurrence equation. From Lemma
4.7(2),

α(r + 1, k) = xr+1α(r, k) + yrα(r − 1, k)

with α(0, k) = 1. Hence we can compute α(r, k) recursively from α(0, k), . . .,
α(r − 1, k), getting

Crecurrence(α(r, k)) = 3(r − 1).

8.3. Computation of the determinant. We develop four algorithms that
compute the determinant Da,d(n, k) of T kn (a, b, c), all arising from Theorem 5.5
and its proof; thus we follow the notation and ideas established in them. In

particular we denote di := bici, Ai :=

(
ai −di−1
1 0

)
(d0 := dk) for 1 ≤ i ≤ k

and A := Ak · · ·A1, and we write n = mk+ r by Euclidean division, assuming
m > 0. After that we compare the algorithms in terms of e�ciency and study
some variants that are important in the analysis of the subsequent algorithms.

1. Algorithm D1. Using the recurrence of Formula (5.9)

Da,d(n, k) = arD
a,d(n− 1, k)− dr−1Da,d(n− 2, k)

16E.g., in the computation of α(5, 7), the product x1x2 found when computing x1 · · ·x5 could be
reused in x1x2y3x5, then x1x2x3 reused in x1x2x3y4, etc.
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with Da,d(0, k) = 1, Da,d(1, k) = a1 given in the proof of Theorem 5.5, we

can compute Da,d(n, k) in at most 3(n−1)+k operations, with k operations
coming from the multiplications needed to get di = bici for 1 ≤ i ≤ k. This
algorithm, which we call D1, mostly ignores the periodicity of the matrix.
D1 has complexity

CD1(Da,d(n, k)) = 3n+ k − 3.

2. Algorithm D2. Alternatively we can compute, as in Formula (5.11) from
the proof of Theorem 5.5,(

Da,d(n, k)

Da,d(n− 1, k)

)
= Ar · · ·A1 · Am

(
1
0

)
.

The di require k operations. Due to the special nature of the second row
of the Ai we can compute A in 6(k − 1) operations, getting Ar · · ·A1 as
a subproduct. We could get Am in 12(m − 1) operations by naive matrix
multiplication, but it is more e�cient to use iterative squaring: writing
m =

∑L
i=0mi2

i in base 2 with L := blog2mc (which needs L divisions in
Z) we get Am as AL in the recurrence equation Ai+1 := (Ai)

2AmL−i+1 with
A0 := A, a computation that requires 24L operations in worst case (when
m = 2p − 1 for some p). Lastly, we get (Ar · · ·A1) · (Am) in 12 operations.
To this process we call algorithm D2. Therefore

CD2(Da,d(n, k)) = (24blog2mc+ 7k + 6)K + (blog2mc)Z.

D2 does not take advantage of Lemma 3.2(2) in the determination of Am.

3. Algorithm D3. Formula (5.6) for the determinant is

Da,d(n, k) = U(m)αa,9d(k + r, k)− dU(m− 1)αa,9d(r, k)

with U(i) = Ui(π
a,9d(k, k), d). We study how many operations are enough

to compute Da,d(n, k) from this formula.
• The parameters di require k operations.
• The best way we know to compute πa,9d(k, k) is as αa,9d(k, k)+βa,9d(k, k),
producing the evaluations with the recurrence formulas of Lemma 4.7(2,3),

α(i+ 1, k) = xi+1α(i, k) + yiα(i−1, k), β(i+ 1, k) = xiβ(i, k) + yi−1β(i−1, k)
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with α(0, k) = 1, β(0, k) = 0 = β(1, k), β(2, k) = yk (see Section 8.2).
This computation needs 3(k− 1) + 3(k− 2) + 1 operations, which include

αa,9d(r, k), αa,9d(k − 1, k) and βa,9d(r + 1, k) as subproducts.
• The element d could be computed as d = d1 · · · dk in k − 1 operations.
But d is the determinant of matrix A, so

d = αa,9d(k, k)βa,9d(k, k)− αa,9d(k − 1, k)βa,9d(k + 1, k); (8.3.1)

therefore we can compute d with just 6 operations, 3 of them to compute
βa,9d(k+1, k) from βa,9d(k, k) and βa,9d(k−1, k) with Lemma 4.7(3). This
option is more e�cient when k > 7, the di�erences when k ≤ 7 being neg-
ligible, so we favour Formula (8.3.1) to compute d.
Remark: The previous two items are essentially equivalent to computing
A and then �nding πa,9d(k, k) and d respectively as its trace and deter-

minant, getting also αa,9d(r, k), etc. as subproducts, since they appear as
entries of the matrices Ar · · ·A1, etc.
• We �nd αa,9d(k + r, k) as

αa,9d(k + r, k) = αa,9d(k, k)αa,9d(r, k) + αa,9d(k − 1, k)βa,9d(r + 1, k)

by Corollary 5.19. Since the evaluations of the continuant polynomials of
the �rst period are already computed, this adds 3 operations.
• We compute U(m) and U(m−1) from πa,9d(k, k) and d by the divide-and-
conquer algorithm (8.1.1) in (18blog2mc+7)K +(3blog2mc)Z operations.

• Formula 5.6 for Da,d(n, k) adds 4 more operations.
To the algorithm making calculations as described above we call D3. The
grand total number of operations for D3 is

CD3(Da,d(mk + r, k)) = (18blog2mc+ 7k + 12)K + (3blog2mc)Z.

4. Algorithm D4. Formula (5.7) for the determinant is

Da,d(n, k) = U(m+ 1)αa,9d(r, k) + U(m)dkd1 · · · drαa,9dr+1(k − r − 2, k).

Algorithm D4 is based on this formula, with subalgorithms similar to those
of D3. It requires the following computations:
• The di parameters require k operations.
• πa,9d(k, k) is computed as before through the recurrence relations of poly-
nomials of types α and β (Lemma 4.7(2,3)) in 6k − 8 operations, with

αa,9d(r + 1, k) as a subproduct.
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• αa,9dr+1(k − r − 2, k) is computed in 3(k − r − 3) operations also through
Lemma 4.7(2).
• We could compute d = d1 · · · dk in k−1 operations, carried out so as to get
the value of d′ := dkd1 . . . dr as a subproduct. But in general it is better
to get d through Formula 8.3.1 in 6 operations, and d′ in 3 operations as

d′ = det(Ar+1 · · ·A1) = αa,9d(r+ 1, k)βa,9d(r+ 1, k)−αa,9d(r, k)βa,9d(r+ 2, k).

• U(m + 1) and U(m) are computed as before (through Algorithm 8.1.1),
requiring (in worst case) (18blog2mc+ 7)K + (3blog2mc)Z operations.
• Formula (5.7) for D(n, k) adds 4 more operations.
Hence we get

CD4(Da,d(mk+ r, k)) = (18blog2mc+ 7k+ 12 + 3(k− r− 3))K + (blog2mc)Z.

Let us now compare the algorithms by taking computation costs in K and
Z as being equivalent (see Section 2.5). D1 is less e�cient in general, as it is
linear in m while D2-D4 are logarithmic. Nevertheless, the simplest D1 is the
most e�cient and thus potentially interesting when m = 1, k is big enough to
have an impact on computing time, and r is small with respect to k, with the
savings, with respect to algorithm D3, being approximately of 3(k− r) compu-
tations. As seen from the comparison of complexities, algorithm D2 is slightly
less e�cient than D3, which is also more e�cient than D4: despite Formula
(5.7) being apparently simpler than Formula (5.6) (once we apply Corollary

5.19 to compute αa,9d(k + r, k)), since r < k, algorithm D4 in fact requires
more computations than algorithm D3 in general, more so the greater the dif-
ference k − r is (D4 is only marginally more e�cient when r ∈ {k − 2, k − 1},
up to 6 operations). This loss of e�ciency of algorithm D4 happens because
the favourable dependence of Formula (5.7) on r is overridden by the com-

putation of πa,9d(k, k), whose best implementation as far as we know necessi-
tates all polynomials of types α and β, and also because we need to compute

αa,9dr+1(k− r− 2, k) apart from the rest of calculations. In conclusion, algorithm
D3 is the most e�cient one in general.

Remark 8.3.2 (Comparison with da Fonseca and Petronilho's formula).

By Remark 5.21, Da Fonseca and Petronilho's formula for the determinant
of an irreducible matrix over the complex numbers found in [13, Section 4]
is similar to Formula (5.7), on which algorithm D4 (8.3.4) is based, with the
evaluations of polynomials of type α and π written as determinants, and the
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generalized Fibonacci polynomials written as Chebyshev polynomials. By the
paragraph above this remark and by Remark 8.1.2, an algorithm based on this
formula can only be more e�cient than algorithm D3 (8.3.3) if the determinants
involved can be computed more e�ciently than we compute the continuant
polynomials with the recurrence formulas of Lemma 4.7(2,3); if that was the
case, then we could alter algorithm D3 to compute the continuant polynomials
through said determinants, and �nd in this way a more e�cient algorithm
again, by using the generalized Fibonacci polynomials instead of Chebyshev
polynomials and Formula (5.6) instead of Formula (5.7).

Remark 8.3.3 (Complexity with eigenvalues).
If K is a �eld, the computation of U(m), U(m− 1) needed in Formula (5.6)

can be produced via the eigenvalues of A through the formulas given in Re-
marks 3.6. We study the complexity when we modify algorithm D3 (8.3.3)
accordingly:

5. Algorithm D3-eigenvalues. Let K be a �eld, K be an algebraic closure,
and λ1, λ2 ∈ K be the eigenvalues of A. In worst case we have λ1 6= λ2, and
so by Formula (3.8)

U(m) =
λm2 − λm1
λ2 − λ1

.

We need to compute U(m) and U(m − 1). As in the case of matrices,
exponentiation is more e�cient through iterative squaring: writing m =∑L

i=0mi2
i in base 2 with L := blog2mc (which needs L divisions in Z), for

any λ ∈ K we get λm as aL in the recurrence equation ai+1 := (ai)
2λmL−i+1

with a0 := λ. To compute U(m) and U(m−1), we �rst compute λm−11 , λm−12 ,
then get λm1 , λ

m
2 via multiplication by λi in 2 more operations. Therefore the

worst case occurs when m is a power of 2, and then the computation of
λm requires (2L)K + (L)Z operations. Thus we can compute U(m) and
U(m − 1) in (4L + 7)K + (L)Z operations. To these calculations we need
to add the cost of computing the eigenvalues of A: If char(K) 6= 2 we use
the quadratic formula applied to the characteristic polynomial and some
algorithm F to compute square roots, the cost being 7 + CF (

√
e) operations

in K, where e := πa,d(k, k)2 − 4d; if char(K) = 2 we use the R operation
(see Remarks 3.6(1)) and some algorithm G to compute it, the cost being,

in the worst case in which πa,d(k, k) 6= 0, of 4 + CG(R(f)) operations in K
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where f := d/πa,d(k, k)2. Therefore CD3-eigenvalues(Da,d(mk + r, k)) is{
(4blog2mc+ 7k + 19 + CF (

√
e))K + (blog2mc)Z, if char(K) 6= 2

(4blog2mc+ 7k + 16 + CG(R(f))K + (blog2mc)Z, if char(K) = 2
.

Remark 8.3.4 (Computing several determinants).

6. Algorithm D3-twice. In algorithm D3 (8.3.3), to get Da,d(mk + r, k) we
need to compute

U(m− 1), U(m), αa,d(0, k), . . . , αa,d(k, k), βa,d(1, k), . . . , βa,d(k + 1, k).

Observe that the only values depending on n are the �rst two; so, after one
call to algorithm D3, to compute Da,d(m′k + r′, k) (evaluated in the same
vectors a, d) we only need to compute U(m′), U(m′ − 1) through algorithm
8.1.1 (see Remark 8.3.3 if K is a �eld) and apply Formula (5.6) to get the
result. To this procedure we call algorithm D3-twice. Hence

CD3-twice(Da,d(mk + r, k), Da,d(m′k + r′, k)) =

= (18blog2mc+ 18blog2m
′c+ 7k + 26)K + (3blog2mc+ 3blog2m

′c)Z.

It is straightforward to generalize the idea to compute the p determinants
Da,d(n1, k), . . . , Da,d(np, k). Moreover, if ni and nj have the same quotient m
when divided by k, then U(m), U(m − 1) need to be computed only once; in

particular, once we compute Da,d(mk + r, k), any of

Da,d(mk, k), . . . , Da,d(mk + k − 1, k)

can be found with just 6 more elementary operations.

7. Computing all determinants. On the other hand, the best way to com-
pute all determinants from Da,d(0, k) to Da,d(n, k) (as we need later) is
through algorithm D1 (8.3.1), with complexity

CD1(Da,d(0, k), . . . , Da,d(n, k)) = 3n+ k − 3.

Remark 8.3.5 (Computing shifted determinants).

Since Da,d
s (n, k) = Dσs(a),σs(d)(n, k), with algorithm D3 (8.3.3) we can com-

pute a shifted determinant in (18blog2mc+7k+12)K+(3blog2mc)Z operations
(the circular permutation has no cost, as it just implies a di�erent evaluation).

To compute all shifted determinants Da,d
s (n− s, k) for 0 ≤ s ≤ n e�ciently

(which we need later) we can use the following variant of algorithm D1 (8.3.1):
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8. Algorithm D1-shifted. Using the recurrence formula for shifted universal
determinants (5.2(2)) we get

Da,d
s (n− s, k) = as+1D

a,d
s+1(n− s− 1, k)− ds+1D

a,d
s+2(n− s− 2, k)

with Da,d
n (0, k) = 1, Da,d

n−1(1, k) = ar as initial conditions and s ranging from
n− 2 to 0; so with k operations to get di = bici for 1 ≤ i ≤ k, we have

CD1-shifted(Da,d
n (0, k), . . . , Da,d

0 (n, k)) = 3n+ k − 3.

Remark 8.3.6 (Computing the determinant of a general tridiagonal matrix).
Algorithms D1-D4 assume n > k. If n ≤ k then there is no periodicity in the

matrix to be exploited by the algorithms. In this case we only have to compute
d1, . . . , dn and then Da,d(n, k) can be computed by recurrence (Lemma 5.2(1))
with a total complexity of 4n− 3 operations.

8.4. Computation of spectral properties.

1. Characteristic polynomial. By Corollary 6.1 we can �nd pT k
n (a,b,c)

(x)

with Formula (5.6), so using algorithm D3 (8.3.3) we get

CD3(pT k
mk+r(a,b,c)

(x)) = (18blog2mc+ 7k + 12)K[x] + (3blog2mc)Z.

Remark: The expression of the characteristic polynomial given by algo-
rithm D3 is not a full expansion in the canonical basis of K[x], due to the
shape of Formula (5.6) and to the compact presentation of Um(x, y) given
by the divide-and-conquer algorithm (8.1.1).

2. Eigenvectors. By Theorem 6.7a), given an eigenvalue λ of T kn (a, b, c) and
an element z ∈ Ann(pT k

n (a,b,c)
(λ)), the vector vz(λ) := (vz1(λ), . . . , vzn(λ)), if

nonzero, is an eigenvector associated to λ, with

vzi (λ) := z

n−1∏
j=i

bj ·Dλ−a,d(i− 1, k). (8.4.1)

To compute vz(λ) we need to compute all determinants Dλ−a,d(0, k), . . . ,

Dλ−a,d(n − 1, k), which can be done with algorithm D1 (8.3.7) in 3n +
k − 6 operations. In addition, since we need all the products

∏n−1
j=i bj for

1 ≤ i ≤ n, the best way to compute them is iteratively (as 1, bn−1, bn−1bn−2, . . .)
in n−2 operations. Calling this procedure algorithm EIG, including all mul-
tiplications coming from 8.4.1, we get

CEIG(vz(λ)) = 6n+ k − 10.
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Note that the only advantage that this procedure takes on the matrix being
k-Toeplitz is the use of d1, . . . , dk instead of d1, . . . , dn.
Analogously, the (potential) eigenvector wz(λ) := (wz

1(λ), . . . , wz
n(λ)) with

wz
i (λ) := z

i−1∏
j=1

cj ·Dλ−a,d
i (n− i, k)

(Theorem 6.7b)) can be found with the same cost by using algorithm D1-

shifted (8.3.8) for computing the shifted determinants Dλ−a,d
1 (n− 1, k), . . . ,

Dλ−a,d
n (0, k).

Remark 8.4.2 (Computing the spectral properties of a tridiagonal matrix).
If n ≤ k then there is no periodicity in the matrix that can be exploited by

the algorithms. We show the cost of computing the spectral properties of a
general tridiagonal matrix through our previous results.

3. Characteristic polynomial. In this case, the characteristic polynomial is
computed through Corollary 6.1 as the determinant of a general tridiagonal
matrix, so it can be found by recurrence in 4n − 3 operations (see Remark
8.3.6).

4. Eigenvectors. The only part of algorithm EIG in which the periodic-
ity is exploited is the computation of all determinants Dλ−a,d(0, k), . . . ,

Dλ−a,d(n − 1, k), which in this case can be done in 4n − 6 operations by
recurrence (Lemma 5.2(1)). Therefore the modi�ed algorithm, GENEIG,
has complexity

CGENEIG(vz(λ)) = 7n− 10.

8.5.Computation of the inverse. IfDa,d(n, k) is a unit ofK then T kn (a, b, c)

is invertible and by Theorem 7.1 the (i, j) entry aij = a
(n,k)
ij of its inverse is

given by

a
(n,k)
ij = (−1)i+j

j−1∏
p=i

bp

i−1∏
p=j

cp
Da,d(min(i, j)− 1, k)Da,d

max(i,j)(n−max(i, j), k)

Da,d(n, k)
.

(8.5.1)

We study the complexity of computing, respectively, one entry and all entries of
the inverse through Formula (8.5.1). Write n = mk + r by Euclidean division.

1. An entry of the inverse. We �nd the cost of computing one entry of the
inverse of T kn (a, b, c) with Formula (8.5.1). Suppose without loss of generality
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that i ≤ j (so min(i, j) = i,max(i, j) = j and
∏i−1

p=j cp = 1), and call
mx, rx ∈ N, respectively, to the quotient and remainder resulting when
dividing x ∈ N by k (note that mn = m).

• We compute Da,d(n, k) and Da,d(i−1, k) with algorithm D3-twice (8.3.6).

• We compute Da,d
j (n − j, k) with another call to algorithm D3 (see Re-

mark 8.3.5), taking into account that d1, . . . , dk and d have already been
computed.
• We write

∏j−1
p=i bp = (b1 · · · bk)mj−ib, where b includes the last rj−i factors

of the product. We compute b1 · · · bk in k − 1 operations, in the right
order (bi, bibi+1, . . .) so as to get b as a subproduct; then we compute
B := (b1 · · · bk)mj−i by iterative squaring (see 8.3.5) in (2blog2mj−ic)K +
(blog2mj−ic)Z operations; lastly we compute B · b in one operation.
• Formula (8.5.1) adds other 4 operations (when i+ j is odd).
This procedure we call algorithm ENTRY. Calling p := min(i, j),
q := max(i, j), the number of elementary of elementary operations needed to

compute a
(n,k)
ij through ENTRY is (18(blog2mnc+blog2mp−1c+blog2mn−qc)+

2blog2mq−pc + 14k + 32)K + 3(blog2mnc + blog2mp−1c + blog2mn−qc +
blog2mq−pc)Z. Therefore, in worst case (p = n, q = 1 andmn−1 = mn = m),

CENTRY(a
(mk+r,k)
ij ) = (56blog2mc+ 14k + 32)K + (12blog2mc)Z.

2. All entries of the inverse. We �nd now the cost of computing all entries
of the inverse of T kn (a, b, c) through Formula (8.5.1).

• We compute Da,d(0, k), . . . , Da,d(n, k) with algorithm D1 (8.3.7).

• We computeDa,d
n (0, k), . . . , Da,d

1 (n−1, k) with algorithm D1-shifted (8.3.8),
taking into account that d1, . . . , dk have already been computed.
• To compute all products

∏j−1
p=i bp for 1 ≤ i, j ≤ n, we proceed as follows:

In one batch we compute b1, b1b2, . . . , b1 · · · bk =: b and then cyclically
b2, b2b3, . . . , b2 · · · bk, b3, b3b4, . . . , b3 · · · bkb1, etc. up to
bk−1, bk−1bk, . . . , bk−1bkb1b2 · · · bk−3, in (k − 1)2 operations. In a second
batch we compute b, b2, . . . , bm in m − 1 operations. Then we multiply
all elements of the �rst batch with all elements of the second batch in
(m−1)(k−1)2 operations17. Analogously we compute all products

∏j−1
p=i cp

for 1 ≤ i, j ≤ n.

17For example, if k = 5 then the product for the element a4,22 is b4b5b1 · · · b5b1 = b4b5b
3b1 =

(b4b5b1)b
3.
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• Since the two determinants appearing in the numerator of Formula (8.5.1)
depend only on min(i, j) and max(i, j), their product is the same for
entries aij and aji. Moreover, if i ≤ j then

∏i−1
p=j cp = 1, while if j ≤ i

then
∏j−1

p=i bp = 1. Therefore we can compute a11, . . . , ann from Formula
(8.5.1) with another 5(n+ 1)n/2 products.

To this procedure we call algorithm INV. Then

CINV(a
(mk+r,k)
11 , . . . , a(mk+r,k)nn ) = 5n2/2 + 2k2m+ 17n/2− 4mk + 4m+ k − 8.

Note that mk ≈ n, so

CINV(a
(mk+r,k)
11 , . . . , a(mk+r,k)nn ) ≈ 5n2/2 + (2k + 9/2)n+ 4m+ k − 8.

Remark 8.5.2 (Complexity of Lewis' formula).
In [21, Theorem 1], Lewis provides the following formula for an entry of the

inverse of an irreducible tridiagonal matrix T = (tij) over a �eld (we write it
only for the case i < j):

aij =

(
j−1∏
p=i

ep

)
νiµjD, (8.5.3)

where ep := tp,p+1/tp+1,p, νi, µj are respectively computed through the recur-
rence equations

νi := −hi−1νi−1 −
1

gi−1
νi−2, µi := −fi+1µi+1 − gi+1µi+2,

with v1 := 1, v2 := −h1, µn := 1, µn−1 := −fn, fi := tii/ti,i+1, gi := ti,i+1/ti,i−1,
hi := tii/ti,i+1, and D := (t11µ1 + t12µ2)

−1.
If we want to compute the element aij with an algorithm inspired by Lewis'

formula, then we need to compute the recurrence of the ν's up to the ith
term (3(i − 2) operations) and the recurrence of the µ's down to µ1 (3n op-
erations), since D depends on µ1, µ2 (we need other 4 operations to compute
D). If the tridiagonal matrix is k-Toeplitz, for the recurrences we need to
compute the corresponding divisions for f1, . . . , fk, g1, . . . , gk and h1, . . . , hi−1
(2k+ min(i− 1, k) operations). If i 6= j − 1 then we also need to compute the
product

∏j−1
t=i et, which needs j− i divisions to get the e's and can be produced

in (k + 2blog2mj−ic)K + (blog2mj−ic)Z operations, as in algorithm ENTRY
(8.5.1), if the tridiagonal matrix is k-Toeplitz. So, the number of elementary op-

erations needed to compute a
(n,k)
ij through this procedure, which we call Lewis,
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is (3n+ 3k+ min(k, i−1) + 2i+ j+ 2blog2mj−ic−2)K + (blog2mj−ic)Z when
i 6= j − 1; in worst case, which is i = n− 1, j = n, we get

CLewis(a(n,k)ij ) = 6n+ 3k − 3,

which is less e�cient than our algorithm ENTRY, which is linear only in k (not
in n) and logarithmic with m.

Remark 8.5.4 (Computing the inverse of a general tridiagonal matrix).

If n ≤ k then there is no periodicity in the tridiagonal matrix that can be
exploited by the algorithms. We show the cost of algorithms based on Formula
(8.5.1) for computing one element and all elements of a general tridiagonal
matrix:

3. Algorithm GENENTRY. When computing the element a
(n)
ij (suppose

i ≤ j), we can compute the determinants in 7n − 3j − 6 operations by
recurrence (as in Remark 8.3.6), by computing d1, . . . , dn once and getting
the determinant of size i − 1 as a subproduct of the computation of the
determinant of size n. In addition, the product

∏j−1
p=i bp now requires j − i

operations. Hence the number of elementary operations needed to com-
pute aij through GENENTRY is 7n − 2j − i − 2. Therefore, in worst case
(i = 1 = j) we get

CGENENTRY(a
(n)
ij ) = 7n− 5.

We brie�y compare this result with an algorithm based on Lewis' formula:
Looking at Remark 8.5.2 we see that, if the tridiagonal matrix is not k-
Toeplitz, the only change required in Lewis algorithm in worst case is the
need of computing f1, . . . , fn, g1, . . . , gn and h1, . . . , hn−2, which requires
3n− 2 operations, giving in the end

CLewis(a(n)ij ) = 9n− 5.

This shows that algorithm GENENTRY is more e�cient than Lewis' for
general tridiagonal matrices (moreover, it works for any matrix over any
commutative ring).

4. Algorithm GENINV. When computing all elements of the inverse, we
compute d1, . . . , dn once (n operations) and then by recurrence (Lemma 5.2)

we can compute the sequences of all determinants Da,d(n, k), . . . , Da,d(n, k)

and all shifted determinantsDa,d
n (0, k), . . . , Da,d

1 (n−1, k) in 3n−3 operations

each. To get all products
∏j−1

p=i bp for all 1 ≤ i ≤ j ≤ n, we compute
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the sequences b1, b1b2, . . . , b1 · · · bn−1, then b2, b2b3, . . . , b2 · · · bn−1, etc., up to
bn−2bn−1 for a total of 1

2(n − 1)(n − 2) operations, and analogously we get

all products
∏i−1

p=j cp for all 1 ≤ j ≤ i ≤ n. As in the last step of algorithm
INV (8.5.2), we can compute a11, . . . , ann from Formula 8.5.1 with another
5
2(n+ 1)n products. Therefore

CGENINV(a
(n)
11 , . . . , a

(n)
nn ) =

7

2
n2 +

13

2
n− 3.

9. Examples

Informally speaking, the theorems and algorithms we have developed in the
previous sections produce the universal tridiagonal k-Toeplitz example, which
is free in K,n, k, a, b, c, and can then be evaluated to any speci�c example over
any commutative unital ring. Now we construct two examples which are more
speci�c: one free in K, a, b, c but with n, k �xed, and a completely speci�c
one over Z/60Z. In these examples, in the computations that we make of
the determinant, spectral properties and an entry of the inverse, we follow the
algorithms of Section 8 as close as the writing allows without undermining the
exposition. For ease of presentation we choose k = 3 and n = 19, although the
gain in e�ciency of some subalgorithms is apparent only for greater values of
k, n.

Example 9.1 (Universal example). Let R be a commutative unital ring and
consider K := R[a1, a2, a3, b1, b2, b3, c1, c2, c3], k := 3, n := 19 and T 3

19(a, b, c)
over K with a = (a1, a2, a3), b = (b1, b2, b3), c = (c1, c2, c3). Put di := bici for
1 ≤ i ≤ 3 and d := (d1, d2, d3). We have n = mk + r with m = 6, r = 1.
To compute the determinant we carry out the following computations from
algorithm D3 (8.3.3): First we compute the continuant polynomials through
their recurrence relations:

αa,9d(0, 3) = 1, αa,9d(1, 3) = a1, α
a,9d(2, 3) = a2a1 − d1,

αa,9d(3, 3) = a3(a2a1 − d1)− d2a1,

βa,9d(1, 3) = 0, βa,9d(2, 3) = −d3, βa,9d(3, 3) = a2(−d3),

βa,9d(4, 3) = a3a2(−d3) + d2d3,

πa,9d(3, 3) = αa,9d(3, 3) + βa,9d(3, 3) = a3(a2a1 − d1)− d2a1 + a2(−d3),

d = αa,9d(3, 3)βa,9d(3, 3)− αa,9d(2, 3)βa,9d(4, 3) = d1d2d3.
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Then, through the divide-and-conquer algorithm (8.1.1) we �nd

U6(x, y) = ((x2 − 2y)x− xy)(x2 − y), U5(x, y) = (x2 − y)(x2 − 2y)− y2

evaluated in x = πa,9d(3, 3), y = d to get U(6), U(5) respectively. Lastly we

compute αa,9d(4, 3) = αa,9d(3, 3)αa,9d(1, 3) + αa,9d(2, 3)βa,9d(2, 3). Then

det(T 3
19((a, b, c)) = U(6)αa,9d(4, 3)− dU(5)αa,9d(1, 3).

Similarly, to �nd the characteristic polynomial we compute

αx−a,9d(0, 3) = 1, αx−a,9d(1, 3) = x− a1, αx−a,9d(2, 3) = (x− a2)(x− a1)− d1,

αx−a,9d(3, 3) = (x− a3)((x− a2)(x− a1)− d1)− d2(x− a1),

βx−a,9d(1, 3) = 0, βx−a,9d(2, 3) = −d3, βx−a,9d(3, 3) = −(x− a2)d3,

βx−a,9d(4, 3) = −(x− a3)(x− a2)d3 + d2d3,

πx−a,9d(3, 3) = (x− a3)((x− a2)(x− a1)− d1)− d2(x− a1)− (x− a2)d3,

we evaluate U6(x, y), U5(x, y) in x = πx−a,9d(3, 3), y = d to respectively get
Ux(6), Ux(5), and we compute

αx−a,9d(4, 3) = αx−a,9d(3, 3)αx−a,9d(1, 3) + αx−a,9d(2, 3)βx−a,9d(2, 3) to get

pT 3
19(a,b,c)

(x) = Ux(6)αx−a,9d(4, 3)− dUx(5)αx−a,9d(1, 3).

If λ is an eigenvalue of T 3
19(a, b, c) then we �nd a potential eigenvector associated

to λ with algorithm EIG (8.4.2): We compute the following determinants by
their recurrence relation:

Dλ−a,d(0, k) = 1, Dλ−a,d(0, k) = λ− a1, Dλ−a,d(2, k) = (λ− a2)(λ− a1)− d1
Dλ−a,d(3, k) = (λ− a3)((λ− a2)(λ− a1)− d1)− d2(λ− a1)
...

Dλ−a,d(19, k) = (λ− a1)Dλ−a(18, k)− d3Dλ−a(17, k).

We consider all products b18 = b3, b18b17 = b3b2, . . . , b18 · · · b1 = (b3b2b1)
6. We

�x an element 0 6= z ∈ Ann(pT 3
19(a,b,c)

(λ)). Then, if nonzero, an eigenvector
associated to λ is

vz(λ) := z · ((b3b2b1)6Dλ−a,d(0, k), (b3b2)
6b51D

λ−a,d(1, k), . . . , Dλ−a,d(18, k)).

Now we compute entry a5,11 of the inverse by applying algorithm ENTRY

(8.5.1): We �nd Da,d(4, 3) = U(1)αa,9d(4, 3) − dU(0)αa,9d(1, 3) = αa,9d(4, 3).
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With a new iteration of algorithm D1 we �nd Da,d
11 (8, 3) = Dσ2(a),σ2(d)(8, 3) =

Da,d
2 (8, 3): we need to compute the new shifted continuant polynomials

αa,9d2 (1, 3), . . . , αa,9d2 (3, 3), βa,9d2 (1, 3), . . . , βa,9d2 (3, 3)

to get αa,9d2 (5, 3), πa,9d2 (3, 3) and U(2)2 = U2(π
a,9d
2 (3, 3), d); then

Da,d
11 (8, 3) = U(2)2α

a,9d
2 (5, 3)− dαa,9d2 (2, 3).

We compute b5 · · · b11 = (b1b2b3)
2b2. Then

a5,11 = (b1b2b3)
2b2
Da,d(4, 3)Da,d

11 (8, 3)

det(T 3
19((a, b, c)))

.

Example 9.2 (Example over Z/60Z). We particularize Example 9.1 with
K = R := Z/60Z, a := (1, 2, 3), b := (1,−1, 1), c := (12, 7, 1) ∈ K3. We
just need to evaluate the corresponding values of a1, . . . , c3 in the previous
computations.
Determinant:

d1 = b1c1 = 12, d2 = −7, d3 = 1,

αa,9d(0, 3) = 1, αa,9d(1, 3) = 1, αa,9d(2, 3) = 2 · 1− 12 = −10,

αa,9d(3, 3) = 3(−10) + 7 · 1 = −23,

βa,9d(1, 3) = 0, βa,9d(2, 3) = −1, βa,9d(3, 3) = 2(−1) = −2,

βa,9d(4, 3) = 3(−2) + (−7)1 = −13,

αa,9d(4, 3) = (−23)1 + (−10)(−1) = −13,

πa,9d(3, 3) = −23− 2 = −25, d = (−23)(−2)− (−10)(−13) = −24,

U(6) = (((−25)2 − 2(−24))(−25)− (−25)(−24))((−25)2 − (−24)) = −25,

U(5) = ((−25)2 − (−24))((−25)2 − 2(−24))− (−24)2 = 1.

det(T 3
19((a, b, c)) = (−25)(−13)− (−24)1 · 1 = −11.
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Characteristic polynomial:

αx−a,9d(0, 3) = 1, αx−a,9d(1, 3) = x− 1, αx−a,9d(2, 3) = (x− 2) · (x− 1)− 12,

αx−a,9d(3, 3) = (x− 3)((x− 2)(x− 1)− 12) + 7(x− 1),

βx−a,9d(1, 3) = 0, βx−a,9d(2, 3) = −1, βx−a,9d(3, 3) = (x− 2)(−1) = −(x− 2),

βx−a,9d(4, 3) = −(x− 3)(x− 2) + (−7)1 = −(x− 3)(x− 2)− 7,

αx−a,9d(4, 3) =

= ((x− 3)((x− 2)(x− 1)− 12) + 7(x− 1))(x− 1)− ((x− 2)(x− 1)− 12),

πx−a,9d(3, 3) = (x− 3)((x− 2)(x− 1)− 12) + 7(x− 1)− (x− 2),

Ux(6) = (((πx−a,9d(3, 3))2 − 2(−24))(πx−a,9d(3, 3))−

− (πx−a,9d(3, 3))(−24))((πx−a,9d(3, 3))2 − (−24)),

Ux(5) = ((πx−a,9d(3, 3))2 − (−24))((πx−a,9d(3, 3))2 − 2(−24))− (−24)2.

pT 3
19(a,b,c)

(x) = Ux(6)αx−a,9d(4, 3) + 24Ux(5)(x− 1) =

=x19 + 23x18 + 6x17 + 57x15 + 39x14 + 37x13 + 29x12 + 15x11 + 53x10+

+52x9 + 54x8 + 22x7 + 50x6 + 3x5 + 49x4 + 41x3 + 39x2 + 19x+ 11.

We have written the characteristic polynomial in expanded form for ease of
reading, but the compact form actually computed by the formulas is more
e�cient for evaluation. Observe that λ := 1 is a zero of pT 3

19(a,b,c)
, so it is an

eigenvalue of T 3
19(a, b, c). We compute an associated eigenvector:

Dλ−a,d(0, k) = 1, Dλ−a,d(0, k) = 0, Dλ−a,d(2, k) = (−1)0− 12 = −12,

Dλ−a,d(3, k) = (−2)(−12)− (−7)0 = 24, Dλ−a,d(4, k) = 12, Dλ−a,d(5, k) = 0,

Dλ−a,d(6, k) = 24, Dλ−a,d(7, k) = 0, Dλ−a,d(8, k) = 12, Dλ−a,d(9, k) = −24,

Dλ−a,d(10, k) = −12, Dλ−a,d(11, k) = 0, Dλ−a,d(12, k) = −24, Dλ−a,d(13, k) = 0,

Dλ−a,d(14, k) = −12, Dλ−a,d(15, k) = 24, Dλ−a,d(16, k) = 12, Dλ−a,d(17, k) = 0,

Dλ−a,d(18, k) = 24.

Since b1 = 1, b2 = −1, b3 = 1, the products
∏n−1

j=i bj for 1 ≤ i ≤ n are easy to
compute in this case, being 1, 1, 91, 91, 91, 1, 1, 1, 91, 91, 91, 1, 1, 1, 91, 91, 91, 1, 1.
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Since Ann(0) = K we can pick z := 1. Thus

v1(1) = (1, 0, 12,−24,−12, 0, 24, 0,−12, 24, 12, 0,−24, 0, 12,−24,−12, 0, 24).

Interestingly, pT 3
19(a,b,c)

(λ) is a zero divisor of K for many other values of λ,18

but all the associated eigenvalues found by Theorem 6.7 are multiples of v1(1).

Entry a5,11 of the inverse: We use that fa,d2 = f(σ2(a), σ2(d)) for any

f ∈ K[x1, . . . , yk]:

(b1b2b3)
2b2 = −1, Da,d(4, 3) = αa,d(4, 3) = −13, det(T 3

19((a, b, c)) = −11,

a′ := σ2(a) = (3, 1, 2), d
′
:= σ2(d) = (1, 12,−7),

αa
′,9d
′

(1, 3) = 3, αa
′,9d
′

(2, 3) = 1 · 3− 1 = 2, αa
′,9d
′

(3, 3) = 2 · 2− 12 · 3 = 28,

βa
′,9d
′

(1, 3) = 0, βa
′,9d
′

(2, 3) = 7, βa
′,9d
′

(3, 3) = 1 · 7 = 7,

αa
′,9d
′

(4, 3) = 28 · 3 + 2 · 7 = −22, πa
′,9d
′

(3, 3) = 28 + 7 = −25, U(2)2 = −25,

Da,d
11 (8, 3) = (−25)(−22)− (−24)3 = 22.

a5,11 = (−1)
(−13)22

−11
= −26.

18The only elements of K which are not eigenvalues of T 3
19(a, b, c) are

0, 2, 8, 12, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 50, 54.
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